51
|
Ogasawara S. Control of Cellular Function by Reversible Photoregulation of Translation. Chembiochem 2014; 15:2652-5. [DOI: 10.1002/cbic.201402495] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 11/12/2022]
|
52
|
Mazzoni SM, Fearon ER. AXIN1 and AXIN2 variants in gastrointestinal cancers. Cancer Lett 2014; 355:1-8. [PMID: 25236910 DOI: 10.1016/j.canlet.2014.09.018] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 01/12/2023]
Abstract
Mutations in the APC (adenomatous polyposis coli) gene, which encodes a multi-functional protein with a well-defined role in the canonical Wnt pathway, underlie familial adenomatous polypsosis, a rare, inherited form of colorectal cancer (CRC) and contribute to the majority of sporadic CRCs. However, not all sporadic and familial CRCs can be explained by mutations in APC or other genes with well-established roles in CRC. The AXIN1 and AXIN2 proteins function in the canonical Wnt pathway, and AXIN1/2 alterations have been proposed as key defects in some cancers. Here, we review AXIN1 and AXIN2 sequence alterations reported in gastrointestinal cancers, with the goal of vetting the evidence that some of the variants may have key functional roles in cancer development.
Collapse
Affiliation(s)
- Serina M Mazzoni
- Department of Human Genetics, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Eric R Fearon
- Department of Human Genetics, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Department of Internal Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA; Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
53
|
Schmidt ML, Donninger H, Clark GJ. Ras regulates SCF(β-TrCP) protein activity and specificity via its effector protein NORE1A. J Biol Chem 2014; 289:31102-10. [PMID: 25217643 DOI: 10.1074/jbc.m114.594283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ras is the most frequently activated oncogene found in human cancer, but its mechanisms of action remain only partially understood. Ras activates multiple signaling pathways to promote transformation. However, Ras can also exhibit a potent ability to induce growth arrest and death. NORE1A (RASSF5) is a direct Ras effector that acts as a tumor suppressor by promoting apoptosis and cell cycle arrest. Expression of NORE1A is frequently lost in human tumors, and its mechanism of action remains unclear. Here we show that NORE1A forms a direct, Ras-regulated complex with β-TrCP, the substrate recognition component of the SCF(β-TrCP) ubiquitin ligase complex. This interaction allows Ras to stimulate the ubiquitin ligase activity of SCF(β-TrCP) toward its target β-catenin, resulting in degradation of β-catenin by the 26 S proteasome. However, the action of Ras/NORE1A/β-TrCP is substrate-specific because IκB, another substrate of SCF(β-TrCP), is not sensitive to NORE1A-promoted degradation. We identify a completely new signaling mechanism for Ras that allows for the specific regulation of SCF(β-TrCP) targets. We show that the NORE1A levels in a cell may dictate the effects of Ras on the Wnt/β-catenin pathway. Moreover, because NORE1A expression is frequently impaired in tumors, we provide an explanation for the observation that β-TrCP can act as a tumor suppressor or an oncogene in different cell systems.
Collapse
Affiliation(s)
- M Lee Schmidt
- From the Molecular Targets Group, James Graham Brown Cancer Center, Departments of Biochemistry and Molecular Biology
| | | | - Geoffrey J Clark
- Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
54
|
Zeng T, Wang Q, Fu J, Lin Q, Bi J, Ding W, Qiao Y, Zhang S, Zhao W, Lin H, Wang M, Lu B, Deng X, Zhou D, Yin Z, Wang HR. Impeded Nedd4-1-Mediated Ras Degradation Underlies Ras-Driven Tumorigenesis. Cell Rep 2014; 7:871-82. [DOI: 10.1016/j.celrep.2014.03.045] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/22/2014] [Accepted: 03/17/2014] [Indexed: 12/30/2022] Open
|
55
|
Sumita K, Yoshino H, Sasaki M, Majd N, Kahoud ER, Takahashi H, Takeuchi K, Kuroda T, Lee S, Charest PG, Takeda K, Asara JM, Firtel RA, Anastasiou D, Sasaki AT. Degradation of activated K-Ras orthologue via K-Ras-specific lysine residues is required for cytokinesis. J Biol Chem 2013; 289:3950-9. [PMID: 24338482 DOI: 10.1074/jbc.m113.531178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammalian cells encode three closely related Ras proteins, H-Ras, N-Ras, and K-Ras. Oncogenic K-Ras mutations frequently occur in human cancers, which lead to dysregulated cell proliferation and genomic instability. However, mechanistic role of the Ras isoform regulation have remained largely unknown. Furthermore, the dynamics and function of negative regulation of GTP-loaded K-Ras have not been fully investigated. Here, we demonstrate RasG, the Dictyostelium orthologue of K-Ras, is targeted for degradation by polyubiquitination. Both ubiquitination and degradation of RasG were strictly associated with RasG activity. High resolution tandem mass spectrometry (LC-MS/MS) analysis indicated that RasG ubiquitination occurs at C-terminal lysines equivalent to lysines found in human K-Ras but not in H-Ras and N-Ras homologues. Substitution of these lysine residues with arginines (4KR-RasG) diminished RasG ubiquitination and increased RasG protein stability. Cells expressing 4KR-RasG failed to undergo proper cytokinesis and resulted in multinucleated cells. Ectopically expressed human K-Ras undergoes polyubiquitin-mediated degradation in Dictyostelium, whereas human H-Ras and a Dictyostelium H-Ras homologue (RasC) are refractory to ubiquitination. Our results indicate the existence of GTP-loaded K-Ras orthologue-specific degradation system in Dictyostelium, and further identification of the responsible E3-ligase may provide a novel therapeutic approach against K-Ras-mutated cancers.
