51
|
Oikonomidi I, Burbridge E, Cavadas M, Sullivan G, Collis B, Naegele H, Clancy D, Brezinova J, Hu T, Bileck A, Gerner C, Bolado A, von Kriegsheim A, Martin SJ, Steinberg F, Strisovsky K, Adrain C. iTAP, a novel iRhom interactor, controls TNF secretion by policing the stability of iRhom/TACE. eLife 2018; 7:35032. [PMID: 29897333 PMCID: PMC6042963 DOI: 10.7554/elife.35032] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/10/2018] [Indexed: 12/11/2022] Open
Abstract
The apical inflammatory cytokine TNF regulates numerous important biological processes including inflammation and cell death, and drives inflammatory diseases. TNF secretion requires TACE (also called ADAM17), which cleaves TNF from its transmembrane tether. The trafficking of TACE to the cell surface, and stimulation of its proteolytic activity, depends on membrane proteins, called iRhoms. To delineate how the TNF/TACE/iRhom axis is regulated, we performed an immunoprecipitation/mass spectrometry screen to identify iRhom-binding proteins. This identified a novel protein, that we name iTAP (iRhom Tail-Associated Protein) that binds to iRhoms, enhancing the cell surface stability of iRhoms and TACE, preventing their degradation in lysosomes. Depleting iTAP in primary human macrophages profoundly impaired TNF production and tissues from iTAP KO mice exhibit a pronounced depletion in active TACE levels. Our work identifies iTAP as a physiological regulator of TNF signalling and a novel target for the control of inflammation. Inflammation forms part of the body's defense system against pathogens, but if the system becomes faulty, it can cause problems linked to inflammatory and autoimmune diseases. Immune cells coordinate their activity using specific signaling molecules called cytokines. For example, the cytokine TNF is an important trigger of inflammation and is produced at the surface of immune cells. A specific enzyme called TACE is needed to release TNF, as well as other signaling molecules, including proteins that trigger healing. Previous work revealed that TACE works with proteins called iRhoms, which regulate its activity and help TACE to reach the surface of the cell to release TNF. To find out how, Oikonomidi et al. screened human cells to see what other proteins interact with iRhoms. The results revealed a new protein named iTAP, which is required to release TNF from the surface of cells. It also protects the TACE-iRhom complex from being destroyed by the cell’s waste disposal system. When iTAP was experimentally removed in human immune cells, the cells were unable to release TNF. Instead, iRhom and TACE travelled to the cell's garbage system, the lysosome, where the proteins were destroyed. Removing the iTAP gene in mice had the same effect, and the TACE-iRhom complex was no longer found on the surface of the cell, but instead degraded in lysosomes. This suggests that in healthy cells, the iTAP protein prevents the cell from destroying this protein complex. TNF controls many beneficial processes, including fighting infection and cancer. However, when the immune system releases too many cytokines, it can lead to inflammatory diseases or even cause cancer. Specific drugs that target TNF are not always effective administered on their own, and sometimes, patients stop responding to the drugs. Since the new protein iTAP works as a switch to turn TNF release on or off, it could provide a target for the development of new treatments.
Collapse
Affiliation(s)
- Ioanna Oikonomidi
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Emma Burbridge
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Miguel Cavadas
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Graeme Sullivan
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Blanka Collis
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Heike Naegele
- Center for Biological Systems Analysis, Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Danielle Clancy
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Jana Brezinova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tianyi Hu
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Andrea Bileck
- Institut für Analytische Chemie, Universität Wien, Vienna, Austria
| | | | - Alfonso Bolado
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, The Smurfit Institute, Trinity College Dublin, Dublin, Ireland
| | - Florian Steinberg
- Center for Biological Systems Analysis, Faculty of Biology, Albert Ludwigs Universitaet Freiburg, Freiburg, Germany
| | - Kvido Strisovsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Colin Adrain
- Membrane Traffic Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
52
|
Crawford RR, Potukuchi PK, Schuetz EG, Schuetz JD. Beyond Competitive Inhibition: Regulation of ABC Transporters by Kinases and Protein-Protein Interactions as Potential Mechanisms of Drug-Drug Interactions. Drug Metab Dispos 2018; 46:567-580. [PMID: 29514827 PMCID: PMC5896366 DOI: 10.1124/dmd.118.080663] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are transmembrane efflux transporters mediating the extrusion of an array of substrates ranging from amino acids and lipids to xenobiotics, and many therapeutic compounds, including anticancer drugs. The ABC transporters are also recognized as important contributors to pharmacokinetics, especially in drug-drug interactions and adverse drug effects. Drugs and xenobiotics, as well as pathologic conditions, can influence the transcription of ABC transporters, or modify their activity or intracellular localization. Kinases can affect the aforementioned processes for ABC transporters as do protein interactions. In this review, we focus on the ABC transporters ABCB1, ABCB11, ABCC1, ABCC4, and ABCG2 and illustrate how kinases and protein-protein interactions affect these transporters. The clinical relevance of these factors is currently unknown; however, these examples suggest that our understanding of drug-drug interactions will benefit from further knowledge of how kinases and protein-protein interactions affect ABC transporters.
Collapse
Affiliation(s)
- Rebecca R Crawford
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Praveen K Potukuchi
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Erin G Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
53
|
Benhamouche-Trouillet S, O'Loughlin E, Liu CH, Polacheck W, Fitamant J, McKee M, El-Bardeesy N, Chen CS, McClatchey AI. Proliferation-independent role of NF2 (merlin) in limiting biliary morphogenesis. Development 2018; 145:dev162123. [PMID: 29712669 PMCID: PMC10682933 DOI: 10.1242/dev.162123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/03/2018] [Indexed: 12/15/2022]
Abstract
The architecture of individual cells and cell collectives enables functional specification, a prominent example being the formation of epithelial tubes that transport fluid or gas in many organs. The intrahepatic bile ducts (IHBDs) form a tubular network within the liver parenchyma that transports bile to the intestine. Aberrant biliary 'neoductulogenesis' is also a feature of several liver pathologies including tumorigenesis. However, the mechanism of biliary tube morphogenesis in development or disease is not known. Elimination of the neurofibromatosis type 2 protein (NF2; also known as merlin or neurofibromin 2) causes hepatomegaly due to massive biliary neoductulogenesis in the mouse liver. We show that this phenotype reflects unlimited biliary morphogenesis rather than proliferative expansion. Our studies suggest that NF2 normally limits biliary morphogenesis by coordinating lumen expansion and cell architecture. This work provides fundamental insight into how biliary fate and tubulogenesis are coordinated during development and will guide analyses of disease-associated and experimentally induced biliary pathologies.
