51
|
Vinet AF, Fiedler T, Studer V, Froquet R, Dardel A, Cosson P, Pieters J. Initiation of multicellular differentiation in Dictyostelium discoideum is regulated by coronin A. Mol Biol Cell 2014; 25:688-701. [PMID: 24403600 PMCID: PMC3937094 DOI: 10.1091/mbc.e13-04-0219] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Multicellular development of Dictyostelium is induced by starvation and is crucial for its long-term survival. Coronin A mediates the transition from growth to development of the cells and initiates the cAMP-dependent relay by regulating the response to secreted cell density and nutrient deprivation factors. Many biological systems respond to environmental changes by activating intracellular signaling cascades, resulting in an appropriate response. One such system is represented by the social amoeba Dictyostelium discoideum. When food sources become scarce, these unicellular cells can initiate a cAMP-driven multicellular aggregation program to ensure long-term survival. On starvation, the cells secrete conditioned medium factors that initiate cAMP signal transduction by inducing expression of genes such as cAMP receptors and adenylate cyclase. The mechanisms involved in the activation of the first pulses of cAMP release have been unclear. We here show a crucial role for the evolutionarily conserved protein coronin A in the initiation of the cAMP response. On starvation, coronin A–deficient cells failed to up-regulate the expression of cAMP-regulated genes, thereby failing to initiate development, despite a normal prestarvation response. Of importance, external addition of cAMP to coronin A–deficient cells resulted in normal chemotaxis and aggregate formation, thereby restoring the developmental program and suggesting a functional cAMP relay in the absence of coronin A. These results suggest that coronin A is dispensable for cAMP sensing, chemotaxis, and development per se but is part of a signal transduction cascade essential for system initiation leading to multicellular development in Dictyostelium.
Collapse
Affiliation(s)
- Adrien F Vinet
- Biozentrum, University of Basel, 4056 Basel, Switzerland Faculty of Medicine, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | |
Collapse
|
52
|
Elmore SA, Boyle MC, Boyle MH, Cora MC, Crabbs TA, Cummings CA, Gruebbel MM, Johnson CL, Malarkey DE, McInnes EF, Nolte T, Shackelford CC, Ward JM. Proceedings of the 2013 National Toxicology Program Satellite Symposium. Toxicol Pathol 2013; 42:12-44. [PMID: 24334674 DOI: 10.1177/0192623313508020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 2013 annual National Toxicology Program (NTP) Satellite Symposium, entitled "Pathology Potpourri," was held in Portland, Oregon, in advance of the Society of Toxicologic Pathology's 32nd annual meeting. The goal of the NTP Symposium is to present current diagnostic pathology or nomenclature issues to the toxicologic pathology community. This article presents summaries of the speakers' presentations, including diagnostic or nomenclature issues that were presented, along with select images that were used for audience voting and discussion. Some lesions and topics covered during the symposium included a caudal tail vertebra duplication in mice; nephroblastematosis in rats; ectopic C cell tumor in a hamster; granular cell aggregates/tumor in the uterus of a hamster; Pneumocystis carinii in the lung of a rat; iatrogenic chronic inflammation in the lungs of control rats; hepatoblastoma arising within an adenoma in a mouse; humoral hypercalcemia of benignancy in a transgenic mouse; acetaminophen-induced hepatotoxicity in rats; electron microscopy images of iatrogenic intraerythrocytic inclusions in transgenic mice; questionable hepatocellular degeneration/cell death/artifact in rats; atypical endometrial hyperplasia in rats; malignant mixed Müllerian tumors/carcinosarcomas in rats; differential diagnoses of proliferative lesions of the intestine of rodents; and finally obstructive nephropathy caused by melamine poisoning in a rat.
