51
|
Bittel DC, Jaiswal JK. Contribution of Extracellular Vesicles in Rebuilding Injured Muscles. Front Physiol 2019; 10:828. [PMID: 31379590 PMCID: PMC6658195 DOI: 10.3389/fphys.2019.00828] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022] Open
Abstract
Skeletal myofibers are injured due to mechanical stresses experienced during physical activity, or due to myofiber fragility caused by genetic diseases. The injured myofiber needs to be repaired or regenerated to restore the loss in muscle tissue function. Myofiber repair and regeneration requires coordinated action of various intercellular signaling factors-including proteins, inflammatory cytokines, miRNAs, and membrane lipids. It is increasingly being recognized release and transmission of these signaling factors involves extracellular vesicle (EV) released by myofibers and other cells in the injured muscle. Intercellular signaling by these EVs alters the phenotype of their target cells either by directly delivering the functional proteins and lipids or by modifying longer-term gene expression. These changes in the target cells activate downstream pathways involved in tissue homeostasis and repair. The EVs are heterogeneous with regards to their size, composition, cargo, location, as well as time-course of genesis and release. These differences impact on the subsequent repair and regeneration of injured skeletal muscles. This review focuses on how intracellular vesicle production, cargo packaging, and secretion by injured muscle, modulates specific reparative, and regenerative processes. Insights into the formation of these vesicles and their signaling properties offer new understandings of the orchestrated response necessary for optimal muscle repair and regeneration.
Collapse
Affiliation(s)
- Daniel C Bittel
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
52
|
Brothers KM, Callaghan JD, Stella NA, Bachinsky JM, AlHigaylan M, Lehner KL, Franks JM, Lathrop KL, Collins E, Schmitt DM, Horzempa J, Shanks RMQ. Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells. PLoS Pathog 2019; 15:e1007825. [PMID: 31220184 PMCID: PMC6586354 DOI: 10.1371/journal.ppat.1007825] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Medical devices, such as contact lenses, bring bacteria in direct contact with human cells. Consequences of these host-pathogen interactions include the alteration of mammalian cell surface architecture and induction of cellular death that renders tissues more susceptible to infection. Gram-negative bacteria known to induce cellular blebbing by mammalian cells, Pseudomonas and Vibrio species, do so through a type III secretion system-dependent mechanism. This study demonstrates that a subset of bacteria from the Enterobacteriaceae bacterial family induce cellular death and membrane blebs in a variety of cell types via a type V secretion-system dependent mechanism. Here, we report that ShlA-family cytolysins from Proteus mirabilis and Serratia marcescens were required to induce membrane blebbling and cell death. Blebbing and cellular death were blocked by an antioxidant and RIP-1 and MLKL inhibitors, implicating necroptosis in the observed phenotypes. Additional genetic studies determined that an IgaA family stress-response protein, GumB, was necessary to induce blebs. Data supported a model where GumB and shlBA are in a regulatory circuit through the Rcs stress response phosphorelay system required for bleb formation and pathogenesis in an invertebrate model of infection and proliferation in a phagocytic cell line. This study introduces GumB as a regulator of S. marcescens host-pathogen interactions and demonstrates a common type V secretion system-dependent mechanism by which bacteria elicit surface morphological changes on mammalian cells. This type V secretion-system mechanism likely contributes bacterial damage to the corneal epithelial layer, and enables access to deeper parts of the tissue that are more susceptible to infection.
Collapse
Affiliation(s)
- Kimberly M. Brothers
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jake D. Callaghan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Nicholas A. Stella
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Julianna M. Bachinsky
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Mohammed AlHigaylan
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Kara L. Lehner
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
| | - Jonathan M. Franks
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Kira L. Lathrop
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
| | - Elliot Collins
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Deanna M. Schmitt
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Joseph Horzempa
- Department of Natural Sciences and Mathematics, West Liberty University, West Liberty, WV United States of America
| | - Robert M. Q. Shanks
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA United States of America
- Charles T. Campbell Laboratory of Ophthalmic Microbiology
- * E-mail:
| |
Collapse
|
53
|
Brito C, Cabanes D, Sarmento Mesquita F, Sousa S. Mechanisms protecting host cells against bacterial pore-forming toxins. Cell Mol Life Sci 2019; 76:1319-1339. [PMID: 30591958 PMCID: PMC6420883 DOI: 10.1007/s00018-018-2992-8] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Pore-forming toxins (PFTs) are key virulence determinants produced and secreted by a variety of human bacterial pathogens. They disrupt the plasma membrane (PM) by generating stable protein pores, which allow uncontrolled exchanges between the extracellular and intracellular milieus, dramatically disturbing cellular homeostasis. In recent years, many advances were made regarding the characterization of conserved repair mechanisms that allow eukaryotic cells to recover from mechanical disruption of the PM membrane. However, the specificities of the cell recovery pathways that protect host cells against PFT-induced damage remain remarkably elusive. During bacterial infections, the coordinated action of such cell recovery processes defines the outcome of infected cells and is, thus, critical for our understanding of bacterial pathogenesis. Here, we review the cellular pathways reported to be involved in the response to bacterial PFTs and discuss their impact in single-cell recovery and infection.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Francisco Sarmento Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Global Health Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
54
|
Kano F, Murata M. Phosphatidylinositol-3-phosphate-mediated actin domain formation linked to DNA synthesis upon insulin treatment in rat hepatoma-derived H4IIEC3 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:793-805. [PMID: 30742930 DOI: 10.1016/j.bbamcr.2019.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 01/20/2023]
Abstract
Phosphatidylinositol-3-phosphate (PI3P) is a lipid that accumulates in the early endosomal membrane, and acts as a scaffold to recruit proteins that contain a PI3P-binding domain, such as the FYVE domain. In this study, we examined the effect of PI3P depletion on the insulin response in rat hepatoma-derived H4IIEC3 cells. We found that insulin treatment induced the transient formation of an actin domain structure, a mesh-like tangled network of actin filaments where phosphorylated Akt, endosomal proteins, and PI3P accumulated. Actin domain formation was repressed by the depletion of PI3P by SAR405, an inhibitor of the class III PI3 kinase, Vps34, by the inhibition of PI3P function by the competitive binding of an excess amount of GST-fused 2xFYVE protein to intracellular PI3P, and by the use of diabetic model cells, in which PI3P was depleted. SAR405 did not affect the phosphorylation level of Akt, and the transcriptional regulation of gluconeogenic and cholesterol synthetic genes after insulin treatment. Interestingly, insulin-induced DNA synthesis was specifically inhibited by SAR405, cytochalasin B, and also in diabetic model cells. These results suggest that PI3P is required for the formation of actin domains, which affected a signaling pathway downstream of Akt associated with DNA synthesis in H4IIEC3 cells.
Collapse
Affiliation(s)
- Fumi Kano
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Laboratory of Frontier Image Analysis, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Masayuki Murata
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Laboratory of Frontier Image Analysis, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
55
|
Chen C, Nguyen BN, Mitchell G, Margolis SR, Ma D, Portnoy DA. The Listeriolysin O PEST-like Sequence Co-opts AP-2-Mediated Endocytosis to Prevent Plasma Membrane Damage during Listeria Infection. Cell Host Microbe 2019; 23:786-795.e5. [PMID: 29902442 DOI: 10.1016/j.chom.2018.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/23/2018] [Accepted: 05/11/2018] [Indexed: 10/14/2022]
Abstract
Listeriolysin O (LLO) is a cholesterol-dependent cytolysin that mediates escape of Listeria monocytogenes from a phagosome, enabling growth of the bacteria in the host cell cytosol. LLO contains a PEST-like sequence that prevents it from killing infected cells, but the mechanism involved is unknown. We found that the LLO PEST-like sequence was necessary to mediate removal of LLO from the interior face of the plasma membrane, where it coalesces into discrete puncta. LLO interacts with Ap2a2, an adaptor protein involved in endocytosis, via its PEST-like sequence, and Ap2a2-dependent endocytosis is required to prevent LLO-induced cytotoxicity. An unrelated PEST-like sequence from a human G protein-coupled receptor (GPCR), which also interacts with Ap2a2, could functionally complement the PEST-like sequence in L. monocytogenes LLO. These data revealed that LLO co-opts the host endocytosis machinery to protect the integrity of the host plasma membrane during L. monocytogenes infection.
Collapse
Affiliation(s)
- Chen Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Brittney N Nguyen
- Graduate Group in Microbiology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gabriel Mitchell
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shally R Margolis
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Darren Ma
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
56
|
Ray S, Thapa R, Keyel PA. Multiple Parameters Beyond Lipid Binding Affinity Drive Cytotoxicity of Cholesterol-Dependent Cytolysins. Toxins (Basel) 2018; 11:toxins11010001. [PMID: 30577571 PMCID: PMC6356533 DOI: 10.3390/toxins11010001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
The largest superfamily of bacterial virulence factors is pore-forming toxins (PFTs). PFTs are secreted by both pathogenic and non-pathogenic bacteria. PFTs sometimes kill or induce pro-pathogen signaling in mammalian cells, all primarily through plasma membrane perforation, though the parameters that determine these outcomes are unclear. Membrane binding, calcium influx, pore size, and membrane repair are factors that influence PFT cytotoxicity. To test the contribution of membrane binding to cytotoxicity and repair, we compared the closely related, similarly-sized PFTs Perfringolysin O (PFO) from Clostridium perfringens and Streptolysin O (SLO) from Streptococcus pyogenes. Cell death kinetics for PFO and SLO were different because PFO increased in cytotoxicity over time. We introduced known L3 loop mutations that swap binding affinity between toxins and measured hemolytic activity, nucleated cell death kinetics and membrane repair using viability assays, and live cell imaging. Altered hemolytic activity was directly proportional to toxin binding affinity. In contrast, L3 loop alterations reduced nucleated cell death, and they had limited effects on cytotoxicity kinetics and membrane repair. This suggests other toxin structural features, like oligomerization, drives these parameters. Overall, these findings suggest that repair mechanisms and toxin oligomerization add constraints beyond membrane binding on toxin evolution and activity against nucleated cells.