Collapse
Affiliation(s)
- Samira Benhamouche-Trouillet
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02114, USA
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Evan O'Loughlin
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02114, USA
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Ching-Hui Liu
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02114, USA
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - William Polacheck
- Department of Biomedical Engineering, Boston University, Wyss Institute, Boston, MA 02115, USA
| | - Julien Fitamant
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Mary McKee
- Center for Systems Biology, Program in Membrane Biology, Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston MA 02114, USA
| | - Nabeel El-Bardeesy
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Wyss Institute, Boston, MA 02115, USA
| | - Andrea I McClatchey
- Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02114, USA
- Molecular Pathology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
54
|
Deevi RK, Javadi A, McClements J, Vohhodina J, Savage K, Loughrey MB, Evergren E, Campbell FC. Protein kinase C zeta suppresses low- or high-grade colorectal cancer (CRC) phenotypes by interphase centrosome anchoring. J Pathol 2018; 244:445-459. [PMID: 29520890 PMCID: PMC5873423 DOI: 10.1002/path.5035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/20/2017] [Accepted: 01/01/2018] [Indexed: 01/05/2023]
Abstract
Histological grading provides prognostic stratification of colorectal cancer (CRC) by scoring heterogeneous phenotypes. Features of aggressiveness include aberrant mitotic spindle configurations, chromosomal breakage, and bizarre multicellular morphology, but pathobiology is poorly understood. Protein kinase C zeta (PKCz) controls mitotic spindle dynamics, chromosome segregation, and multicellular patterns, but its role in CRC phenotype evolution remains unclear. Here, we show that PKCz couples genome segregation to multicellular morphology through control of interphase centrosome anchoring. PKCz regulates interdependent processes that control centrosome positioning. Among these, interaction between the cytoskeletal linker protein ezrin and its binding partner NHERF1 promotes the formation of a localized cue for anchoring interphase centrosomes to the cell cortex. Perturbation of these phenomena induced different outcomes in cells with single or extra centrosomes. Defective anchoring of a single centrosome promoted bipolar spindle misorientation, multi-lumen formation, and aberrant epithelial stratification. Collectively, these disturbances induce cribriform multicellular morphology that is typical of some categories of low-grade CRC. By contrast, defective anchoring of extra centrosomes promoted multipolar spindle formation, chromosomal instability (CIN), disruption of glandular morphology, and cell outgrowth across the extracellular matrix interface characteristic of aggressive, high-grade CRC. Because PKCz enhances apical NHERF1 intensity in 3D epithelial cultures, we used an immunohistochemical (IHC) assay of apical NHERF1 intensity as an indirect readout of PKCz activity in translational studies. We show that apical NHERF1 IHC intensity is inversely associated with multipolar spindle frequency and high-grade morphology in formalin-fixed human CRC samples. To conclude, defective PKCz control of interphase centrosome anchoring may underlie distinct categories of mitotic slippage that shape the development of low- or high-grade CRC phenotypes. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ravi Kiran Deevi
- Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
| | - Arman Javadi
- Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
| | - Jane McClements
- Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
| | - Jekaterina Vohhodina
- Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
| | - Kienan Savage
- Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
| | - Maurice Bernard Loughrey
- Northern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell BiologyQueen's University Belfast and Belfast Health and Social Care TrustBelfastUK
| | - Emma Evergren
- Centre for Cancer Research and Cell BiologyQueen's University of BelfastBelfastUK
| | | |
Collapse
|
55
|
Loch C, Haeger JD, Pfarrer C. IFNτ mediates chemotaxis, motility, metabolism and CK18 downregulation in bovine trophoblast cells in vitro via STAT1 and MAPK42/44 signaling. Placenta 2018; 64:17-26. [DOI: 10.1016/j.placenta.2018.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 10/18/2022]
|
56
|
Abstract
Cell migration is an adaptive process that depends on and responds to physical and molecular triggers. Moving cells sense and respond to tissue mechanics and induce transient or permanent tissue modifications, including extracellular matrix stiffening, compression and deformation, protein unfolding, proteolytic remodelling and jamming transitions. Here we discuss how the bi-directional relationship of cell-tissue interactions (mechanoreciprocity) allows cells to change position and contributes to single-cell and collective movement, structural and molecular tissue organization, and cell fate decisions.
Collapse
|
57
|
Loomans HA, Arnold SA, Hebron K, Taylor CJ, Zijlstra A, Andl CD. Loss of ACVRIB leads to increased squamous cell carcinoma aggressiveness through alterations in cell-cell and cell-matrix adhesion proteins. Am J Cancer Res 2017; 7:2422-2437. [PMID: 29312797 PMCID: PMC5752684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 02/24/2023] Open
Abstract
Squamous cell carcinomas of the head and neck (HNSCC) and esophagus (ESCC) pose a global public health issue due to high mortality rates. Unfortunately, little progress has been made in improving patient outcomes. This is partially a result of a lack of understanding the mechanisms that drive SCC progression. Recently, Activin A signaling has been implicated in a number of cancers, yet the role of this pathway in SCC remains poorly understood. We have previously discovered that the Activin A ligand acts as a tumor suppressor when epithelial Activin receptor type IB (ACVRIB) is intact; however, this effect is lost upon ACVRIB downregulation. In the present study, we investigated the function of ACVRIB in the regulation of SCC. Using CRISPR/Cas9-mediated ACVRIB-knockout and knockdown using siRNA, we found an increased capacity to proliferate, migrate, and invade upon ACRIB loss, as ACVRIB-KO cells exhibited an altered cytoskeleton and aberrant expression of E-cadherin and integrins. Based on chemical inhibitor studies, our data suggests that these effects are mediated through ACVRIB-independent signaling via downstream activation of Smad1/5/8 and MEK/ERK. Overall, we present a novel mechanism of SCC progression upon ACVRIB loss by showing that Activin A can transduce a signal in the absence of ACVRIB.
