51
|
Tracy C, Warren JS, Szulik M, Wang L, Garcia J, Makaju A, Russell K, Miller M, Franklin S. The Smyd Family of Methyltransferases: Role in Cardiac and Skeletal Muscle Physiology and Pathology. CURRENT OPINION IN PHYSIOLOGY 2017; 1:140-152. [PMID: 29435515 DOI: 10.1016/j.cophys.2017.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein methylation plays a pivotal role in the regulation of various cellular processes including chromatin remodeling and gene expression. SET and MYND domain-containing proteins (Smyd) are a special class of lysine methyltransferases whose catalytic SET domain is split by an MYND domain. The hallmark feature of this family was thought to be the methylation of histone H3 (on lysine 4). However, several studies suggest that the role of the Smyd family is dynamic, targeting unique histone residues associated with both transcriptional activation and repression. Smyd proteins also methylate several non-histone proteins to regulate various cellular processes. Although we are only beginning to understand their specific molecular functions and role in chromatin remodeling, recent studies have advanced our understanding of this relatively uncharacterized family, highlighting their involvement in development, cell growth and differentiation and during disease in various animal models. This review summarizes our current knowledge of the structure, function and methylation targets of the Smyd family and provides a compilation of data emphasizing their prominent role in cardiac and skeletal muscle physiology and pathology.
Collapse
Affiliation(s)
- Christopher Tracy
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Junco S Warren
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Marta Szulik
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Li Wang
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - June Garcia
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Aman Makaju
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Kristi Russell
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Mickey Miller
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Sarah Franklin
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
52
|
Proteomic and microRNA Transcriptome Analysis revealed the microRNA-SmyD1 network regulation in Skeletal Muscle Fibers performance of Chinese perch. Sci Rep 2017; 7:16498. [PMID: 29184116 PMCID: PMC5705591 DOI: 10.1038/s41598-017-16718-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 11/16/2017] [Indexed: 12/14/2022] Open
Abstract
Fish myotomes are comprised of anatomically segregated fast and slow muscle fibers that possess different metabolic and contractile properties. Although the expression profile properties in fast and slow muscle fibers had been investigated at the mRNA levels, a comprehensive analysis at proteomic and microRNA transcriptomic levels is limited. In the present study, we first systematically compared the proteomic and microRNA transcriptome of the slow and fast muscles of Chinese perch (Siniperca chuatsi). Total of 2102 proteins were identified in muscle tissues. Among them, 99 proteins were differentially up-regulated and 400 were down-regulated in the fast muscle compared with slow muscle. MiRNA microarrays revealed that 199 miRNAs identified in the two types of muscle fibers. Compared with the fast muscle, the 32 miRNAs was up-regulated and 27 down-regulated in the slow muscle. Specifically, expression of miR-103 and miR-144 was negatively correlated with SmyD1a and SmyD1b expression in fast and slow muscles, respectively. The luciferase reporter assay further verified that the miR-103 and miR-144 directly regulated the SmyD1a and SmyD1b expression by targeting their 3′-UTR. The constructed miRNA-SmyD1 interaction network might play an important role in controlling the development and performance of different muscle fiber types in Chinese perch.
Collapse
|
53
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
54
|
Stewart MD, Lopez S, Nagandla H, Soibam B, Benham A, Nguyen J, Valenzuela N, Wu HJ, Burns AR, Rasmussen TL, Tucker HO, Schwartz RJ. Mouse myofibers lacking the SMYD1 methyltransferase are susceptible to atrophy, internalization of nuclei and myofibrillar disarray. Dis Model Mech 2016; 9:347-59. [PMID: 26935107 PMCID: PMC4833328 DOI: 10.1242/dmm.022491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Smyd1 gene encodes a lysine methyltransferase specifically expressed in striated muscle. Because Smyd1-null mouse embryos die from heart malformation prior to formation of skeletal muscle, we developed a Smyd1 conditional-knockout allele to determine the consequence of SMYD1 loss in mammalian skeletal muscle. Ablation of SMYD1 specifically in skeletal myocytes after myofiber differentiation using Myf6(cre) produced a non-degenerative myopathy. Mutant mice exhibited weakness, myofiber hypotrophy, prevalence of oxidative myofibers, reduction in triad numbers, regional myofibrillar disorganization/breakdown and a high percentage of myofibers with centralized nuclei. Notably, we found broad upregulation of muscle development genes in the absence of regenerating or degenerating myofibers. These data suggest that the afflicted fibers are in a continual state of repair in an attempt to restore damaged myofibrils. Disease severity was greater for males than females. Despite equivalent expression in all fiber types, loss of SMYD1 primarily affected fast-twitch muscle, illustrating fiber-type-specific functions for SMYD1. This work illustrates a crucial role for SMYD1 in skeletal muscle physiology and myofibril integrity.
Collapse
Affiliation(s)
- M David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Suhujey Lopez
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Harika Nagandla
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Benjamin Soibam
- Department of Computer Science and Engineering Technology, University of Houston-Downtown, Houston, TX 77002, USA
| | - Ashley Benham
- Stem Cell Engineering Department, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, TX 77030, USA
| | - Jasmine Nguyen
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Nicolas Valenzuela
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Harry J Wu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77204, USA
| | - Tara L Rasmussen
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haley O Tucker
- Department of Molecular Biosciences, Institute for Cellular Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA Stem Cell Engineering Department, Texas Heart Institute at St Luke's Episcopal Hospital, Houston, TX 77030, USA
| |
Collapse
|
55
|
Identification of novel MYO18A interaction partners required for myoblast adhesion and muscle integrity. Sci Rep 2016; 6:36768. [PMID: 27824130 PMCID: PMC5099880 DOI: 10.1038/srep36768] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023] Open
Abstract
The unconventional myosin MYO18A that contains a PDZ domain is required for muscle integrity during zebrafish development. However, the mechanism by which it functions in myofibers is not clear. The presence of a PDZ domain suggests that MYO18A may interact with other partners to perform muscle-specific functions. Here we performed double-hybrid screening and co-immunoprecipitation to identify MYO18A-interacting proteins, and have identified p190RhoGEF and Golgin45 as novel partners for the MYO18A PDZ domain. We have also identified Lurap1, which was previously shown to bind MYO18A. Functional analyses indicate that, similarly as myo18a, knockdown of lurap1, p190RhoGEF and Golgin45 by morpholino oligonucleotides disrupts dystrophin localization at the sarcolemma and produces muscle lesions. Simultaneous knockdown of myo18a with either of these genes severely disrupts myofiber integrity and dystrophin localization, suggesting that they may function similarly to maintain myofiber integrity. We further show that MYO18A and its interaction partners are required for adhesion of myoblasts to extracellular matrix, and for the formation of the Golgi apparatus and organization of F-actin bundles in myoblast cells. These findings suggest that MYO18A has the potential to form a multiprotein complex that links the Golgi apparatus to F-actin, which regulates muscle integrity and function during early development.
