51
|
Chua MD, Bogdan AC, Guttman JA. Klebsiella pneumoniae Redistributes Katanin Severing Proteins and Alters Astral Microtubules during Mitosis. Anat Rec (Hoboken) 2019; 303:1859-1864. [PMID: 31595676 DOI: 10.1002/ar.24286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/31/2019] [Accepted: 08/28/2019] [Indexed: 11/09/2022]
Abstract
Klebsiella pneumoniae has become a growing concern within hospitals due to multidrug resistant strains and increasing mortality rates. Recently, we showed that at the subcellular level, K. pneumoniae compromises the integrity of the epithelia by disassembling the microtubule networks of cells through the actions of katanin microtubule severing proteins. In this study, we report on the observation that mitotic cells are targeted by K. pneumoniae and that during infections, the katanin proteins are excluded from the microtubule organizing centers of dividing cells, resulting in the alteration of the microtubule cytoskeleton. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1859-1864, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Michael D Chua
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alexander C Bogdan
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Julian A Guttman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
52
|
Atkins M, Gasmi L, Bercier V, Revenu C, Del Bene F, Hazan J, Fassier C. FIGNL1 associates with KIF1Bβ and BICD1 to restrict dynein transport velocity during axon navigation. J Cell Biol 2019; 218:3290-3306. [PMID: 31541015 PMCID: PMC6781435 DOI: 10.1083/jcb.201805128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/30/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023] Open
Abstract
Atkins et al. identify a new role for Fidgetin-like 1 in motor axon navigation via its regulation of bidirectional axonal transport. They show that Fidgetin-like 1 binds Kif1bβ and the opposed polarity-directed motor dynein/dynactin in a molecular complex and controls circuit wiring by reducing dynein velocity in developing motor axons. Neuronal connectivity relies on molecular motor-based axonal transport of diverse cargoes. Yet the precise players and regulatory mechanisms orchestrating such trafficking events remain largely unknown. We here report the ATPase Fignl1 as a novel regulator of bidirectional transport during axon navigation. Using a yeast two-hybrid screen and coimmunoprecipitation assays, we showed that Fignl1 binds the kinesin Kif1bβ and the dynein/dynactin adaptor Bicaudal D-1 (Bicd1) in a molecular complex including the dynactin subunit dynactin 1. Fignl1 colocalized with Kif1bβ and showed bidirectional mobility in zebrafish axons. Notably, Kif1bβ and Fignl1 loss of function similarly altered zebrafish motor axon pathfinding and increased dynein-based transport velocity of Rab3 vesicles in these navigating axons, pinpointing Fignl1/Kif1bβ as a dynein speed limiter complex. Accordingly, disrupting dynein/dynactin activity or Bicd1/Fignl1 interaction induced motor axon pathfinding defects characteristic of Fignl1 gain or loss of function, respectively. Finally, pharmacological inhibition of dynein activity partially rescued the axon pathfinding defects of Fignl1-depleted larvae. Together, our results identify Fignl1 as a key dynein regulator required for motor circuit wiring.
Collapse
Affiliation(s)
- Melody Atkins
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Laïla Gasmi
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Valérie Bercier
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Céline Revenu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Filippo Del Bene
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Jamilé Hazan
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Coralie Fassier
- Sorbonne Université, University Pierre and Marie Curie-Université Paris 6, Institut de Biologie Paris Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique, Unité Mixte Recherche 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| |
Collapse
|
53
|
Design, synthesis, antitumor activities and biological studies of novel diaryl substituted fused heterocycles as dual ligands targeting tubulin and katanin. Eur J Med Chem 2019; 178:177-194. [DOI: 10.1016/j.ejmech.2019.05.072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/26/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022]
|
54
|
Aggarwal P, Wei L, Cao Y, Liu Q, Guttman JA, Wang Q, Leung KY. Edwardsiella induces microtubule-severing in host epithelial cells. Microbiol Res 2019; 229:126325. [PMID: 31563838 DOI: 10.1016/j.micres.2019.126325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 12/28/2022]
Abstract
Edwardsiella bacteria cause economic losses to a variety of commercially important fish globally. Human infections are rare and result in a gastroenteritis-like illness. Because these bacteria are evolutionarily related to other Enterobacteriaceae and the host cytoskeleton is a common target of enterics, we hypothesized that Edwardsiella may cause similar phenotypes. Here we use HeLa and Caco-2 infection models to show that microtubules are severed during the late infections. This microtubule alteration phenotype was not dependant on the type III or type VI secretion system (T3SS and T6SS) of the bacteria as ΔT3SS and ΔT6SS mutants of E. piscicida EIB202 and E. tarda ATCC15947 that lacks both also caused microtubule disassembly. Immunolocalization experiments showed the host katanin catalytic subunits A1 and A like 1 proteins at regions of microtubule severing, suggesting their involvement in the microtubule disassembly events. To identify bacterial components involved in this phenotype, we screened a 2,758 transposon library of E. piscicida EIB202 and found that 4 single mutations in the atpFHAGDC operon disrupted microtubule disassembly in HeLa cells. We then constructed three atp deletion mutants; they all could not disassemble host microtubules. This work provides the first clear evidence of host cytoskeletal alterations during Edwardsiella infections.
Collapse
Affiliation(s)
- Priyanka Aggarwal
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Lifan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuping Cao
- Guangdong Technion, Israel Institute of Technology, Shantou, Guangdong, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, China; Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Julian A Guttman
- Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada.
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Engineering Research Center of Marine Cultured Animal Vaccines, Shanghai, China; Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Ka Yin Leung
- Guangdong Technion, Israel Institute of Technology, Shantou, Guangdong, China.
| |
Collapse
|
55
|
Gao LL, Xu F, Jin Z, Ying XY, Liu JW. Microtubule‑severing protein Katanin p60 ATPase‑containing subunit A‑like 1 is involved in pole‑based spindle organization during mouse oocyte meiosis. Mol Med Rep 2019; 20:3573-3582. [PMID: 31485656 DOI: 10.3892/mmr.2019.10605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/31/2019] [Indexed: 11/05/2022] Open
Abstract
Microtubule‑severing proteins (MTSPs) are a group of microtubule‑associated proteins essential for multiple microtubule‑related processes, including mitosis and meiosis. Katanin p60 ATPase‑containing subunit A‑like 1 (p60 katanin‑like 1) is an MTSP that maintains the density of spindle microtubules at the poles in mitotic cells; however, to date, there have been no studies about its role in female meiosis. Using in vitro‑matured (IVM) oocytes as a model, it was first revealed that p60 katanin‑like 1 was predominant in the ovaries and oocytes, indicating its essential roles in oocyte meiosis. It was also revealed that p60 katanin‑like 1 was concentrated at the spindle poles and co‑localized and interacted with γ‑tubulin, indicating that it may be involved in pole organization. Next, specific siRNA was used to deplete p60 katanin‑like 1; the spindle organization was severely disrupted and characterized by an abnormal width:length ratio, multipolarity and extra aster microtubules out of the main spindles. Finally, it was determined that p60 katanin‑like 1 knockdown retarded oocyte meiosis, reduced fertilization, and caused abnormal mitochondrial distribution. Collectively, these results indicated that p60 katanin‑like 1 is essential for oocyte meiosis by ensuring the integrity of the spindle poles.
Collapse
Affiliation(s)
- Lei-Lei Gao
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fei Xu
- Department of Gynecology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, P.R. China
| | - Zhen Jin
- Reproductive Genetic Center, Suzhou Municipal Hospital, Suzhou Hospital of Nanjing, Nanjing, Jiangsu 215000, P.R. China
| | - Xiao-Yan Ying
- Department of Gynecology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Jin-Wei Liu
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
56
|
Zhou Q, Lee KJ, Kurasawa Y, Hu H, An T, Li Z. Faithful chromosome segregation in Trypanosoma brucei requires a cohort of divergent spindle-associated proteins with distinct functions. Nucleic Acids Res 2019; 46:8216-8231. [PMID: 29931198 PMCID: PMC6144804 DOI: 10.1093/nar/gky557] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022] Open
Abstract
Faithful chromosome segregation depends on correct spindle microtubule-kinetochore attachment and requires certain spindle-associated proteins (SAPs) involved in regulating spindle dynamics and chromosome segregation. Little is known about the spindle-associated proteome in the early divergent Trypanosoma brucei and its roles in chromosome segregation. Here we report the identification of a cohort of divergent SAPs through localization-based screening and proximity-dependent biotin identification. We identified seven new SAPs and seventeen new nucleolar proteins that associate with the spindle, and demonstrated that the kinetochore protein KKIP4 also associates with the spindle. These SAPs localize to distinct subdomains of the spindle during mitosis, and all but one localize to nucleus during interphase and post-mitotic phases. Functional analyses of three nucleus- and spindle-associated proteins (NuSAPs) revealed distinct functions in chromosome segregation. NuSAP1 is a kinetoplastid-specific protein required for equal chromosome segregation and for maintaining the stability of the kinetochore proteins KKIP1 and KKT1. NuSAP2 is a highly divergent ASE1/PRC1/MAP65 homolog playing an essential role in promoting the G2/M transition. NuSAP3 is a kinetoplastid-specific Kif13-1-binding protein maintaining Kif13-1 protein stability and regulating the G2/M transition. Together, our work suggests that chromosome segregation in T. brucei requires a cohort of kinetoplastid-specific and divergent SAPs with distinct functions.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Kyu Joon Lee
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Yasuhiro Kurasawa
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Huiqing Hu
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Tai An
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| | - Ziyin Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, TX 77030, USA
| |
Collapse
|
57
|
Faltova L, Jiang K, Frey D, Wu Y, Capitani G, Prota AE, Akhmanova A, Steinmetz MO, Kammerer RA. Crystal Structure of a Heterotetrameric Katanin p60:p80 Complex. Structure 2019; 27:1375-1383.e3. [PMID: 31353241 DOI: 10.1016/j.str.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 05/27/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
Katanin is a microtubule-severing enzyme that is crucial for many cellular processes. Katanin consists of two subunits, p60 and p80, that form a stable complex. The interaction between subunits is mediated by the p60 N-terminal microtubule-interacting and -trafficking domain (p60-MIT) and the p80 C-terminal domain (p80-CTD). Here, we performed a biophysical characterization of the mouse p60-MIT:p80-CTD heterodimer and show that this complex can assemble into heterotetramers. We identified two mutations that enhance heterotetramer formation and determined the X-ray crystal structure of this mutant complex. The structure revealed a domain-swapped heterotetramer consisting of two p60-MIT:p80-CTD heterodimers. Structure-based sequence alignments suggest that heterotetramerization of katanin might be a common feature of various species. Furthermore, we show that enhanced heterotetramerization of katanin impairs its microtubule end-binding properties and increases the enzyme's microtubule lattice binding and severing activities. Therefore, our findings suggest the existence of different katanin oligomers that possess distinct functional properties.