Collapse
Affiliation(s)
- Holli A Loomans
- Department of Cancer Biology, Vanderbilt UniversityNashville, TN, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer InstituteBethesda, MD, USA
| | - Shanna A Arnold
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Kate Hebron
- Department of Cancer Biology, Vanderbilt UniversityNashville, TN, USA
| | - Chase J Taylor
- Department of Veterans Affairs, Tennessee Valley Healthcare SystemNashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Andries Zijlstra
- Department of Cancer Biology, Vanderbilt UniversityNashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical CenterNashville, TN, USA
| | - Claudia D Andl
- Department of Cancer Biology, Vanderbilt UniversityNashville, TN, USA
- Burnett School of Biomedical Sciences, College of Medicine, University of Central FloridaOrlando, FL, USA
| |
Collapse
|
58
|
Nehls S, Janshoff A. Elastic Properties of Pore-Spanning Apical Cell Membranes Derived from MDCK II Cells. Biophys J 2017; 113:1822-1830. [PMID: 29045876 DOI: 10.1016/j.bpj.2017.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 11/25/2022] Open
Abstract
The mechanical response of adherent, polarized cells to indentation is frequently attributed to the presence of an endogenous actin cortex attached to the inner leaflet of the plasma membrane. Here, we scrutinized the elastic properties of apical membranes separated from living cells and attached to a porous mesh in the absence of intracellular factors originating from the cytosol, organelles, the substrate, neighbors, and the nucleus. We found that a tension-based model describes the data very well providing essentially the prestress of the shell generated by adhesion of the apical membrane patches to the pore rim and the apparent area compressibility modulus, an intrinsic elastic modulus modulated by the surface excess stored in membrane reservoirs. Removal of membrane-associated proteins by proteases decreases the area compressibility modulus, whereas fixation and cross-linking of proteins with glutaraldehyde increases it.
Collapse
Affiliation(s)
- Stefan Nehls
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Göttingen, Germany
| | - Andreas Janshoff
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Göttingen, Germany.
| |
Collapse
|
59
|
Boratkó A, Csortos C. TIMAP, the versatile protein phosphatase 1 regulator in endothelial cells. IUBMB Life 2017; 69:918-928. [DOI: 10.1002/iub.1695] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/26/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Anita Boratkó
- Department of Medical Chemistry; Faculty of Medicine, University of Debrecen, Egyetem tér 1; Debrecen Hungary
| | - Csilla Csortos
- Department of Medical Chemistry; Faculty of Medicine, University of Debrecen, Egyetem tér 1; Debrecen Hungary
| |
Collapse
|
60
|
Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1417-1429. [DOI: 10.1016/j.bbamem.2017.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
|
61
|
Zhang WJ, Li PX, Guo XH, Huang QB. Role of moesin, Src, and ROS in advanced glycation end product-induced vascular endothelial dysfunction. Microcirculation 2017; 24. [DOI: 10.1111/micc.12358] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/23/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Wei-jin Zhang
- First Clinical College of Medicine; Southern Medical University; Guangzhou China
| | - Pei-xin Li
- First Clinical College of Medicine; Southern Medical University; Guangzhou China
| | - Xiao-hua Guo
- Department of Pathophysiology; Key Laboratory for Shock and Microcirculation Research of Guangdong Province; Southern Medical University; Guangzhou China
| | - Qiao-bing Huang
- Department of Pathophysiology; Key Laboratory for Shock and Microcirculation Research of Guangdong Province; Southern Medical University; Guangzhou China
| |
Collapse
|
62
|
Wang B, Liu J, Huang P, Xu K, Wang H, Wang X, Guo Z, Xu L. Protein phosphatase 2A inhibition and subsequent cytoskeleton reorganization contributes to cell migration caused by microcystin-LR in human laryngeal epithelial cells (Hep-2). ENVIRONMENTAL TOXICOLOGY 2017; 32:890-903. [PMID: 27393157 DOI: 10.1002/tox.22289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/08/2016] [Accepted: 05/08/2016] [Indexed: 06/06/2023]
Abstract
The major toxic mechanism of Microcystin-LR is inhibition of the activity of protein phosphatase 2A (PP2A), resulting in a series of cytotoxic effects. Our previous studies have demonstrated that microcystin-LR (MCLR) induced very different molecular effects in normal cells and the tumor cell line SMMC7721. To further explore the MCLR toxicity mechanism in tumor cells, human laryngeal epithelial cells (Hep-2) was examined in this study. Western blot, immunofluorescence, immunoprecipitation, and transwell migration assay were used to detect the effects of MCLR on PP2A activity, PP2A substrates, cytoskeleton, and cell migration. The results showed that the protein level of PP2A subunits and the posttranslational modification of the catalytic subunit were altered and that the binding of the AC core enzyme as well as the binding of PP2A/C and α4, was also affected. As PP2A substrates, the phosphorylation of MAPK pathway members, p38, ERK1/2, and the cytoskeleton-associated proteins, Hsp27, VASP, Tau, and Ezrin were increased. Furthermore, MCLR induced reorganization of the cytoskeleton and promoted cell migration. Taken together, direct covalent binding to PP2A/C, alteration of the protein levels and posttranslational modification, as well as the binding of subunits, are the main pattern for the effects of MCLR on PP2A in Hep-2. A dose-dependent change in p-Tau and p-Ezrin due to PP2A inhibition may contribute to the changes in the cytoskeleton and be related to the cell migration in Hep-2. Our data provide a comprehensive exposition of the MCLR mechanism on tumor cells. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 890-903, 2017.
Collapse
Affiliation(s)
- Beilei Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jinghui Liu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Pu Huang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Kailun Xu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Hanying Wang
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofeng Wang
- Zhejiang Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Zonglou Guo
- Department of Biosystem Engineering, College of Biosystem Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Lihong Xu
- Department of Biochemistry, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
63
|
The protective role of MLCP-mediated ERM dephosphorylation in endotoxin-induced lung injury in vitro and in vivo. Sci Rep 2016; 6:39018. [PMID: 27976727 PMCID: PMC5157034 DOI: 10.1038/srep39018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
The goal of this study was to investigate the role of MLC phosphatase (MLCP) in a LPS model of acute lung injury (ALI). We demonstrate that ectopic expression of a constitutively-active (C/A) MLCP regulatory subunit (MYPT1) attenuates the ability of LPS to increase endothelial (EC) permeability. Down-regulation of MYPT1 exacerbates LPS-induced expression of ICAM1 suggesting an anti-inflammatory role of MLCP. To determine whether MLCP contributes to LPS-induced ALI in vivo, we utilized a nanoparticle DNA delivery method to specifically target lung EC. Expression of a C/A MYPT1 reduced LPS-induced lung inflammation and vascular permeability. Further, increased expression of the CS1β (MLCP catalytic subunit) also reduced LPS-induced lung inflammation, whereas the inactive CS1β mutant increased vascular leak. We next examined the role of the cytoskeletal targets of MLCP, the ERM proteins (Ezrin/Radixin/Moesin), in mediating barrier dysfunction. LPS-induced increase in EC permeability was accompanied by PKC-mediated increase in ERM phosphorylation, which was more prominent in CS1β-depleted cells. Depletion of Moesin and Ezrin, but not Radixin attenuated LPS-induced increases in permeability. Further, delivery of a Moesin phospho-null mutant into murine lung endothelium attenuated LPS-induced lung inflammation and vascular leak suggesting that MLCP opposes LPS-induced ALI by mediating the dephosphorylation of Moesin and Ezrin.