Collapse
Affiliation(s)
- Sucharit Ray
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Box 43131, Lubbock, TX 79409, USA.
| | - Roshan Thapa
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Box 43131, Lubbock, TX 79409, USA.
| | - Peter A Keyel
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Box 43131, Lubbock, TX 79409, USA.
| |
Collapse
|
57
|
Pharmacological Targeting of Pore-Forming Toxins as Adjunctive Therapy for Invasive Bacterial Infection. Toxins (Basel) 2018; 10:toxins10120542. [PMID: 30562923 PMCID: PMC6316385 DOI: 10.3390/toxins10120542] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022] Open
Abstract
For many of the most important human bacterial infections, invasive disease severity is fueled by the cell damaging and pro-inflammatory effects of secreted pore-forming toxins (PFTs). Isogenic PFT-knockout mutants, e.g., Staphylococcus aureus lacking α-toxin or Streptococcus pneumoniae deficient in pneumolysin, show attenuation in animal infection models. This knowledge has inspired multi-model investigations of strategies to neutralize PFTs or counteract their toxicity as a novel pharmacological approach to ameliorate disease pathogenesis in clinical disease. Promising examples of small molecule, antibody or nanotherapeutic drug candidates that directly bind and neutralize PFTs, block their oligomerization or membrane receptor interactions, plug establishment membrane pores, or boost host cell resiliency to withstand PFT action have emerged. The present review highlights these new concepts, with a special focus on β-PFTs produced by leading invasive human Gram-positive bacterial pathogens. Such anti-virulence therapies could be applied as an adjunctive therapy to antibiotic-sensitive and -resistant strains alike, and further could be free of deleterious effects that deplete the normal microflora.
Collapse
|
58
|
Nygård Skalman L, Holst MR, Larsson E, Lundmark R. Plasma membrane damage caused by listeriolysin O is not repaired through endocytosis of the membrane pore. Biol Open 2018; 7:bio.035287. [PMID: 30254077 PMCID: PMC6215411 DOI: 10.1242/bio.035287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Endocytic mechanisms have been suggested to be important for plasma membrane repair in response to pore-forming toxins such as listeriolysin O (LLO), which form membrane pores that disrupt cellular homeostasis. Yet, little is known about the specific role of distinct endocytic machineries in this process. Here, we have addressed the importance of key endocytic pathways and developed reporter systems for real-time imaging of the endocytic response to LLO pore formation. We found that loss of clathrin-independent endocytic pathways negatively influenced the efficiency of membrane repair. However, we did not detect any increased activity of these pathways, or co-localisation with the toxin or markers of membrane repair, suggesting that they were not directly involved in removal of LLO pores from the plasma membrane. In fact, markers of clathrin-independent carriers (CLICs) were rapidly disassembled in the acute phase of membrane damage due to Ca2+ influx, followed by a reassembly about 2 min after pore formation. We propose that these endocytic mechanisms might influence membrane repair by regulating the plasma membrane composition and tension, but not via direct internalisation of LLO pores.
Collapse
Affiliation(s)
- Lars Nygård Skalman
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden.,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| | - Mikkel R Holst
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden
| | - Elin Larsson
- Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| | - Richard Lundmark
- Integrative Medical Biology, Umeå University, 901 87 Umeå, Sweden .,Medical Biochemistry and Biophysics, Laboratory for Molecular Infection Medicine Sweden, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
59
|
Nakamura M, Dominguez ANM, Decker JR, Hull AJ, Verboon JM, Parkhurst SM. Into the breach: how cells cope with wounds. Open Biol 2018; 8:rsob.180135. [PMID: 30282661 PMCID: PMC6223217 DOI: 10.1098/rsob.180135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Repair of wounds to individual cells is crucial for organisms to survive daily physiological or environmental stresses, as well as pathogen assaults, which disrupt the plasma membrane. Sensing wounds, resealing membranes, closing wounds and remodelling plasma membrane/cortical cytoskeleton are four major steps that are essential to return cells to their pre-wounded states. This process relies on dynamic changes of the membrane/cytoskeleton that are indispensable for carrying out the repairs within tens of minutes. Studies from different cell wound repair models over the last two decades have revealed that the molecular mechanisms of single cell wound repair are very diverse and dependent on wound type, size, and/or species. Interestingly, different repair models have been shown to use similar proteins to achieve the same end result, albeit sometimes by distinctive mechanisms. Recent studies using cutting edge microscopy and molecular techniques are shedding new light on the molecular mechanisms during cellular wound repair. Here, we describe what is currently known about the mechanisms underlying this repair process. In addition, we discuss how the study of cellular wound repair—a powerful and inducible model—can contribute to our understanding of other fundamental biological processes such as cytokinesis, cell migration, cancer metastasis and human diseases.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew N M Dominguez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob R Decker
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexander J Hull
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey M Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
60
|
Horn A, Jaiswal JK. Cellular mechanisms and signals that coordinate plasma membrane repair. Cell Mol Life Sci 2018; 75:3751-3770. [PMID: 30051163 PMCID: PMC6541445 DOI: 10.1007/s00018-018-2888-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
Plasma membrane forms the barrier between the cytoplasm and the environment. Cells constantly and selectively transport molecules across their plasma membrane without disrupting it. Any disruption in the plasma membrane compromises its selective permeability and is lethal, if not rapidly repaired. There is a growing understanding of the organelles, proteins, lipids, and small molecules that help cells signal and efficiently coordinate plasma membrane repair. This review aims to summarize how these subcellular responses are coordinated and how cellular signals generated due to plasma membrane injury interact with each other to spatially and temporally coordinate repair. With the involvement of calcium and redox signaling in single cell and tissue repair, we will discuss how these and other related signals extend from single cell repair to tissue level repair. These signals link repair processes that are activated immediately after plasma membrane injury with longer term processes regulating repair and regeneration of the damaged tissue. We propose that investigating cell and tissue repair as part of a continuum of wound repair mechanisms would be of value in treating degenerative diseases.
Collapse
Affiliation(s)
- Adam Horn
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA.
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
61
|
Bouillot S, Reboud E, Huber P. Functional Consequences of Calcium Influx Promoted by Bacterial Pore-Forming Toxins. Toxins (Basel) 2018; 10:toxins10100387. [PMID: 30257425 PMCID: PMC6215193 DOI: 10.3390/toxins10100387] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023] Open
Abstract
Bacterial pore-forming toxins induce a rapid and massive increase in cytosolic Ca2+ concentration due to the formation of pores in the plasma membrane and/or activation of Ca2+-channels. As Ca2+ is an essential messenger in cellular signaling, a sustained increase in Ca2+ concentration has dramatic consequences on cellular behavior, eventually leading to cell death. However, host cells have adapted mechanisms to protect against Ca2+ intoxication, such as Ca2+ efflux and membrane repair. The final outcome depends upon the nature and concentration of the toxin and on the cell type. This review highlights the repercussions of Ca2+ overload on the induction of cell death, repair mechanisms, cellular adhesive properties, and the inflammatory response.
Collapse
Affiliation(s)
- Stéphanie Bouillot
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble 38054, France.
| | - Emeline Reboud
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble 38054, France.
| | - Philippe Huber
- Université Grenoble Alpes, CNRS ERL5261, CEA BIG-BCI, INSERM UMR1036, Grenoble 38054, France.
| |
Collapse
|
62
|
Etxaniz A, González-Bullón D, Martín C, Ostolaza H. Membrane Repair Mechanisms against Permeabilization by Pore-Forming Toxins. Toxins (Basel) 2018; 10:E234. [PMID: 29890730 PMCID: PMC6024578 DOI: 10.3390/toxins10060234] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 01/29/2023] Open
Abstract
Permeabilization of the plasma membrane represents an important threat for any cell, since it compromises its viability by disrupting cell homeostasis. Numerous pathogenic bacteria produce pore-forming toxins that break plasma membrane integrity and cause cell death by colloid-osmotic lysis. Eukaryotic cells, in turn, have developed different ways to cope with the effects of such membrane piercing. Here, we provide a short overview of the general mechanisms currently proposed for plasma membrane repair, focusing more specifically on the cellular responses to membrane permeabilization by pore-forming toxins and presenting new data on the effects and cellular responses to the permeabilization by an RTX (repeats in toxin) toxin, the adenylate cyclase toxin-hemolysin secreted by the whooping cough bacterium Bordetella pertussis, which we have studied in the laboratory.