Collapse
Affiliation(s)
- Lenka Faltova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Kai Jiang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430071, China; Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Daniel Frey
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Yufan Wu
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Guido Capitani
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland; Biozentrum, University of Basel, 4056 Basel, Switzerland.
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
| |
Collapse
|
58
|
Leung JC, Cassimeris L. Reorganization of paclitaxel-stabilized microtubule arrays at mitotic entry: roles of depolymerizing kinesins and severing proteins. Cancer Biol Ther 2019; 20:1337-1347. [PMID: 31345098 PMCID: PMC6783116 DOI: 10.1080/15384047.2019.1638678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Paclitaxel is a widely used anti-cancer treatment that disrupts cell cycle progression by blocking cells in mitosis. The block at mitosis, with spindles assembled from short microtubules, is surprising given paclitaxel’s microtubule stabilizing activity and the need to depolymerize long interphase microtubules prior to spindle formation. Cells must antagonize paclitaxel’s microtubule stabilizing activity during a brief window of time at the transition from interphase to mitosis, allowing microtubule reorganization into a mitotic spindle, although the mechanism underlying microtubule depolymerization in the presence of paclitaxel has not been examined. Here we test the hypothesis that microtubule severing and/or depolymerizing proteins active at mitotic entry are necessary to clear the interphase array in paclitaxel-treated cells and allow subsequent formation of mitotic spindles formed of short microtubules. A549 and LLC-PK1 cells treated with 30nM paclitaxel approximately 4 h prior to mitotic entry successfully progress through the G2/M transition by clearing the interphase microtubule array from the cell interior outward to the cell periphery, a spatial pattern of reorganization that differs from that of cells possessing dynamic microtubules. Depletion of kinesin-8s, KIF18A and/or KIF18B obstructed interphase microtubule clearing at mitotic entry in paclitaxel-treated cells, with KIF18B making the larger contribution. Of the severing proteins, depletion of spastin, but not katanin, reduced microtubule loss as cells entered mitosis in the presence of paclitaxel. These results support a model in which KIF18A, KIF18B, and spastin promote interphase microtubule array disassembly at mitotic entry and can overcome paclitaxel-induced microtubule stability specifically at the G2/M transition.
Collapse
Affiliation(s)
- Jessica C Leung
- Department of Biological Sciences, 111 Research Dr. Lehigh University , Bethlehem , PA , USA
| | - Lynne Cassimeris
- Department of Biological Sciences, 111 Research Dr. Lehigh University , Bethlehem , PA , USA
| |
Collapse
|
59
|
Mirvis M, Siemers KA, Nelson WJ, Stearns TP. Primary cilium loss in mammalian cells occurs predominantly by whole-cilium shedding. PLoS Biol 2019; 17:e3000381. [PMID: 31314751 PMCID: PMC6699714 DOI: 10.1371/journal.pbio.3000381] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
The primary cilium is a central signaling hub in cell proliferation and differentiation and is built and disassembled every cell cycle in many animal cells. Disassembly is critically important, as misregulation or delay of cilia loss leads to cell cycle defects. The physical means by which cilia are lost are poorly understood but are thought to involve resorption of ciliary components into the cell body. To investigate cilium loss in mammalian cells, we used live-cell imaging to comprehensively characterize individual events. The predominant mode of cilium loss was rapid deciliation, in which the membrane and axoneme of the cilium was shed from the cell. Gradual resorption was also observed, as well as events in which a period of gradual resorption was followed by rapid deciliation. Deciliation resulted in intact shed cilia that could be recovered from culture medium and contained both membrane and axoneme proteins. We modulated levels of katanin and intracellular calcium, two putative regulators of deciliation, and found that excess katanin promotes cilia loss by deciliation, independently of calcium. Together, these results suggest that mammalian ciliary loss involves a tunable decision between deciliation and resorption.
Collapse
Affiliation(s)
- Mary Mirvis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Kathleen A. Siemers
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Tim P. Stearns
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Genetics, Stanford University, Stanford, California, United States of America
| |
Collapse
|
60
|
Feng C, Thyagarajan P, Shorey M, Seebold DY, Weiner AT, Albertson RM, Rao KS, Sagasti A, Goetschius DJ, Rolls MM. Patronin-mediated minus end growth is required for dendritic microtubule polarity. J Cell Biol 2019; 218:2309-2328. [PMID: 31076454 PMCID: PMC6605808 DOI: 10.1083/jcb.201810155] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/13/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Feng et al. describe persistent neuronal microtubule minus end growth that depends on the CAMSAP protein Patronin and is needed for dendritic minus-end-out polarity. Microtubule minus ends are thought to be stable in cells. Surprisingly, in Drosophila and zebrafish neurons, we observed persistent minus end growth, with runs lasting over 10 min. In Drosophila, extended minus end growth depended on Patronin, and Patronin reduction disrupted dendritic minus-end-out polarity. In fly dendrites, microtubule nucleation sites localize at dendrite branch points. Therefore, we hypothesized minus end growth might be particularly important beyond branch points. Distal dendrites have mixed polarity, and reduction of Patronin lowered the number of minus-end-out microtubules. More strikingly, extra Patronin made terminal dendrites almost completely minus-end-out, indicating low Patronin normally limits minus-end-out microtubules. To determine whether minus end growth populated new dendrites with microtubules, we analyzed dendrite development and regeneration. Minus ends extended into growing dendrites in the presence of Patronin. In sum, our data suggest that Patronin facilitates sustained microtubule minus end growth, which is critical for populating dendrites with minus-end-out microtubules.
Collapse
Affiliation(s)
- Chengye Feng
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Pankajam Thyagarajan
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Matthew Shorey
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Dylan Y Seebold
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alexis T Weiner
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Richard M Albertson
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Kavitha S Rao
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Alvaro Sagasti
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Daniel J Goetschius
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA
| |
Collapse
|
61
|
Cupido T, Pisa R, Kelley ME, Kapoor TM. Designing a chemical inhibitor for the AAA protein spastin using active site mutations. Nat Chem Biol 2019; 15:444-452. [PMID: 30778202 PMCID: PMC6558985 DOI: 10.1038/s41589-019-0225-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/21/2018] [Indexed: 11/10/2022]
Abstract
Spastin is a microtubule-severing AAA (ATPases associated with diverse cellular activities) protein needed for cell division and intracellular vesicle transport. Currently, we lack chemical inhibitors to probe spastin function in such dynamic cellular processes. To design a chemical inhibitor of spastin, we tested selected heterocyclic scaffolds against wild-type protein and constructs with engineered mutations in the nucleotide-binding site that do not substantially disrupt ATPase activity. These data, along with computational docking, guided improvements in compound potency and selectivity and led to spastazoline, a pyrazolyl-pyrrolopyrimidine-based cell-permeable probe for spastin. These studies also identified spastazoline-resistance-conferring point mutations in spastin. Spastazoline, along with the matched inhibitor-sensitive and inhibitor-resistant cell lines we generated, were used in parallel experiments to dissect spastin-specific phenotypes in dividing cells. Together, our findings suggest how chemical probes for AAA proteins, along with inhibitor resistance-conferring mutations, can be designed and used to dissect dynamic cellular processes.