Collapse
Affiliation(s)
- Susan A Elmore
- 1National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Zhang XX, Rainey PB. Exploring the sociobiology of pyoverdin-producing Pseudomonas. Evolution 2013; 67:3161-74. [PMID: 24152000 DOI: 10.1111/evo.12183] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 05/29/2013] [Indexed: 01/19/2023]
Abstract
The idea that bacteria are social is a popular concept with implications for understanding the ecology and evolution of microbes. The view arises predominately from reasoning regarding extracellular products, which, it has been argued, can be considered "public goods." Among the best studied is pyoverdin-a diffusible iron-chelating agent produced by bacteria of the genus Pseudomonas. Here we report the de novo evolution of pyoverdin nonproducing mutants, genetically characterize these types and then test the appropriateness of the sociobiology framework by performing growth and fitness assays in the same environment in which the nonproducing mutants evolved. Our data draw attention to discordance in the fit between social evolution theory and biological reality. We show that pyoverdin-defective genotypes can gain advantage by avoiding the cost of production under conditions where the molecule is not required; in some environments pyoverdin is personalized. By exploring the fitness consequences of nonproducing types under a range of conditions, we show complex genotype-by-environment interactions with outcomes that range from social to asocial. Together these findings give reason to question the generality of the conclusion that pyoverdin is a social trait.
Collapse
Affiliation(s)
- Xue-Xian Zhang
- Institute of Natural and Mathematical Sciences, Massey University at Albany, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | | |
Collapse
|
54
|
Häcker G. Is there, and should there be, apoptosis in bacteria? Microbes Infect 2013; 15:640-4. [DOI: 10.1016/j.micinf.2013.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 11/30/2022]
|
55
|
Chen WJ, Huang CG, Fan-Chiang MH, Liu YH, Lee YF. Apoptosis of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae), which failed to migrate within its natural host. J Exp Biol 2013; 216:230-5. [PMID: 22996442 DOI: 10.1242/jeb.072918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sexual reproduction of Ascogregarina taiwanensis (Apicomplexa: Lecudinidae), a parasite specific to the mosquito Aedes albopictus, in Malpighian tubules is initiated by the entry of the trophotozoites developed in the midgut shortly after pupation (usually <5 h). However, only a low proportion of trophozoites are able to migrate; others end up dying. In this study, we demonstrated that those trophozoites that failed to migrate eventually died of apoptosis. Morphological changes such as shrinkage, chromatin aggregations and formation of blunt ridges on the surface were seen in moribund trophozoites. In addition, DNA fragmentation of trophozoites isolated from the midgut of pupae was demonstrated by the presence of DNA ladders, Annexin V staining and TUNEL assays. Detection of caspase-like activity suggests that apoptosis of those trophozoites may have occurred through a mechanism of an intrinsic or mitochondrial-mediated pathway. Although apoptosis has been observed in various protozoan species, it is not clear how apoptosis in single-celled organisms might result from evolution by natural selection. However, we speculate that apoptosis may regulate the parasite load of A. taiwanensis within its natural mosquito host, leading to an optimized state of the survival rate for both parasite and host.
Collapse
Affiliation(s)
- Wei-June Chen
- Department of Public Health and Parasitology, Chang Gung University, Kwei-San, Tao-Yuan 33332, Taiwan.
| | | | | | | | | |
Collapse
|
56
|
Ramsdale M. Programmed cell death in the cellular differentiation of microbial eukaryotes. Curr Opin Microbiol 2012; 15:646-52. [DOI: 10.1016/j.mib.2012.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 01/22/2023]
|
57
|
The involvement of acetic acid in programmed cell death for the elimination of Bacillus sp. used in bioremediation. JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2012. [DOI: 10.1016/j.jgeb.2012.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
58
|
Reece SE, Pollitt LC, Colegrave N, Gardner A. The meaning of death: evolution and ecology of apoptosis in protozoan parasites. PLoS Pathog 2011; 7:e1002320. [PMID: 22174671 PMCID: PMC3234211 DOI: 10.1371/journal.ppat.1002320] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The discovery that an apoptosis-like, programmed cell death (PCD) occurs in a broad range of protozoan parasites offers novel therapeutic tools to treat some of the most serious infectious diseases of humans, companion animals, wildlife, and livestock. Whilst apoptosis is an essential part of normal development, maintenance, and defence in multicellular organisms, its occurrence in unicellular parasites appears counter-intuitive and has proved highly controversial: according to the Darwinian notion of “survival of the fittest”, parasites are expected to evolve strategies to maximise their proliferation, not death. The prevailing, and untested, opinion in the literature is that parasites employ apoptosis to “altruistically” self-regulate the intensity of infection in the host/vector. However, evolutionary theory tells us that at most, this can only be part of the explanation, and other non-mutually exclusive hypotheses must also be tested. Here, we explain the evolutionary concepts that can explain apoptosis in unicellular parasites, highlight the key questions, and outline the approaches required to resolve the controversy over whether parasites “commit suicide”. We highlight the need for integration of proximate and functional approaches into an evolutionary framework to understand apoptosis in unicellular parasites. Understanding how, when, and why parasites employ apoptosis is central to targeting this process with interventions that are sustainable in the face of parasite evolution.