Collapse
Affiliation(s)
- Asier Etxaniz
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - David González-Bullón
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - César Martín
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| | - Helena Ostolaza
- Biofisika Institute (UPV/EHU, CSIC) and University of the Basque Country (UPV/EHU) Parque Científico s/n, 48940 Leioa, Spain.
| |
Collapse
|
63
|
Cholesterol-dependent cytolysins impair pro-inflammatory macrophage responses. Sci Rep 2018; 8:6458. [PMID: 29691463 PMCID: PMC5915385 DOI: 10.1038/s41598-018-24955-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/11/2018] [Indexed: 12/20/2022] Open
Abstract
Necrotizing soft tissue infections are lethal polymicrobial infections. Two key microbes that cause necrotizing soft tissue infections are Streptococcus pyogenes and Clostridium perfringens. These pathogens evade innate immunity using multiple virulence factors, including cholesterol-dependent cytolysins (CDCs). CDCs are resisted by mammalian cells through the sequestration and shedding of pores during intrinsic membrane repair. One hypothesis is that vesicle shedding promotes immune evasion by concomitantly eliminating key signaling proteins present in cholesterol-rich microdomains. To test this hypothesis, murine macrophages were challenged with sublytic CDC doses. CDCs suppressed LPS or IFNγ-stimulated TNFα production and CD69 and CD86 surface expression. This suppression was cell intrinsic. Two membrane repair pathways, patch repair and intrinsic repair, might mediate TNFα suppression. However, patch repair did not correlate with TNFα suppression. Intrinsic repair partially contributed to macrophage dysfunction because TLR4 and the IFNγR were partially shed following CDC challenge. Intrinsic repair was not sufficient for suppression, because pore formation was also required. These findings suggest that even when CDCs fail to kill cells, they may impair innate immune signaling responses dependent on cholesterol-rich microdomains. This is one potential mechanism to explain the lethality of S. pyogenes and C. perfringens during necrotizing soft tissue infections.
Collapse
|
64
|
Murakami M, Kano F, Murata M. LLO-mediated Cell Resealing System for Analyzing Intracellular Activity of Membrane-impermeable Biopharmaceuticals of Mid-sized Molecular Weight. Sci Rep 2018; 8:1946. [PMID: 29386585 PMCID: PMC5792490 DOI: 10.1038/s41598-018-20482-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/19/2018] [Indexed: 12/23/2022] Open
Abstract
Cell-based assays have become increasingly important in the preclinical studies for biopharmaceutical products such as specialty peptides, which are of interest owing to their high substrate specificity. However, many of the latter are membrane impermeable and must be physically introduced into cells to evaluate their intracellular activities. We previously developed a "cell-resealing technique" that exploited the temperature-dependent pore-forming activity of the streptococcal toxin, streptolysin O (SLO), that enabled us to introduce various molecules into cells for evaluation of their intracellular activities. In this study, we report a new cell resealing method, the listeriolysin O (LLO)-mediated resealing method, to deliver mid-sized, membrane-impermeable biopharmaceuticals into cells. We found that LLO-type resealing required no exogenous cytosol to repair the injured cell membrane and allowed the specific entry of mid-sized molecules into cells. We use this method to introduce either a membrane-impermeable, small compound (8-OH-cAMP) or specialty peptide (Akt-in), and demonstrated PKA activation or Akt inhibition, respectively. Collectively, the LLO-type resealing method is a user-friendly and reproducible intracellular delivery system for mid-sized membrane-impermeable molecules into cells and for evaluating their intracellular activities.
Collapse
Affiliation(s)
- Masataka Murakami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Fumi Kano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan. .,Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan. .,Laboratoty of Frontier Image Analysis, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
65
|
Establishment and phenotyping of disease model cells created by cell-resealing technique. Sci Rep 2017; 7:15167. [PMID: 29123170 PMCID: PMC5680332 DOI: 10.1038/s41598-017-15443-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/23/2017] [Indexed: 12/28/2022] Open
Abstract
Cell-based assays are growing in importance for screening drugs and investigating their mechanisms of action. Most of the assays use so-called “normal” cell strain because it is difficult to produce cell lines in which the disease conditions are reproduced. In this study, we used a cell-resealing technique, which reversibly permeabilizes the plasma membrane, to develop diabetic (Db) model hepatocytes into which cytosol from diabetic mouse liver had been introduced. Db model hepatocytes showed several disease-specific phenotypes, namely disturbance of insulin-induced repression of gluconeogenic gene expression and glucose secretion. Quantitative image analysis and principal component analysis revealed that the ratio of phosphorylated Akt (pAkt) to Akt was the best index to describe the difference between wild-type and Db model hepatocytes. By performing image-based drug screening, we found pioglitazone, a PPARγ agonist, increased the pAkt/Akt ratio, which in turn ameliorated the insulin-induced transcriptional repression of the gluconeogenic gene phosphoenolpyruvate carboxykinase 1. The disease-specific model cells coupled with image-based quantitative analysis should be useful for drug development, enabling the reconstitution of disease conditions at the cellular level and the discovery of disease-specific markers.
Collapse
|
66
|
Mesquita FS, Brito C, Cabanes D, Sousa S. Control of cytoskeletal dynamics during cellular responses to pore forming toxins. Commun Integr Biol 2017; 10:e1349582. [PMID: 29259728 PMCID: PMC5731514 DOI: 10.1080/19420889.2017.1349582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/11/2023] Open
Abstract
Following damage by pore forming toxins (PFTs) host cells engage repair processes and display profound cytoskeletal remodeling and concomitant plasma membrane (PM) blebbing. We have recently demonstrated that host cells utilize similar mechanisms to control cytoskeletal dynamics in response to PFTs and during cell migration. This involves assembly of cortical actomyosin bundles, reorganisation of the endoplasmic reticulum (ER) network, and the interaction between the ER chaperone Gp96 and the molecular motor Non-muscle Myosin Heavy Chain IIA (NMHCIIA). Consequently, Gp96 regulates actomyosin activity, PM blebbing and cell migration, and protects PM integrity against PFTs. In addition, we observed that PFTs increase association of Gp96 and ER vacuoles with the cell surface or within PM blebs loosely attached to the cell body. Similarly, gut epithelial cells damaged by PFTs in vivo were shown to release microvilli structures or directly purge cytoplasmic content. Cytoplasmic purging involves profound cytoskeletal remodeling and ER vacuolation, suggesting that our observations recapitulate recovery processes in vivo. Here, we discuss our findings in light of the current understanding of PM repair mechanisms and in vivo recovery responses to PFTs.
Collapse
Affiliation(s)
- Francisco Sarmento Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Group of Molecular Microbiology, IBMC, Universidade do Porto, Porto, Portugal
| | - Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Group of Molecular Microbiology, IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Group of Molecular Microbiology, IBMC, Universidade do Porto, Porto, Portugal
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Group of Molecular Microbiology, IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
67
|
Growing functions of the ESCRT machinery in cell biology and viral replication. Biochem Soc Trans 2017; 45:613-634. [PMID: 28620025 DOI: 10.1042/bst20160479] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/17/2017] [Accepted: 02/21/2017] [Indexed: 01/31/2023]
Abstract
The vast expansion in recent years of the cellular processes promoted by the endosomal sorting complex required for transport (ESCRT) machinery has reinforced its identity as a modular system that uses multiple adaptors to recruit the core membrane remodelling activity at different intracellular sites and facilitate membrane scission. Functional connections to processes such as the aurora B-dependent abscission checkpoint also highlight the importance of the spatiotemporal regulation of the ESCRT machinery. Here, we summarise the role of ESCRTs in viral budding, and what we have learned about the ESCRT pathway from studying this process. These advances are discussed in the context of areas of cell biology that have been transformed by research in the ESCRT field, including cytokinetic abscission, nuclear envelope resealing and plasma membrane repair.
Collapse
|
68
|
Plasma membrane repair: the adaptable cell life-insurance. Curr Opin Cell Biol 2017; 47:99-107. [DOI: 10.1016/j.ceb.2017.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022]
|
69
|
Poellmann MJ, Lee RC. Repair and Regeneration of the Wounded Cell Membrane. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0031-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
70
|
Abstract
Membrane repair emerges as an innate defense protecting target cells against bacterial pore-forming toxins. Here, we report the first paradigm of Ca2+-dependent repair following attack by a small β-pore-forming toxin, namely, plasmid-encoded phobalysin of Photobacterium damselae subsp. damselae. In striking contrast, Vibrio cholerae cytolysin, the closest ortholog of phobalysin, subverted repair. Mutational analysis uncovered a role of channel width in toxicity and repair. Thus, the replacement of serine at phobalysin´s presumed channel narrow point with the bulkier tryptophan, the corresponding residue in Vibrio cholerae cytolysin (W318), modulated Ca2+ influx, lysosomal exocytosis, and membrane repair. And yet, replacing tryptophan (W318) with serine in Vibrio cholerae cytolysin enhanced toxicity. The data reveal divergent strategies evolved by two related small β-pore-forming toxins to manipulate target cells: phobalysin leads to fulminant perturbation of ion concentrations, closely followed by Ca2+ influx-dependent membrane repair. In contrast, V. cholerae cytolysin causes insidious perturbations and escapes control by the cellular wounded membrane repair-like response. Previous studies demonstrated that large transmembrane pores, such as those formed by perforin or bacterial toxins of the cholesterol-dependent cytolysin family, trigger rapid, Ca2+ influx-dependent repair mechanisms. In contrast, recovery from attack by the small β-pore-forming Staphylococcus aureus alpha-toxin or aerolysin is slow in comparison and does not depend on extracellular Ca2+. To further elucidate the scope of Ca2+ influx-dependent repair and understand its limitations, we compared the cellular responses to phobalysin and V. cholerae cytolysin, two related small β-pore-forming toxins which create membrane pores of slightly different sizes. The data indicate that the channel width of a small β-pore-forming toxin is a critical determinant of both primary toxicity and susceptibility to Ca2+-dependent repair.