Collapse
|
56
|
Rudeck S, Etard C, Khan MM, Rottbauer W, Rudolf R, Strähle U, Just S. A compact unc45b-promoter drives muscle-specific expression in zebrafish and mouse. Genesis 2016; 54:431-8. [PMID: 27295336 PMCID: PMC5113797 DOI: 10.1002/dvg.22953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/02/2016] [Accepted: 06/08/2016] [Indexed: 12/02/2022]
Abstract
Summary: Gene therapeutic approaches to cure genetic diseases require tools to express the rescuing gene exclusively within the affected tissues. Viruses are often chosen as gene transfer vehicles but they have limited capacity for genetic information to be carried and transduced. In addition, to avoid off‐target effects the therapeutic gene should be driven by a tissue‐specific promoter in order to ensure expression in the target organs, tissues, or cell populations. The larger the promoter, the less space will be left for the respective gene. Thus, there is a need for small but tissue‐specific promoters. Here, we describe a compact unc45b promoter fragment of 195 bp that retains the ability to drive gene expression exclusively in skeletal and cardiac muscle in zebrafish and mouse. Remarkably, the described unc45b promoter fragment not only drives muscle‐specific expression but presents heat‐shock inducibility, allowing a temporal and spatial quantity control of (trans)gene expression. Here, we demonstrate that the transgenic expression of the smyd1b gene driven by the unc45b promoter fragment is able to rescue the embryonically lethal heart and skeletal muscle defects in smyd1b‐deficient flatline mutant zebrafish. Our findings demonstrate that the described muscle‐specific unc45b promoter fragment might be a valuable tool for the development of genetic therapies in patients suffering from myopathies. genesis 54:431–438, 2016. © 2016 The Authors. Genesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Steven Rudeck
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Christelle Etard
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Muzamil M Khan
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany.,Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, University Heidelberg, Heidelberg, Germany
| | | | - Rüdiger Rudolf
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany.,Institute of Molecular and Cell Biology, Hochschule Mannheim, Mannheim, Germany.,Interdisciplinary Center for Neurosciences, University Heidelberg, Heidelberg, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| |
Collapse
|
57
|
Coda DM, Lingua MF, Morena D, Foglizzo V, Bersani F, Ala U, Ponzetto C, Taulli R. SMYD1 and G6PD modulation are critical events for miR-206-mediated differentiation of rhabdomyosarcoma. Cell Cycle 2016; 14:1389-402. [PMID: 25644430 DOI: 10.1080/15384101.2015.1005993] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Rhadomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. RMS cells resemble fetal myoblasts but are unable to complete myogenic differentiation. In previous work we showed that miR-206, which is low in RMS, when induced in RMS cells promotes the resumption of differentiation by modulating more than 700 genes. To better define the pathways involved in the conversion of RMS cells into their differentiated counterpart, we focused on 2 miR-206 effectors emerged from the microarray analysis, SMYD1 and G6PD. SMYD1, one of the most highly upregulated genes, is a H3K4 histone methyltransferase. Here we show that SMYD1 silencing does not interfere with the proliferative block or with the loss anchorage independence imposed by miR-206, but severely impairs differentiation of ERMS, ARMS, and myogenic cells. Thus SMYD1 is essential for the activation of muscle genes. Conversely, among the downregulated genes, we found G6PD, the enzyme catalyzing the rate-limiting step of the pentose phosphate shunt. In this work, we confirmed that G6PD is a direct target of miR-206. Moreover, we showed that G6PD silencing in ERMS cells impairs proliferation and soft agar growth. However, G6PD overexpression does not interfere with the pro-differentiating effect of miR-206, suggesting that G6PD downmodulation contributes to - but is not an absolute requirement for - the tumor suppressive potential of miR-206. Targeting cancer metabolism may enhance differentiation. However, therapeutic inhibition of G6PD is encumbered by side effects. As an alternative, we used DCA in combination with miR-206 to increase the flux of pyruvate into the mitochondrion by reactivating PDH. DCA enhanced the inhibition of RMS cell growth induced by miR-206, and sustained it upon miR-206 de-induction. Altogether these results link miR-206 to epigenetic and metabolic reprogramming, and suggest that it may be worth combining differentiation-inducing with metabolism-directed approaches.
Collapse
Key Words
- DCA, Dichloroacetate
- DHEA, Dehydroepiandrosterone
- G6PD, Glucose 6 Phosphate Dehydrogenase
- HMT, Histone MethylTransferase
- MREs, MicroRNA Responsive Elements
- MRFs, Myogenic Regulatory Factors
- PDH, Pyruvate Dehydrogenase
- PDK, Pyruvate Dehydrogenase Kinase
- PPP, Pentose Phosphate Pathway
- RMS, Rhabdomyosarcoma
- Rhabdomyosarcoma
- SMYD1, SET and MYND domain-containing protein 1
- TCA cycle, TriCarboxylic Acid cycle
- differentiation therapy
- metabolism and cancer
- miR-206
- myomiRs, muscle-specific microRNAs
Collapse
|
58
|
Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. Int J Mol Sci 2016; 17:ijms17020187. [PMID: 26840306 PMCID: PMC4783921 DOI: 10.3390/ijms17020187] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
Orchestrated protein synthesis and degradation is fundamental for proper cell function. In muscle, impairment of proteostasis often leads to severe cellular defects finally interfering with contractile function. Here, we analyze for the first time the role of Atrogin-1, a muscle-specific E3 ubiquitin ligase known to be involved in the regulation of protein degradation via the ubiquitin proteasome and the autophagy/lysosome systems, in the in vivo model system zebrafish (Danio rerio). We found that targeted inactivation of zebrafish Atrogin-1 leads to progressive impairment of heart and skeletal muscle function and disruption of muscle structure without affecting early cardiogenesis and skeletal muscle development. Autophagy is severely impaired in Atrogin-1-deficient zebrafish embryos resulting in the disturbance of the cytoarchitecture of cardiomyocytes and skeletal muscle cells. These observations are consistent with molecular and ultrastructural findings in an Atrogin-1 knockout mouse and demonstrate that the zebrafish is a suitable vertebrate model to study the molecular mechanisms of Atrogin-1-mediated autophagic muscle pathologies and to screen for novel therapeutically active substances in high-throughput in vivo small compound screens (SCS).
Collapse
Affiliation(s)
- Anja Bühler
- Molecular Cardiology, University of Ulm, 89081 Ulm, Germany.
| | | | - Tiziana Bummer
- Molecular Cardiology, University of Ulm, 89081 Ulm, Germany.
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany.
| | - Marco Sandri
- Department of Biomedical Sciences, University of Padova, 35129 Padova, Italy.
| | - Steffen Just
- Molecular Cardiology, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
59
|
Nagandla H, Lopez S, Yu W, Rasmussen TL, Tucker HO, Schwartz RJ, Stewart MD. Defective myogenesis in the absence of the muscle-specific lysine methyltransferase SMYD1. Dev Biol 2015; 410:86-97. [PMID: 26688546 DOI: 10.1016/j.ydbio.2015.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 11/19/2022]
Abstract
The SMYD (SET and MYND domain) family of lysine methyltransferases harbor a unique structure in which the methyltransferase (SET) domain is intervened by a zinc finger protein-protein interaction MYND domain. SMYD proteins methylate both histone and non-histone substrates and participate in diverse biological processes including transcriptional regulation, DNA repair, proliferation and apoptosis. Smyd1 is unique among the five family members in that it is specifically expressed in striated muscles. Smyd1 is critical for development of the right ventricle in mice. In zebrafish, Smyd1 is necessary for sarcomerogenesis in fast-twitch muscles. Smyd1 is expressed in the skeletal muscle lineage throughout myogenesis and in mature myofibers, shuttling from nucleus to cytosol during myoblast differentiation. Because of this expression pattern, we hypothesized that Smyd1 plays multiple roles at different stages of myogenesis. To determine the role of Smyd1 in mammalian myogenesis, we conditionally eliminated Smyd1 from the skeletal muscle lineage at the myoblast stage using Myf5(cre). Deletion of Smyd1 impaired myoblast differentiation, resulted in fewer myofibers and decreased expression of muscle-specific genes. Muscular defects were temporally restricted to the second wave of myogenesis. Thus, in addition to the previously described functions for Smyd1 in heart development and skeletal muscle sarcomerogenesis, these results point to a novel role for Smyd1 in myoblast differentiation.