Collapse
Affiliation(s)
- Sarah E Reece
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | |
Collapse
|
59
|
Huang E, Talukder S, Hughes TR, Curk T, Zupan B, Shaulsky G, Katoh-Kurasawa M. BzpF is a CREB-like transcription factor that regulates spore maturation and stability in Dictyostelium. Dev Biol 2011; 358:137-46. [PMID: 21810415 PMCID: PMC3180911 DOI: 10.1016/j.ydbio.2011.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/08/2011] [Accepted: 07/13/2011] [Indexed: 12/31/2022]
Abstract
The cAMP response element-binding protein (CREB) is a highly conserved transcription factor that integrates signaling through the cAMP-dependent protein kinase A (PKA) in many eukaryotes. PKA plays a critical role in Dictyostelium development but no CREB homologue has been identified in this system. Here we show that Dictyostelium utilizes a CREB-like protein, BzpF, to integrate PKA signaling during late development. bzpF(-) mutants produce compromised spores, which are extremely unstable and germination defective. Previously, we have found that BzpF binds the canonical CRE motif in vitro. In this paper, we determined the DNA binding specificity of BzpF using protein binding microarray (PBM) and showed that the motif with the highest specificity is a CRE-like sequence. BzpF is necessary to activate the transcription of at least 15 PKA-regulated, late-developmental target genes whose promoters contain BzpF binding motifs. BzpF is sufficient to activate two of these genes. The comparison of RNA sequencing data between wild type and bzpF(-) mutant revealed that the mutant fails to express 205 genes, many of which encode cellulose-binding and sugar-binding proteins. We propose that BzpF is a CREB-like transcription factor that regulates spore maturation and stability in a PKA-related manner.
Collapse
Affiliation(s)
- Eryong Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Shaheynoor Talukder
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Timothy R. Hughes
- Banting and Best Department of Medical Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Tomaz Curk
- Faculty of Computer and Information Science, University of Ljubljana, Trzaska cesta 25, SI-1001 Ljubljana, Slovenia
| | - Blaz Zupan
- Faculty of Computer and Information Science, University of Ljubljana, Trzaska cesta 25, SI-1001 Ljubljana, Slovenia
| | - Gad Shaulsky
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| |
Collapse
|
60
|
Muregi FW, Ohta I, Masato U, Kino H, Ishih A. Resistance of a rodent malaria parasite to a thymidylate synthase inhibitor induces an apoptotic parasite death and imposes a huge cost of fitness. PLoS One 2011; 6:e21251. [PMID: 21698180 PMCID: PMC3116895 DOI: 10.1371/journal.pone.0021251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 05/25/2011] [Indexed: 01/09/2023] Open
Abstract
Background The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. Methodology/Principal Findings To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. Conclusions/Significance The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan diseases of medical importance.
Collapse
Affiliation(s)
- Francis W Muregi
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | | | | | | | | |
Collapse
|
61
|
Abstract
Apoptosis-inducing factor (AIF) is a flavin adenine dinucleotide-containing, NADH-dependent oxidoreductase residing in the mitochondrial intermembrane space whose specific enzymatic activity remains unknown. Upon an apoptotic insult, AIF undergoes proteolysis and translocates to the nucleus, where it triggers chromatin condensation and large-scale DNA degradation in a caspase-independent manner. Besides playing a key role in execution of caspase-independent cell death, AIF has emerged as a protein critical for cell survival. Analysis of in vivo phenotypes associated with AIF deficiency and defects, and identification of its mitochondrial, cytoplasmic, and nuclear partners revealed the complexity and multilevel regulation of AIF-mediated signal transduction and suggested an important role of AIF in the maintenance of mitochondrial morphology and energy metabolism. The redox activity of AIF is essential for optimal oxidative phosphorylation. Additionally, the protein is proposed to regulate the respiratory chain indirectly, through assembly and/or stabilization of complexes I and III. This review discusses accumulated data with respect to the AIF structure and outlines evidence that supports the prevalent mechanistic view on the apoptogenic actions of the flavoprotein, as well as the emerging concept of AIF as a redox sensor capable of linking NAD(H)-dependent metabolic pathways to apoptosis.