Collapse
|
71
|
Intrinsic repair protects cells from pore-forming toxins by microvesicle shedding. Cell Death Differ 2017; 24:798-808. [PMID: 28186501 DOI: 10.1038/cdd.2017.11] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/13/2016] [Accepted: 01/17/2017] [Indexed: 01/01/2023] Open
Abstract
Pore-forming toxins (PFTs) are used by both the immune system and by pathogens to disrupt cell membranes. Cells attempt to repair this disruption in various ways, but the exact mechanism(s) that cells use are not fully understood, nor agreed upon. Current models for membrane repair include (1) patch formation (e.g., fusion of internal vesicles with plasma membrane defects), (2) endocytosis of the pores, and (3) shedding of the pores by blebbing from the cell membrane. In this study, we sought to determine the specific mechanism(s) that cells use to resist three different cholesterol-dependent PFTs: Streptolysin O, Perfringolysin O, and Intermedilysin. We found that all three toxins were shed from cells by blebbing from the cell membrane on extracellular microvesicles (MVs). Unique among the cells studied, we found that macrophages were 10 times more resistant to the toxins, yet they shed significantly smaller vesicles than the other cells. To examine the mechanism of shedding, we tested whether toxins with engineered defects in pore formation or oligomerization were shed. We found that oligomerization was necessary and sufficient for membrane shedding, suggesting that calcium influx and patch formation were not required for shedding. However, pore formation enhanced shedding, suggesting that calcium influx and patch formation enhance repair. In contrast, monomeric toxins were endocytosed. These data indicate that cells use two interrelated mechanisms of membrane repair: lipid-dependent MV shedding, which we term 'intrinsic repair', and patch formation by intracellular organelles. Endocytosis may act after membrane repair is complete by removing inactivated and monomeric toxins from the cell surface.
Collapse
|
72
|
Enterocyte Purge and Rapid Recovery Is a Resilience Reaction of the Gut Epithelium to Pore-Forming Toxin Attack. Cell Host Microbe 2016; 20:716-730. [PMID: 27889464 DOI: 10.1016/j.chom.2016.10.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 02/08/2023]
Abstract
Besides digesting nutrients, the gut protects the host against invasion by pathogens. Enterocytes may be subjected to damage by both microbial and host defensive responses, causing their death. Here, we report a rapid epithelial response that alleviates infection stress and protects the enterocytes from the action of microbial virulence factors. Intestinal epithelia exposed to hemolysin, a pore-forming toxin secreted by Serratia marcescens, undergo an evolutionarily conserved process of thinning followed by the recovery of their initial thickness within a few hours. In response to hemolysin attack, Drosophila melanogaster enterocytes extrude most of their apical cytoplasm, including damaged organelles such as mitochondria, yet do not lyse. We identify two secreted peptides, the expression of which requires CyclinJ, that mediate the recovery phase in which enterocytes regain their original shape and volume. Epithelial thinning and recovery constitute a fast and efficient response to intestinal infections, with pore-forming toxins acting as alarm signals.
Collapse
|
73
|
Skočaj M, Yu Y, Grundner M, Resnik N, Bedina Zavec A, Leonardi A, Križaj I, Guella G, Maček P, Kreft ME, Frangež R, Veranič P, Sepčić K. Characterisation of plasmalemmal shedding of vesicles induced by the cholesterol/sphingomyelin binding protein, ostreolysin A-mCherry. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:2882-2893. [PMID: 27591807 DOI: 10.1016/j.bbamem.2016.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/10/2016] [Accepted: 08/30/2016] [Indexed: 12/27/2022]
Abstract
Ostreolysin A (OlyA) is a 15-kDa protein that binds selectively to cholesterol/sphingomyelin membrane nanodomains. This binding induces the production of extracellular vesicles (EVs) that comprise both microvesicles with diameters between 100nm and 1μm, and larger vesicles of around 10-μm diameter in Madin-Darby canine kidney cells. In this study, we show that vesiculation of these cells by the fluorescent fusion protein OlyA-mCherry is not affected by temperature, is not mediated via intracellular Ca2+ signalling, and does not compromise cell viability and ultrastructure. Seventy-one proteins that are mostly of cytosolic and nuclear origin were detected in these shed EVs using mass spectroscopy. In the cells and EVs, 218 and 84 lipid species were identified, respectively, and the EVs were significantly enriched in lysophosphatidylcholines and cholesterol. Our collected data suggest that OlyA-mCherry binding to cholesterol/sphingomyelin membrane nanodomains induces specific lipid sorting into discrete patches, which promotes plasmalemmal blebbing and EV shedding from the cells. We hypothesize that these effects are accounted for by changes of local membrane curvature upon the OlyA-mCherry-plasmalemma interaction. We suggest that the shed EVs are a potentially interesting model for biophysical and biochemical studies of cell membranes, and larger vesicles could represent tools for non-invasive sampling of cytosolic proteins from cells and thus metabolic fingerprinting.
Collapse
Affiliation(s)
- Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia; Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| | - Yang Yu
- Bioorganic Chemistry Laboratory, Department of Physics, Via Sommarive 14, University of Trento, Povo (TN), Italy.
| | - Maja Grundner
- Institute of Biophysics, Faculty of Medicine, Vrazov trg 2, University of Ljubljana, Ljubljana, Slovenia.
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| | - Apolonija Bedina Zavec
- Laboratory of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia.
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia; Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, Večna pot 113, University of Ljubljana, Ljubljana, Slovenia.
| | - Graziano Guella
- Bioorganic Chemistry Laboratory, Department of Physics, Via Sommarive 14, University of Trento, Povo (TN), Italy.
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia.
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| | - Robert Frangež
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, Gerbičeva 60, University of Ljubljana, Ljubljana, Slovenia.
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia.
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia.
| |
Collapse
|
74
|
Chhabria V, Beeton S. Development of nanosponges from erythrocyte ghosts for removal of streptolysin-O from mammalian blood. Nanomedicine (Lond) 2016; 11:2797-2807. [PMID: 27764982 DOI: 10.2217/nnm-2016-0180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM To produce mammalian biomimetic nanosponges from mammalian erythrocyte ghosts. Biomimetic nanosponges were studied in vitro as treatment platforms against exotoxin-related sepsis. METHODS Ovine blood was treated with hypotonic buffer to create erythrocyte ghosts and then subjected to sonication to produce erythrocyte vesicles of nonuniform size. Vesicles were then serially extruded through 400-nm and 100-nm polycarbonate membranes. Nanosponges were prepared by fusing poly(d,l-lactic-co-glycolic acid) cores with ovine erythrocyte vesicles. RESULTS Ovine erythrocytes were the most susceptible to streptolysin-O lysis, making it a model to study sepsis treatment. Ovine nanosponges adsorbed streptolysin-O at 37 and 40°C. CONCLUSION These results identify ovine nanosponges as novel therapeutic model to test adsorption of cholesterol binding toxins such as streptolysin-O.
Collapse
Affiliation(s)
- Vikesh Chhabria
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Steve Beeton
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| |
Collapse
|
75
|
Blazek AD, Paleo BJ, Weisleder N. Plasma Membrane Repair: A Central Process for Maintaining Cellular Homeostasis. Physiology (Bethesda) 2016; 30:438-48. [PMID: 26525343 DOI: 10.1152/physiol.00019.2015] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane repair is a conserved cellular response mediating active resealing of membrane disruptions to maintain homeostasis and prevent cell death and progression of multiple diseases. Cell membrane repair repurposes mechanisms from various cellular functions, including vesicle trafficking, exocytosis, and endocytosis, to mend the broken membrane. Recent studies increased our understanding of membrane repair by establishing the molecular machinery contributing to membrane resealing. Here, we review some of the key proteins linked to cell membrane repair.
Collapse
Affiliation(s)
- Alisa D Blazek
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Brian J Paleo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
76
|
Boye TL, Nylandsted J. Annexins in plasma membrane repair. Biol Chem 2016; 397:961-9. [DOI: 10.1515/hsz-2016-0171] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/14/2016] [Indexed: 01/01/2023]
Abstract
Abstract
Disruption of the plasma membrane poses deadly threat to eukaryotic cells and survival requires a rapid membrane repair system. Recent evidence reveal various plasma membrane repair mechanisms, which are required for cells to cope with membrane lesions including membrane fusion and replacement strategies, remodeling of cortical actin cytoskeleton and vesicle wound patching. Members of the annexin protein family, which are Ca2+-triggered phospholipid-binding proteins emerge as important components of the plasma membrane repair system. Here, we discuss the mechanisms of plasma membrane repair involving annexins spanning from yeast to human cancer cells.