Collapse
Affiliation(s)
- Harika Nagandla
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Suhujey Lopez
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Wei Yu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Tara L Rasmussen
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA; Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA
| | - Haley O Tucker
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Stem Cell Engineering Department, Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA
| | - M David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| |
Collapse
|
60
|
Etard C, Armant O, Roostalu U, Gourain V, Ferg M, Strähle U. Loss of function of myosin chaperones triggers Hsf1-mediated transcriptional response in skeletal muscle cells. Genome Biol 2015; 16:267. [PMID: 26631063 PMCID: PMC4668643 DOI: 10.1186/s13059-015-0825-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/05/2015] [Indexed: 01/03/2023] Open
Abstract
Background Mutations in myosin chaperones Unc45b and Hsp90aa1.1 as well as in the Unc45b-binding protein Smyd1b impair formation of myofibrils in skeletal muscle and lead to the accumulation of misfolded myosin. The concomitant transcriptional response involves up-regulation of the three genes encoding these proteins, as well as genes involved in muscle development. The transcriptional up-regulation of unc45b, hsp90aa1.1 and smyd1b is specific to zebrafish mutants with myosin folding defects, and is not triggered in other zebrafish myopathy models. Results By dissecting the promoter of unc45b, we identify a Heat shock factor 1 (Hsf1) binding element as a mediator of unc45b up-regulation in myofibers lacking myosin folding proteins. Loss-of-function of Hsf1 abolishes unc45b up-regulation in mutants with defects in myosin folding. Conclusions Taken together, our data show that skeletal muscle cells respond to defective myosin chaperones with a complex gene program and suggest that this response is mediated by Hsf1 activation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0825-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christelle Etard
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Olivier Armant
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Urmas Roostalu
- Present address: Institute of Inflammation and Repair, Michael Smith Bldg, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Marco Ferg
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Campus Nord, PO box, Karlsruhe, Germany.
| |
Collapse
|
61
|
Prill K, Windsor Reid P, Wohlgemuth SL, Pilgrim DB. Still Heart Encodes a Structural HMT, SMYD1b, with Chaperone-Like Function during Fast Muscle Sarcomere Assembly. PLoS One 2015; 10:e0142528. [PMID: 26544721 PMCID: PMC4636364 DOI: 10.1371/journal.pone.0142528] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
The vertebrate sarcomere is a complex and highly organized contractile structure whose assembly and function requires the coordination of hundreds of proteins. Proteins require proper folding and incorporation into the sarcomere by assembly factors, and they must also be maintained and replaced due to the constant physical stress of muscle contraction. Zebrafish mutants affecting muscle assembly and maintenance have proven to be an ideal tool for identification and analysis of factors necessary for these processes. The still heart mutant was identified due to motility defects and a nonfunctional heart. The cognate gene for the mutant was shown to be smyd1b and the still heart mutation results in an early nonsense codon. SMYD1 mutants show a lack of heart looping and chamber definition due to a lack of expression of heart morphogenesis factors gata4, gata5 and hand2. On a cellular level, fast muscle fibers in homozygous mutants do not form mature sarcomeres due to the lack of fast muscle myosin incorporation by SMYD1b when sarcomeres are first being assembled (19hpf), supporting SMYD1b as an assembly protein during sarcomere formation.
Collapse
Affiliation(s)
- Kendal Prill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pamela Windsor Reid
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Serene L. Wohlgemuth
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David B. Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
62
|
Liu T, Wu C, Jain MR, Nagarajan N, Yan L, Dai H, Cui C, Baykal A, Pan S, Ago T, Sadoshima J, Li H. Master redox regulator Trx1 upregulates SMYD1 & modulates lysine methylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1816-1822. [PMID: 26410624 DOI: 10.1016/j.bbapap.2015.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/02/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023]
Abstract
Thioredoxin 1 (Trx1) is а antioxidant protein that regulates protein disulfide bond reduction, transnitrosylation, denitrosylation and other redox post-translational modifications. In order to better understand how Trx1 modulates downstream protective cellular signaling events following cardiac ischemia, we conducted an expression proteomics study of left ventricles (LVs) after thoracic aortic constriction stress treatment of transgenic mice with cardiac-specific over-expression of Trx1, an animal model that has been proven to withstand more stress than its non-transgenic littermates. Although previous redox post-translational modifications proteomics studies found that several cellular protein networks are regulated by Trx1-mediated disulfide reduction and transnitrosylation, we found that Trx1 regulates the expression of a limited number of proteins. Among the proteins found to be upregulated in this study was SET and MYND domain-containing protein 1 (SMYD1), a lysine methyltransferase highly expressed in cardiac and other muscle tissues and an important regulator of cardiac development. The observation of SMYD1 induction by Trx1 following thoracic aortic constriction stress is consistent with the retrograde fetal gene cardiac protection hypothesis. The results presented here suggest for the first time that, in addition to being a master redox regulator of protein disulfide bonds and nitrosation, Trx1 may also modulate lysine methylation, a non-redox post-translational modification, via the regulation of SMYD1 expression. Such crosstalk between redox signaling and a non-redox PTM regulation may provide novel insights into the functions of Trx1 that are independent from its immediate function as a protein reductase.
Collapse
Affiliation(s)
- Tong Liu
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Changgong Wu
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Mohit Raja Jain
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Narayani Nagarajan
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, United States
| | - Lin Yan
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Huacheng Dai
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Chuanlong Cui
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Ahmet Baykal
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Stacey Pan
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States
| | - Tetsuro Ago
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, United States
| | - Junichi Sadoshima
- Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers University-New Jersey Medical School, Newark, NJ 07103, United States
| | - Hong Li
- Center for Advanced Proteomics Research, Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, NJ 07103, United States.
| |
Collapse
|
63
|
Calpena E, Palau F, Espinós C, Galindo MI. Evolutionary History of the Smyd Gene Family in Metazoans: A Framework to Identify the Orthologs of Human Smyd Genes in Drosophila and Other Animal Species. PLoS One 2015; 10:e0134106. [PMID: 26230726 PMCID: PMC4521844 DOI: 10.1371/journal.pone.0134106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/06/2015] [Indexed: 01/01/2023] Open
Abstract
The Smyd gene family code for proteins containing a conserved core consisting of a SET domain interrupted by a MYND zinc finger. Smyd proteins are important in epigenetic control of development and carcinogenesis, through posttranslational modifications in histones and other proteins. Previous reports indicated that the Smyd family is quite variable in metazoans, so a rigorous phylogenetic reconstruction of this complex gene family is of central importance to understand its evolutionary history and functional diversification or conservation. We have performed a phylogenetic analysis of Smyd protein sequences, and our results show that the extant metazoan Smyd genes can be classified in three main classes, Smyd3 (which includes chordate-specific Smyd1 and Smyd2 genes), Smyd4 and Smyd5. In addition, there is an arthropod-specific class, SmydA. While the evolutionary history of the Smyd3 and Smyd5 classes is relatively simple, the Smyd4 class has suffered several events of gene loss, gene duplication and lineage-specific expansions in the animal phyla included in our analysis. A more specific study of the four Smyd4 genes in Drosophila melanogaster shows that they are not redundant, since their patterns of expression are different and knock-down of individual genes can have dramatic phenotypes despite the presence of the other family members.