Collapse
|
64
|
Podoplanin, ezrin, and Rho-A proteins may have joint participation in tumor invasion of lip cancer. Clin Oral Investig 2016; 21:1647-1657. [PMID: 27628318 DOI: 10.1007/s00784-016-1956-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 09/05/2016] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Podoplanin and ezrin connection through Rho-A phosphorylation have been suggested as part of the activation pathway, in the process of tumor invasion and cell movement in oral squamous cell carcinomas. OBJECTIVE The aim of this study was to evaluate the correlation among podoplanin, ezrin, and Rho-A immunoexpressions in 91 squamous cells carcinomas of the lower lip and their influence in patient's prognosis. MATERIAL AND METHODS The immunoexpressions of podoplanin, ezrin, and Rho-A were evaluated through a semi-quantitative score method, based on the capture of 10 microscopic fields at the front of tumor invasion. The association and correlation of these proteins with the clinicopathological features were verified by Fischer's exact test and Spearman's test. The prognostic values were analyzed by Kaplan-Meier method and log-rank test. RESULTS A statistically significant association between strong cytoplasmic podoplanin expression and alcohol (p = 0.024), loco-regional recurrences (p = 0.028), and lymph node metastasis (pN+) (p = 0.010) was found. The membranous (p = 0.000 and r = 0.384) and cytoplasmic (p = 0.000 and r = 0.344) podoplanin expression was statistically correlated with ezrin expression. Also, membranous podoplanin was significantly correlated with Rho-A expression (p = 0.006 and r = 0.282). The expressions of podoplanin, ezrin, and Rho-A were not significant prognostic factors for patients with squamous cell carcinomas of the lower lip. CONCLUSIONS Therefore, our results confirm a correlation among podoplanin, ezrin, and Rho-A expressions in squamous cell carcinoma of the lip suggesting a cooperative participation of these proteins in cell movement and invasion. CLINICAL RELEVANCE Furthermore, strong cytoplasmic podoplanin expression could be helpful to identify patients with squamous cell carcinoma of the lip and lower risk of loco-regional recurrences.
Collapse
|
65
|
Muriel O, Tomas A, Scott CC, Gruenberg J. Moesin and cortactin control actin-dependent multivesicular endosome biogenesis. Mol Biol Cell 2016; 27:3305-3316. [PMID: 27605702 PMCID: PMC5170863 DOI: 10.1091/mbc.e15-12-0853] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/31/2016] [Indexed: 11/11/2022] Open
Abstract
Moesin and cortactin on early endosomes are necessary for the formation of F-actin networks that mediate multivesicular endosome biogenesis and transport through the degradative pathway toward lysosomes. Presumably, this mechanism helps segregate recycling membranes from the maturing multivesicular endosomes. We used in vivo and in vitro strategies to study the mechanisms of multivesicular endosome biogenesis. We found that, whereas annexinA2 and ARP2/3 mediate F-actin nucleation and branching, respectively, the ERM protein moesin supports the formation of F-actin networks on early endosomes. We also found that moesin plays no role during endocytosis and recycling to the plasma membrane but is absolutely required, much like actin, for early-to-late-endosome transport and multivesicular endosome formation. Both actin network formation in vitro and early-to-late endosome transport in vivo also depend on the F-actin–binding protein cortactin. Our data thus show that moesin and cortactin are necessary for formation of F-actin networks that mediate endosome biogenesis or maturation and transport through the degradative pathway. We propose that the primary function of endosomal F-actin is to control the membrane remodeling that accompanies endosome biogenesis. We also speculate that this mechanism helps segregate tubular and multivesicular membranes along the recycling and degradation pathways, respectively.
Collapse
Affiliation(s)
- Olivia Muriel
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Alejandra Tomas
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Cameron C Scott
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
66
|
Secretory cells in honeybee hypopharyngeal gland: polarized organization and age-dependent dynamics of plasma membrane. Cell Tissue Res 2016; 366:163-74. [PMID: 27210106 DOI: 10.1007/s00441-016-2423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/25/2016] [Indexed: 01/14/2023]
Abstract
The honeybee hypopharyngeal gland consists in numerous units, each comprising a secretory cell and a canal cell. The secretory cell discharges its products into a convoluted tubular membrane system, the canaliculus, which is surrounded at regular intervals by rings of actin filaments. Using probes for various membrane components, we analyze the organization of the secretory cells relative to the apicobasal configuration of epithelial cells. The canaliculus was defined by labeling with an antibody against phosphorylated ezrin/radixin/moesin (pERM), a marker protein for the apical membrane domain of epithelial cells. Anti-phosphotyrosine visualizes the canalicular system, possibly by staining the microvillar tips. The open end of the canaliculus leads to a region in which the secretory cell is attached to the canal cell by adherens and septate junctions. The remaining plasma membrane stains for Na,K-ATPase and spectrin and represents the basolateral domain. We also used fluorophore-tagged phalloidin, anti-phosphotyrosine and anti-pERM as probes for the canaliculus in order to describe fine-structural changes in the organization of the canalicular system during the adult life cycle. These probes in conjunction with fluorescence microscopy allow the fast and detailed three-dimensional analysis of the canalicular membrane system and its structural changes in a developmental mode or in response to environmental factors.
Collapse
|
67
|
Halova I, Draber P. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case. Front Cell Dev Biol 2016; 4:43. [PMID: 27243007 PMCID: PMC4861716 DOI: 10.3389/fcell.2016.00043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic Prague, Czech Republic
| |
Collapse
|
68
|
Heinrich V. Controlled One-on-One Encounters between Immune Cells and Microbes Reveal Mechanisms of Phagocytosis. Biophys J 2016; 109:469-76. [PMID: 26244729 DOI: 10.1016/j.bpj.2015.06.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/25/2015] [Accepted: 06/22/2015] [Indexed: 12/31/2022] Open
Abstract
Among many challenges facing the battle against infectious disease, one quandary stands out. On the one hand, it is often unclear how well animal models and cell lines mimic human immune behavior. On the other hand, many core methods of cell and molecular biology cannot be applied to human subjects. For example, the profound susceptibility of neutropenic patients to infection marks neutrophils (the most abundant white blood cells in humans) as vital immune defenders. Yet because these cells cannot be cultured or genetically manipulated, there are gaps in our understanding of the behavior of human neutrophils. Here, we discuss an alternative, interdisciplinary strategy to dissect fundamental mechanisms of immune-cell interactions with bacteria and fungi. We show how biophysical analyses of single-live-cell/single-target encounters are revealing universal principles of immune-cell phagocytosis, while also dispelling misconceptions about the minimum required mechanistic determinants of this process.