Collapse
Affiliation(s)
- Tommaso Cupido
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Rudolf Pisa
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
- Tri-Institutional PhD program in Chemical Biology, The Rockefeller University, New York, NY, USA
| | - Megan E Kelley
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
62
|
The Cytoskeleton-A Complex Interacting Meshwork. Cells 2019; 8:cells8040362. [PMID: 31003495 PMCID: PMC6523135 DOI: 10.3390/cells8040362] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/22/2022] Open
Abstract
The cytoskeleton of animal cells is one of the most complicated and functionally versatile structures, involved in processes such as endocytosis, cell division, intra-cellular transport, motility, force transmission, reaction to external forces, adhesion and preservation, and adaptation of cell shape. These functions are mediated by three classical cytoskeletal filament types, as follows: Actin, microtubules, and intermediate filaments. The named filaments form a network that is highly structured and dynamic, responding to external and internal cues with a quick reorganization that is orchestrated on the time scale of minutes and has to be tightly regulated. Especially in brain tumors, the cytoskeleton plays an important role in spreading and migration of tumor cells. As the cytoskeletal organization and regulation is complex and many-faceted, this review aims to summarize the findings about cytoskeletal filament types, including substructures formed by them, such as lamellipodia, stress fibers, and interactions between intermediate filaments, microtubules and actin. Additionally, crucial regulatory aspects of the cytoskeletal filaments and the formed substructures are discussed and integrated into the concepts of cell motility. Even though little is known about the impact of cytoskeletal alterations on the progress of glioma, a final point discussed will be the impact of established cytoskeletal alterations in the cellular behavior and invasion of glioma.
Collapse
|
63
|
Li X, Liu J, Shi PF, Fu P. Katanin P80 expression correlates with lymph node metastasis and worse overall survival in patients with breast cancer. Cancer Biomark 2019; 23:363-371. [PMID: 30223388 DOI: 10.3233/cbm-181369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the correlation of katanin P80 expression with clinicopathological features and overall survival (OS) in surgical breast cancer (BC) patients. METHODS Four hundred and fourteen BC patients underwent surgery were analyzed in this retrospective cohort study. Katanin P80 expression was examined by immunofluorescence assay. The median follow-up duration was 118.0 months (quantiles: 99.0-140.5 months), the last follow-up date was Jul 1st 2017. RESULTS Eighty-five patients (20.5%) with katanin P80 positive expression and 329 patients (79.5%) with katanin P80 negative expression were observed in this research. Katanin P80 positive expression was correlated with higher N stage (p< 0.001) and TNM stage (p< 0.001). K-M curve and log-rank test revealed that katanin P80 positive patients presented with shorter OS compared with katanin P80 negative patients (p< 0.001). Multivariate Cox's regression analysis disclosed that katanin P80 positive expression (p< 0.001) and histologic grade (p< 0.001) could independently predict unfavorable OS. Furthermore, subgroups analysis was performed, which illuminated that katanin P80 positive expression was correlated with shorter OS in all subgroups divided by molecular subtyping and TNM stage (all p< 0.05) except in TNM stage I subgroup (p= 0.573). CONCLUSION Katanin P80 expression positively correlated with lymph node metastasis and could abe a novel biomarker for prognosis in BC patients.
Collapse
Affiliation(s)
- Xun Li
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng-Fei Shi
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng Fu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
64
|
Dey KK. Dynamic Coupling at Low Reynolds Number. Angew Chem Int Ed Engl 2019; 58:2208-2228. [DOI: 10.1002/anie.201804599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Krishna Kanti Dey
- Discipline of PhysicsIndian Institute of Technology Gandhinagar Gandhinagar Gujarat 382355 India
| |
Collapse
|
65
|
Mooneyham A, Iizuka Y, Yang Q, Coombes C, McClellan M, Shridhar V, Emmings E, Shetty M, Chen L, Ai T, Meints J, Lee MK, Gardner M, Bazzaro M. UNC-45A Is a Novel Microtubule-Associated Protein and Regulator of Paclitaxel Sensitivity in Ovarian Cancer Cells. Mol Cancer Res 2019; 17:370-383. [PMID: 30322860 PMCID: PMC6359974 DOI: 10.1158/1541-7786.mcr-18-0670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/11/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
Abstract
UNC-45A, a highly conserved member of the UCS (UNC45A/CRO1/SHE4P) protein family of cochaperones, plays an important role in regulating cytoskeletal-associated functions in invertebrates and mammalian cells, including cytokinesis, exocytosis, cell motility, and neuronal development. Here, for the first time, UNC-45A is demonstrated to function as a mitotic spindle-associated protein that destabilizes microtubules (MT) activity. Using in vitro biophysical reconstitution and total internal reflection fluorescence microscopy analysis, we reveal that UNC-45A directly binds to taxol-stabilized MTs in the absence of any additional cellular cofactors or other MT-associated proteins and acts as an ATP-independent MT destabilizer. In cells, UNC-45A binds to and destabilizes mitotic spindles, and its depletion causes severe defects in chromosome congression and segregation. UNC-45A is overexpressed in human clinical specimens from chemoresistant ovarian cancer and that UNC-45A-overexpressing cells resist chromosome missegregation and aneuploidy when treated with clinically relevant concentrations of paclitaxel. Lastly, UNC-45A depletion exacerbates paclitaxel-mediated stabilizing effects on mitotic spindles and restores sensitivity to paclitaxel. IMPLICATIONS: These findings reveal novel and significant roles for UNC-45A in regulation of cytoskeletal dynamics, broadening our understanding of the basic mechanisms regulating MT stability and human cancer susceptibility to paclitaxel, one of the most widely used chemotherapy agents for the treatment of human cancers.
Collapse
Affiliation(s)
- Ashley Mooneyham
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yoshie Iizuka
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, MN 55455, USA
| | - Qing Yang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Courtney Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Vijayalakshmi Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| | - Edith Emmings
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, MN 55455, USA
| | - Liqiang Chen
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Teng Ai
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455 USA
| | - Joyce Meints
- Department of Neuroscience, University of Minnesota Minneapolis, MN 55455 USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota Minneapolis, MN 55455 USA
| | - Melissa Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women’s Heath, University of Minnesota, Minneapolis, MN 55455, USA,,Corresponding author: Martina Bazzaro, Masonic Cancer Center, 420 Delaware Street S.E, Room 490, Minneapolis, Minnesota 55455, Tel: 612-6252889, Fax: 612-626-0665,
| |
Collapse
|
66
|
Abstract
Microtubule-severing enzymes, which can remove tubulin dimers from microtubule lattices, participate in cytoskeletal remodeling in various contexts. A recent study showed that partially damaged microtubule shafts and new microtubule ends generated by these enzymes can incorporate GTP-tubulin and serve as sites of microtubule rescue and re-growth, explaining how severing enzymes can amplify microtubule arrays.
Collapse
Affiliation(s)
- Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands.
| |
Collapse
|
67
|
Affiliation(s)
- Krishna Kanti Dey
- Discipline of Physics; Indian Institute of Technology Gandhinagar; Gandhinagar Gujarat 382355 Indien
| |
Collapse
|
68
|
Context-dependent spindle pole focusing. Essays Biochem 2018; 62:803-813. [PMID: 30429281 DOI: 10.1042/ebc20180034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 11/17/2022]
Abstract
The formation of a robust, bi-polar spindle apparatus, capable of accurate chromosome segregation, is a complex process requiring the co-ordinated nucleation, sorting, stabilization and organization of microtubules (MTs). Work over the last 25 years has identified protein complexes that act as functional modules to nucleate spindle MTs at distinct cellular sites such as centrosomes, kinetochores, chromatin and pre-existing MTs themselves. There is clear evidence that the extent to which these different MT nucleating pathways contribute to spindle mass both during mitosis and meiosis differs not only between organisms, but also in different cell types within an organism. This plasticity contributes the robustness of spindle formation; however, whether such plasticity is present in other aspects of spindle formation is less well understood. Here, we review the known roles of the protein complexes responsible for spindle pole focusing, investigating the evidence that these, too, act co-ordinately and differentially, depending on cellular context. We describe relationships between MT minus-end directed motors dynein and HSET/Ncd, depolymerases including katanin and MCAK, and direct minus-end binding proteins such as nuclear-mitotic apparatus protein, ASPM and Patronin/CAMSAP. We further explore the idea that the focused spindle pole acts as a non-membrane bound condensate and suggest that the metaphase spindle pole be treated as a transient organelle with context-dependent requirements for function.
Collapse
|
69
|
Hatakeyama E, Hayashi K. KATNAL1 is a more active and stable isoform of katanin, and is expressed dominantly in neurons. Biochem Biophys Res Commun 2018; 507:389-394. [DOI: 10.1016/j.bbrc.2018.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/09/2018] [Indexed: 11/26/2022]
|
70
|
Chua MD, Liou CH, Bogdan AC, Law HT, Yeh KM, Lin JC, Siu LK, Guttman JA. Klebsiella pneumoniae disassembles host microtubules in lung epithelial cells. Cell Microbiol 2018; 21:e12977. [PMID: 30415487 DOI: 10.1111/cmi.12977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/21/2023]
Abstract
Klebsiella pneumoniae raises significant concerns to the health care industry as these microbes are the source of widespread contamination of medical equipment, cause pneumonia as well as other multiorgan metastatic infections and have gained multidrug resistance. Despite soaring mortality rates, the host cell alterations occurring during these infections remain poorly understood. Here, we show that during in vitro and in vivo K. pneumoniae infections of lung epithelia, microtubules are severed and then eliminated. This destruction does not require direct association of K. pneumoniae with the host cells, as microtubules are disassembled in cells that are distant from the infecting bacteria. This microtubule dismantling is dependent on the K. pneumoniae (Kp) gene ytfL as non-pathogenic Escherichia coli expressing Kp ytfL disassemble microtubules in the absence of K. pneumoniae itself. Our data points to the host katanin catalytic subunit A like 1 protein (KATNAL1) and the katanin regulatory subunit B1 protein (KATNB1) as the gatekeepers to the microtubule severing event as both proteins localise specifically to microtubule cut sites. Infected cells that had either of these proteins knocked out maintained intact microtubules. Taken together, we have identified a novel mechanism that a bacterial pathogen has exploited to cause microtubule destruction within the host epithelia.