Collapse
Affiliation(s)
- Eduardo Calpena
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| | - Francesc Palau
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| | - Carmen Espinós
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
| | - Máximo Ibo Galindo
- Program in Rare and Genetic Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- * E-mail:
| |
Collapse
|
64
|
Bührdel JB, Hirth S, Kessler M, Westphal S, Forster M, Manta L, Wiche G, Schoser B, Schessl J, Schröder R, Clemen CS, Eichinger L, Fürst DO, van der Ven PFM, Rottbauer W, Just S. In vivo characterization of human myofibrillar myopathy genes in zebrafish. Biochem Biophys Res Commun 2015; 461:217-23. [PMID: 25866181 DOI: 10.1016/j.bbrc.2015.03.149] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/26/2015] [Indexed: 01/31/2023]
Abstract
Myofibrillar myopathies (MFM) are progressive diseases of human heart and skeletal muscle with a severe impact on life quality and expectancy of affected patients. Although recently several disease genes for myofibrillar myopathies could be identified, today most genetic causes and particularly the associated mechanisms and signaling events that lead from the mutation to the disease phenotype are still mostly unknown. To assess whether the zebrafish is a suitable model system to validate MFM candidate genes using targeted antisense-mediated knock-down strategies, we here specifically inactivated known human MFM disease genes and evaluated the resulting muscular and cardiac phenotypes functionally and structurally. Consistently, targeted ablation of MFM genes in zebrafish led to compromised skeletal muscle function mostly due to myofibrillar degeneration as well as severe heart failure. Similar to what was shown in MFM patients, MFM gene-deficient zebrafish showed pronounced gene-specific phenotypic and structural differences. In summary, our results indicate that the zebrafish is a suitable model to functionally and structurally evaluate novel MFM disease genes in vivo.
Collapse
Affiliation(s)
- John B Bührdel
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Sofia Hirth
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Mirjam Kessler
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Sören Westphal
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Monika Forster
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Linda Manta
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Benedikt Schoser
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-University, Munich, Germany
| | - Joachim Schessl
- Department of Neurology, Friedrich-Baur-Institut, Ludwig-Maximilians-University, Munich, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Christoph S Clemen
- Institute for Biochemistry I, University of Cologne, 50931 Köln, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, University of Cologne, 50931 Köln, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | | | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany.
| | - Steffen Just
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
65
|
Yang J, Shih YH, Xu X. Understanding cardiac sarcomere assembly with zebrafish genetics. Anat Rec (Hoboken) 2015; 297:1681-93. [PMID: 25125181 DOI: 10.1002/ar.22975] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 01/06/2023]
Abstract
Mutations in sarcomere genes have been found in many inheritable human diseases, including hypertrophic cardiomyopathy. Elucidating the molecular mechanisms of sarcomere assembly shall facilitate understanding of the pathogenesis of sarcomere-based cardiac disease. Recently, biochemical and genomic studies have identified many new genes encoding proteins that localize to the sarcomere. However, their precise functions in sarcomere assembly and sarcomere-based cardiac disease are unknown. Here, we review zebrafish as an emerging vertebrate model for these studies. We summarize the techniques offered by this animal model to manipulate genes of interest, annotate gene expression, and describe the resulting phenotypes. We survey the sarcomere genes that have been investigated in zebrafish and discuss the potential of applying this in vivo model for larger-scale genetic studies.
Collapse
Affiliation(s)
- Jingchun Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota; Division of Cardiovascular Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | |
Collapse
|
66
|
Du SJ, Tan X, Zhang J. SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat Rec (Hoboken) 2015; 297:1650-62. [PMID: 25125178 DOI: 10.1002/ar.22972] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 11/07/2022]
Abstract
Muscle fibers are composed of myofibrils, one of the most highly ordered macromolecular assemblies in cells. Recent studies demonstrate that members of the Smyd family play critical roles in myofibril assembly of skeletal and cardiac muscle during development. The Smyd family consists of five members including Smyd1, Smyd2, Smyd3, Smyd4, and Smyd5. They share two highly conserved structural and functional domains, namely the SET and MYND domains involved in lysine methylation and protein-protein interaction, respectively. Smyd1 is specifically expressed in muscle cells under the regulation of myogenic transcriptional factors of the MyoD and Mef2 families and the serum responsive factor. Loss of function studies reveal that Smyd1 is required for cardiomyogenesis and sarcomere assembly in skeletal and cardiac muscles. Smyd2, on another hand, is dispensable for heart development in mice. However, Smyd2 appears to play a role in myofilament organization in both skeletal and cardiac muscles via Hsp90 methylation. A Drosophila Smyd4 homologue is a muscle-specific transcriptional modulator involved in the development or function of adult muscle. The molecular mechanisms by which Smyd family proteins function in muscle cells are not well understood. It has been suggested that members of the Smyd family may use multiple mechanisms to control muscle development and cell differentiation, including transcriptional regulation, epigenetic regulation via histone methylation, and methylation of proteins other than histones, such as molecular chaperone Hsp90.
Collapse
Affiliation(s)
- Shao Jun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
67
|
The sarcomeric M-region: a molecular command center for diverse cellular processes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:714197. [PMID: 25961035 PMCID: PMC4413555 DOI: 10.1155/2015/714197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/08/2015] [Indexed: 02/07/2023]
Abstract
The sarcomeric M-region anchors thick filaments and withstands the mechanical stress of contractions by deformation, thus enabling distribution of physiological forces along the length of thick filaments. While the role of the M-region in supporting myofibrillar structure and contractility is well established, its role in mediating additional cellular processes has only recently started to emerge. As such, M-region is the hub of key protein players contributing to cytoskeletal remodeling, signal transduction, mechanosensing, metabolism, and proteasomal degradation. Mutations in genes encoding M-region related proteins lead to development of severe and lethal cardiac and skeletal myopathies affecting mankind. Herein, we describe the main cellular processes taking place at the M-region, other than thick filament assembly, and discuss human myopathies associated with mutant or truncated M-region proteins.
Collapse
|
68
|
Rasmussen TL, Ma Y, Park CY, Harriss J, Pierce SA, Dekker JD, Valenzuela N, Srivastava D, Schwartz RJ, Stewart MD, Tucker HO. Smyd1 facilitates heart development by antagonizing oxidative and ER stress responses. PLoS One 2015; 10:e0121765. [PMID: 25803368 PMCID: PMC4372598 DOI: 10.1371/journal.pone.0121765] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/18/2015] [Indexed: 12/21/2022] Open
Abstract
Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense—a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality.
Collapse
Affiliation(s)
- Tara L. Rasmussen
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Affiliated Hospital of Hainan Medical University, Haikou, Hainan, P.R. China
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Chong Yon Park
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - June Harriss
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Stephanie A. Pierce
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Joseph D. Dekker
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
| | - Nicolas Valenzuela
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics and Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Robert J. Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - M. David Stewart
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
- * E-mail: (MDS); (HT)
| | - Haley O. Tucker
- Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas, United States of America
- * E-mail: (MDS); (HT)
| |
Collapse
|
69
|
Loss of dihydrolipoyl succinyltransferase (DLST) leads to reduced resting heart rate in the zebrafish. Basic Res Cardiol 2015; 110:14. [PMID: 25697682 PMCID: PMC4335124 DOI: 10.1007/s00395-015-0468-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/14/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
Abstract
The genetic underpinnings of heart rate regulation are only poorly understood. In search for genetic regulators of cardiac pacemaker activity, we isolated in a large-scale mutagenesis screen the embryonic lethal, recessive zebrafish mutant schneckentempo (ste). Homozygous ste mutants exhibit a severely reduced resting heart rate with normal atrio-ventricular conduction and contractile function. External electrical pacing reveals that defective excitation generation in cardiac pacemaker cells underlies bradycardia in ste−/− mutants. By positional cloning and gene knock-down analysis we find that loss of dihydrolipoyl succinyltransferase (DLST) function causes the ste phenotype. The mitochondrial enzyme DLST is an essential player in the citric acid cycle that warrants proper adenosine-tri-phosphate (ATP) production. Accordingly, ATP levels are significantly diminished in ste−/− mutant embryos, suggesting that limited energy supply accounts for reduced cardiac pacemaker activity in ste−/− mutants. We demonstrate here for the first time that the mitochondrial enzyme DLST plays an essential role in the modulation of the vertebrate heart rate by controlling ATP production in the heart.