Collapse
Affiliation(s)
- Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, California.
| |
Collapse
|
69
|
Çelik H, Bulut G, Han J, Graham GT, Minas TZ, Conn EJ, Hong SH, Pauly GT, Hayran M, Li X, Özdemirli M, Ayhan A, Rudek MA, Toretsky JA, Üren A. Ezrin Inhibition Up-regulates Stress Response Gene Expression. J Biol Chem 2016; 291:13257-70. [PMID: 27137931 DOI: 10.1074/jbc.m116.718189] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
Ezrin is a member of the ERM (ezrin/radixin/moesin) family of proteins that links cortical cytoskeleton to the plasma membrane. High expression of ezrin correlates with poor prognosis and metastasis in osteosarcoma. In this study, to uncover specific cellular responses evoked by ezrin inhibition that can be used as a specific pharmacodynamic marker(s), we profiled global gene expression in osteosarcoma cells after treatment with small molecule ezrin inhibitors, NSC305787 and NSC668394. We identified and validated several up-regulated integrated stress response genes including PTGS2, ATF3, DDIT3, DDIT4, TRIB3, and ATF4 as novel ezrin-regulated transcripts. Analysis of transcriptional response in skin and peripheral blood mononuclear cells from NSC305787-treated mice compared with a control group revealed that, among those genes, the stress gene DDIT4/REDD1 may be used as a surrogate pharmacodynamic marker of ezrin inhibitor compound activity. In addition, we validated the anti-metastatic effects of NSC305787 in reducing the incidence of lung metastasis in a genetically engineered mouse model of osteosarcoma and evaluated the pharmacokinetics of NSC305787 and NSC668394 in mice. In conclusion, our findings suggest that cytoplasmic ezrin, previously considered a dormant and inactive protein, has important functions in regulating gene expression that may result in down-regulation of stress response genes.
Collapse
Affiliation(s)
| | - Gülay Bulut
- From the Departments of Oncology and the Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Bahçeşehir University, 34349 Istanbul, Turkey
| | - Jenny Han
- From the Departments of Oncology and
| | | | | | | | | | - Gary T Pauly
- the Chemical Biology Laboratory, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Mutlu Hayran
- the Department of Preventive Oncology, Cancer Institute, Hacettepe University, 06800 Ankara, Turkey
| | - Xin Li
- the Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University, Washington, D. C. 20057
| | - Metin Özdemirli
- Pathology, Georgetown University Medical Center, Washington, D. C. 20007
| | - Ayşe Ayhan
- the Department of Pathology, Seirei Mikatahara Hospital and Hamamatsu University School of Medicine, Hamamatsu, Japan, and the Department of Pathology and
| | - Michelle A Rudek
- the Departments of Oncology and Medicine, Division of Clinical Pharmacology, School of Medicine, and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
70
|
The bovine placenta in vivo and in vitro. Theriogenology 2016; 86:306-12. [PMID: 27155733 DOI: 10.1016/j.theriogenology.2016.04.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/04/2016] [Accepted: 03/23/2016] [Indexed: 01/30/2023]
Abstract
The gross anatomic features (cotyledonary type) and histologic classification (synepitheliochorial) of the bovine placenta have been known for many years. Thorough ultrastructural analysis as well as a variety of descriptive studies dealing with the localization of cytoskeletal filaments, extracellular matrix, growth factor systems, steroid hormone receptors, and major histocompatibility complex have contributed further significant knowledge. However, this knowledge was not sufficient to solve clinical placenta-based problems, such as retained fetal membranes. Owing to the complexity of the fetomaternal interface in vitro, culture systems have been developed. As trophoblast giant cells (TGC) are thought to be key players in the cattle placenta, most cell culture models attempt to overcome the pitfall of losing the entire TGC population in vitro. Nevertheless, distinct cell line-based in vitro systems such as cell monolayers or 3-dimensional (co-culture) spheroids were generated for the fetal (trophoblast) and maternal (uterine epithelium) placental compartments. Monolayers have been used to study for example, growth factor or hormonal signaling and TGC formation, whereas spheroids served as models for, for example, trophoblast attachment, uterine epithelium depolarization, and also TGC formation. In the future, the use of more improved culture models might lead to better treatments of retained fetal membranes and increased prevention of embryonic loss. In addition, the in vitro models could shed more light on the mechanisms of the differentiation of uninucleate trophoblast into TGC.
Collapse
|
71
|
Zhao LP, Huang L, Tian X, Liang FQ, Wei JC, Zhang X, Li S, Zhang QH. Knockdown of ezrin suppresses the migration and angiogenesis of human umbilical vein endothelial cells in vitro. ACTA ACUST UNITED AC 2016; 36:243-248. [PMID: 27072970 DOI: 10.1007/s11596-016-1574-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/13/2015] [Indexed: 11/28/2022]
Abstract
Progressive tumor growth is dependent on angiogenesis. The mechanisms by which endothelial cells (ECs) are incorporated to develop new blood vessels are not well understood. Recent studies reveal that the ezrin radixin moesin (ERM) family members are key regulators of cellular activities such as adhesion, morphogenetic change, and migration. We hypothesized that ezrin, one of the ERM family members, may play important roles in ECs organization during angiogenesis, and new vessels formation in preexisting tissues. To test this hypothesis, in this study, we investigated the effects of ezrin gene silencing on the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. HUVECs were transfected with plasmids with ezrin-targeting short hairpin RNA by using the lipofectamine-2000 system. Wound assay in vitro and three-dimensional culture were used to detect the migration and angiogenesis capacity of HUVECs. The morphological changes of transfected cells were observed by confocal and phase contrast microscopy. Our results demonstrated that the decreased expression of ezrin in HUVECs significantly induced the morphogenetic changes and cytoskeletal reorganization of the transfected cells, and also reduced cell migration and angiogenesis capacity in vitro, suggesting that ezrin play an important role in the process of HUVECs migration and angiogenesis.