Collapse
Affiliation(s)
- Kazutaka Sumita
- From the Division of Hematology Oncology, Department of Internal Medicine, University of Cincinnati Cancer Institute, Department of Neurosurgery, University of Cincinnati Neuroscience Institute, Brain Tumor Center University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun Signal 2013; 11:52. [PMID: 23902637 PMCID: PMC3734146 DOI: 10.1186/1478-811x-11-52] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/26/2013] [Indexed: 11/10/2022] Open
Abstract
Ubiquitination, the covalent attachment of ubiquitin to target proteins, has emerged as a ubiquitous post-translational modification (PTM) whose function extends far beyond its original role as a tag for protein degradation identified three decades ago. Although sharing parallel properties with phosphorylation, ubiquitination distinguishes itself in important ways. Nevertheless, the interplay and crosstalk between ubiquitination and phosphorylation events have become a recurrent theme in cell signalling regulation. Understanding how these two major PTMs intersect to regulate signal transduction is an important research question. In this review, we first discuss the involvement of ubiquitination in the regulation of the EGF-mediated ERK signalling pathway via the EGF receptor, highlighting the interplay between ubiquitination and phosphorylation in this cancer-implicated system and addressing open questions. The roles of ubiquitination in pathways crosstalking to EGFR/MAPK signalling will then be discussed. In the final part of the review, we demonstrate the rich and versatile dynamics of crosstalk between ubiquitination and phosphorylation by using quantitative modelling and analysis of network motifs commonly observed in cellular processes. We argue that given the overwhelming complexity arising from inter-connected PTMs, a quantitative framework based on systems biology and mathematical modelling is needed to efficiently understand their roles in cell signalling.
Collapse
|
57
|
Piispanen AE, Grahl N, Hollomon JM, Hogan DA. Regulated proteolysis of Candida albicans Ras1 is involved in morphogenesis and quorum sensing regulation. Mol Microbiol 2013; 89:166-78. [PMID: 23692372 DOI: 10.1111/mmi.12268] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2013] [Indexed: 12/23/2022]
Abstract
In Candida albicans, a fungal pathogen, the small G-protein Ras1 regulates many important behaviors including white-opaque switching, biofilm formation, and the induction and maintenance of hyphal growth. Like other Ras proteins, Ras1 is activated upon guanine triphosphate binding, and its activity is further modulated by post-translational lipid modifications. Here, we report that the levels of membrane-associated, full-length Ras1 were higher in hyphae than in yeast, and that yeast contained a shorter, soluble Ras1 species that resulted from cleavage. Deletion of the putative cleavage site led to more rapid induction of hyphal growth and delayed hypha-to-yeast transitions. The cleaved Ras1 species was less able to activate its effector, adenylate cyclase (Cyr1), unless tethered to the membrane by a heterologous membrane-targeting domain. Ras1 cleavage was repressed by cAMP-signalling, indicating the presence of a positive feedback loop in which Cyr1 and cAMP influence Ras1. The C. albicans quorum sensing molecule farnesol, which inhibits Cyr1 and represses filamentation, caused an increase in the fraction of Ras1 in the cleaved form, particularly in nascent yeast formed from hyphae. This newly recognized mode of Ras regulation may control C. albicans Ras1 activity in important ways.