Collapse
|
70
|
Abstract
Heart development comprises myocyte specification, differentiation and cardiac morphogenesis. These processes are regulated by a group of core cardiac transcription factors in a coordinated temporal and spatial manner. Histone methylation is an emerging epigenetic mechanism for regulating gene transcription. Interplay among cardiac transcription factors and histone lysine modifiers plays important role in heart development. Aberrant expression and mutation of the histone lysine modifiers during development and in adult life can cause either embryonic lethality or congenital heart diseases, and influences the response of adult hearts to pathological stresses. In this review, we describe current body of literature on the role of several common histone methylations and their modifying enzymes in heart development, congenital and adult heart diseases.
Collapse
Affiliation(s)
- Qing-Jun Zhang
- Department of Internal Medicine-Cardiology Division & Molecular Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75350, USA
| | - Zhi-Ping Liu
- Department of Internal Medicine-Cardiology Division & Molecular Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX, 75350, USA
| |
Collapse
|
71
|
O'Meara CC, Wamstad JA, Gladstone RA, Fomovsky GM, Butty VL, Shrikumar A, Gannon JB, Boyer LA, Lee RT. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res 2014; 116:804-15. [PMID: 25477501 DOI: 10.1161/circresaha.116.304269] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. OBJECTIVE The objectives of our study were to determine whether myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. METHODS AND RESULTS We derived a core transcriptional signature of injury-induced cardiac myocyte (CM) regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo CM differentiation, in vitro CM explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of CM differentiation processes, including reactivation of latent developmental programs similar to those observed during destabilization of a mature CM phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13, which induced CM cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of interleukin 13 signaling in CMs. These downstream signaling molecules are also modulated in the regenerating mouse heart. CONCLUSIONS Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration.
Collapse
Affiliation(s)
- Caitlin C O'Meara
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Joseph A Wamstad
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Rachel A Gladstone
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Gregory M Fomovsky
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Vincent L Butty
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Avanti Shrikumar
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Joseph B Gannon
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.)
| | - Laurie A Boyer
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.).
| | - Richard T Lee
- From the Harvard Stem Cell Institute, the Brigham Regenerative Medicine Center, and the Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA (C.C.O.M., R.A.G., G.M.F., J.B.G., R.T.L.); and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA (J.A.W., V.L.B., A.S., L.A.B.).
| |
Collapse
|
72
|
Oyama K, El-Nachef D, Zhang Y, Sdek P, MacLellan WR. Epigenetic regulation of cardiac myocyte differentiation. Front Genet 2014; 5:375. [PMID: 25408700 PMCID: PMC4219506 DOI: 10.3389/fgene.2014.00375] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/07/2014] [Indexed: 12/04/2022] Open
Abstract
Cardiac myocytes (CMs) proliferate robustly during fetal life but withdraw permanently from the cell cycle soon after birth and undergo terminal differentiation. This cell cycle exit is associated with the upregulation of a host of adult cardiac-specific genes. The vast majority of adult CMs (ACMs) do not reenter cell cycle even if subjected to mitogenic stimuli. The basis for this irreversible cell cycle exit is related to the stable silencing of cell cycle genes specifically involved in the progression of G2/M transition and cytokinesis. Studies have begun to clarify the molecular basis for this stable gene repression and have identified epigenetic and chromatin structural changes in this process. In this review, we summarize the current understanding of epigenetic regulation of CM cell cycle and cardiac-specific gene expression with a focus on histone modifications and the role of retinoblastoma family members.
Collapse
Affiliation(s)
- Kyohei Oyama
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Danny El-Nachef
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Yiqiang Zhang
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - Patima Sdek
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| | - W Robb MacLellan
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Biology and Institute for Stem Cell and Regenerative Medicine, University of Washington Seattle, WA, USA
| |
Collapse
|
73
|
Smith DA, Carland CR, Guo Y, Bernstein SI. Getting folded: chaperone proteins in muscle development, maintenance and disease. Anat Rec (Hoboken) 2014; 297:1637-1649. [PMID: 25125177 PMCID: PMC4135391 DOI: 10.1002/ar.22980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 09/26/2024]
Abstract
Chaperone proteins are critical for protein folding and stability, and hence are necessary for normal cellular organization and function. Recent studies have begun to interrogate the role of this specialized class of proteins in muscle biology. During development, chaperone-mediated folding of client proteins enables their integration into nascent functional sarcomeres. In addition to assisting with muscle differentiation, chaperones play a key role in the maintenance of muscle tissues. Furthermore, disruption of the chaperone network can result in neuromuscular disease. In this review, we discuss how chaperones are involved in myofibrillogenesis, sarcomere maintenance, and muscle disorders. We also consider the possibilities of therapeutically targeting chaperones to treat muscle disease.
Collapse
Affiliation(s)
- Daniel A. Smith
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Carmen R. Carland
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Yiming Guo
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| | - Sanford I. Bernstein
- Department of Biology and the Molecular Biology Institute, San Diego State
University, San Diego, CA 92182, USA
| |
Collapse
|
74
|
Cao J, Li S, Shao M, Cheng X, Xu Z, Shi D. The PDZ-containing unconventional myosin XVIIIA regulates embryonic muscle integrity in zebrafish. J Genet Genomics 2014; 41:417-28. [PMID: 25160974 DOI: 10.1016/j.jgg.2014.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 12/22/2022]
Abstract
Myosin XVIIIA, or MYO18A, is a unique PDZ domain-containing unconventional myosin and is evolutionarily conserved from Drosophila to vertebrates. Although there is evidence indicating its expression in the somites, whether it regulates muscle function remains unclear. We show that the two zebrafish myo18a genes (myo18aa and myo18ab) are predominantly expressed at somite borders during early developmental stages. Knockdown of these genes or overexpression of the MYO18A PDZ domain disrupts myofiber integrity, induces myofiber lesions, and compromises the localization of dystrophin, α-dystroglycan (α-DG) and laminin at the myotome boundaries. Cell transplantation experiments indicate that myo18a morphant myoblasts fail to form elongated myofibers in the myotomes of wild-type embryos, which can be rescued by the full-length MYO18A protein. These results suggest that MYO18A likely functions in the adhesion process that maintains the stable attachment of myofibers to ECM (extracellular matrix) and muscle integrity during early development.
Collapse
Affiliation(s)
- Jianmeng Cao
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Shangqi Li
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Ming Shao
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Xiaoning Cheng
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China
| | - Zhigang Xu
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China.
| | - Deli Shi
- School of Life Sciences, Shandong University, 27 Shanda Nan Road, Jinan 250100, China; Sorbonne Universités, UPMC Univ Paris 06, UMR 7622, Laboratory of Developmental Biology, F-75005 Paris, France; CNRS, UMR 7622, Laboratory of Developmental Biology, F-75005 Paris, France.
| |
Collapse
|
75
|
Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen PH, Novina CD, Phillips GN, Anand R, Wells GB, Pinch M, Güth R, Unguez GA, Albert JS, Zakon HH, Samanta MP, Sussman MR. Nonhuman genetics. Genomic basis for the convergent evolution of electric organs. Science 2014; 344:1522-5. [PMID: 24970089 DOI: 10.1126/science.1254432] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs.