Collapse
Affiliation(s)
- Liang-Ping Zhao
- Department of Gynecology & Obstetrics, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Lei Huang
- Department of Gynecology & Obstetrics, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xun Tian
- Department of Gynecology & Obstetrics, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Feng-Qi Liang
- Department of Gynecology & Obstetrics, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Jun-Cheng Wei
- Department of Gynecology & Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xian Zhang
- Department of Gynecology & Obstetrics, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Sha Li
- Department of Gynecology & Obstetrics, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Qing-Hua Zhang
- Department of Gynecology & Obstetrics, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
72
|
Role of Moesin in Advanced Glycation End Products-Induced Angiogenesis of Human Umbilical Vein Endothelial Cells. Sci Rep 2016; 6:22749. [PMID: 26956714 PMCID: PMC4783699 DOI: 10.1038/srep22749] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/19/2016] [Indexed: 12/31/2022] Open
Abstract
Disorders of angiogenesis are related to microangiopathies during the development of diabetic vascular complications, but the effect of advanced glycation end products (AGEs) on angiogenesis and the mechanism has not been completely unveiled. We previous demonstrated that moesin belonging to the ezrin-radixin-moesin (ERM) protein family protein played a critical role in AGE-induced hyper-permeability in human umbilical vein endothelial cells (HUVECs). Here, we investigated the impact of moesin on AGE-induced HUVEC proliferation, migration, and tubulogenesis. Silencing of moesin decreased cell motility and tube formation but not cell proliferation. It also attenuated cellular F-actin reassembly. Further, phosphorylation of threonine at the 558 amino acid residue (Thr 558) in moesin suppressed AGE-induced HUVEC proliferation, migration, and tube formation, while the activating mutation of moesin at Thr 558 enhanced HUVEC angiogenesis. Further, the inhibition of either RhoA activity by adenovirus or ROCK activation with inhibitor Y27632 decreased AGE-induced moesin phosphorylation and subsequently suppressed HUVEC angiogenesis. These results indicate that the Thr 558 phosphorylation in moesin mediates endothelial angiogenesis. AGEs promoted HUVEC angiogenesis by inducing moesin phosphorylation via RhoA/ROCK pathway.
Collapse
|
73
|
Modulation of MICAL Monooxygenase Activity by its Calponin Homology Domain: Structural and Mechanistic Insights. Sci Rep 2016; 6:22176. [PMID: 26935886 PMCID: PMC4792234 DOI: 10.1038/srep22176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/09/2016] [Indexed: 01/24/2023] Open
Abstract
MICALs (Molecule Interacting with CasL) are conserved multidomain enzymes essential
for cytoskeletal reorganization in nerve development, endocytosis, and apoptosis. In
these enzymes, a type-2 calponin homology (CH) domain always follows an N-terminal
monooxygenase (MO) domain. Although the CH domain is required for MICAL-1 cellular
localization and actin-associated function, its contribution to the modulation of
MICAL activity towards actin remains unclear. Here, we present the structure of a
fragment of MICAL-1 containing the MO and the CH domains—determined by X-ray
crystallography and small angle scattering—as well as kinetics experiments
designed to probe the contribution of the CH domain to the actin-modification
activity. Our results suggest that the CH domain, which is loosely connected to the
MO domain by a flexible linker and is far away from the catalytic site, couples
F-actin to the enhancement of redox activity of MICALMO-CH by a
cooperative mechanism involving a trans interaction between adjacently bound
molecules. Binding cooperativity is also observed in other proteins regulating actin
assembly/disassembly dynamics, such as ADF/Cofilins.
Collapse
|
74
|
Chiasson-MacKenzie C, Morris ZS, Baca Q, Morris B, Coker JK, Mirchev R, Jensen AE, Carey T, Stott SL, Golan DE, McClatchey AI. NF2/Merlin mediates contact-dependent inhibition of EGFR mobility and internalization via cortical actomyosin. J Cell Biol 2015; 211:391-405. [PMID: 26483553 PMCID: PMC4621825 DOI: 10.1083/jcb.201503081] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/01/2015] [Indexed: 01/04/2023] Open
Abstract
Merlin and Ezrin are central to a mechanism whereby mechanical forces transduced across the apical actomyosin cytoskeleton from cell junctions control the mobility and internalization of EGFR, providing novel insight into how cells inhibit mitogenic signaling in response to cell contact. The proliferation of normal cells is inhibited at confluence, but the molecular basis of this phenomenon, known as contact-dependent inhibition of proliferation, is unclear. We previously identified the neurofibromatosis type 2 (NF2) tumor suppressor Merlin as a critical mediator of contact-dependent inhibition of proliferation and specifically found that Merlin inhibits the internalization of, and signaling from, the epidermal growth factor receptor (EGFR) in response to cell contact. Merlin is closely related to the membrane–cytoskeleton linking proteins Ezrin, Radixin, and Moesin, and localization of Merlin to the cortical cytoskeleton is required for contact-dependent regulation of EGFR. We show that Merlin and Ezrin are essential components of a mechanism whereby mechanical forces associated with the establishment of cell–cell junctions are transduced across the cell cortex via the cortical actomyosin cytoskeleton to control the lateral mobility and activity of EGFR, providing novel insight into how cells inhibit mitogenic signaling in response to cell contact.