Collapse
|
77
|
Wolfmeier H, Radecke J, Schoenauer R, Koeffel R, Babiychuk VS, Drücker P, Hathaway LJ, Mitchell TJ, Zuber B, Draeger A, Babiychuk EB. Active release of pneumolysin prepores and pores by mammalian cells undergoing a Streptococcus pneumoniae attack. Biochim Biophys Acta Gen Subj 2016; 1860:2498-2509. [PMID: 27481675 DOI: 10.1016/j.bbagen.2016.07.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/15/2016] [Accepted: 07/24/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Streptococcus pneumoniae is a potent human pathogen. Its pore-forming exotoxin pneumolysin is instrumental for breaching the host's epithelial barrier and for the incapacitation of the immune system. METHODS AND RESULTS Using a combination of life imaging and cryo-electron microscopy we show that pneumolysin, released by cultured bacteria, is capable of permeabilizing the plasmalemma of host cells. However, such permeabilization does not lead to cell lysis since pneumolysin is actively removed by the host cells. The process of pore elimination starts with the formation of pore-bearing plasmalemmal nanotubes and proceeds by the shedding of pores that are embedded in the membrane of released microvesicles. Pneumolysin prepores are likewise removed. The protein composition of the toxin-induced microvesicles, assessed by mass spectrometry, is suggestive of a Ca(2+)-triggered mechanism encompassing the proteins of the annexin family and members of the endosomal sorting complex required for transport (ESCRT) complex. CONCLUSIONS S. pneumoniae releases sufficient amounts of pneumolysin to perforate the plasmalemma of host cells, however, the immediate cell lysis, which is frequently reported as a result of treatment with purified and artificially concentrated toxin, appears to be an unlikely event in vivo since the toxin pores are efficiently eliminated by microvesicle shedding. Therefore the dysregulation of cellular homeostasis occurring as a result of transient pore formation/elimination should be held responsible for the damaging toxin action. GENERAL SIGNIFICANCE We have achieved a comprehensive view of a general plasma membrane repair mechanism after injury by a major bacterial toxin.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Julika Radecke
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Freiestrasse 1, 3000 Bern 9, Switzerland
| | - Roman Schoenauer
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - René Koeffel
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Viktoria S Babiychuk
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Patrick Drücker
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Lucy J Hathaway
- Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, Postfach, 3001, Bern, Switzerland
| | - Timothy J Mitchell
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland.
| | - Annette Draeger
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Eduard B Babiychuk
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland.
| |
Collapse
|
78
|
Whidbey C, Vornhagen J, Gendrin C, Boldenow E, Samson JM, Doering K, Ngo L, Ezekwe EAD, Gundlach JH, Elovitz MA, Liggitt D, Duncan JA, Adams Waldorf KM, Rajagopal L. A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury. EMBO Mol Med 2015; 7:488-505. [PMID: 25750210 PMCID: PMC4403049 DOI: 10.15252/emmm.201404883] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Group B streptococci (GBS) are Gram-positive bacteria that cause infections in utero and in newborns. We recently showed that the GBS pigment is hemolytic and increased pigment production promotes bacterial penetration of human placenta. However, mechanisms utilized by the hemolytic pigment to induce host cell lysis and the consequence on fetal injury are not known. Here, we show that the GBS pigment induces membrane permeability in artificial lipid bilayers and host cells. Membrane defects induced by the GBS pigment trigger K+ efflux leading to osmotic lysis of red blood cells or pyroptosis in human macrophages. Macrophages lacking the NLRP3 inflammasome recovered from pigment-induced cell damage. In a murine model of in utero infection, hyperpigmented GBS strains induced fetal injury in both an NLRP3 inflammasome-dependent and NLRP3 inflammasome-independent manner. These results demonstrate that the dual mechanism of action of the bacterial pigment/lipid toxin leading to hemolysis or pyroptosis exacerbates fetal injury and suggest that preventing both activities of the hemolytic lipid is likely critical to reduce GBS fetal injury and preterm birth.
Collapse
Affiliation(s)
- Christopher Whidbey
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA Department of Global Health, University of Washington, Seattle, WA, USA
| | - Jay Vornhagen
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA Department of Global Health, University of Washington, Seattle, WA, USA
| | - Claire Gendrin
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Erica Boldenow
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Jenny Mae Samson
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Kenji Doering
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Lisa Ngo
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA
| | - Ejiofor A D Ezekwe
- Department of Medicine, Division of Infectious Diseases and Pharmacology, School of Medicine and Lineberger Comprehensive Cancer Center University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health Perelman School of Medicine University of Pennsylvania, Philadelphia, PA, USA
| | - Denny Liggitt
- Department of Comparative Medicine, School of Medicine University of Washington, Seattle, WA, USA
| | - Joseph A Duncan
- Department of Medicine, Division of Infectious Diseases and Pharmacology, School of Medicine and Lineberger Comprehensive Cancer Center University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kristina M Adams Waldorf
- Department of Obstetrics and Gynecology, School of Medicine University of Washington, Seattle, WA, USA
| | - Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington and Seattle Children's Research Institute, Seattle, WA, USA Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
79
|
Canton PE, Cancino-Rodezno A, Gill SS, Soberón M, Bravo A. Transcriptional cellular responses in midgut tissue of Aedes aegypti larvae following intoxication with Cry11Aa toxin from Bacillus thuringiensis. BMC Genomics 2015; 16:1042. [PMID: 26645277 PMCID: PMC4673840 DOI: 10.1186/s12864-015-2240-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/24/2015] [Indexed: 11/20/2022] Open
Abstract
Background Although much is known about the mechanism of action of Bacillus thuringiensis Cry toxins, the target tissue cellular responses to toxin activity is less understood. Previous transcriptomic studies indicated that significant changes in gene expression occurred during intoxication. However, most of these studies were done in organisms without a sequenced and annotated reference genome. A reference genome and transcriptome is available for the mosquito Aedes aegypti, and its importance as a disease vector has positioned its biological control as a primary health concern. Through RNA sequencing we sought to determine the transcriptional changes observed during intoxication by Cry11Aa in A. aegypti and to analyze possible defense and recovery mechanisms engaged after toxin ingestion. Results In this work the changes in the transcriptome of 4th instar A. aegypti larvae exposed to Cry11Aa toxin for 0, 3, 6, 9, and 12 h were analyzed. A total of 1060 differentially expressed genes after toxin ingestion were identified with two bioconductoR packages: DESeq2 and EdgeR. The most important transcriptional changes were observed after 9 or 12 h of toxin exposure. GO enrichment analysis of molecular function and biological process were performed as well as Interpro protein functional domains and pBLAST analyses. Up regulated processes include vesicular trafficking, small GTPase signaling, MAPK pathways, and lipid metabolism. In contrast, down regulated functions are related to transmembrane transport, detoxification mechanisms, cell proliferation and metabolism enzymes. Validation with RT-qPCR showed large agreement with Cry11Aa intoxication since these changes were not observed with untreated larvae or larvae treated with non-toxic Cry11Aa mutants, indicating that a fully functional pore forming Cry toxin is required for the observed transcriptional responses. Conclusions This study presents the first transcriptome of Cry intoxication response in a fully sequenced insect, and reveals possible conserved cellular processes that enable larvae to contend with Cry intoxication in the disease vector A. aegypti. We found some similarities of the mosquito responses to Cry11Aa toxin with previously observed responses to other Cry toxins in different insect orders and in nematodes suggesting a conserved response to pore forming toxins. Surprisingly some of these responses also correlate with transcriptional changes observed in Bti-resistant and Cry11Aa-resistant mosquito larvae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2240-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pablo Emiliano Canton
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Angeles Cancino-Rodezno
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, Distrito Federal, 04510, Mexico
| | - Sarjeet S Gill
- Cell Biology and Neuroscience Department, University of California, Riverside, Riverside, CA, 92521, USA
| | - Mario Soberón
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico
| | - Alejandra Bravo
- Departamento de Microbiología, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. postal 510-3, Cuernavaca, 62250, Morelos, Mexico.