Collapse
Affiliation(s)
- Jason R Gallant
- Department of Zoology, Michigan State University, East Lansing, MI 48824, USA. BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA
| | - Lindsay L Traeger
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA. Biotechnology Center, University of Wisconsin, Madison, WI 53706, USA
| | - Jeremy D Volkening
- Biotechnology Center, University of Wisconsin, Madison, WI 53706, USA. Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Howell Moffett
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Po-Hao Chen
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - Carl D Novina
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02141, USA
| | - George N Phillips
- Department of Biochemistry and Cell Biology and Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Rene Anand
- Department of Pharmacology and Department of Neuroscience, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Gregg B Wells
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77483, USA
| | - Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - James S Albert
- Department of Biology, University of Louisiana, Lafayette, LA 70503, USA
| | - Harold H Zakon
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824, USA. University of Texas, Austin, TX 78712, USA. The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | | | - Michael R Sussman
- Biotechnology Center, University of Wisconsin, Madison, WI 53706, USA. Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
76
|
Berkholz J, Michalick L, Munz B. The E3 SUMO ligase Nse2 regulates sumoylation and nuclear-to-cytoplasmic translocation of skNAC-Smyd1 in myogenesis. J Cell Sci 2014; 127:3794-804. [PMID: 25002400 DOI: 10.1242/jcs.150334] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Skeletal and heart muscle-specific variant of the α subunit of nascent polypeptide associated complex (skNAC; encoded by NACA) is exclusively found in striated muscle cells. Its function, however, is largely unknown. Previous reports have demonstrated that skNAC binds to m-Bop/Smyd1, a multi-functional protein that regulates myogenesis both through the control of transcription and the modulation of sarcomerogenesis, and that both proteins undergo nuclear-to-cytoplasmic translocation at the later stages of myogenic differentiation. Here, we show that skNAC binds to the E3 SUMO ligase mammalian Mms21/Nse2 and that knockdown of Nse2 expression inhibits specific aspects of myogenic differentiation, accompanied by a partial blockade of the nuclear-to-cytoplasmic translocation of the skNAC-Smyd1 complex, retention of the complex in promyelocytic leukemia (PML)-like nuclear bodies and disturbed sarcomerogenesis. In addition, we show that the skNAC interaction partner Smyd1 contains a putative sumoylation motif and is sumoylated in muscle cells, with depletion of Mms21/Nse2 leading to reduced concentrations of sumoylated Smyd1. Taken together, our data suggest that the function, specifically the balance between the nuclear and cytosolic roles, of the skNAC-Smyd1 complex might be regulated by sumoylation.
Collapse
Affiliation(s)
- Janine Berkholz
- Charité - University Medicine Berlin, Institute of Physiology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Laura Michalick
- Charité - University Medicine Berlin, Institute of Physiology, Charitéplatz 1, D-10117 Berlin, Germany
| | - Barbara Munz
- University Hospital Tubingen, Medical Clinic, Department of Sports Medicine, Hoppe-Seyler-Strasse 6, D-72076 Tubingen, Germany
| |
Collapse
|
77
|
Molt S, Bührdel JB, Yakovlev S, Schein P, Orfanos Z, Kirfel G, Winter L, Wiche G, van der Ven PFM, Rottbauer W, Just S, Belkin AM, Fürst DO. Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance. J Cell Sci 2014; 127:3578-92. [PMID: 24963132 DOI: 10.1242/jcs.152157] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Filamin C (FLNc) and Xin actin-binding repeat-containing proteins (XIRPs) are multi-adaptor proteins that are mainly expressed in cardiac and skeletal muscles and which play important roles in the assembly and repair of myofibrils and their attachment to the membrane. We identified the dystrophin-binding protein aciculin (also known as phosphoglucomutase-like protein 5, PGM5) as a new interaction partner of FLNc and Xin. All three proteins colocalized at intercalated discs of cardiac muscle and myotendinous junctions of skeletal muscle, whereas FLNc and aciculin also colocalized in mature Z-discs. Bimolecular fluorescence complementation experiments in developing cultured mammalian skeletal muscle cells demonstrated that Xin and aciculin also interact in FLNc-containing immature myofibrils and areas of myofibrillar remodeling and repair induced by electrical pulse stimulation (EPS). Fluorescence recovery after photobleaching (FRAP) experiments showed that aciculin is a highly dynamic and mobile protein. Aciculin knockdown in myotubes led to failure in myofibril assembly, alignment and membrane attachment, and a massive reduction in myofibril number. A highly similar phenotype was found upon depletion of aciculin in zebrafish embryos. Our results point to a thus far unappreciated, but essential, function of aciculin in myofibril formation, maintenance and remodeling.
Collapse
Affiliation(s)
- Sibylle Molt
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - John B Bührdel
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Sergiy Yakovlev
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Peter Schein
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Lilli Winter
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | - Gerhard Wiche
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, 1030 Vienna, Austria
| | | | - Wolfgang Rottbauer
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Steffen Just
- Department of Internal Medicine II, University of Ulm, 89081 Ulm, Germany
| | - Alexey M Belkin
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
78
|
Gao J, Li J, Li BJ, Yagil E, Zhang J, Du SJ. Expression and functional characterization of Smyd1a in myofibril organization of skeletal muscles. PLoS One 2014; 9:e86808. [PMID: 24466251 PMCID: PMC3900645 DOI: 10.1371/journal.pone.0086808] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022] Open
Abstract
Background Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. Methodology/Principal Findings To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. Conclusion/Significance Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.
Collapse
Affiliation(s)
- Jie Gao
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangdong, China
| | - Junling Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Bao-Jun Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ezra Yagil
- Department of Biochemistry, Tel-Aviv University, Tel-Aviv, Israel
| | - Jianshe Zhang
- Department of Bioengeneering and Environmental Science, Changsha University, Hunan, China
| | - Shao Jun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
79
|
Abstract
Cachexia, a condition that kills about one-fifth of cancer patients, may be linked to Rb—a protein that is already linked to various cancers—moving from the cell nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Giulio Cossu
- Giulio Cossu is an eLife reviewing editor and is at the Institute of Inflammation and Repair, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
80
|
Monte E, Mouillesseaux K, Chen H, Kimball T, Ren S, Wang Y, Chen JN, Vondriska TM, Franklin S. Systems proteomics of cardiac chromatin identifies nucleolin as a regulator of growth and cellular plasticity in cardiomyocytes. Am J Physiol Heart Circ Physiol 2013; 305:H1624-38. [PMID: 24077883 PMCID: PMC3882469 DOI: 10.1152/ajpheart.00529.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/10/2013] [Indexed: 11/22/2022]
Abstract
Myocyte hypertrophy antecedent to heart failure involves changes in global gene expression, although the preceding mechanisms to coordinate DNA accessibility on a genomic scale are unknown. Chromatin-associated proteins alter chromatin structure by changing their association with DNA, thereby altering the gene expression profile. Little is known about the global changes in chromatin subproteomes that accompany heart failure, and the mechanisms by which these proteins alter chromatin structure. The present study tests the fundamental hypothesis that cardiac growth and plasticity in the setting of disease recapitulates conserved developmental chromatin remodeling events. We used quantitative proteomics to identify chromatin-associated proteins extracted via detergent and to quantify changes in their abundance during disease. Our study identified 321 proteins in this subproteome, demonstrating it to have modest conservation (37%) with that revealed using strong acid. Of these proteins, 176 exhibited altered expression during cardiac hypertrophy and failure; we conducted extensive functional characterization of one of these proteins, Nucleolin. Morpholino-based knockdown of nucleolin nearly abolished protein expression but surprisingly had little impact on gross morphological development. However, hearts of fish lacking Nucleolin displayed severe developmental impairment, abnormal chamber patterning and functional deficits, ostensibly due to defects in cardiac looping and myocyte differentiation. The mechanisms underlying these defects involve perturbed bone morphogenetic protein 4 expression, decreased rRNA transcription, and a shift to more heterochromatic chromatin. This study reports the quantitative analysis of a new chromatin subproteome in the normal and diseased mouse heart. Validation studies in the complementary model system of zebrafish examine the role of Nucleolin to orchestrate genomic reprogramming events shared between development and disease.