Collapse
Affiliation(s)
- Amy E Piispanen
- Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
58
|
Zeller E, Hammer K, Kirschnick M, Braeuning A. Mechanisms of RAS/β-catenin interactions. Arch Toxicol 2013; 87:611-32. [PMID: 23483189 DOI: 10.1007/s00204-013-1035-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 02/28/2013] [Indexed: 12/20/2022]
Abstract
Signaling through the WNT/β-catenin and the RAS (rat sarcoma)/MAPK (mitogen-activated protein kinase) pathways plays a key role in the regulation of various physiological cellular processes including proliferation, differentiation, and cell death. Aberrant mutational activation of these signaling pathways is closely linked to the development of cancer in many organs, in humans as well as in laboratory animals. Over the past years, more and more evidence for a close linkage of the two oncogenic signaling cascades has accumulated. Using different experimental approaches, model systems, and experimental conditions, a variety of molecular mechanisms have been identified by which signal transduction through WNT/β-catenin and RAS interact, either in a synergistic or an antagonistic manner. Mechanisms of interaction comprise an upstream crosstalk at the level of pathway-activating ligands and their receptors, interrelations of cytosolic kinases involved in either pathways, as well as interaction in the nucleus related to the joint regulation of target gene transcription. Here, we present a comprehensive review of the current knowledge on the interaction of RAS/MAPK- and WNT/β-catenin-driven signal transduction in mammalian cells.
Collapse
Affiliation(s)
- Eva Zeller
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Germany
| | | | | | | |
Collapse
|
59
|
Burks J, Reed RE, Desai SD. ISGylation governs the oncogenic function of Ki-Ras in breast cancer. Oncogene 2013; 33:794-803. [PMID: 23318454 DOI: 10.1038/onc.2012.633] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/27/2012] [Accepted: 11/30/2012] [Indexed: 12/20/2022]
Abstract
Aberrant expression of the oncogenic Kirsten-Ras (Ki-Ras) and interferon-stimulated gene 15 (ISG15) pathways is common in breast and other cancers. However, whether these dysregulated pathways cooperate to promote malignancy is not known. This study links Ki-Ras and ISG15 in a previously unidentified regulatory loop that may underlie malignant transformation of mammary cells. We show that oncogenic Ki-Ras regulates the expression of the ISG15 pathway (free ISG15 and ISG15 conjugates), and ISG15, in turn, stabilizes Ki-Ras protein by inhibiting its targeted degradation via lysosomes in breast cancer cells. Disruption of this loop by silencing either Ki-Ras or the ISG15 pathway restored the disrupted cellular architecture, a hallmark feature of most cancer cells. We also demonstrate that ISG15 and UbcH8 (ISG15-specific conjugating enzyme) shRNAs reversed Ki-Ras mutation-associated phenotypes of cancer cells, such as increased cell proliferation, colony formation, anchorage-independent growth in soft agar, cell migration, and epithelial-mesenchymal transition. As UbcH8-silenced breast cancer cells are devoid of ISG15 conjugates but have free ISG15, our results using UbcH8-silenced cells suggest that ISG15 conjugates, and not free ISG15, contributes to oncogenic Ki-Ras transformation. We have thus identified the conjugated form of ISG15 as a critical downstream mediator of oncogenic Ki-Ras, providing a potential mechanistic link between ISG15 and Ki-Ras-mediated breast tumorigenesis. Our findings, which show that inhibition of the ISGylation reverses the malignant phenotypes of breast cancer cells expressing oncogenic Ki-Ras, support the development of ISG15 conjugation inhibitors for treating breast and also other cancers expressing oncogenic Ki-Ras.