| |
Collapse
|
80
|
Peraro MD, van der Goot FG. Pore-forming toxins: ancient, but never really out of fashion. Nat Rev Microbiol 2015; 14:77-92. [DOI: 10.1038/nrmicro.2015.3] [Citation(s) in RCA: 526] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
81
|
Jaiswal JK, Nylandsted J. S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle 2015; 14:502-9. [PMID: 25565331 DOI: 10.1080/15384101.2014.995495] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanical activity of cells and the stress imposed on them by extracellular environment is a constant source of injury to the plasma membrane (PM). In invasive tumor cells, increased motility together with the harsh environment of the tumor stroma further increases the risk of PM injury. The impact of these stresses on tumor cell plasma membrane and mechanism by which tumor cells repair the PM damage are poorly understood. Ca(2+) entry through the injured PM initiates repair of the PM. Depending on the cell type, different organelles and proteins respond to this Ca(2+) entry and facilitate repair of the damaged plasma membrane. We recently identified that proteins expressed in various metastatic cancers including Ca(2+)-binding EF hand protein S100A11 and its binding partner annexin A2 are used by tumor cells for plasma membrane repair (PMR). Here we will discuss the involvement of S100, annexin proteins and their regulation of actin cytoskeleton, leading to PMR. Additionally, we will show that another S100 member--S100A4 accumulates at the injured PM. These findings reveal a new role for the S100 and annexin protein up regulation in metastatic cancers and identify these proteins and PMR as targets for treating metastatic cancers.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- a Center for Genetic Medicine Research ; Children's National Medical Center ; Washington , DC USA
| | | |
Collapse
|
82
|
Abstract
Eukaryotic cells have been confronted throughout their evolution with potentially lethal plasma membrane injuries, including those caused by osmotic stress, by infection from bacterial toxins and parasites, and by mechanical and ischemic stress. The wounded cell can survive if a rapid repair response is mounted that restores boundary integrity. Calcium has been identified as the key trigger to activate an effective membrane repair response that utilizes exocytosis and endocytosis to repair a membrane tear, or remove a membrane pore. We here review what is known about the cellular and molecular mechanisms of membrane repair, with particular emphasis on the relevance of repair as it relates to disease pathologies. Collective evidence reveals membrane repair employs primitive yet robust molecular machinery, such as vesicle fusion and contractile rings, processes evolutionarily honed for simplicity and success. Yet to be fully understood is whether core membrane repair machinery exists in all cells, or whether evolutionary adaptation has resulted in multiple compensatory repair pathways that specialize in different tissues and cells within our body.
Collapse
Affiliation(s)
- Sandra T Cooper
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia; and Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia
| | - Paul L McNeil
- Institute for Neuroscience and Muscle Research, Kids Research Institute, The Children's Hospital at Westmead, Sydney, New South Wales, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia; and Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
83
|
Babiychuk EB, Draeger A. Defying death: Cellular survival strategies following plasmalemmal injury by bacterial toxins. Semin Cell Dev Biol 2015; 45:39-47. [PMID: 26481974 DOI: 10.1016/j.semcdb.2015.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/12/2015] [Indexed: 10/22/2022]
Abstract
The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca(2+) and an efflux of cytoplasmic constituents. In order to ensure survival, the cell needs to identify, plug and remove lesions from its membrane. Quarantined by membrane folds and isolated by membrane fusion, the pores are removed from the plasmalemma and expelled into the extracellular space. Outward vesiculation and microparticle shedding seem to be the strategies of choice to eliminate toxin-perforated membrane regions from the plasmalemma of host cells. Depending on the cell type and the nature of injury, the membrane lesion can also be taken up by endocytosis and degraded internally. Host cells make excellent use of an initial, moderate rise in intracellular [Ca(2+)], which triggers containment of the toxin-inflicted damage and resealing of the damaged plasmalemma. Additional Ca(2+)-dependent defensive cellular actions range from the release of effector molecules in order to warn neighbouring cells, to the activation of caspases for the initiation of apoptosis in order to eliminate heavily damaged, dysregulated cells. Injury to the plasmalemma by bacterial toxins can be prevented by the early sequestration of bacterial toxins. Artificial liposomes can act as a decoy system preferentially binding and neutralizing bacterial toxins.
Collapse
|
84
|
LaRock CN, Nizet V. Inflammasome/IL-1β Responses to Streptococcal Pathogens. Front Immunol 2015; 6:518. [PMID: 26500655 PMCID: PMC4597127 DOI: 10.3389/fimmu.2015.00518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammation mediated by the inflammasome and the cytokine IL-1β are some of the earliest and most important alarms to infection. These pathways are responsive to the virulence factors that pathogens use to subvert immune processes, and thus are typically activated only by microbes with potential to cause severe disease. Among the most serious human infections are those caused by the pathogenic streptococci, in part because these species numerous strategies for immune evasion. Since the virulence factor armament of each pathogen is unique, the role of IL-1β and the pathways leading to its activation varies for each infection. This review summarizes the role of IL-1β during infections caused by streptococcal pathogens, with emphasis on emergent mechanisms and concepts countering paradigms determined for other organisms.
Collapse
Affiliation(s)
- Christopher N LaRock
- Department of Pediatrics, University of California San Diego , La Jolla, CA , USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego , La Jolla, CA , USA ; Skaggs School of Medicine and Pharmaceutical Sciences, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
85
|
Plasma membrane and cytoskeleton dynamics during single-cell wound healing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [DOI: 10.1016/j.bbamcr.2015.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
86
|
Jimenez AJ, Perez F. Physico-chemical and biological considerations for membrane wound evolution and repair in animal cells. Semin Cell Dev Biol 2015; 45:2-9. [DOI: 10.1016/j.semcdb.2015.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
|
87
|
Lauritzen SP, Boye TL, Nylandsted J. Annexins are instrumental for efficient plasma membrane repair in cancer cells. Semin Cell Dev Biol 2015; 45:32-8. [DOI: 10.1016/j.semcdb.2015.10.028] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/15/2015] [Indexed: 01/15/2023]
|
88
|
Vrecl M, Babnik M, Sepčić K, Žužek MC, Maček P, Diacci U, Frangež R. Effect of the ostreolysin A/pleurotolysin B pore-forming complex on intracellular Ca2+ activity in the vascular smooth muscle cell line A10. Toxicol In Vitro 2015; 29:2015-21. [PMID: 26320834 DOI: 10.1016/j.tiv.2015.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 08/14/2015] [Accepted: 08/26/2015] [Indexed: 02/01/2023]
Abstract
Ostreolysin A/pleurotolysin B (OlyA/PlyB) is a binary pore-forming protein complex that produces a rapid cardiorespiratory arrest. Increased tonus of the coronary vascular wall produced by OlyA/PlyB may lead to ischemia, arrhythmias, the hypoxic injury of cardiomyocytes and cardiotoxicity. We evaluated the effects of OlyA/PlyB in cultured vascular smooth muscle A10 cells. Fluorometric measurements using the Ca(2+) indicator Fluo-4 AM and Fura-2 AM revealed that nanomolar concentrations of OlyA/PlyB increased the intracellular Ca(2+) activity [Ca(2+)]i in A10 cells. This effect was absent in a Ca(2+)-free medium, indicating that OlyA/PlyB-induced [Ca(2+)]i increase was dependent on Ca(2+) influx into cells. The increase in [Ca(2+)]i by OlyA/PlyB was partially prevented by: i) the calcium channel blockers verapamil and La(3+), ii) the inhibitor of the sodium-calcium exchanger (NCX) benzamil, and iii) the iso-osmotic replacement of NaCl by sucrose. The pre-treatment of cells with the Ca(2+)-ATPase inhibitor thapsigargin reduced the [Ca(2+)]i increase evoked by OlyA/PlyB, whereas the plasma membrane depolarization with high K(+) in the medium did not prevent OlyA/PlyB-induced [Ca(2+)]i. In summary, our data could suggest that the OlyA/PlyB-induced increase in [Ca(2+)]i is due to an influx of Ca(2+) through a variety of co-existing plasma membrane Ca(2+)-permeable channels, Ca(2+) entry through non-selective ion permeable pores formed de novo by OlyA/PlyB in the plasma membrane and calcium-induced intracellular Ca(2+) release, altogether leading to disturbed Ca(2+) homeostasis in A10 cells.
Collapse
Affiliation(s)
- Milka Vrecl
- Veterinary Faculty, Institute of Anatomy, Histology and Embryology, Gerbičeva 60, SI-1000 Ljubljana, Slovenia
| | - Monika Babnik
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Monika C Žužek
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Uroš Diacci
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Robert Frangež
- Institute of Physiology, Pharmacology and Toxicology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia.
| |
Collapse
|
89
|
Abstract
Cells are constantly exposed to agents that can trigger the perforation of their plasma membrane. This damage occurs naturally, and the frequency and intensity depends on how much cells are exposed to damaging threats. The following protocol is a simple and powerful method to damage the plasma membrane using laser ablation. It allows the induction of a single and localized wound at the plasma membrane of cultured cells, which can be followed with fast time-lapse imaging. The first part of the protocol describes simple cell culture techniques and the material ideal to make the experiments. A second part of the protocol gives advice about the procedures to make effective wounds in cells while ensuring a good survival rate. We also propose different ways to follow the opening and closure of the plasma membrane. Finally, we describe the procedure to efficiently analyze the data acquired after single cell photodamage to characterize the wounding process.