Collapse
Affiliation(s)
- Emma Monte
- Department of Anesthesiology, University of California, Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Li H, Zhong Y, Wang Z, Gao J, Xu J, Chu W, Zhang J, Fang S, Du SJ. Smyd1b is required for skeletal and cardiac muscle function in zebrafish. Mol Biol Cell 2013; 24:3511-21. [PMID: 24068325 PMCID: PMC3826989 DOI: 10.1091/mbc.e13-06-0352] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myofibrillogenesis is critical for muscle cell differentiation and contraction. This study shows that Smyd1b plays a key role in myofibrillogenesis in muscle cells. Knockdown of smyd1b results in up-regulation of hsp90α1 and unc45b gene expression, increased myosin degradation, and disruption of sarcomere organization in zebrafish embryos. Smyd1b is a member of the Smyd family that is specifically expressed in skeletal and cardiac muscles. Smyd1b plays a key role in thick filament assembly during myofibrillogenesis in skeletal muscles of zebrafish embryos. To better characterize Smyd1b function and its mechanism of action in myofibrillogenesis, we analyzed the effects of smyd1b knockdown on myofibrillogenesis in skeletal and cardiac muscles of zebrafish embryos. The results show that knockdown of smyd1b causes significant disruption of myofibril organization in both skeletal and cardiac muscles of zebrafish embryos. Microarray and quantitative reverse transcription-PCR analyses show that knockdown of smyd1b up-regulates heat shock protein 90 (hsp90) and unc45b gene expression. Biochemical analysis reveals that Smyd1b can be coimmunoprecipitated with heat shock protein 90 α-1 and Unc45b, two myosin chaperones expressed in muscle cells. Consistent with its potential function in myosin folding and assembly, knockdown of smyd1b significantly reduces myosin protein accumulation without affecting mRNA expression. This likely results from increased myosin degradation involving unc45b overexpression. Together these data support the idea that Smyd1b may work together with myosin chaperones to control myosin folding, degradation, and assembly into sarcomeres during myofibrillogenesis.
Collapse
Affiliation(s)
- Huiqing Li
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202 Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201 Laboratory of Pathology, National Cancer Institute, Bethesda, MD 20892 Department of Bioengineering and Environmental Science, Changsha University, Hunan 410003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
skNAC depletion stimulates myoblast migration and perturbs sarcomerogenesis by enhancing calpain 1 and 3 activity. Biochem J 2013; 453:303-10. [PMID: 23662692 DOI: 10.1042/bj20130195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
skNAC (skeletal and heart muscle specific variant of nascent polypeptide-associated complex α) is a skeletal and heart muscle-specific protein known to be involved in the regulation of sarcomerogenesis. The respective mechanism, however, is largely unknown. In the present paper, we demonstrate that skNAC regulates calpain activity. Specifically, we show that inhibition of skNAC gene expression leads to enhanced, and overexpression of the skNAC gene to repressed, activity of calpain 1 and, to a lesser extent, calpain 3 in myoblasts. In skNAC siRNA-treated cells, enhanced calpain activity is associated with increased migration rates, as well as with perturbed sarcomere architecture. Treatment of skNAC-knockdown cells with the calpain inhibitor ALLN (N-acetyl-leucyl-leucyl-norleucinal) reverts both the positive effect on myoblast migration and the negative effect on sarcomere architecture. Taken together, our data suggest that skNAC controls myoblast migration and sarcomere architecture in a calpain-dependent manner.
Collapse
|
83
|
Voelkel T, Andresen C, Unger A, Just S, Rottbauer W, Linke WA. Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:812-22. [DOI: 10.1016/j.bbamcr.2012.09.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/16/2022]
|
84
|
Berger J, Currie PD. 503unc, a small and muscle-specific zebrafish promoter. Genesis 2013; 51:443-7. [PMID: 23444339 DOI: 10.1002/dvg.22385] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 01/26/2023]
Abstract
The muscle-specific UNC-45b assists in the folding of sarcomeric myosin. Analysis of the zebrafish unc-45b upstream region revealed that unc-45b promoter fragments reliably drive GFP expression after germline transmission. The muscle-specific 503-bp minimal promoter 503unc was identified to drive gene expression in the zebrafish musculature. In transgenic Tg(-503unc:GFP) zebrafish, GFP fluorescence was detected in the adaxial cells, their slow fiber descendants, and the fast muscle. At later stages, robust GFP fluorescence is eminent in the cardiac, cranial, fin, and trunk muscle, thereby recapitulating the unc-45b expression pattern. We propose that the 503unc promoter is a small and muscle-specific promoter that drives robust gene expression throughout the zebrafish musculature, making it a valuable tool for the exploration of zebrafish muscle.
Collapse
Affiliation(s)
- Joachim Berger
- Department of Zebrafish Muscle Development and Evolution, Australian Regenerative Medicine Institute, EMBL Australia, Monash University, Clayton, Victoria, Australia.
| | | |
Collapse
|
85
|
Kloos W, Katus HA, Meder B. Genetic cardiomyopathies. Lessons learned from humans, mice, and zebrafish. Herz 2013; 37:612-7. [PMID: 22767018 DOI: 10.1007/s00059-012-3651-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dilated cardiomyopathy (DCM) is a multifactorial disease of the heart muscle and a leading cause of congestive heart failure. Human genetic studies and the establishment of suitable animal models such as mice and zebrafish have already revealed parts of its genetic etiology. With the next generation of genomic sequencing technologies (NGS) on the rise, the comprehensive genetic dissection of DCM patients will reveal clinically relevant information, novel causes, and modifiers of this complex disorder. The recent exploration of the epigenome as another mechanism of cardiac gene regulation will further elucidate unexplained variations observed in the correlation between the patient's genotype and phenotype. Some of these intriguing advances being made in basic genetic research will soon find their way into clinical practice for more individualized treatment of cardiomyopathy patients.
Collapse
Affiliation(s)
- W Kloos
- Abteilung Innere Medizin III, Kardiologie, Angiologie und Pulmologie, Universitätsklinik Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Gemany
| | | | | |
Collapse
|
86
|
Islet1 is a direct transcriptional target of the homeodomain transcription factor Shox2 and rescues the Shox2-mediated bradycardia. Basic Res Cardiol 2013; 108:339. [PMID: 23455426 PMCID: PMC3597335 DOI: 10.1007/s00395-013-0339-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/31/2013] [Accepted: 02/08/2013] [Indexed: 01/10/2023]
Abstract
The heart's rhythm is initiated and regulated by a group of specialized cells in the sinoatrial node (SAN), the primary pacemaker of the heart. Abnormalities in the development of the SAN can result in irregular heart rates (arrhythmias). Although several of the critical genes important for SAN formation have been identified, our understanding of the transcriptional network controlling SAN development remains at a relatively early stage. The homeodomain transcription factor Shox2 is involved in the specification and patterning of the SAN. While the Shox2 knockout in mice results in embryonic lethality due to severe cardiac defects including improper SAN development, Shox2 knockdown in zebrafish causes a reduced heart rate (bradycardia). In order to gain deeper insight into molecular pathways involving Shox2, we compared gene expression levels in right atria of wildtype and Shox2 (-/-) hearts using microarray experiments and identified the LIM homeodomain transcription factor Islet1 (Isl1) as one of its putative target genes. The downregulation of Isl1 expression in Shox2 (-/-) hearts was confirmed and the affected region narrowed down to the SAN by whole-mount in situ hybridization. Using luciferase reporter assays and EMSA studies, we identified two specific SHOX2 binding sites within intron 2 of the ISL1 locus. We also provide functional evidence for Isl1 as a transcriptional target of Shox2 by rescuing the Shox2-mediated bradycardia phenotype with Isl1 using zebrafish as a model system. Our findings demonstrate a novel epistatic relationship between Shox2 and Isl1 in the heart with important developmental consequences for SAN formation and heart beat.