Collapse
Affiliation(s)
- Michael Dominic Chua
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ci-Hong Liou
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Hong T Law
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kuo-Ming Yeh
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - L Kristopher Siu
- Division of Infection Diseases, National Health Research Institutes, Miaoli, Taiwan
| | - Julian Andrew Guttman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
71
|
McNally FJ, Roll-Mecak A. Microtubule-severing enzymes: From cellular functions to molecular mechanism. J Cell Biol 2018; 217:4057-4069. [PMID: 30373906 PMCID: PMC6279391 DOI: 10.1083/jcb.201612104] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/13/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
McNally and Roll-Mecak review the molecular mechanism of microtubule-severing enzymes and their diverse roles in processes ranging from cell division to ciliogensis and morphogenesis. Microtubule-severing enzymes generate internal breaks in microtubules. They are conserved in eukaryotes from ciliates to mammals, and their function is important in diverse cellular processes ranging from cilia biogenesis to cell division, phototropism, and neurogenesis. Their mutation leads to neurodegenerative and neurodevelopmental disorders in humans. All three known microtubule-severing enzymes, katanin, spastin, and fidgetin, are members of the meiotic subfamily of AAA ATPases that also includes VPS4, which disassembles ESCRTIII polymers. Despite their conservation and importance to cell physiology, the cellular and molecular mechanisms of action of microtubule-severing enzymes are not well understood. Here we review a subset of cellular processes that require microtubule-severing enzymes as well as recent advances in understanding their structure, biophysical mechanism, and regulation.
Collapse
Affiliation(s)
- Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA
| | - Antonina Roll-Mecak
- Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD .,Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD
| |
Collapse
|
72
|
Ji Z, Zhang G, Chen L, Li J, Yang Y, Cha C, Zhang J, Lin H, Guo G. Spastin Interacts with CRMP5 to Promote Neurite Outgrowth by Controlling the Microtubule Dynamics. Dev Neurobiol 2018; 78:1191-1205. [PMID: 30257070 DOI: 10.1002/dneu.22640] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/27/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
Changing the microtubule dynamics is sufficient to alter the axon and dendrite specification and development. Spastin participates in the growth and regeneration of neurites by severing microtubules into small segments, and collapsin response mediator protein 5 (CRMP5) provides structural support and serves as a track for cargo transport by promoting microtubule polymerization. Nevertheless, how spastin and CRMP5 cooperate to regulate neurite outgrowth by controlling the microtubule dynamics needs to be elucidated. In our present study, spastin interacted with CRMP5 in vitro and in vivo. The binding domains for the spastin and CRMP5 interaction were the N-terminal fragment of spastin (residues 270-328) and the C-terminal fragment of CRMP5 (residues 472-564). Spastin and its truncation mutants, including the microtubule-binding domain (MTBD) and ATPases associated with diverse cellular activities (AAA) domain, were necessary for the severing of microtubules. Furthermore, we demonstrated that microtubule polymerization of CRMP5 interfered with the microtubule-severing function of spastin. Knocking down either spastin or CRMP5 inhibited neurite outgrowth in hippocampal neurons. However, co-transfected spastin and CRMP5 promoted the outgrowth of neurites including dendrites and axons. Taken together, our data support a model in which the spastin interaction with CRMP5 promotes neurite outgrowth by controlling the microtubule dynamics.
Collapse
Affiliation(s)
- Zhisheng Ji
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Guowei Zhang
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Li Chen
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Jiong Li
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Yuhao Yang
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Caihui Cha
- Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Jifeng Zhang
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Hongsheng Lin
- Department of Orthopedics, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Guoqing Guo
- Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| |
Collapse
|
73
|
Advani S, Maresca TJ, Ross JL. Creation and testing of a new, local microtubule-disruption tool based on the microtubule-severing enzyme, katanin p60. Cytoskeleton (Hoboken) 2018; 75:531-544. [PMID: 30176123 DOI: 10.1002/cm.21482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/25/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Current methods to disrupt the microtubule cytoskeleton do not easily provide rapid, local control with standard cell manipulation reagents. Here, we develop a new microtubule-disruption tool based on katanin p60 severing activity and demonstrate proof-of-principle by targeting it to kinetochores in Drosophila melanogaster S2 cells. Specifically, we show that human katanin p60 can remove microtubule polymer mass in S2 cells and an increase in misaligned chromosomes when globally overexpressed. When katanin p60 was targeted to the kinetochores via Mis12, we were able to recapitulate the misalignment only when using a phosphorylation-resistant mutant katanin p60. Our results demonstrate that targeting an active version of katanin p60 to the kinetochore can reduce the fidelity of achieving full chromosome alignment in metaphase and could serve as a microtubule disruption tool for the future.
Collapse
Affiliation(s)
- Siddheshwari Advani
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Thomas J Maresca
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts.,Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Jennifer L Ross
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts.,Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts
| |
Collapse
|
74
|
Hua K, Ferland RJ. Primary Cilia Reconsidered in the Context of Ciliopathies: Extraciliary and Ciliary Functions of Cilia Proteins Converge on a Polarity theme? Bioessays 2018; 40:e1700132. [PMID: 29882973 PMCID: PMC6239423 DOI: 10.1002/bies.201700132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/09/2018] [Indexed: 12/13/2022]
Abstract
Once dismissed as vestigial organelles, primary cilia have garnered the interest of scientists, given their importance in development/signaling, and for their implication in a new disease category known as ciliopathies. However, many, if not all, "cilia" proteins also have locations/functions outside of the primary cilium. These extraciliary functions can complicate the interpretation of a particular ciliopathy phenotype: it may be a result of defects at the cilium and/or at extraciliary locations, and it could be broadly related to a unifying cellular process for these proteins, such as polarity. Assembly of a cilium has many similarities to the development of other polarized structures. This evolutionarily preserved process for the assembly of polarized cell structures offers a perspective on how the cilium may have evolved. We hypothesize that cilia proteins are critical for cell polarity, and that core polarity proteins may have been specialized to form various cellular protrusions, including primary cilia.
Collapse
Affiliation(s)
- Kiet Hua
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA, 12208
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA, 12208
- Department of Neurology, Albany Medical College, Albany, New York, USA, 12208
| |
Collapse
|
75
|
Kalam SN, Dowland S, Lindsay L, Murphy CR. Microtubules are reorganised and fragmented for uterine receptivity. Cell Tissue Res 2018; 374:667-677. [PMID: 30030603 DOI: 10.1007/s00441-018-2887-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
For the development of uterine receptivity, many morphological and molecular changes occur in the apical surface of luminal uterine epithelial cells (UECs) including an increase in vesicular activity. Vesicular movements for exocytosis and endocytosis are dependent on microtubules; however, changes in microtubules in UECs during early pregnancy have received little attention. β-tubulin, one of the main component of microtubules, is distributed throughout the cytoplasm of UECs on day 1 (non-receptive) of pregnancy in the rat. On day 5.5, β-tubulin is concentrated above the nuclei and by day 6 (receptive), β-tubulin is concentrated in a band-like fashion above the nucleus. Western blot analysis of isolated UECs found two bands (50 and 34 kDa) for β-tubulin in UECs during early pregnancy. The intensity of the 34 kDa band was significantly higher on day 6 compared to day 1. The increase in the 34 kDa band may be due to higher proteolytic activity associated with microtubule polymerisation during the receptive state. Transmission electron microscopy showed fragmented microtubules at the time of receptivity in UECs. This is the first study to show that microtubules are reorganised during uterine receptivity. This re-organisation likely facilitates vesicular movement and promotes the reorganisation of the apical plasma membrane for uterine receptivity.
Collapse
Affiliation(s)
- Sadaf N Kalam
- Anatomy and Histology, School of Medical Sciences and The Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia. .,Cell and Reproductive Biology Laboratory, Discipline of Anatomy and Histology, The University of Sydney, Room N364, Anderson Stuart Building (F13), Sydney, NSW, 2006, Australia.
| | - Samson Dowland
- Anatomy and Histology, School of Medical Sciences and The Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Laura Lindsay
- Anatomy and Histology, School of Medical Sciences and The Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Christopher R Murphy
- Anatomy and Histology, School of Medical Sciences and The Bosch Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
76
|
Abstract
Microtubules act as "railways" for motor-driven intracellular transport, interact with accessory proteins to assemble into larger structures such as the mitotic spindle, and provide an organizational framework to the rest of the cell. Key to these functions is the fact that microtubules are "dynamic." As with actin, the polymer dynamics are driven by nucleotide hydrolysis and influenced by a host of specialized regulatory proteins, including microtubule-associated proteins. However, microtubule turnover involves a surprising behavior-termed dynamic instability-in which individual polymers switch stochastically between growth and depolymerization. Dynamic instability allows microtubules to explore intracellular space and remodel in response to intracellular and extracellular cues. Here, we review how such instability is central to the assembly of many microtubule-based structures and to the robust functioning of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Holly V Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| | - Erin M Jonasson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556
| |
Collapse
|
77
|
Fan X, Lin Z, Fan G, Lu J, Hou Y, Habai G, Sun L, Yu P, Shen Y, Wen M, Wang C. The AAA protein spastin possesses two levels of basal ATPase activity. FEBS Lett 2018; 592:1625-1633. [PMID: 29710391 DOI: 10.1002/1873-3468.13075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/27/2018] [Accepted: 04/21/2018] [Indexed: 12/13/2022]
Abstract
The AAA ATPase spastin is a microtubule-severing enzyme that plays important roles in various cellular events including axon regeneration. Herein, we found that the basal ATPase activity of spastin is negatively regulated by spastin concentration. By determining a spastin crystal structure, we demonstrate the necessity of intersubunit interactions between spastin AAA domains. Neutralization of the positive charges in the microtubule-binding domain (MTBD) of spastin dramatically decreases the ATPase activity at low concentration, although the ATP-hydrolyzing potential is not affected. These results demonstrate that, in addition to the AAA domain, the MTBD region of spastin is also involved in regulating ATPase activity, making interactions between spastin protomers more complicated than expected.