Collapse
Affiliation(s)
- Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California-Irvine, CA 92697-3900, USA.
| |
Collapse
|
62
|
Hasselbring BM, Patel MK, Schell MA. Dictyostelium discoideum as a model system for identification of Burkholderia pseudomallei virulence factors. Infect Immun 2011; 79:2079-88. [PMID: 21402765 PMCID: PMC3088138 DOI: 10.1128/iai.01233-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/01/2011] [Indexed: 02/07/2023] Open
Abstract
Burkholderia pseudomallei is an emerging bacterial pathogen and category B biothreat. Human infections with B. pseudomallei (called melioidosis) present as a range of manifestations, including acute septicemia and pneumonia. Although melioidosis can be fatal, little is known about the molecular basis of B. pseudomallei pathogenicity, in part because of the lack of simple, genetically tractable eukaryotic models to facilitate en masse identification of virulence determinants or explore host-pathogen interactions. Two assays, one high-throughput and one quantitative, were developed to monitor levels of resistance of B. pseudomallei and the closely related nearly avirulent species Burkholderia thailandensis to predation by the phagocytic amoeba Dictyostelium discoideum. The quantitative assay showed that levels of resistance to, and survival within, amoeba by these bacteria and their known virulence mutants correlate well with their published levels of virulence in animals. Using the high-throughput assay, we screened a 1,500-member B. thailandensis transposon mutant library and identified 13 genes involved in resistance to predation by D. discoideum. Orthologs of these genes were disrupted in B. pseudomallei, and nearly all mutants had similarly decreased resistance to predation by D. discoideum. For some mutants, decreased resistance also correlated with reduced survival in and cytotoxicity toward macrophages, as well as attenuated virulence in mice. These observations suggest that some factors required by B. pseudomallei for resistance to environmental phagocytes also aid in resistance to phagocytic immune cells and contribute to disease in animals. Thus, D. discoideum provides a novel, high-throughput model system for facilitating inquiry into B. pseudomallei virulence.
Collapse
Affiliation(s)
| | - Maharsh K. Patel
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Mark A. Schell
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
63
|
Dziedzic SA, Caplan AB. Identification of autophagy genes participating in zinc-induced necrotic cell death in Saccharomyces cerevisiae. Autophagy 2011; 7:490-500. [PMID: 21317551 DOI: 10.4161/auto.7.5.14872] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Eukaryotes use a common set of genes to perform two mechanistically similar autophagic processes. Bulk autophagy harvests proteins nonselectively and reuses their constitutents when nutrients are scarce. In contrast, different forms of selective autophagy target protein aggregates or damaged organelles that threaten to interfere with growth. Yeast uses one form of selective autophagy, called cytoplasm-to-vacuole targeting (Cvt), to engulf two vacuolar enzymes in Cvt vesicles ("CVT-somes") within which they are transported to vacuoles for maturation. While both are dispensable normally, bulk and selective autophagy help sustain life under stressful conditions. Consistent with this view, knocking out several genes participating in Cvt and specialized autophagic pathways heightened the sensitivity of Saccharomyces cerevisiae to inhibitory levels of Zn(2+). The loss of other autophagic genes, and genes responsible for apoptotic cell death, had no such effect. Unexpectedly, the loss of members of a third set of autophagy genes heightened cellular resistance to zinc as if they encoded proteins that actively contributed to zinc-induced cell death. Further studies showed that both sensitive and resistant strains accumulated similar amounts of H2O2 during zinc treatments, but that more sensitive strains showed signs of necrosis sooner. Although zinc lethality depended on autophagic proteins, studies with several reporter genes failed to reveal increased autophagic activity. In fact, microscopy analysis indicated that Zn(2+) partially inhibited fusion of Cvt vesicles with vacuoles. Further studies into how the loss of autophagic processes suppressed necrosis in yeast might reveal whether a similar process could occur in plants and animals.