Collapse
|
90
|
Vrecl M, Babnik M, Diacci U, Benoit E, Frangež R. Effect of the ostreolysin A/pleurotolysin B pore-forming complex on neuroblastoma cell morphology and intracellular Ca²⁺ activity. Toxicol Sci 2015; 144:276-83. [PMID: 25556216 DOI: 10.1093/toxsci/kfu316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ostreolysin A (OlyA) and pleurotolysin B (PlyB), isolated from edible oyster mushrooms, form a cytolytic complex (OlyA/PlyB) in membrane cells that causes respiratory arrest. This study evaluated the mechanisms underlying cytotoxic OlyA/PlyB activity in neuroblastoma NG108-15 cells. Confocal microscopy with morphometric analysis revealed that OlyA/PlyB increased the 3-dimensional projected area of differentiated cells. Iso-osmotic replacement of NaCl by sucrose or Na-isethionate prevented the cellular swelling. This suggests that formation of cellular edema requires the presence of Na(+) and/or Cl(-) in the extracellular space and may be related to an influx of Na(+) and/or a shift in Cl(-), which induce a marked influx of water that is ultimately responsible for cellular swelling. In addition, extracellular Ca(2+) moderately contributed to the swelling because benzamil (10 µM), a 3Na(+)/Ca(2+) exchange (NCX) inhibitor, and Ca(2+)-free medium partially prevented this response. Fluorometric measurements revealed that OlyA/PlyB, at approximately 15-fold higher concentrations, increased the intracellular Ca(2+) activity [Ca(2+)]i. This increase was dependent on the presence of Na(+) and Ca(2+) in the external medium and was sensitive to benzamil. It is thus likely that a switch in the NCX mode, associated with the de novo formation of non-selective ion pores by OlyA/PlyB in cellular plasma membranes, plays an important role in this effect. Overall, OlyA/PlyB affects neuroblastoma cell morphology and Ca(2+) homeostasis to influence the toxin-induced respiratory arrest.
Collapse
Affiliation(s)
- Milka Vrecl
- *Veterinary Faculty, Institute of Anatomy, Histology and Embryology, Veterinary Faculty, Institute of Physiology, Pharmacology and Toxicology, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia and CNRS, Institut de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie et Développement Bât. 32-33, 91198 Gif sur Yvette cedex, France
| | - Monika Babnik
- *Veterinary Faculty, Institute of Anatomy, Histology and Embryology, Veterinary Faculty, Institute of Physiology, Pharmacology and Toxicology, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia and CNRS, Institut de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie et Développement Bât. 32-33, 91198 Gif sur Yvette cedex, France
| | - Uroš Diacci
- *Veterinary Faculty, Institute of Anatomy, Histology and Embryology, Veterinary Faculty, Institute of Physiology, Pharmacology and Toxicology, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia and CNRS, Institut de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie et Développement Bât. 32-33, 91198 Gif sur Yvette cedex, France
| | - Evelyne Benoit
- *Veterinary Faculty, Institute of Anatomy, Histology and Embryology, Veterinary Faculty, Institute of Physiology, Pharmacology and Toxicology, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia and CNRS, Institut de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie et Développement Bât. 32-33, 91198 Gif sur Yvette cedex, France
| | - Robert Frangež
- *Veterinary Faculty, Institute of Anatomy, Histology and Embryology, Veterinary Faculty, Institute of Physiology, Pharmacology and Toxicology, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia and CNRS, Institut de Neurobiologie Alfred Fessard, Laboratoire de Neurobiologie et Développement Bât. 32-33, 91198 Gif sur Yvette cedex, France
| |
Collapse
|
91
|
Scheffer LL, Sreetama SC, Sharma N, Medikayala S, Brown KJ, Defour A, Jaiswal JK. Mechanism of Ca²⁺-triggered ESCRT assembly and regulation of cell membrane repair. Nat Commun 2014; 5:5646. [PMID: 25534348 PMCID: PMC4333728 DOI: 10.1038/ncomms6646] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 10/22/2014] [Indexed: 12/11/2022] Open
Abstract
In muscle and other mechanically active tissue, cell membranes are constantly injured, and their repair depends on the injury-induced increase in cytosolic calcium. Here, we show that injury-triggered Ca(2+) increase results in assembly of ESCRT III and accessory proteins at the site of repair. This process is initiated by the calcium-binding protein-apoptosis-linked gene (ALG)-2. ALG-2 facilitates accumulation of ALG-2-interacting protein X (ALIX), ESCRT III and Vps4 complex at the injured cell membrane, which in turn results in cleavage and shedding of the damaged part of the cell membrane. Lack of ALG-2, ALIX or Vps4B each prevents shedding, and repair of the injured cell membrane. These results demonstrate Ca(2+)-dependent accumulation of ESCRT III-Vps4 complex following large focal injury to the cell membrane and identify the role of ALG-2 as the initiator of sequential ESCRT III-Vps4 complex assembly that facilitates scission and repair of the injured cell membrane.
Collapse
Affiliation(s)
- Luana L Scheffer
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Sen Chandra Sreetama
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Nimisha Sharma
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Sushma Medikayala
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Kristy J Brown
- 1] Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA [2] Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Aurelia Defour
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Jyoti K Jaiswal
- 1] Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA [2] Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| |
Collapse
|
92
|
Wolfmeier H, Schoenauer R, Atanassoff AP, Neill DR, Kadioglu A, Draeger A, Babiychuk EB. Ca²⁺-dependent repair of pneumolysin pores: A new paradigm for host cellular defense against bacterial pore-forming toxins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2045-54. [PMID: 25219550 DOI: 10.1016/j.bbamcr.2014.09.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/16/2023]
Abstract
Pneumolysin (PLY), a key virulence factor of Streptococcus pneumoniae, permeabilizes eukaryotic cells by forming large trans-membrane pores. PLY imposes a puzzling multitude of diverse, often mutually excluding actions on eukaryotic cells. Whereas cytotoxicity of PLY can be directly attributed to the pore-mediated effects, mechanisms that are responsible for the PLY-induced activation of host cells are poorly understood. We show that PLY pores can be repaired and thereby PLY-induced cell death can be prevented. Pore-induced Ca²⁺ entry from the extracellular milieu is of paramount importance for the initiation of plasmalemmal repair. Nevertheless, active Ca²⁺ sequestration that prevents excessive Ca²⁺ elevation during the execution phase of plasmalemmal repair is of no less importance. The efficacy of plasmalemmal repair does not only define the fate of targeted cells but also intensity, duration and repetitiveness of PLY-induced Ca²⁺ signals in cells that were able to survive after PLY attack. Intracellular Ca²⁺ dynamics evoked by the combined action of pore formation and their elimination mimic the pattern of receptor-mediated Ca²⁺ signaling, which is responsible for the activation of host immune responses. Therefore, we postulate that plasmalemmal repair of PLY pores might provoke cellular responses that are similar to those currently ascribed to the receptor-mediated PLY effects. Our data provide new insights into the understanding of the complexity of cellular non-immune defense responses to a major pneumococcal toxin that plays a critical role in the establishment and the progression of life-threatening diseases. Therapies boosting plasmalemmal repair of host cells and their metabolic fitness might prove beneficial for the treatment of pneumococcal infections. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
Affiliation(s)
- Heidi Wolfmeier
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Roman Schoenauer
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Alexander P Atanassoff
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Daniel R Neill
- Department of Clinical Infection Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Aras Kadioglu
- Department of Clinical Infection Microbiology & Immunology, Institute of Infection & Global Health, University of Liverpool, Liverpool L69 7BE, UK
| | - Annette Draeger
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland
| | - Eduard B Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3000 Bern 9, Switzerland.
| |
Collapse
|
93
|
Draeger A, Schoenauer R, Atanassoff AP, Wolfmeier H, Babiychuk EB. Dealing with damage: plasma membrane repair mechanisms. Biochimie 2014; 107 Pt A:66-72. [PMID: 25183513 DOI: 10.1016/j.biochi.2014.08.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/15/2014] [Indexed: 12/22/2022]
Abstract
Eukaryotic cells have developed repair mechanisms, which allow them to reseal their membrane in order to prevent the efflux of cytoplasmic constituents and the uncontrolled influx of calcium. After injury, the Ca(2+)-concentration gradient fulfils a dual function: it provides guidance cues for the repair machinery and directly activates the molecules, which have a repair function. Depending on the nature of injury, the morphology of the cell and the severity of injury, the membrane resealing can be effected by lysosomal exocytosis, microvesicle shedding or a combination of both. Likewise, exocytosis is often followed by the endocytic uptake of lesions. Additionally, since plasmalemmal resealing must be attempted, even after extensive injury in order to prevent cell lysis, the restoration of membrane integrity can be achieved by ceramide-driven invagination of the lipid bilayer, during which the cell is prepared for apoptotic disposal. Plasmalemmal injury can be contained by a surfeit of plasma membrane, which serves as a trap for toxic substances: either passively by an abundance of cellular protrusions, or actively by membrane blebbing.
Collapse
Affiliation(s)
- Annette Draeger
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland.
| | - Roman Schoenauer
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| | - Alexander P Atanassoff
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| | - Heidi Wolfmeier
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| | - Eduard B Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Baltzerstr. 2, 3012 Bern, Switzerland
| |
Collapse
|
94
|
Perforin oligomers form arcs in cellular membranes: a locus for intracellular delivery of granzymes. Cell Death Differ 2014; 22:74-85. [PMID: 25146929 DOI: 10.1038/cdd.2014.110] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 01/28/2023] Open
Abstract
Perforin-mediated cytotoxicity is an essential host defense, in which defects contribute to tumor development and pathogenic disorders including autoimmunity and autoinflammation. How perforin (PFN) facilitates intracellular delivery of pro-apoptotic and inflammatory granzymes across the bilayer of targets remains unresolved. Here we show that cellular susceptibility to granzyme B (GzmB) correlates with rapid PFN-induced phosphatidylserine externalization, suggesting that pores are formed at a protein-lipid interface by incomplete membrane oligomers (or arcs). Supporting a role for these oligomers in protease delivery, an anti-PFN antibody (pf-80) suppresses necrosis but increases phosphatidylserine flip-flop and GzmB-induced apoptosis. As shown by atomic force microscopy on planar bilayers and deep-etch electron microscopy on mammalian cells, pf-80 increases the proportion of arcs which correlates with the presence of smaller electrical conductances, while large cylindrical pores decline. PFN appears to form arc structures on target membranes that serve as minimally disrupting conduits for GzmB translocation. The role of these arcs in PFN-mediated pathology warrants evaluation where they may serve as novel therapeutic targets.