Collapse
Affiliation(s)
- Christine Chiasson-MacKenzie
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129 Department of Pathology, Massachusetts General Hospital, Charlestown, MA 02129 Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Zachary S Morris
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129 Department of Pathology, Massachusetts General Hospital, Charlestown, MA 02129 Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Quentin Baca
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Brett Morris
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129 Department of Pathology, Massachusetts General Hospital, Charlestown, MA 02129 Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Joanna K Coker
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129 Department of Pathology, Massachusetts General Hospital, Charlestown, MA 02129 Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Rossen Mirchev
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Anne E Jensen
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129 BioMEMs Resource Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Thomas Carey
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129 BioMEMs Resource Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Shannon L Stott
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129 BioMEMs Resource Center, Massachusetts General Hospital, Charlestown, MA 02129 Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - David E Golan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Andrea I McClatchey
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129 Department of Pathology, Massachusetts General Hospital, Charlestown, MA 02129 Department of Pathology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
75
|
Cell protrusions induced by hyaluronan synthase 3 (HAS3) resemble mesothelial microvilli and share cytoskeletal features of filopodia. Exp Cell Res 2015; 337:179-91. [DOI: 10.1016/j.yexcr.2015.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 01/04/2023]
|
76
|
Çelik H, Hong SH, Colón-López DD, Han J, Kont YS, Minas TZ, Swift M, Paige M, Glasgow E, Toretsky JA, Bosch J, Üren A. Identification of Novel Ezrin Inhibitors Targeting Metastatic Osteosarcoma by Screening Open Access Malaria Box. Mol Cancer Ther 2015; 14:2497-507. [PMID: 26358752 DOI: 10.1158/1535-7163.mct-15-0511] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022]
Abstract
Ezrin is a member of the ERM (ezrin, radixin, moesin) family of proteins and functions as a linker between the plasma membrane and the actin cytoskeleton. Ezrin is a key driver of tumor progression and metastatic spread of osteosarcoma. We discovered a quinoline-based small molecule, NSC305787, that directly binds to ezrin and inhibits its functions in promoting invasive phenotype. NSC305787 possesses a very close structural similarity to commonly used quinoline-containing antimalarial drugs. On the basis of this similarity and of recent findings that ezrin has a likely role in the pathogenesis of malaria infection, we screened antimalarial compounds in an attempt to identify novel ezrin inhibitors with better efficacy and drug properties. Screening of Medicines for Malaria Venture (MMV) Malaria Box compounds for their ability to bind to recombinant ezrin protein yielded 12 primary hits with high selective binding activity. The specificity of the hits on ezrin function was confirmed by inhibition of the ezrin-mediated cell motility of osteosarcoma cells. Compounds were further tested for phenocopying the morphologic defects associated with ezrin suppression in zebrafish embryos as well as for inhibiting the lung metastasis of high ezrin-expressing osteosarcoma cells. The compound MMV667492 exhibited potent anti-ezrin activity in all biologic assays and had better physicochemical properties for drug-likeness than NSC305787. The drug-like compounds MMV020549 and MMV666069 also showed promising activities in functional assays. Thus, our study suggests further evaluation of antimalarial compounds as a novel class of antimetastatic agents for the treatment of metastatic osteosarcoma.
Collapse
Affiliation(s)
- Haydar Çelik
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Sung-Hyeok Hong
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Daisy D Colón-López
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland. Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Jenny Han
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Yasemin Saygideger Kont
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Tsion Z Minas
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Matthew Swift
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Mikell Paige
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia
| | - Eric Glasgow
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Jeffrey A Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia
| | - Jürgen Bosch
- Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia.
| |
Collapse
|
77
|
Haeger JD, Hambruch N, Dantzer V, Hoelker M, Schellander K, Klisch K, Pfarrer C. Changes in endometrial ezrin and cytokeratin 18 expression during bovine implantation and in caruncular endometrial spheroids in vitro. Placenta 2015; 36:821-31. [DOI: 10.1016/j.placenta.2015.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/19/2015] [Accepted: 06/06/2015] [Indexed: 11/25/2022]
|
78
|
Tu Z, Wang Q, Cui T, Wang J, Ran H, Bao H, Lu J, Wang B, Lydon JP, DeMayo F, Zhang S, Kong S, Wu X, Wang H. Uterine RAC1 via Pak1-ERM signaling directs normal luminal epithelial integrity conducive to on-time embryo implantation in mice. Cell Death Differ 2015; 23:169-81. [PMID: 26184908 DOI: 10.1038/cdd.2015.98] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 12/18/2022] Open
Abstract
Successful embryo implantation requires functional luminal epithelia to establish uterine receptivity and blastocyst-uterine adhesion. During the configuration of uterine receptivity from prereceptive phase, the luminal epithelium undergoes dynamic membrane reorganization and depolarization. This timely regulated epithelial membrane maturation and precisely maintained epithelial integrity are critical for embryo implantation in both humans and mice. However, it remained largely unexplored with respect to potential signaling cascades governing this functional epithelial transformation prior to implantation. Using multiple genetic and cellular approaches combined with uterine conditional Rac1 deletion mouse model, we demonstrated herein that Rac1, a small GTPase, is spatiotemporally expressed in the periimplantation uterus, and uterine depletion of Rac1 induces premature decrease of epithelial apical-basal polarity and defective junction remodeling, leading to disrupted uterine receptivity and implantation failure. Further investigations identified Pak1-ERM as a downstream signaling cascade upon Rac1 activation in the luminal epithelium necessary for uterine receptivity. In addition, we also demonstrated that Rac1 via P38 MAPK signaling ensures timely epithelial apoptotic death at postimplantation. Besides uncovering a potentially important molecule machinery governing uterine luminal integrity for embryo implantation, our finding has high clinical relevance, because Rac1 is essential for normal endometrial functions in women.
Collapse
Affiliation(s)
- Z Tu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - Q Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - T Cui
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,University of the Chinese Academy of Sciences, Beijing 100039, PR China
| | - J Wang
- Department of Pharmacology, Zhejiang University, Hangzhou 310058, PR China
| | - H Ran
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100039, PR China
| | - H Bao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100039, PR China
| | - J Lu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - B Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - J P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - F DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - S Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - S Kong
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - X Wu
- Department of Pharmacology, Zhejiang University, Hangzhou 310058, PR China
| | - H Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
79
|
A piRNA-like small RNA interacts with and modulates p-ERM proteins in human somatic cells. Nat Commun 2015; 6:7316. [PMID: 26095918 PMCID: PMC4557300 DOI: 10.1038/ncomms8316] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) are thought to silence transposon and gene expression during development. However, the roles of piRNAs in somatic tissues are largely unknown. Here we report the identification of 555 piRNAs in human lung bronchial epithelial (HBE) and non-small cell lung cancer (NSCLC) cell lines, including 295 that do not exist in databases termed as piRNA-like sncRNAs or piRNA-Ls. Distinctive piRNA/piRNA-L expression patterns are observed between HBE and NSCLC cells. piRNA-like-163 (piR-L-163), the top downregulated piRNA-L in NSCLC cells, binds directly to phosphorylated ERM proteins (p-ERM), which is dependent on the central part of UUNNUUUNNUU motif in piR-L-163 and the RRRKPDT element in ERM. The piR-L-163/p-ERM interaction is critical for p-ERM's binding capability to filamentous actin (F-actin) and ERM-binding phosphoprotein 50 (EBP50). Thus, piRNA/piRNA-L may play a regulatory role through direct interaction with proteins in physiological and pathophysiological conditions. PIWI-interacting RNAs (piRNAs) suppress transposon and gene expression during development. Here, the authors identify many piRNAs and piRNA-like small RNAs in 11 human cell lines, and show that one piRNA-like small RNA binds to phosphorylated ERM proteins to regulate cancer cell migration and invasion.