Collapse
Affiliation(s)
- Slawomir A Dziedzic
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID, USA
| | | |
Collapse
|
64
|
Villalba-Magdaleno JD, Pérez-Ishiwara G, Serrano-Luna J, Tsutsumi V, Shibayama M. In vivo programmed cell death of Entamoeba histolytica trophozoites in a hamster model of amoebic liver abscess. MICROBIOLOGY-SGM 2011; 157:1489-1499. [PMID: 21349978 DOI: 10.1099/mic.0.047183-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Entamoeba histolytica trophozoites can induce host cell apoptosis, which correlates with the virulence of the parasite. This phenomenon has been seen during the resolution of an inflammatory response and the survival of the parasites. Other studies have shown that E. histolytica trophozoites undergo programmed cell death (PCD) in vitro, but how this process occurs within the mammalian host cell remains unclear. Here, we studied the PCD of E. histolytica trophozoites as part of an in vivo event related to the inflammatory reaction and the host-parasite interaction. Morphological study of amoebic liver abscesses showed only a few E. histolytica trophozoites with peroxidase-positive nuclei identified by terminal deoxynucleotidyltransferase enzyme-mediated dUTP nick end labelling (TUNEL). To better understand PCD following the interaction between amoebae and inflammatory cells, we designed a novel in vivo model using a dialysis bag containing E. histolytica trophozoites, which was surgically placed inside the peritoneal cavity of a hamster and left to interact with the host's exudate components. Amoebae collected from bags were then examined by TUNEL assay, fluorescence-activated cell sorting (FACS) and transmission electron microscopy. Nuclear condensation and DNA fragmentation of E. histolytica trophozoites were observed after exposure to peritoneal exudates, which were mainly composed of neutrophils and macrophages. Our results suggest that production of nitric oxide by inflammatory cells could be involved in PCD of trophozoites. In this modified in vivo system, PCD appears to play a prominent role in the host-parasite interaction and parasite cell death.
Collapse
Affiliation(s)
- José D'Artagnan Villalba-Magdaleno
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Campus Chapultepec, CP 11850, Mexico.,Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, CP 07300, Mexico
| | | | | | - Víctor Tsutsumi
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, CP 07300, Mexico
| | - Mineko Shibayama
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, CP 07300, Mexico
| |
Collapse
|
65
|
McCall K. Genetic control of necrosis - another type of programmed cell death. Curr Opin Cell Biol 2010; 22:882-8. [PMID: 20889324 PMCID: PMC2993806 DOI: 10.1016/j.ceb.2010.09.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 01/24/2023]
Abstract
Necrosis has been thought to be an accidental or uncontrolled type of cell death rather than programmed. Recent studies from diverse organisms show that necrosis follows a stereotypical series of cellular and molecular events: swelling of organelles, increases in reactive oxygen species and cytoplasmic calcium, a decrease in ATP, activation of calpain and cathepsin proteases, and finally rupture of organelles and plasma membrane. Genetic and chemical manipulations demonstrate that necrosis can be inhibited, indicating that necrosis can indeed be controlled and follows a specific 'program.' This review highlights recent findings from C. elegans, yeast, Dictyostelium, Drosophila, and mammals that collectively provide evidence for conserved mechanisms of necrosis.
Collapse
Affiliation(s)
- Kimberly McCall
- Department of Biology, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
66
|
Silva MT. Secondary necrosis: the natural outcome of the complete apoptotic program. FEBS Lett 2010; 584:4491-9. [PMID: 20974143 DOI: 10.1016/j.febslet.2010.10.046] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/17/2010] [Accepted: 10/19/2010] [Indexed: 12/31/2022]
Abstract
The predominant definition of apoptosis considers that the elimination of the apoptosing cell is by heterolytic degradation following phagocytosis by an assisting scavenger (efferocytosis). However, an alternative and largely underestimated outcome of apoptosis is secondary necrosis, an autolytic process of cell disintegration with release of cell components that occurs when there is no intervention of scavengers and the full apoptotic program is completed. Secondary necrosis is the typical outcome of apoptosis in unicellular eukaryotes but, importantly, it may also occur in multicellular animals and has been implicated in the genesis of important human pathologies. Secondary necrosis is a mode of cell elimination with specific molecular and morphological features and should be considered the natural outcome of the complete apoptotic program.