Collapse
Affiliation(s)
- J Burks
- Department of Biochemistry and Molecular Biology, LSU Health Science Center-School of Medicine, New Orleans, LA, USA
| | - R E Reed
- Department of Biochemistry and Molecular Biology, LSU Health Science Center-School of Medicine, New Orleans, LA, USA
| | - S D Desai
- Department of Biochemistry and Molecular Biology, LSU Health Science Center-School of Medicine, New Orleans, LA, USA
| |
Collapse
|
60
|
Luo G, Gu H, Liu J, Qu LJ. Four closely-related RING-type E3 ligases, APD1-4, are involved in pollen mitosis II regulation in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:814-27. [PMID: 22897245 DOI: 10.1111/j.1744-7909.2012.01152.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ubiquitination of proteins is one of the critical regulatory mechanisms in eukaryotes. In higher plants, protein ubiquitination plays an essential role in many biological processes, including hormone signaling, photomorphogenesis, and pathogen defense. However, the roles of protein ubiquitination in the reproductive process are not clear. In this study, we identified four plant-specific RING-finger genes designated Aberrant Pollen Development 1 (APD1) to APD4, as regulators of pollen mitosis II (PMII) in Arabidopsis thaliana (L.). The apd1 apd2 double mutant showed a significantly increased percentage of bicellular-like pollen at the mature pollen stage. Further downregulation of the APD3 and APD4 transcripts in apd1 apd2 by RNA interference (RNAi) resulted in more severe abnormal bicellular-like pollen phenotypes than in apd1 apd2, suggesting that cell division was defective in male gametogenesis. All of the four genes were expressed in multiple stages at different levels during male gametophyte development. Confocal analysis using green florescence fusion proteins (GFP) GFP-APD1 and GFP-APD2 showed that APDs are associated with intracellular membranes. Furthermore, APD2 had E2-dependent E3 ligase activity in vitro, and five APD2-interacting proteins were identified. Our results suggest that these four genes may be involved, redundantly, in regulating the PMII process during male gametogenesis.
Collapse
Affiliation(s)
- Guo Luo
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking-Tsinghua Center of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
61
|
Sacco E, Spinelli M, Vanoni M. Approaches to Ras signaling modulation and treatment of Ras-dependent disorders: a patent review (2007--present). Expert Opin Ther Pat 2012; 22:1263-87. [PMID: 23009088 DOI: 10.1517/13543776.2012.728586] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Ras proteins are small GTPases molecular switches that cycle through two alternative conformational states, a GDP-bound inactive state and a GTP-bound active state. In the active state, Ras proteins interact with and modulate the activity of several downstream effectors regulating key cellular processes including proliferation, differentiation, survival, senescence, migration and metabolism. Activating mutations of RAS genes and of genes encoding Ras signaling members have a great incidence in proliferative disorders, such as cancer, immune and inflammatory diseases and developmental syndromes. Therefore, Ras and Ras signaling represent important clinical targets for the design and development of pharmaceutically active agents, including anticancer agents. AREAS COVERED The authors summarize methods available to down-regulate the Ras pathway and review recent patents covering Ras signaling modulators, as well as methods designed to kill specifically cancer cells bearing activated RAS oncogene. EXPERT OPINION Targeted therapy approach based on direct targeting of molecules specifically altered in Ras-dependent diseases is pursued with molecules that down-regulate expression or inhibit the biological function of mutant Ras or Ras signaling members. The low success rate in a clinical setting of molecules targeting activated members of the Ras pathway may require development of novel approaches, including combined and synthetic lethal therapies.
Collapse
Affiliation(s)
- Elena Sacco
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Milano, Italy
| | | | | |
Collapse
|
62
|
Voutsadakis IA. The ubiquitin-proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer. J Biomed Sci 2012; 19:67. [PMID: 22827778 PMCID: PMC3418218 DOI: 10.1186/1423-0127-19-67] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 07/09/2012] [Indexed: 02/08/2023] Open
Abstract
Epithelial to Mesenchymal transition (EMT) in cancer, a process permitting cancer cells to become mobile and metastatic, has a signaling hardwire forged from development. Multiple signaling pathways that regulate carcinogenesis enabling characteristics in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis are also the main players in EMT. These pathways, as almost all cellular processes, are in their turn regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination is the covalent link of target proteins with the small protein ubiquitin and serves as a signal to target protein degradation by the proteasome or to other outcomes such as endocytosis, degradation by the lysosome or specification of cellular localization. This paper reviews signal transduction pathways regulating EMT and being regulated by ubiquitination.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Centre Pluridisciplinaire d'Oncologie, BH06, Centre Hospitalier Universitaire Vaudois, Bugnon 46, Lausanne, 1011, Switzerland.