Collapse
Affiliation(s)
- Xiangyu Fan
- Institute of Protein Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhijie Lin
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Guanghui Fan
- Institute of Protein Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jing Lu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Yongfei Hou
- Institute of Protein Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gulijiazi Habai
- Institute of Protein Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linyue Sun
- Institute of Protein Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Pengpeng Yu
- Institute of Protein Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin, China
| | - Maorong Wen
- Institute of Protein Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chunguang Wang
- Institute of Protein Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
78
|
Hua K, Ferland RJ. Primary cilia proteins: ciliary and extraciliary sites and functions. Cell Mol Life Sci 2018; 75:1521-1540. [PMID: 29305615 PMCID: PMC5899021 DOI: 10.1007/s00018-017-2740-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
Abstract
Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.
Collapse
Affiliation(s)
- Kiet Hua
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
| | - Russell J Ferland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, MC-136, Albany, NY, 12208, USA.
- Department of Neurology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
79
|
Barragán M, Pons J, Ferrer-Vaquer A, Cornet-Bartolomé D, Schweitzer A, Hubbard J, Auer H, Rodolosse A, Vassena R. The transcriptome of human oocytes is related to age and ovarian reserve. Mol Hum Reprod 2018; 23:535-548. [PMID: 28586423 DOI: 10.1093/molehr/gax033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/03/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION How does the human oocyte transcriptome change with age and ovarian reserve? SUMMARY ANSWER Specific sets of human oocyte messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs) are affected independently by age and ovarian reserve. WHAT IS KNOWN ALREADY Although it is well established that the ovarian reserve diminishes with increasing age, and that a woman's age is correlated with lower oocyte quality, the interplay of a diminished reserve and age on oocyte developmental competence is not clear. After maturation, oocytes are mostly transcriptionally quiescent, and developmental competence prior to embryonic genome activationrelies on maternal RNA and proteins. STUDY DESIGN, SIZE, DURATION A total of 36 vitrified/warmed MII oocytes from 30 women undergoing oocyte donation were included in this study, processed and analyzed individually. PARTICIPANTS/MATERIALS, SETTING, METHODS Total RNA from each oocyte was independently isolated, amplified, labeled, and hybridized on HTA 2.0 arrays (Affymetrix). Data were analyzed using TAC software, in four groups, each including nine oocytes, according to the woman's age and antral follicular count (AFC) (mean ± SD): Young with High AFC (YH; age 21 ± 1 years and 24 ± 3 follicles); Old with High AFC (OH; age 32 ± 2 years and 29 ± 7 follicles); Young with Low AFC (YL; age 24 ± 2 years and 8 ± 2 follicles); Old with Low AFC (OL; age 34 ± 1 years and 7 ± 1 follicles). qPCR was performed to validate arrays. MAIN RESULTS AND THE ROLE OF CHANCE We identified a set of 30 differentially expressed mRNAs when comparing oocytes from women with different ages and AFC. In addition, 168 non-coding RNAs (ncRNAs) were differentially expressed in relation to age and/or AFC. Few mRNAs have been identified as differentially expressed transcripts, and among ncRNAs, a set of Piwi-interacting RNAs clusters (piRNAs-c) and precursor microRNAs (pre-miRNAs) were identified as increased in high AFC and old groups, respectively. Our results indicate that age and ovarian reserve are associated with specific ncRNA profiles, suggesting that oocyte quality might be mediated by ncRNA pathways. LARGE SCALE DATA Data can be found via GEO accession number GSE87201. LIMITATIONS, REASONS FOR CAUTION The oldest woman included in the study was 35 years old, thus our results cannot readily be extrapolated to women older than 35 or infertile women. WIDER IMPLICATIONS OF THE FINDINGS We show, for the first time, that several non-coding RNAs, usually regulating DNA transcription, are differentially expressed in relation to age and/or ovarian reserve. Interestingly, the mRNA transcriptome of in vivo matured oocytes remains remarkably stable across ages and ovarian reserve, suggesting the possibility that changes in the non-coding transcriptome might regulate some post-transcriptional/translational mechanisms which might, in turn, affect oocyte developmental competence. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by intramural funding of Clinica EUGIN and by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia. J.H. and A.S. are employees of Affymetrix, otherwise there are no competing interests.
Collapse
Affiliation(s)
- M Barragán
- Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| | - J Pons
- Functional Genomics Core, Institute for Research in Biomedicine (IRB) Barcelona, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - A Ferrer-Vaquer
- Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| | | | - A Schweitzer
- Thermo Fisher Scientific, 3450 Central Expressway, Santa Clara, CA 95051, USA
| | - J Hubbard
- Thermo Fisher Scientific, 3450 Central Expressway, Santa Clara, CA 95051, USA
| | - H Auer
- Functional GenOmics Consulting, Bellavista 53, 08753 Pallejà, Spain
| | - A Rodolosse
- Functional Genomics Core, Institute for Research in Biomedicine (IRB) Barcelona, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - R Vassena
- Clínica EUGIN, Travessera de les Corts 322, 08029 Barcelona, Spain
| |
Collapse
|
80
|
Fassier C, Fréal A, Gasmi L, Delphin C, Ten Martin D, De Gois S, Tambalo M, Bosc C, Mailly P, Revenu C, Peris L, Bolte S, Schneider-Maunoury S, Houart C, Nothias F, Larcher JC, Andrieux A, Hazan J. Motor axon navigation relies on Fidgetin-like 1-driven microtubule plus end dynamics. J Cell Biol 2018. [PMID: 29535193 PMCID: PMC5940295 DOI: 10.1083/jcb.201604108] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fassier et al. identify Fidgetin-like 1 (Fignl1) as a key growth cone (GC)-enriched microtubule (MT)-associated protein in motor circuit wiring. They show that Fignl1 modulates motor GC morphology and steering behavior by down-regulating EB binding at MT plus ends and promoting MT depolymerization beneath the cell cortex. During neural circuit assembly, extrinsic signals are integrated into changes in growth cone (GC) cytoskeleton underlying axon guidance decisions. Microtubules (MTs) were shown to play an instructive role in GC steering. However, the numerous actors required for MT remodeling during axon navigation and their precise mode of action are far from being deciphered. Using loss- and gain-of-function analyses during zebrafish development, we identify in this study the meiotic clade adenosine triphosphatase Fidgetin-like 1 (Fignl1) as a key GC-enriched MT-interacting protein in motor circuit wiring and larval locomotion. We show that Fignl1 controls GC morphology and behavior at intermediate targets by regulating MT plus end dynamics and growth directionality. We further reveal that alternative translation of Fignl1 transcript is a sophisticated mechanism modulating MT dynamics: a full-length isoform regulates MT plus end–tracking protein binding at plus ends, whereas shorter isoforms promote their depolymerization beneath the cell cortex. Our study thus pinpoints Fignl1 as a multifaceted key player in MT remodeling underlying motor circuit connectivity.