Collapse
Affiliation(s)
- Manuel T Silva
- Instituto de Biologia Molecular e Celular, University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal.
| |
Collapse
|
67
|
Nedelcu AM, Driscoll WW, Durand PM, Herron MD, Rashidi A. On the paradigm of altruistic suicide in the unicellular world. Evolution 2010; 65:3-20. [PMID: 20722725 DOI: 10.1111/j.1558-5646.2010.01103.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Altruistic suicide is best known in the context of programmed cell death (PCD) in multicellular individuals, which is understood as an adaptive process that contributes to the development and functionality of the organism. After the realization that PCD-like processes can also be induced in single-celled lineages, the paradigm of altruistic cell death has been extended to include these active cell death processes in unicellular organisms. Here, we critically evaluate the current conceptual framework and the experimental data used to support the notion of altruistic suicide in unicellular lineages, and propose new perspectives. We argue that importing the paradigm of altruistic cell death from multicellular organisms to explain active death in unicellular lineages has the potential to limit the types of questions we ask, thus biasing our understanding of the nature, origin, and maintenance of this trait. We also emphasize the need to distinguish between the benefits and the adaptive role of a trait. Lastly, we provide an alternative framework that allows for the possibility that active death in single-celled organisms is a maladaptive trait maintained as a byproduct of selection on pro-survival functions, but that could-under conditions in which kin/group selection can act-be co-opted into an altruistic trait.
Collapse
Affiliation(s)
- Aurora M Nedelcu
- University of New Brunswick, Department of Biology, Fredericton, NB, Canada.
| | | | | | | | | |
Collapse
|
68
|
Abstract
Programmed cell death (PCD) occurs widely in species from every kingdom of life. It has been shown to be an integral aspect of development in multicellular organisms, and it is an essential component of the immune response to infectious agents. An analysis of the phylogenetic origin of PCD now shows that it evolved independently several times, and it is fundamental to basic cellular physiology. Undoubtedly, PCD pervades all life at every scale of analysis. These considerations provide a backdrop for understanding the complexity of intertwined, but independent, cell death programs that operate within the immune system. In particular, the contributions of apoptosis, autophagy, and necrosis in the resolution of an immune response are considered.
Collapse
Affiliation(s)
- Stephen M Hedrick
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093-0377, USA.
| | | | | |
Collapse
|
69
|
Nandi N, Sen A, Banerjee R, Kumar S, Kumar V, Ghosh AN, Das P. Hydrogen peroxide induces apoptosis-like death in Entamoeba histolytica trophozoites. Microbiology (Reading) 2010; 156:1926-1941. [DOI: 10.1099/mic.0.034066-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Programmed cell death (PCD) is an essential process in the growth and development of multicellular organisms. However, accumulating evidence indicates that unicellular eukaryotes can also undergo PCD with apoptosis-like features. This study demonstrates that after exposure to 0.8 mM H2O2 for 9 h Entamoeba histolytica presents morphological and biochemical evidence of apoptosis-like death. Morphological characteristics of apoptosis-like death including DNA fragmentation, increased vacuolization, nuclear condensation and cell rounding were observed for H2O2-exposed trophozoites with preservation of membrane integrity. Biochemical alteration in ion fluxes is also a key feature in PCD, and H2O2-exposed trophozoites showed overproduction of reactive oxygen species, increased cytosolic Ca2+ and decreased intracellular pH. Phosphatidylserine was also found to be expressed in the outer leaflet of the plasma membrane of the H2O2-treated trophozoites. Pretreatment with the cysteine protease inhibitor E-64d, the extracellular and intracellular Ca2+ chelators EGTA and BAPTA/AM, and the Ca2+ influx inhibitor verapamil prior to H2O2 exposure abolished DNA fragmentation. The oxidatively stressed trophozoites also showed an increased calpain activity, indicating involvement of Ca2+-dependent calpain-like cysteine proteases in PCD of E. histolytica. A homogeneous caspase assay showed no significant caspase activity, and administration of caspase 1 inhibitor also did not prevent the death phenotype for the oxidatively stressed trophozoites, indicating a caspase-independent apoptosis-like death. Our observations clearly demonstrate that there is a distinct calpain-dependent but caspase-independent pathway for apoptosis-like death in oxidatively stressed E. histolytica trophozoites.