| |
Collapse
|
63
|
Neyraud V, Aushev VN, Hatzoglou A, Meunier B, Cascone I, Camonis J. RalA and RalB proteins are ubiquitinated GTPases, and ubiquitinated RalA increases lipid raft exposure at the plasma membrane. J Biol Chem 2012; 287:29397-405. [PMID: 22700969 DOI: 10.1074/jbc.m112.357764] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ras GTPases signal by orchestrating a balance among several effector pathways, of which those driven by the GTPases RalA and RalB are essential to Ras oncogenic functions. RalA and RalB share the same effectors but support different aspects of oncogenesis. One example is the importance of active RalA in anchorage-independent growth and membrane raft trafficking. This study has shown a new post-translational modification of Ral GTPases: nondegradative ubiquitination. RalA (but not RalB) ubiquitination increases in anchorage-independent conditions in a caveolin-dependent manner and when lipid rafts are endocytosed. Forcing RalA mono-ubiquitination (by expressing a protein fusion consisting of ubiquitin fused N-terminally to RalA) leads to RalA enrichment at the plasma membrane and increases raft exposure. This study suggests the existence of an ubiquitination/de-ubiquitination cycle superimposed on the GDP/GTP cycle of RalA, involved in the regulation of RalA activity as well as in membrane raft trafficking.
Collapse
Affiliation(s)
- Vincent Neyraud
- From the Analysis of Transduction Pathways (ATP) Group, Institut Curie, INSERM U830, Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
64
|
Jeong WJ, Yoon J, Park JC, Lee SH, Lee SH, Kaduwal S, Kim H, Yoon JB, Choi KY. Ras Stabilization Through Aberrant Activation of Wnt/ -Catenin Signaling Promotes Intestinal Tumorigenesis. Sci Signal 2012; 5:ra30. [DOI: 10.1126/scisignal.2002242] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
65
|
Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol 2012; 33:897-910. [PMID: 22399444 DOI: 10.1007/s13277-012-0355-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/09/2012] [Indexed: 02/06/2023] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Collapse
|
66
|
Liu H, Urbé S, Clague MJ. Selective protein degradation in cell signalling. Semin Cell Dev Biol 2012; 23:509-14. [PMID: 22343089 DOI: 10.1016/j.semcdb.2012.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/11/2012] [Accepted: 01/20/2012] [Indexed: 01/30/2023]
Abstract
A variety of post-translational modifications such as phosphorylation, acetylation and ubiquitylation transduce cellular signals, which culminate in changes in gene transcription. In this article we examine the ways in which selective protein degradation provides an extra dimension to the regulation of such signalling cascades. We discuss (i) how both lysosomal and proteasomal systems are used to attenuate kinase and rho family GTPase signalling, thereby coupling activation with degradation, (ii) signal propagation contingent upon the selective degradation of inhibitory components, exemplified by the degradation of IκB to activate NF-κB signalling, and (iii) tonic suppression of signalling pathways by turnover of the transcription factors β-catenin and p53.
Collapse
Affiliation(s)
- Han Liu
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK.
| | | | | |
Collapse
|
67
|
Rabien A, Sanchez-Ruderisch H, Schulz P, Otto N, Wimmel A, Wiedenmann B, Detjen KM. Tumor suppressor p16INK4a controls oncogenic K-Ras function in human pancreatic cancer cells. Cancer Sci 2011; 103:169-75. [DOI: 10.1111/j.1349-7006.2011.02140.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
68
|
de la Vega M, Burrows JF, Johnston JA. Ubiquitination: Added complexity in Ras and Rho family GTPase function. Small GTPases 2011; 2:192-201. [PMID: 22145091 DOI: 10.4161/sgtp.2.4.16707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 12/17/2022] Open
Abstract
The regulation of the small GTPases leading to their membrane localization has long been attributed to processing of their C-terminal CAAX box. As deregulation of many of these GTPases have been implicated in cancer and other disorders, prenylation and methylation of this CAAX box has been studied in depth as a possibility for drug targeting, but unfortunately, to date no drug has proved clinically beneficial. However, these GTPases also undergo other modifications that may be important for their regulation. Ubiquitination has long been demonstrated to regulate the fate of numerous cellular proteins and recently it has become apparent that many GTPases, along with their GAPs, GeFs and GDis, undergo ubiquitination leading to a variety of fates such as re-localization or degradation. in this review we focus on the recent literature demonstrating that the regulation of small GTPases by ubiquitination, either directly or indirectly, plays a considerable role in controlling their function and that targeting these modifications could be important for disease treatment.