Collapse
Affiliation(s)
- Coralie Fassier
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Amélie Fréal
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Laïla Gasmi
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Christian Delphin
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Daniel Ten Martin
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Stéphanie De Gois
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Monica Tambalo
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Christophe Bosc
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Philippe Mailly
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France
| | - Céline Revenu
- Department of Genetics and Developmental Biology, Institut Curie, Paris, France
| | - Leticia Peris
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Susanne Bolte
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Centre National de la Recherche Scientifique FR3631, Paris, France
| | - Sylvie Schneider-Maunoury
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Biologie du Développement, Centre National de la Recherche Scientifique UMR7622, Paris, France
| | - Corinne Houart
- Medical Research Council Centre for Developmental Neurobiology, King's College London, Guy's Hospital Campus, London, England, UK
| | - Fatiha Nothias
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| | - Jean-Christophe Larcher
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Biologie du Développement, Centre National de la Recherche Scientifique UMR7622, Paris, France
| | - Annie Andrieux
- Institut National de la Santé et de la Recherche Médicale U1216, Université Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Jamilé Hazan
- Sorbonne Universités, Université Pierre et Marie Curie-Université Paris 6, Institut de Biologie Paris-Seine, Unité de Neuroscience Paris Seine, Centre National de la Recherche Scientifique UMR 8246, Institut National de la Santé et de la Recherche Médicale U1130, Paris, France
| |
Collapse
|
81
|
Jiang N, Bailey ME, Burke J, Ross JL, Dima RI. Modeling the effects of lattice defects on microtubule breaking and healing. Cytoskeleton (Hoboken) 2017; 74:3-17. [PMID: 27935245 DOI: 10.1002/cm.21346] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 12/19/2022]
Abstract
Microtubule reorganization often results from the loss of polymer induced through breakage or active destruction by energy-using enzymes. Pre-existing defects in the microtubule lattice likely lower structural integrity and aid filament destruction. Using large-scale molecular simulations, we model diverse microtubule fragments under forces generated at specific positions to locally crush the filament. We show that lattices with 2% defects are crushed and severed by forces three times smaller than defect-free ones. We validate our results with direct comparisons of microtubule kinking angles during severing. We find a high statistical correlation between the angle distributions from experiments and simulations indicating that they sample the same population of structures. Our simulations also indicate that the mechanical environment of the filament affects breaking: local mechanical support inhibits healing after severing, especially in the case of filaments with defects. These results recall reports of microtubule healing after flow-induced bending and corroborate prior experimental studies that show severing is more likely at locations where microtubules crossover in networks. Our results shed new light on mechanisms underlying the ability of microtubules to be destroyed and healed in the cell, either by external forces or by severing enzymes wedging dimers apart. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221
| | - Megan E Bailey
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| | - Jessica Burke
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221
| | - Jennifer L Ross
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, Massachusetts, 01003.,Department of Physics, University of Massachusetts Amherst, Amherst, Massachusetts, 01003
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221
| |
Collapse
|
82
|
Werner S, Pimenta-Marques A, Bettencourt-Dias M. Maintaining centrosomes and cilia. J Cell Sci 2017; 130:3789-3800. [DOI: 10.1242/jcs.203505] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
Centrosomes and cilia are present in organisms from all branches of the eukaryotic tree of life. These structures are composed of microtubules and various other proteins, and are required for a plethora of cell processes such as structuring the cytoskeleton, sensing the environment, and motility. Deregulation of centrosome and cilium components leads to a wide range of diseases, some of which are incompatible with life. Centrosomes and cilia are thought to be very stable and can persist over long periods of time. However, these structures can disappear in certain developmental stages and diseases. Moreover, some centrosome and cilia components are quite dynamic. While a large body of knowledge has been produced regarding the biogenesis of these structures, little is known about how they are maintained. In this Review, we propose the existence of specific centrosome and cilia maintenance programs, which are regulated during development and homeostasis, and when deregulated can lead to disease.
Collapse
Affiliation(s)
- Sascha Werner
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| | - Mónica Bettencourt-Dias
- Cell Cycle Regulation Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal
| |
Collapse
|
83
|
Dunleavy JEM, Okuda H, O’Connor AE, Merriner DJ, O’Donnell L, Jamsai D, Bergmann M, O’Bryan MK. Katanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse. PLoS Genet 2017; 13:e1007078. [PMID: 29136647 PMCID: PMC5705150 DOI: 10.1371/journal.pgen.1007078] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/28/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022] Open
Abstract
The katanin microtubule-severing proteins are essential regulators of microtubule dynamics in a diverse range of species. Here we have defined critical roles for the poorly characterised katanin protein KATNAL2 in multiple aspects of spermatogenesis: the initiation of sperm tail growth from the basal body, sperm head shaping via the manchette, acrosome attachment, and ultimately sperm release. We present data suggesting that depending on context, KATNAL2 can partner with the regulatory protein KATNB1 or act autonomously. Moreover, our data indicate KATNAL2 may regulate δ- and ε-tubulin rather than classical α-β-tubulin microtubule polymers, suggesting the katanin family has a greater diversity of function than previously realised. Together with our previous research, showing the essential requirement of katanin proteins KATNAL1 and KATNB1 during spermatogenesis, our data supports the concept that in higher order species the presence of multiple katanins has allowed for subspecialisation of function within complex cellular settings such as the seminiferous epithelium. Male infertility affects one in twenty men of reproductive age in western countries. Despite this, the biochemical basis of common defects, including reduced sperm count and abnormal sperm structure and function, remains poorly defined. Microtubules are cellular “scaffolds” that serve critical roles in all cells, including developing male germ cells wherein they facilitate mitosis and meiosis (cell division), sperm head remodelling and sperm tail formation. The precise regulation of microtubule number, length and movement is thus, essential for male fertility. Within this manuscript, we have used spermatogenesis to define the function of the putative microtubule-severing protein katanin-like 2 (KATNAL2). We show that mice with compromised KATNAL2 function are male sterile as a consequence of defects in the structural remodelling of germ cells. Notably, we show the function of microtubule-based structures involved in sperm head shaping and tail formation are disrupted. Further, we show for the first time, that KATNAL2 can function both independently or in concert with the katanin regulatory protein KATNB1 and that it can target the poorly characterized tubulin subunits delta and epsilon. Our research has immediate relevance to the origins of human male infertility and provides novel insights into aspects of microtubule regulation relevant to numerous tissues and species.
Collapse
Affiliation(s)
- Jessica E. M. Dunleavy
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria; Australia
| | - Hidenobu Okuda
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
| | - Anne E. O’Connor
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
| | - D. Jo Merriner
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
| | - Liza O’Donnell
- Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Melbourne, Victoria; Australia
| | - Duangporn Jamsai
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and The Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria; Australia
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Hesse; Germany
| | - Moira K. O’Bryan
- School of Biological Sciences, Monash University, Melbourne, Victoria; Australia
- * E-mail:
| |
Collapse
|
84
|
Abstract
Interactions between microtubule (MT) interacting and trafficking (MIT) domains and their binding proteins are important for the accurate progression of many cellular processes that require the AAA+ ATPase machinery. Therefore, knowledge on the structural basis of MIT domain interactions is crucial for understanding the molecular mechanisms underlying AAA+ ATPase function. Katanin is a MT-severing AAA+ ATPase that consists of p60 and p80 subunits. Although, the hexameric p60 subunit is active alone, its association with the p80 subunit greatly enhances both the MT-binding and -severing activities of katanin. However, the molecular mechanism of how the p80 subunit contributes to katanin function is currently unknown. Here, we structurally and functionally characterized the interaction between the two katanin subunits that is mediated by the p60-MIT domain and the p80 C-terminal domain (p80-CTD). We show that p60-MIT and p80-CTD form a tight heterodimeric complex, whose high-resolution structure we determined by X-ray crystallography. Based on the crystal structure, we identified two conserved charged residues that are important for p60-MIT:p80-CTD complex formation and katanin function. Moreover, p60-MIT was compared with other MIT domain structures and similarities are discussed.
Collapse
|
85
|
Barsegov V, Ross JL, Dima RI. Dynamics of microtubules: highlights of recent computational and experimental investigations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:433003. [PMID: 28812545 DOI: 10.1088/1361-648x/aa8670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microtubules are found in most eukaryotic cells, with homologs in eubacteria and archea, and they have functional roles in mitosis, cell motility, intracellular transport, and the maintenance of cell shape. Numerous efforts have been expended over the last two decades to characterize the interactions between microtubules and the wide variety of microtubule associated proteins that control their dynamic behavior in cells resulting in microtubules being assembled and disassembled where and when they are required by the cell. We present the main findings regarding microtubule polymerization and depolymerization and review recent work about the molecular motors that modulate microtubule dynamics by inducing either microtubule depolymerization or severing. We also discuss the main experimental and computational approaches used to quantify the thermodynamics and mechanics of microtubule filaments.
Collapse
Affiliation(s)
- Valeri Barsegov
- Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States of America
| | | | | |
Collapse
|
86
|
Wang C, Liu W, Wang G, Li J, Dong L, Han L, Wang Q, Tian J, Yu Y, Gao C, Kong Z. KTN80 confers precision to microtubule severing by specific targeting of katanin complexes in plant cells. EMBO J 2017; 36:3435-3447. [PMID: 28978669 DOI: 10.15252/embj.201796823] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 11/09/2022] Open
Abstract
The microtubule (MT)-severing enzyme katanin triggers dynamic reorientation of cortical MT arrays that play crucial functions during plant cell morphogenesis, such as cell elongation, cell wall biosynthesis, and hormonal signaling. MT severing specifically occurs at crossover or branching nucleation sites in living Arabidopsis cells. This differs from the random severing observed along the entire length of single MTs in vitro and strongly suggests that a precise control mechanism must exist in vivo However, how katanin senses and cleaves at MT crossover and branching nucleation sites in vivo has remained unknown. Here, we show that the katanin p80 subunit KTN80 confers precision to MT severing by specific targeting of the katanin p60 subunit KTN1 to MT cleavage sites and that KTN1 is required for oligomerization of functional KTN80-KTN1 complexes that catalyze severing. Moreover, our findings suggest that the katanin complex in Arabidopsis is composed of a hexamer of KTN1-KTN80 heterodimers that sense MT geometry to confer precise MT severing. Our findings shed light on the precise control mechanism of MT severing in plant cells, which may be relevant for other eukaryotes.