Collapse
Affiliation(s)
- Nilay Nandi
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Abhik Sen
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Rajdeep Banerjee
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Sudeep Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Vikash Kumar
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| | - Amar Nath Ghosh
- Division of Electron Microscopy, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beliaghata-700010, India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna-800007, Bihar, India
| |
Collapse
|
70
|
Staurosporine-induced programmed cell death in Blastocystis occurs independently of caspases and cathepsins and is augmented by calpain inhibition. Microbiology (Reading) 2010; 156:1284-1293. [DOI: 10.1099/mic.0.034025-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the protozoan parasite Blastocystis exhibits apoptotic features with caspase-like activity upon exposure to a cytotoxic monoclonal antibody or the anti-parasitic drug metronidazole. The present study reports that staurosporine (STS), a common apoptosis inducer in mammalian cells, also induces cytoplasmic and nuclear features of apoptosis in Blastocystis, including cell shrinkage, phosphatidylserine (PS) externalization, maintenance of plasma membrane integrity, extensive cytoplasmic vacuolation, nuclear condensation and DNA fragmentation. STS-induced PS exposure and DNA fragmentation were abolished by the mitochondrial transition pore blocker cyclosporine A and significantly inhibited by the broad-range cysteine protease inhibitor iodoacetamide. Interestingly, the apoptosis phenotype was insensitive to inhibitors of caspases and cathepsins B and L, while calpain-specific inhibitors augmented the STS-induced apoptosis response. While the identities of the proteases responsible for STS-induced apoptosis warrant further investigation, these findings demonstrate that programmed cell death in Blastocystis is complex and regulated by multiple mediators.
Collapse
|
71
|
Giusti C, Luciani MF, Ravens S, Gillet A, Golstein P. Autophagic cell death in Dictyostelium requires the receptor histidine kinase DhkM. Mol Biol Cell 2010; 21:1825-35. [PMID: 20375146 PMCID: PMC2877641 DOI: 10.1091/mbc.e09-11-0976] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Through random mutagenesis, the receptor histidine kinase DhkM was found essential for autophagic cell death (ACD) in Dictyostelium. DhkM is the most downstream known molecule required for this model ACD. Different DhkM mutants showed distinct non-vacuolizing ACD phenotypes and genetically separated previously undissociated late cell death events. Dictyostelium constitutes a genetically tractable model for the analysis of autophagic cell death (ACD). During ACD, Dictyostelium cells first transform into paddle cells and then become round, synthesize cellulose, vacuolize, and die. Through random insertional mutagenesis, we identified the receptor histidine kinase DhkM as being essential for ACD. Surprisingly, different DhkM mutants showed distinct nonvacuolizing ACD phenotypes. One class of mutants arrested ACD at the paddle cell stage, perhaps through a dominant-negative effect. Other mutants, however, progressed further in the ACD program. They underwent rounding and cellulose synthesis but stopped before vacuolization. Moreover, they underwent clonogenic but not morphological cell death. Exogenous 8-bromo-cAMP restored vacuolization and death. A role for a membrane receptor at a late stage of the ACD pathway is puzzling, raising questions as to which ligand it is a receptor for and which moieties it phosphorylates. Together, DhkM is the most downstream-known molecule required for this model ACD, and its distinct mutants genetically separate previously undissociated late cell death events.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Marseille F-13288, France
| | | | | | | | | |
Collapse
|
72
|
Signaling mechanisms of apoptosis-like programmed cell death in unicellular eukaryotes. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:341-53. [DOI: 10.1016/j.cbpb.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 01/19/2010] [Accepted: 01/23/2010] [Indexed: 11/18/2022]
|
73
|
Ghosh AS, Dutta S, Raha S. Hydrogen peroxide-induced apoptosis-like cell death in Entamoeba histolytica. Parasitol Int 2010; 59:166-72. [PMID: 20079879 DOI: 10.1016/j.parint.2010.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/05/2010] [Accepted: 01/08/2010] [Indexed: 11/26/2022]
Abstract
The microaerophilic intestinal parasitic protozoan Entamoeba histolytica has been previously shown to be highly susceptible to oxidative stress induced by hydrogen peroxide. However the mechanism of cell death was not investigated. Studies presented in this paper demonstrate several morphological features in the parasite when exposed to H(2)O(2) which are identical to metazoan apoptotic phenotype indicating a possible apoptosis-like cell death exhibited by E. histolytica in response to H(2)O(2) treatment. Trophozoite cell shrinkage, DNA fragmentation, phosphatidyl serine externalization and increased endogenous reactive oxygen species level have been observed in the protozoan parasite when exposed to 2.0mM H(2)O(2) for different time periods. Although the parasite genome is completely devoid of any of the homologues of mammalian caspases it still codes for a huge number of cysteine proteases which may take over the apoptotic function of the caspases. But the present study indicates the existence of a cysteine protease independent programmed cell death in the parasite since E-64 the specific cysteine protease inhibitor could not rescue the cells from H(2)O(2) induced apoptosis-like cell death.