Collapse
Affiliation(s)
- Michelle de la Vega
- Centre for Infection and Immunity; School of Medicine, Dentistry and Biomedical Sciences; Queen's University; Belfast, UK
| | | | | |
Collapse
|
69
|
Lee SH, Kim B, Oh MJ, Yoon J, Kim HY, Lee KJ, Lee JD, Choi KY. Persicaria hydropiper (L.) spach and its flavonoid components, isoquercitrin and isorhamnetin, activate the Wnt/β-catenin pathway and inhibit adipocyte differentiation of 3T3-L1 cells. Phytother Res 2011; 25:1629-35. [PMID: 21413092 DOI: 10.1002/ptr.3469] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 12/26/2022]
Abstract
Obesity, which is related to metabolic syndrome and is associated with liver disease, represents an epidemic problem demanding effective therapeutic strategies. Evidence shows that the Wnt/β-catenin pathway is closely associated with obesity and that small molecules regulating the Wnt/β-catenin pathway can potentially control adipogenesis related to obesity. Eleven plant extracts activating the Wnt/β-catenin pathway were screened by using HEK 293-TOP cells retaining the Wnt/β-catenin signaling reporter gene. An extract of Persicaria hydropiper (L.) Spach was found to activate Wnt/β-catenin signaling. P. hydropiper is grown worldwide in temperate climates and is found widely in Southeast Asia. The P. hydropiper extract inhibited the differentiation of adipocyte 3T3-L1 cells. Isoquercitrin and isorhamnetin, constituents of P. hydropiper, also activated Wnt/β-catenin signaling and suppressed the differentiation of 3T3-L1 cells. These results indicate that isoquercitrin in P. hydropiper suppresses the adipogenesis of 3T3-L1 cells via the inhibition of Wnt/β-catenin signaling. P. hydropiper and isoquercitrin may therefore be potential therapeutic agents for obesity and its associated disorders.
Collapse
Affiliation(s)
- Soung-Hoon Lee
- Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Nethe M, Hordijk PL. The role of ubiquitylation and degradation in RhoGTPase signalling. J Cell Sci 2011; 123:4011-8. [PMID: 21084561 DOI: 10.1242/jcs.078360] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rho-like guanosine triphosphatases (RhoGTPases) control many aspects of cellular physiology through their effects on the actin cytoskeleton and on gene transcription. Signalling by RhoGTPases is tightly coordinated and requires a series of regulatory proteins, including guanine-nucleotide exchange factors (GEFs), GTPase-activating proteins (GAPs) and guanine-nucleotide dissociation inhibitors (GDIs). GEFs and GAPs regulate GTPase cycling between the active (GTP-bound) and inactive (GDP-bound) states, whereas GDI is a cytosolic chaperone that binds inactive RhoGTPases. Like many other proteins, RhoGTPases are subject to degradation following the covalent conjugation of ubiquitin. There have been increasing indications that ubiquitylation of small GTPases occurs in a regulated fashion, primarily upon activation, and is an important means to control signalling output. Recent work has identified cellular proteins that control RasGTPase and RhoGTPase ubiquitylation and degradation, allowing us to amend the canonical model for GTPase (in)activation. Moreover, accumulating evidence for indirect regulation of GTPase function through the ubiquitylation of GTPase regulators makes this post-translational modification a key feature of GTPase-dependent signalling pathways. Here, we will discuss these recent insights into the regulation of RhoGTPase ubiquitylation and their relevance for cell signalling.
Collapse
Affiliation(s)
- Micha Nethe
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| | | |
Collapse
|
71
|
Sasaki AT, Carracedo A, Locasale JW, Anastasiou D, Takeuchi K, Kahoud ER, Haviv S, Asara JM, Pandolfi PP, Cantley LC. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci Signal 2011; 4:ra13. [PMID: 21386094 DOI: 10.1126/scisignal.2001518] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The guanosine triphosphate (GTP)--loaded form of the guanosine triphosphatase (GTPase) Ras initiates multiple signaling pathways by binding to various effectors, such as the kinase Raf and phosphatidylinositol 3-kinase (PI3K). Ras activity is increased by guanine nucleotide exchange factors that stimulate guanosine diphosphate release and GTP loading and is inhibited by GTPase-activating proteins that stimulate GTP hydrolysis. KRAS is the most frequently mutated RAS gene in cancer. Here, we report that monoubiquitination of lysine-147 in the guanine nucleotide-binding motif of wild-type K-Ras could lead to enhanced GTP loading. Furthermore, ubiquitination increased the binding of the oncogenic Gly12Val mutant of K-Ras to the downstream effectors PI3K and Raf. Thus, monoubiquitination could enhance GTP loading on K-Ras and increase its affinity for specific downstream effectors, providing a previously unidentified mechanism for Ras activation.