Collapse
Affiliation(s)
- Chaofeng Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Li Dong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Libo Han
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanjun Yu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
87
|
Hess H, Ross JL. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev 2017; 46:5570-5587. [PMID: 28329028 PMCID: PMC5603359 DOI: 10.1039/c7cs00030h] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biological systems have evolved to harness non-equilibrium processes from the molecular to the macro scale. It is currently a grand challenge of chemistry, materials science, and engineering to understand and mimic biological systems that have the ability to autonomously sense stimuli, process these inputs, and respond by performing mechanical work. New chemical systems are responding to the challenge and form the basis for future responsive, adaptive, and active materials. In this article, we describe a particular biochemical-biomechanical network based on the microtubule cytoskeletal filament - itself a non-equilibrium chemical system. We trace the non-equilibrium aspects of the system from molecules to networks and describe how the cell uses this system to perform active work in essential processes. Finally, we discuss how microtubule-based engineered systems can serve as testbeds for autonomous chemical robots composed of biological and synthetic components.
Collapse
Affiliation(s)
- H Hess
- Department of Biomedical Engineering, Columbia University, USA.
| | | |
Collapse
|
88
|
Feng S, Song Y, Shen M, Xie S, Li W, Lu Y, Yang Y, Ou G, Zhou J, Wang F, Liu W, Yan X, Liang X, Zhou T. Microtubule-binding protein FOR20 promotes microtubule depolymerization and cell migration. Cell Discov 2017; 3:17032. [PMID: 28884019 PMCID: PMC5583970 DOI: 10.1038/celldisc.2017.32] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022] Open
Abstract
Microtubules are highly dynamic filaments assembled from αβ-tubulin heterodimers and play important roles in many cellular processes, including cell division and migration. Microtubule dynamics is tightly regulated by microtubule-associated proteins (MAPs) that function by binding to microtubules or free tubulin dimers. Here, we report that FOR20 (FOP-related protein of 20 kDa), a conserved protein critical for ciliogenesis and cell cycle progression, is a previously uncharacterized MAP that facilitates microtubule depolymerization and promotes cell migration. FOR20 not only directly binds to microtubules but also regulates microtubule dynamics in vitro by decreasing the microtubule growth rate and increasing the depolymerization rate and catastrophe frequency. In the in vitro microtubule dynamics assays, FOR20 appears to preferentially interact with free tubulin dimers over microtubules. Depletion of FOR20 inhibits microtubule depolymerization and promotes microtubule regrowth after the nocodazole treatment in HeLa cells. In addition, FOR20 knockdown significantly inhibits both individual and collective migration of mammalian cells. Taken together, these data suggest that FOR20 functions as a MAP to promote microtubule depolymerization and cell migration.
Collapse
Affiliation(s)
- Sijie Feng
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| | - Yinlong Song
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Max-Planck Partner Group, School of Life Sciences, Tsinghua University, Beijing, Tianjing 300073, China
| | - Minhong Shen
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Shanshan Xie
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| | - Wenjing Li
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Lu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| | - Yuehong Yang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Zhou
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Fudi Wang
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Wei Liu
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
| | - Xiaoyi Yan
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| | - Xin Liang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Max-Planck Partner Group, School of Life Sciences, Tsinghua University, Beijing, Tianjing 300073, China
| | - Tianhua Zhou
- Department of Cell Biology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Yuhangtang Road, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, Hangzhou 310058, China
| |
Collapse
|
89
|
Roostalu J, Surrey T. Microtubule nucleation: beyond the template. Nat Rev Mol Cell Biol 2017; 18:702-710. [PMID: 28831203 DOI: 10.1038/nrm.2017.75] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microtubules are cytoskeletal filaments central to a wide range of essential cellular functions in eukaryotic cells. Consequently, cells need to exert tight control over when, where and how many microtubules are being made. Whereas the regulation of microtubule dynamics is well studied, the molecular mechanisms of microtubule nucleation are still poorly understood. Next to the established master template of nucleation, the γ-tubulin ring complex, other microtubule-associated proteins that affect microtubule dynamic properties have recently been found to contribute to nucleation. It has begun to emerge that the nucleation efficiency is controlled not only by template activity but also by, either additionally or alternatively, the stabilization of the nascent microtubule 'nucleus'. This suggests a simple conceptual framework for the mechanisms regulating microtubule nucleation in cells.
Collapse
Affiliation(s)
| | - Thomas Surrey
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
90
|
Nishita M, Satake T, Minami Y, Suzuki A. Regulatory mechanisms and cellular functions of non-centrosomal microtubules. J Biochem 2017; 162:1-10. [DOI: 10.1093/jb/mvx018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
|
91
|
Asbury CL. Anaphase A: Disassembling Microtubules Move Chromosomes toward Spindle Poles. BIOLOGY 2017; 6:E15. [PMID: 28218660 PMCID: PMC5372008 DOI: 10.3390/biology6010015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/04/2017] [Accepted: 02/10/2017] [Indexed: 11/16/2022]
Abstract
The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting fibers, and anaphase B, separation of the two poles from one another via spindle elongation. I focus here on anaphase A chromosome-to-pole movement. The chapter begins by summarizing classical observations of chromosome movements, which support the current understanding of anaphase mechanisms. Live cell fluorescence microscopy studies showed that poleward chromosome movement is associated with disassembly of the kinetochore-attached microtubule fibers that link chromosomes to poles. Microtubule-marking techniques established that kinetochore-fiber disassembly often occurs through loss of tubulin subunits from the kinetochore-attached plus ends. In addition, kinetochore-fiber disassembly in many cells occurs partly through 'flux', where the microtubules flow continuously toward the poles and tubulin subunits are lost from minus ends. Molecular mechanistic models for how load-bearing attachments are maintained to disassembling microtubule ends, and how the forces are generated to drive these disassembly-coupled movements, are discussed.
Collapse
Affiliation(s)
- Charles L Asbury
- Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
92
|
Bailey ME, Jiang N, Dima RI, Ross JL. Invited review: Microtubule severing enzymes couple atpase activity with tubulin GTPase spring loading. Biopolymers 2017; 105:547-56. [PMID: 27037673 DOI: 10.1002/bip.22842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 12/21/2022]
Abstract
Microtubules are amazing filaments made of GTPase enzymes that store energy used for their own self-destruction to cause a stochastically driven dynamics called dynamic instability. Dynamic instability can be reproduced in vitro with purified tubulin, but the dynamics do not mimic that observed in cells. This is because stabilizers and destabilizers act to alter microtubule dynamics. One interesting and understudied class of destabilizers consists of the microtubule-severing enzymes from the ATPases Associated with various cellular Activities (AAA+) family of ATP-enzymes. Here we review current knowledge about GTP-driven microtubule dynamics and how that couples to ATP-driven destabilization by severing enzymes. We present a list of challenges regarding the mechanism of severing, which require development of experimental and modeling approaches to shed light as to how severing enzymes can act to regulate microtubule dynamics in cells. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 547-556, 2016.
Collapse
Affiliation(s)
- Megan E Bailey
- Department of Physiology and Biophysics, 1705 NE Pacific St., Seattle, WA 98195
| | - Nan Jiang
- Department of Chemistry, University of Cincinnati, Cincinnati OH 45221
| | - Ruxandra I Dima
- Department of Chemistry, University of Cincinnati, Cincinnati OH 45221
| | - Jennifer L Ross
- Department of Physics, 666 N. Pleasant St. University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
93
|
Abstract
ABSTRACT
Three-dimensional (3D) cell motility underlies essential processes, such as embryonic development, tissue repair and immune surveillance, and is involved in cancer progression. Although the cytoskeleton is a well-studied regulator of cell migration, most of what we know about its functions originates from studies conducted in two-dimensional (2D) cultures. This research established that the microtubule network mediates polarized trafficking and signaling that are crucial for cell shape and movement in 2D. In parallel, developments in light microscopy and 3D cell culture systems progressively allowed to investigate cytoskeletal functions in more physiologically relevant settings. Interestingly, several studies have demonstrated that microtubule involvement in cell morphogenesis and motility can differ in 2D and 3D environments. In this Commentary, we discuss these differences and their relevance for the understanding the role of microtubules in cell migration in vivo. We also provide an overview of microtubule functions that were shown to control cell shape and motility in 3D matrices and discuss how they can be investigated further by using physiologically relevant models.
Collapse
Affiliation(s)
- Benjamin P. Bouchet
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
94
|
Hu Z, Feng J, Bo W, Wu R, Dong Z, Liu Y, Qiang L, Liu M. Fidgetin regulates cultured astrocyte migration by severing tyrosinated microtubules at the leading edge. Mol Biol Cell 2016; 28:545-553. [PMID: 27974640 PMCID: PMC5305261 DOI: 10.1091/mbc.e16-09-0628] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/02/2022] Open
Abstract
Fign regulates cultured astrocyte migration by severing tyrosinated microtubules (MTs). Inhibition of cellular migration induced by Fign knockdown can be rescued with concomitant knockdown of kinesin-12. A working model is given for the MT reconfiguration underlying cellular migration elicited by the cooperation of two distinct MT-related proteins. Microtubule (MT) organization is essential for many cellular events, including mitosis, migration, and cell polarity. Fidgetin (Fign), an ATP-dependent, MT-severing protein, contributes to the regulation of MT configuration by cutting and trimming MT polymers. Functions of Fign have been indicated in neurite outgrowth, mitosis, meiosis, and cellular migration. Here we focus on migration of astrocytes. We find that Fign plays an essential role in cultured astrocyte migration by preferentially targeting MTs (or regions of MTs) that are rich in tyrosinated tubulin, a marker for especially dynamic MTs or especially dynamic regions of MTs. Inhibition of cellular migration induced by Fign knockdown can be rescued with concomitant knockdown of kinesin-12, a motor protein best known for its role in mitosis. We propose a novel working model for MT reconfiguration underlying cellular migration elicited by the functional cooperation of two distinct MT-related proteins.