Collapse
|
80
|
Glycosyl phosphatidylinositol anchor biosynthesis is essential for maintaining epithelial integrity during Caenorhabditis elegans embryogenesis. PLoS Genet 2015; 11:e1005082. [PMID: 25807459 PMCID: PMC4373761 DOI: 10.1371/journal.pgen.1005082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/18/2015] [Indexed: 02/07/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) is a post-translational modification resulting in the attachment of modified proteins to the outer leaflet of the plasma membrane. Tissue culture experiments have shown GPI-anchored proteins (GPI-APs) to be targeted to the apical membrane of epithelial cells. However, the in vivo importance of this targeting has not been investigated since null mutations in GPI biosynthesis enzymes in mice result in very early embryonic lethality. Missense mutations in the human GPI biosynthesis enzyme pigv are associated with a multiple congenital malformation syndrome with a high frequency of Hirschsprung disease and renal anomalies. However, it is currently unknown how these phenotypes are linked to PIGV function. Here, we identify a temperature-sensitive hypomorphic allele of PIGV in Caenorhabditis elegans, pigv-1(qm34), enabling us to study the role of GPI-APs in development. At the restrictive temperature we found a 75% reduction in GPI-APs at the surface of embryonic cells. Consequently, ~80% of pigv-1(qm34) embryos arrested development during the elongation phase of morphogenesis, exhibiting internal cysts and/or surface ruptures. Closer examination of the defects revealed them all to be the result of breaches in epithelial tissues: cysts formed in the intestine and excretory canal, and ruptures occurred through epidermal cells, suggesting weakening of the epithelial membrane or membrane-cortex connection. Knockdown of piga-1, another GPI biosynthesis enzymes resulted in similar phenotypes. Importantly, fortifying the link between the apical membrane and actin cortex by overexpression of the ezrin/radixin/moesin ortholog ERM-1, significantly rescued cyst formation and ruptures in the pigv-1(qm34) mutant. In conclusion, we discovered GPI-APs play a critical role in maintaining the integrity of the epithelial tissues, allowing them to withstand the pressure and stresses of morphogenesis. Our findings may help to explain some of the phenotypes observed in human syndromes associated with pigv mutations. Cell surface proteins, such as receptors, either integrate into the plasma membrane through a transmembrane domain or are tethered to it by an accessory glycosylated phospholipid (GPI) anchor that is attached to them after they are made. The GPI-anchor biosynthesis pathway is highly conserved from yeast to humans and null mutations in any of the key enzymes are lethal at early developmental stages. Point mutations in several genes encoding for GPI-anchor biosynthesis enzymes have been linked to human disease. Specifically, mutations in PIGV are associated with multiple congenital malformations, including renal and anorectal malformation and mental retardation. It is currently not known how the mutations in PIGV lead to these diseases. Here we describe a point mutation in the PIGV ortholog of the nematode Caenorhabditis elegans, pigv-1, which is found to cause a high degree of embryonic lethality. We documented a substantial reduction in the level of GPI-anchors in the mutant. Importantly, following its development using 4D microscopy and employing tissue-specific rescue, we identified loss of epithelial integrity as the primary cause of developmental arrest. Our results highlight the importance of GPI-anchored proteins for epithelial integrity in vivo and suggest a possible etiology for human diseases associated with PIGV mutations.
Collapse
|
81
|
Epting D, Slanchev K, Boehlke C, Hoff S, Loges NT, Yasunaga T, Indorf L, Nestel S, Lienkamp SS, Omran H, Kuehn EW, Ronneberger O, Walz G, Kramer-Zucker A. The Rac1 regulator ELMO controls basal body migration and docking in multiciliated cells through interaction with Ezrin. Development 2015; 142:174-84. [PMID: 25516973 DOI: 10.1242/dev.112250] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cilia are microtubule-based organelles that are present on most cells and are required for normal tissue development and function. Defective cilia cause complex syndromes with multiple organ manifestations termed ciliopathies. A crucial step during ciliogenesis in multiciliated cells (MCCs) is the association of future basal bodies with the apical plasma membrane, followed by their correct spacing and planar orientation. Here, we report a novel role for ELMO-DOCK1, which is a bipartite guanine nucleotide exchange factor complex for the small GTPase Rac1, and for the membrane-cytoskeletal linker Ezrin, in regulating centriole/basal body migration, docking and spacing. Downregulation of each component results in ciliopathy-related phenotypes in zebrafish and disrupted ciliogenesis in Xenopus epidermal MCCs. Subcellular analysis revealed a striking impairment of basal body docking and spacing, which is likely to account for the observed phenotypes. These results are substantiated by showing a genetic interaction between elmo1 and ezrin b. Finally, we provide biochemical evidence that the ELMO-DOCK1-Rac1 complex influences Ezrin phosphorylation and thereby probably serves as an important molecular switch. Collectively, we demonstrate that the ELMO-Ezrin complex orchestrates ciliary basal body migration, docking and positioning in vivo.
Collapse
Affiliation(s)
- Daniel Epting
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Krasimir Slanchev
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | | | - Sylvia Hoff
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Niki T Loges
- Department of General Pediatrics, University Children's Hospital Münster, Münster 48149, Germany
| | - Takayuki Yasunaga
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Lara Indorf
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany
| | - Sigrun Nestel
- Department of Anatomy and Cell Biology, University of Freiburg, Freiburg 79104, Germany
| | - Soeren S Lienkamp
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Münster, Münster 48149, Germany
| | - E Wolfgang Kuehn
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany
| | - Olaf Ronneberger
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany Department of Computer Science, University of Freiburg, Freiburg 79110, Germany
| | - Gerd Walz
- Renal Division, University Hospital Freiburg, Freiburg 79106, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg 79108, Germany
| | | |
Collapse
|
82
|
Ngok SP, Lin WH, Anastasiadis PZ. Establishment of epithelial polarity--GEF who's minding the GAP? J Cell Sci 2014; 127:3205-15. [PMID: 24994932 DOI: 10.1242/jcs.153197] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
83
|
Abstract
Cell polarity is characterised by differences in structure, composition and function between at least two poles of a cell. In epithelial cells, these spatial differences allow for the formation of defined apical and basal membranes. It has been increasingly recognised that cell-matrix interactions and integrins play an essential role in creating epithelial cell polarity, although key gaps in our knowledge remain. This Commentary will discuss the mounting evidence for the role of integrins in polarising epithelial cells. We build a model in which both inside-out signals to polarise basement membrane assembly at the basal surface, and outside-in signals to control microtubule apical-basal orientation and vesicular trafficking are required for establishing and maintaining the orientation of epithelial cell polarity. Finally, we discuss the relevance of the basal integrin polarity axis to cancer. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Jessica L Lee
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|