Collapse
Affiliation(s)
- Atsuo T Sasaki
- 1Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Signal transduction through Ras translates extracellular signals into biological responses, including cell proliferation, cell survival, growth, and differentiation. For these reasons, dysregulating Ras can have dramatic effects at the cellular and organismal levels. Germline mutations that increase Ras signaling disrupt development, whereas mutational activation of Ras in somatic cells can cause cancer. Thus, identifying additional mechanisms that positively or negatively regulate Ras could have profound implications for treating human diseases. New evidence identifies K-Ras monoubiquitination as a previously unknown means to potentiate Ras signaling.
Collapse
Affiliation(s)
- Cathie M Pfleger
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
73
|
Aleksic K, Lackner C, Geigl JB, Schwarz M, Auer M, Ulz P, Fischer M, Trajanoski Z, Otte M, Speicher MR. Evolution of genomic instability in diethylnitrosamine-induced hepatocarcinogenesis in mice. Hepatology 2011; 53:895-904. [PMID: 21374661 DOI: 10.1002/hep.24133] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
UNLABELLED Diethylnitrosamine (DEN) is a hepatic procarcinogen which is frequently used as an inducer of hepatocellular carcinoma (HCC) in mice. Although mice after DEN exposure are among the most widely used models for liver tumorigenesis, a detailed, mechanistic characterization of the longitudinal changes in the respective tumor genomes has never been performed. Here we established the chronological order of genetic alterations during DEN carcinogenesis by examining mice at different points in time. Tumor samples were isolated by laser microdissection and subjected to array-comparative genomic hybridization (array-CGH) and sequencing analysis. Chromosomal gains and losses were observed in tumors by week 32 and increased significantly by week 56. Loss of distal chromosome 4q, including the tumor suppressors Runx3 and Nr0b2/Shp, was a frequent early event and persisted during all tumor stages. Surprisingly, sequencing revealed that β-catenin mutations occurred late and were clearly preceded by chromosomal instability. Thus, contrary to common belief, β-catenin mutations and activation of the Wnt/β-catenin pathway are not involved in tumor initiation in this model of chemical hepatocarcinogenesis. CONCLUSION Our study suggests that the majority of the current knowledge about genomic changes in HCC is based on advanced tumor lesions and that systematic analyses of the chronologic order including early lesions may reveal new, unexpected findings.
Collapse
Affiliation(s)
- Kristina Aleksic
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Oeste CL, Díez-Dacal B, Bray F, García de Lacoba M, de la Torre BG, Andreu D, Ruiz-Sánchez AJ, Pérez-Inestrosa E, García-Domínguez CA, Rojas JM, Pérez-Sala D. The C-terminus of H-Ras as a target for the covalent binding of reactive compounds modulating Ras-dependent pathways. PLoS One 2011; 6:e15866. [PMID: 21253588 PMCID: PMC3017061 DOI: 10.1371/journal.pone.0015866] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 11/25/2010] [Indexed: 12/30/2022] Open
Abstract
Ras proteins are crucial players in differentiation and oncogenesis and constitute important drug targets. The localization and activity of Ras proteins are highly dependent on posttranslational modifications at their C-termini. In addition to an isoprenylated cysteine, H-Ras, but not other Ras proteins, possesses two cysteine residues (C181 and C184) in the C-terminal hypervariable domain that act as palmitoylation sites in cells. Cyclopentenone prostaglandins (cyPG) are reactive lipidic mediators that covalently bind to H-Ras and activate H-Ras dependent pathways. Dienone cyPG, such as 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2) and Δ12-PGJ2 selectively bind to the H-Ras hypervariable domain. Here we show that these cyPG bind simultaneously C181 and C184 of H-Ras, thus potentially altering the conformational tendencies of the hypervariable domain. Based on these results, we have explored the capacity of several bifunctional cysteine reactive small molecules to bind to the hypervariable domain of H-Ras proteins. Interestingly, phenylarsine oxide (PAO), a widely used tyrosine phosphatase inhibitor, and dibromobimane, a cross-linking agent used for cysteine mapping, effectively bind H-Ras hypervariable domain. The interaction of PAO with H-Ras takes place in vitro and in cells and blocks modification of H-Ras by 15d-PGJ2. Moreover, PAO treatment selectively alters H-Ras membrane partition and the pattern of H-Ras activation in cells, from the plasma membrane to endomembranes. These results identify H-Ras as a novel target for PAO. More importantly, these observations reveal that small molecules or reactive intermediates interacting with spatially vicinal cysteines induce intramolecular cross-linking of H-Ras C-terminus potentially contributing to the modulation of Ras-dependent pathways.