Collapse
|
87
|
Comyn SA, Pilgrim D. Lack of developmental redundancy between Unc45 proteins in zebrafish muscle development. PLoS One 2012; 7:e48861. [PMID: 23144999 PMCID: PMC3492250 DOI: 10.1371/journal.pone.0048861] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/03/2012] [Indexed: 01/09/2023] Open
Abstract
Since the majority of protein-coding genes in vertebrates have intra-genomic homologues, it has been difficult to eliminate the potential of functional redundancy from analyses of mutant phenotypes, whether produced by genetic lesion or transient knockdown. Further complicating these analyses, not all gene products have activities that can be assayed in vitro, where the efficiency of the various family members can be compared against constant substrates. Two vertebrate UNC-45 homologues, unc45a and unc45b, affect distinct stages of muscle differentiation when knocked down in cell culture and are functionally redundant in vitro. UNC-45 proteins are members of the UCS (UNC-45/CRO1/She4p) protein family that has been shown to regulate myosin-dependent functions from fungi to vertebrates through direct interaction with the myosin motor domain. To test whether the same functional relationship exists between these unc45 paralogs in vivo, we examined the developmental phenotypes of doubly homozygous unc45b−/−; unc45a−/− mutant zebrafish embryos. We focused specifically on the combined effects on morphology and gene expression resulting from the zygotic lack of both paralogs. We found that unc45b−/− and unc45b−/−; unc45a−/− embryos were phenotypically indistinguishable with both mutants displaying identical cardiac, skeletal muscle, and jaw defects. We also found no evidence to support a role for zygotic Unc45a function in myoblast differentiation. In contrast to previous in vitro work, this rules out a model of functional redundancy between Unc45a and Unc45b in vivo. Instead, our phylogenetic and phenotypic analyses provide evidence for the role of functional divergence in the evolution of the UCS protein family.
Collapse
Affiliation(s)
| | - David Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
88
|
Tu S, Chi NC. Zebrafish models in cardiac development and congenital heart birth defects. Differentiation 2012; 84:4-16. [PMID: 22704690 DOI: 10.1016/j.diff.2012.05.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022]
Abstract
The zebrafish has become an ideal vertebrate animal system for investigating cardiac development due to its genetic tractability, external fertilization, early optical clarity and ability to survive without a functional cardiovascular system during development. In particular, recent advances in imaging techniques and the creation of zebrafish transgenics now permit the in vivo analysis of the dynamic cellular events that transpire during cardiac morphogenesis. As a result, the combination of these salient features provides detailed insight as to how specific genes may influence cardiac development at the cellular level. In this review, we will highlight how the zebrafish has been utilized to elucidate not only the underlying mechanisms of cardiac development and human congenital heart diseases (CHDs), but also potential pathways that may modulate cardiac regeneration. Thus, we have organized this review based on the major categories of CHDs-structural heart, functional heart, and vascular/great vessel defects, and will conclude with how the zebrafish may be further used to contribute to our understanding of specific human CHDs in the future.
Collapse
Affiliation(s)
- Shu Tu
- Department of Medicine, Division of Cardiology, University of California, San Diego, CA 92093-0613J, USA
| | | |
Collapse
|
89
|
Li H, Xu J, Bian YH, Rotllant P, Shen T, Chu W, Zhang J, Schneider M, Du SJ. Smyd1b_tv1, a key regulator of sarcomere assembly, is localized on the M-line of skeletal muscle fibers. PLoS One 2011; 6:e28524. [PMID: 22174829 PMCID: PMC3235123 DOI: 10.1371/journal.pone.0028524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/09/2011] [Indexed: 11/18/2022] Open
Abstract
Background Smyd1b is a member of the Smyd family that plays a key role in sarcomere assembly during myofibrillogenesis. Smyd1b encodes two alternatively spliced isoforms, smyd1b_tv1 and smyd1b_tv2, that are expressed in skeletal and cardiac muscles and play a vital role in myofibrillogenesis in skeletal muscles of zebrafish embryos. Methodology/Principal Findings To better understand Smyd1b function in myofibrillogenesis, we analyzed the subcellular localization of Smyd1b_tv1 and Smyd1b_tv2 in transgenic zebrafish expressing a myc-tagged Smyd1b_tv1 or Smyd1b_tv2. The results showed a dynamic change of their subcellular localization during muscle cell differentiation. Smyd1b_tv1 and Smyd1b_tv2 were primarily localized in the cytosol of myoblasts and myotubes at early stage zebrafish embryos. However, in mature myofibers, Smyd1b_tv1, and to a small degree of Smyd1b_tv2, exhibited a sarcomeric localization. Double staining with sarcomeric markers revealed that Smyd1b_tv1was localized on the M-lines. The sarcomeric localization was confirmed in zebrafish embryos expressing the Smyd1b_tv1-GFP or Smyd1b_tv2-GFP fusion proteins. Compared with Smyd1b_tv1, Smyd1b_tv2, however, showed a weak sarcomeric localization. Smyd1b_tv1 differs from Smyd1b_tv2 by a 13 amino acid insertion encoded by exon 5, suggesting that some residues within the 13 aa insertion may be critical for the strong sarcomeric localization of Smyd1b_tv1. Sequence comparison with Smyd1b_tv1 orthologs from other vertebrates revealed several highly conserved residues (Phe223, His224 and Gln226) and two potential phosphorylation sites (Thr221 and Ser225) within the 13 aa insertion. To determine whether these residues are involved in the increased sarcomeric localization of Smyd1b_tv1, we mutated these residues into alanine. Substitution of Phe223 or Ser225 with alanine significantly reduced the sarcomeric localization of Smyd1b_tv1. In contrast, other substitutions had no effect. Moreover, replacing Ser225 with threonine (S225T) retained the strong sarcomeric localization of Smyd1b_tv1. Conclusion/Significance Together, these data indicate that Phe223 and Ser225 are required for the M-line localization of Smyd1b_tv1.
Collapse
Affiliation(s)
- Huiqing Li
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jin Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yue-Hong Bian
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Pep Rotllant
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tiansheng Shen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Wuying Chu
- Department of Bioengeneering and Environmental Science, Changsha University, Hunan, China
| | - Jianshe Zhang
- Department of Bioengeneering and Environmental Science, Changsha University, Hunan, China
| | - Martin Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shao Jun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
90
|
Just S, Meder B, Berger IM, Etard C, Trano N, Patzel E, Hassel D, Marquart S, Dahme T, Vogel B, Fishman MC, Katus HA, Strähle U, Rottbauer W. The myosin-interacting protein SMYD1 is essential for sarcomere organization. Development 2011. [DOI: 10.1242/dev.73957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|