Collapse
|
95
|
Andrews NW, Almeida PE, Corrotte M. Damage control: cellular mechanisms of plasma membrane repair. Trends Cell Biol 2014; 24:734-42. [PMID: 25150593 DOI: 10.1016/j.tcb.2014.07.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 02/06/2023]
Abstract
When wounded, eukaryotic cells reseal in a few seconds. Ca(2+) influx induces exocytosis of lysosomes, a process previously thought to promote repair by 'patching' wounds. New evidence suggests that resealing involves direct wound removal. Exocytosis of lysosomal acid sphingomyelinase (ASM) triggers endocytosis of lesions followed by intracellular degradation. Characterization of injury-induced endosomes revealed a role for caveolae, sphingolipid-enriched plasma membrane invaginations that internalize toxin pores and are abundant in mechanically stressed cells. These findings provide a novel mechanistic explanation for the muscle pathology associated with mutations in caveolar proteins. Membrane remodeling by the ESCRT complex was also recently shown to participate in small-wound repair, emphasizing that cell resealing involves previously unrecognized mechanisms for lesion removal that are distinct from the patch model.
Collapse
Affiliation(s)
- Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA.
| | - Patricia E Almeida
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA; Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Matthias Corrotte
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-5815, USA
| |
Collapse
|
96
|
Pathogenic bacterial species associated with endodontic infection evade innate immune control by disabling neutrophils. Infect Immun 2014; 82:4068-79. [PMID: 25024367 DOI: 10.1128/iai.02256-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endodontic infections, in which oral bacteria access the tooth pulp chamber, are common and do not resolve once established. To investigate the effects of these infections on the innate immune response, we established a mouse subcutaneous chamber model, where a mixture of four oral pathogens commonly associated with these infections (endodontic pathogens [EP]), i.e., Fusobacterium nucleatum, Streptococcus intermedius, Parvimonas micra, and Prevotella intermedia, was inoculated into subcutaneously implanted titanium chambers. Cells that infiltrated the chamber after these infections were primarily neutrophils; however, these neutrophils were unable to control the infection. Infection with a nonpathogenic oral bacterial species, Streptococcus mitis, resulted in well-controlled infection, with bacterial numbers reduced by 4 to 5 log units after 7 days. Propidium iodide (PI) staining of the chamber neutrophils identified three distinct populations: neutrophils from EP-infected chambers were intermediate in PI staining, while cells in chambers from mice infected with S. mitis were PI positive (apoptotic) or negative (live). Strikingly, neutrophils from EP-infected chambers were severely impaired in their ability to phagocytose and to generate reactive oxygen species in vitro after removal from the chamber compared to cells from S. mitis-infected chambers. The mechanism of neutrophil impairment was necrotic cell death as determined by morphological analyses. P. intermedia alone could induce a similar neutrophil phenotype. We conclude that the endodontic pathogens, particularly P. intermedia, can efficiently disable and kill infiltrating neutrophils, allowing these infections to become established. These results can help explain the persistence of endodontic infections and demonstrate a new virulence mechanism associated with P. intermedia.
Collapse
|
97
|
|
98
|
Listeria monocytogenes exploits efferocytosis to promote cell-to-cell spread. Nature 2014; 509:230-4. [PMID: 24739967 PMCID: PMC4151619 DOI: 10.1038/nature13168] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 02/21/2014] [Indexed: 11/08/2022]
Abstract
Efferocytosis, the process by which dying or dead cells are removed by phagocytosis, has an important role in development, tissue homeostasis and innate immunity. Efferocytosis is mediated, in part, by receptors that bind to exofacial phosphatidylserine (PS) on cells or cellular debris after loss of plasma membrane asymmetry. Here we show that a bacterial pathogen, Listeria monocytogenes, can exploit efferocytosis to promote cell-to-cell spread during infection. These bacteria can escape the phagosome in host cells by using the pore-forming toxin listeriolysin O (LLO) and two phospholipase C enzymes. Expression of the cell surface protein ActA allows L. monocytogenes to activate host actin regulatory factors and undergo actin-based motility in the cytosol, eventually leading to formation of actin-rich protrusions at the cell surface. Here we show that protrusion formation is associated with plasma membrane damage due to LLO's pore-forming activity. LLO also promotes the release of bacteria-containing protrusions from the host cell, generating membrane-derived vesicles with exofacial PS. The PS-binding receptor TIM-4 (encoded by the Timd4 gene) contributes to efficient cell-to-cell spread by L. monocytogenes in macrophages in vitro and growth of these bacteria is impaired in Timd4(-/-) mice. Thus, L. monocytogenes promotes its dissemination in a host by exploiting efferocytosis. Our results indicate that PS-targeted therapeutics may be useful in the fight against infections by L. monocytogenes and other bacteria that use similar strategies of cell-to-cell spread during infection.
Collapse
|
99
|
Skočaj M, Resnik N, Grundner M, Ota K, Rojko N, Hodnik V, Anderluh G, Sobota A, Maček P, Veranič P, Sepčić K. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein. PLoS One 2014; 9:e92783. [PMID: 24664106 PMCID: PMC3963934 DOI: 10.1371/journal.pone.0092783] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/25/2014] [Indexed: 01/01/2023] Open
Abstract
Ostreolysin A (OlyA) is an ∼15-kDa protein that has been shown to bind selectively to membranes rich in cholesterol and sphingomyelin. In this study, we investigated whether OlyA fluorescently tagged at the C-terminal with mCherry (OlyA-mCherry) labels cholesterol/sphingomyelin domains in artificial membrane systems and in membranes of Madin-Darby canine kidney (MDCK) epithelial cells. OlyA-mCherry showed similar lipid binding characteristics to non-tagged OlyA. OlyA-mCherry also stained cholesterol/sphingomyelin domains in the plasma membranes of both fixed and living MDCK cells, and in the living cells, this staining was abolished by pretreatment with either methyl-β-cyclodextrin or sphingomyelinase. Double labelling of MDCK cells with OlyA-mCherry and the sphingomyelin-specific markers equinatoxin II-Alexa488 and GST-lysenin, the cholera toxin B subunit as a probe that binds to the ganglioside GM1, or the cholesterol-specific D4 domain of perfringolysin O fused with EGFP, showed different patterns of binding and distribution of OlyA-mCherry in comparison with these other proteins. Furthermore, we show that OlyA-mCherry is internalised in living MDCK cells, and within 90 min it reaches the juxtanuclear region via caveolin-1-positive structures. No binding to membranes could be seen when OlyA-mCherry was expressed in MDCK cells. Altogether, these data clearly indicate that OlyA-mCherry is a promising tool for labelling a distinct pool of cholesterol/sphingomyelin membrane domains in living and fixed cells, and for following these domains when they are apparently internalised by the cell.
Collapse
Affiliation(s)
- Matej Skočaj
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Grundner
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Ota
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nejc Rojko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Andrzej Sobota
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
100
|
Atanassoff AP, Wolfmeier H, Schoenauer R, Hostettler A, Ring A, Draeger A, Babiychuk EB. Microvesicle shedding and lysosomal repair fulfill divergent cellular needs during the repair of streptolysin O-induced plasmalemmal damage. PLoS One 2014; 9:e89743. [PMID: 24587004 PMCID: PMC3931818 DOI: 10.1371/journal.pone.0089743] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/23/2014] [Indexed: 12/13/2022] Open
Abstract
Pathogenic bacteria secrete pore-forming toxins that permeabilize the plasma membrane of host cells. Nucleated cells possess protective mechanisms that repair toxin-damaged plasmalemma. Currently two putative repair scenarios are debated: either the isolation of the damaged membrane regions and their subsequent expulsion as microvesicles (shedding) or lysosome-dependent repair might allow the cell to rid itself of its toxic cargo and prevent lysis. Here we provide evidence that both mechanisms operate in tandem but fulfill diverse cellular needs. The prevalence of the repair strategy varies between cell types and is guided by the severity and the localization of the initial toxin-induced damage, by the morphology of a cell and, most important, by the incidence of the secondary mechanical damage. The surgically precise action of microvesicle shedding is best suited for the instant elimination of individual toxin pores, whereas lysosomal repair is indispensable for mending of self-inflicted mechanical injuries following initial plasmalemmal permeabilization by bacterial toxins. Our study provides new insights into the functioning of non-immune cellular defenses against bacterial pathogens.
Collapse
Affiliation(s)
| | - Heidi Wolfmeier
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Roman Schoenauer
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Andrea Hostettler
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Avi Ring
- Department of Protection, Norwegian Defence Research Establishment, Kjeller, Norway
| | - Annette Draeger
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Eduard B. Babiychuk
- Department of Cell Biology, Institute of Anatomy, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|