Collapse
Affiliation(s)
- Clara L. Oeste
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz Díez-Dacal
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Francesca Bray
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mario García de Lacoba
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Beatriz G. de la Torre
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - David Andreu
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | - Carlota A. García-Domínguez
- Unidad de Biología Celular, Área de Biología Celular y del Desarrollo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - José M. Rojas
- Unidad de Biología Celular, Área de Biología Celular y del Desarrollo, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- * E-mail:
| |
Collapse
|
75
|
Valero RA, Oeste CL, Stamatakis K, Ramos I, Herrera M, Boya P, Pérez-Sala D. Structural determinants allowing endolysosomal sorting and degradation of endosomal GTPases. Traffic 2010; 11:1221-33. [PMID: 20573066 DOI: 10.1111/j.1600-0854.2010.01091.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid control of protein degradation is usually achieved through the ubiquitin-proteasome pathway. We recently found that the short-lived GTPase RhoB is degraded in lysosomes. Moreover, the fusion of the RhoB C-terminal sequence CINCCKVL, containing the isoprenylation and palmitoylation sites, to other proteins directs their sorting into multivesicular bodies (MVBs) and rapid lysosomal degradation. Here, we show that this process is highly specific for RhoB. Alteration of late endosome lipid dynamics produced the accumulation of RhoB, but not of other endosomal GTPases, including Rab5, Rab7, Rab9 or Rab11, into enlarged MVB. Other isoprenylated and bipalmitoylated GTPases, such as H-Ras, Rap2A, Rap2B and TC10, were not accumulated into MVB and were stable. Remarkably, although TC10, which is highly homologous to RhoB, was stable, a sequence derived from its C-terminus (CINCCLIT) elicited MVB sorting and degradation of a green fluorescent protein (GFP)-chimeric protein. This led us to identify a cluster of basic amino acids (KKH) in the TC10 hypervariable region, constituting a secondary signal potentially involved in electrostatic interactions with membrane lipids. Mutation of this cluster allowed TC10 MVB sorting and degradation, whereas inserting it into RhoB hypervariable region rescued this protein from its lysosomal degradation pathway. These findings define a highly specific structural module for entering the MVB pathway and rapid lysosomal degradation.
Collapse
Affiliation(s)
- Ruth A Valero
- Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
76
|
El-Sayed W, Parry DA, Shore RC, Ahmed M, Jafri H, Rashid Y, Al-Bahlani S, Al Harasi S, Kirkham J, Inglehearn CF, Mighell AJ. Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta. Am J Hum Genet 2009; 85:699-705. [PMID: 19853237 PMCID: PMC2775821 DOI: 10.1016/j.ajhg.2009.09.014] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/22/2009] [Accepted: 09/25/2009] [Indexed: 11/26/2022] Open
Abstract
Healthy dental enamel is the hardest and most highly mineralized human tissue. Though acellular, nonvital, and without capacity for turnover or repair, it can nevertheless last a lifetime. Amelogenesis imperfecta (AI) is a collective term for failure of normal enamel development, covering diverse clinical phenotypes that typically show Mendelian inheritance patterns. One subset, known as hypomaturation AI, is characterised by near-normal volumes of organic enamel matrix but with weak, creamy-brown opaque enamel that fails prematurely after tooth eruption. Mutations in genes critical to enamel matrix formation have been documented, but current understanding of other key events in enamel biomineralization is limited. We investigated autosomal-recessive hypomaturation AI in a consanguineous Pakistani family. A whole-genome SNP autozygosity screen identified a locus on chromosome 15q21.3. Sequencing candidate genes revealed a point mutation in the poorly characterized WDR72 gene. Screening of WDR72 in a panel of nine additional hypomaturation AI families revealed the same mutation in a second, apparently unrelated, Pakistani family and two further nonsense mutations in Omani families. Immunohistochemistry confirmed intracellular localization in maturation-stage ameloblasts. WDR72 function is unknown, but as a putative β propeller is expected to be a scaffold for protein-protein interactions. The nearest homolog, WDR7, is involved in vesicle mobilization and Ca2+-dependent exocytosis at synapses. Vesicle trafficking is important in maturation-stage ameloblasts with respect to secretion into immature enamel and removal of cleaved enamel matrix proteins via endocytosis. This raises the intriguing possibility that WDR72 is critical to ameloblast vesicle turnover during enamel maturation.
Collapse
|