Collapse
Affiliation(s)
- Zunlu Hu
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Jie Feng
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Weijuan Bo
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Zhangji Dong
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Liang Qiang
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China .,Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Mei Liu
- Key Laboratory of Neuroregeneration, Jiangsu, and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
95
|
Waclawek E, Joachimiak E, Hall MH, Fabczak H, Wloga D. Regulation of katanin activity in the ciliate Tetrahymena thermophila. Mol Microbiol 2016; 103:134-150. [PMID: 27726198 DOI: 10.1111/mmi.13547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 01/10/2023]
Abstract
Katanin is a microtubule severing protein that functions as a heterodimer composed of an AAA domain catalytic subunit, p60, and a regulatory subunit, a WD40 repeat protein, p80. Katanin-dependent severing of microtubules is important for proper execution of key cellular activities including cell division, migration, and differentiation. Published data obtained in Caenorhabditis elegans, Xenopus and mammals indicate that katanin is regulated at multiple levels including transcription, posttranslational modifications (of both katanin and microtubules) and degradation. Little is known about how katanin is regulated in unicellular organisms. Here we show that in the ciliated protist Tetrahymena thermophila, as in Metazoa, the localization and activity of katanin requires specific domains of both p60 and p80, and that the localization of p60, but not p80, is sensitive to the levels of microtubule glutamylation. A prolonged overexpression of either a full length, or a fragment of p80 containing WD40 repeats, partly phenocopies a knockout of p60, indicating that in addition to its activating role, p80 could also contribute to the inhibition of p60. We also show that the level of p80 depends on the 26S proteasome activity.
Collapse
Affiliation(s)
- Ewa Waclawek
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Malgorzata Hanna Hall
- Laboratory of Molecular and Systemic Neuromorphology, Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Department of Cell Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Str, Warsaw, 02-093, Poland
| |
Collapse
|
96
|
Microtubule Destabilization Paves the Way to Parkinson's Disease. Mol Neurobiol 2016; 54:6762-6774. [PMID: 27757833 DOI: 10.1007/s12035-016-0188-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/30/2016] [Indexed: 01/20/2023]
Abstract
Microtubules are dynamic structures normally associated to the cell division, during which they form the mitotic spindle, as well as to the initial phases of specification and polarization of various cell types, including neurons. Although microtubules could have a role in the death of many cells and tissues, the microtubule-based degenerative mechanisms have been poorly investigated; nevertheless, during the last two decades, many clues have been accumulated suggesting the importance of the microtubule system during neurodegeneration. Thus, the aim of this review is to analyse how the changes of the microtubule cytoskeleton, in terms of organization and dynamics, as well as the failure of the microtubule-dependent neuronal processes, as axonal transport, may play a pivotal role in the chain of events leading to Parkinson's disease. Last but not least, since disease-modifying or neuroprotective strategies are a clinical priority in Parkinson's disease, we will also present the hints about the concrete possibility of a microtubule-targeted therapy, which would have the potentiality to block the running degenerative events and to prompt the regeneration of the lost tissues.
Collapse
|
97
|
Regulation of the MEI-1/MEI-2 Microtubule-Severing Katanin Complex in Early Caenorhabditis elegans Development. G3-GENES GENOMES GENETICS 2016; 6:3257-3268. [PMID: 27527792 PMCID: PMC5068946 DOI: 10.1534/g3.116.031666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
After fertilization, rapid changes of the Caenorhabditis elegans cytoskeleton occur in the transition from meiosis to mitosis, requiring precise regulation. The MEI-1/MEI-2 katanin microtubule-severing complex is essential for meiotic spindle formation but must be quickly inactivated to allow for proper formation of the mitotic spindle. MEI-1/MEI-2 inactivation is dependent on multiple redundant pathways. The primary pathway employs the MEL-26 substrate adaptor for the CUL-3/cullin-based E3 ubiquitin ligase, which targets MEI-1 for proteosomal degradation. Here, we used quantitative antibody staining to measure MEI-1 levels to determine how other genes implicated in MEI-1 regulation act relative to CUL-3/MEL-26. The anaphase-promoting complex/cyclosome, APC/C, the DYRK (Dual-specificity tyrosine-regulated kinase), MBK-2, and the CUL-2-based E3 ubiquitin ligase act together to degrade MEI-1, in parallel to MEL-26/CUL-3. CUL-2 is known to keep MEL-26 low during meiosis, so CUL-2 apparently changes its target from MEL-26 in meiosis to MEI-1 in mitosis. RFL-1, an activator of cullin E3 ubiquitin ligases, activates CUL-2 but not CUL-3 for MEI-1 elimination. HECD-1 (HECT/Homologous to the E6AP carboxyl terminus domain) E3 ligase acts as a MEI-1 activator in meiosis but functions as an inhibitor during mitosis, without affecting levels of MEI-1 or MEI-2. Our results highlight the multiple layers of MEI-1 regulation that are required during the switch from the meiotic to mitotic modes of cell division.
Collapse
|
98
|
Bowne-Anderson H, Hibbel A, Howard J. Regulation of Microtubule Growth and Catastrophe: Unifying Theory and Experiment. Trends Cell Biol 2016; 25:769-779. [PMID: 26616192 DOI: 10.1016/j.tcb.2015.08.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/27/2015] [Accepted: 08/27/2015] [Indexed: 10/22/2022]
Abstract
Recent studies have found that microtubule-associated proteins (MAPs) can regulate the dynamical properties of microtubules in unexpected ways. For most MAPs, there is an inverse relationship between their effects on the speed of growth and the frequency of catastrophe, the conversion of a growing microtubule to a shrinking one. Such a negative correlation is predicted by the standard GTP-cap model, which posits that catastrophe is due to loss of a stabilizing cap of GTP-tubulin at the end of a growing microtubule. However, many other MAPs, notably Kinesin-4 and combinations of EB1 with XMAP215, contradict this general rule. In this review, we show that a more nuanced, but still simple, GTP-cap model, can account for the diverse regulatory activities of MAPs.
Collapse
Affiliation(s)
| | - Anneke Hibbel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; ETH Zurich, Institute for Biochemistry, HPM E8.1, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | | |
Collapse
|
99
|
Kuo TC, Li LW, Pan SH, Fang JM, Liu JH, Cheng TJ, Wang CJ, Hung PF, Chen HY, Hong TM, Hsu YL, Wong CH, Yang PC. Purine-Type Compounds Induce Microtubule Fragmentation and Lung Cancer Cell Death through Interaction with Katanin. J Med Chem 2016; 59:8521-34. [DOI: 10.1021/acs.jmedchem.6b00797] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ting-Chun Kuo
- Ph.D.
Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Ling-Wei Li
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Szu-Hua Pan
- Ph.D.
Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Graduate
Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Genome
and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan
| | - Jim-Min Fang
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Jyung-Hurng Liu
- Department
of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Institute
of Genomics and Bioinformatics, National Chung Hsing University, Taichung 402, Taiwan
- Agricultural
Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Rong
Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Ting-Jen Cheng
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Jen Wang
- Department
of Internal Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Institute
of Stem Cell and Translational Cancer Research, Chang Gung Memorial HospitalTaipei 105, Taiwan
| | - Pei-Fang Hung
- Department
of Internal Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsuan-Yu Chen
- Institute
of Statistical Science, Academia Sinica, Taipei 115, Taiwan
| | - Tse-Ming Hong
- Institute
of Clinical Medicine, National Cheng Kung University College of Medicine, Tainan 701, Taiwan
| | - Yuan-Ling Hsu
- Graduate
Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chi-Huey Wong
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Pan-Chyr Yang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
- NTU
Center for Genomic Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
100
|
Tao J, Feng C, Rolls MM. The microtubule-severing protein fidgetin acts after dendrite injury to promote their degeneration. J Cell Sci 2016; 129:3274-81. [PMID: 27411367 DOI: 10.1242/jcs.188540] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/08/2016] [Indexed: 02/01/2023] Open
Abstract
After being severed from the cell body, axons initiate an active degeneration program known as Wallerian degeneration. Although dendrites also seem to have an active injury-induced degeneration program, no endogenous regulators of this process are known. Because microtubule disassembly has been proposed to play a role in both pruning and injury-induced degeneration, we used a Drosophila model to identify microtubule regulators involved in dendrite degeneration. We found that, when levels of fidgetin were reduced using mutant or RNA interference (RNAi) strategies, dendrite degeneration was delayed, but axon degeneration and dendrite pruning proceeded with normal timing. We explored two possible ways in which fidgetin could promote dendrite degeneration: (1) by acting constitutively to moderate microtubule stability in dendrites, or (2) by acting specifically after injury to disassemble microtubules. When comparing microtubule dynamics and stability in uninjured neurons with and without fidgetin, we could not find evidence that fidgetin regulated microtubule stability constitutively. However, we identified a fidgetin-dependent increase in microtubule dynamics in severed dendrites. We conclude that fidgetin acts after injury to promote disassembly of microtubules in dendrites severed from the cell body.
Collapse
Affiliation(s)
- Juan Tao
- Department of Biochemistry and Molecular Biology and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chengye Feng
- Department of Biochemistry and Molecular Biology and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M Rolls
- Department of Biochemistry and Molecular Biology and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|