Collapse
Affiliation(s)
- Anupama Sardar Ghosh
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, India
| | | | | |
Collapse
|
74
|
Apoptosis-like cell death induced by Salmonella in Acanthamoeba rhysodes. Genomics 2009; 94:132-7. [DOI: 10.1016/j.ygeno.2009.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 04/21/2009] [Accepted: 05/06/2009] [Indexed: 12/29/2022]
|
75
|
Arambage SC, Grant KM, Pardo I, Ranford-Cartwright L, Hurd H. Malaria ookinetes exhibit multiple markers for apoptosis-like programmed cell death in vitro. Parasit Vectors 2009; 2:32. [PMID: 19604379 PMCID: PMC2720949 DOI: 10.1186/1756-3305-2-32] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 07/15/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A wide range of unicellular eukaryotes have now been shown to undergo a form of programmed cell death (PCD) that resembles apoptosis; exhibiting morphological and, in some cases, biochemical markers typical of metazoans. However, reports that sexual and asexual stages of malaria parasites exhibit these markers have been challenged. Here we use a rodent malaria model, Plasmodium berghei, to determine whether, and what proportion of cultured ookinetes show signs of apoptosis-like death and extend the study to examine ookinetes of Plasmodium falciparum in vivo. RESULTS Ookinetes displayed the following markers of PCD: loss of mitochondrial membrane potential, nuclear chromatin condensation, DNA fragmentation, translocation of phosphatidylserine to the outer surface of the cell membrane and caspase-like activity. The proportion of parasites expressing apoptosis markers rose with time, particularly when cultured in phosphate buffered saline. Some ookinetes positive for apoptosis markers also had compromised membranes, which could represent a late stage in the process. When these are included a similar proportion of ookinetes display each marker. Over 50% of P. falciparum ookinetes, removed from the mosquito midgut lumen 24 h post-infection, had nuclei containing fragmented DNA. CONCLUSION We have confirmed previous reports that Plasmodium ookinetes display multiple signs that suggest they die by a mechanism resembling apoptosis. This occurs in vivo and in vitro without experimental application of triggers. Our findings support the hypothesis that non-necrotic mechanisms of cell death evolved before the advent of multicellular organisms.
Collapse
Affiliation(s)
- Shashini C Arambage
- Institute of Science and Technology in Medicine, Centre for Applied Entomology and Parasitology, School of Life Sciences, Huxley Building, Keele University, Staffordshire, ST5 5BG, UK.
| | | | | | | | | |
Collapse
|
76
|
Jiménez C, Capasso JM, Edelstein CL, Rivard CJ, Lucia S, Breusegem S, Berl T, Segovia M. Different ways to die: cell death modes of the unicellular chlorophyte Dunaliella viridis exposed to various environmental stresses are mediated by the caspase-like activity DEVDase. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:815-28. [PMID: 19251986 PMCID: PMC2652065 DOI: 10.1093/jxb/ern330] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 11/20/2008] [Accepted: 11/24/2008] [Indexed: 05/23/2023]
Abstract
Programmed cell death is necessary for homeostasis in multicellular organisms and it is also widely recognized to occur in unicellular organisms. However, the mechanisms through which it occurs in unicells, and the enzymes involved within the final response is still the subject of heated debate. It is shown here that exposure of the unicellular microalga Dunaliella viridis to several environmental stresses, induced different cell death morphotypes, depending on the stimulus received. Senescent cells demonstrated classical and unambiguous apoptotic-like characteristics such as chromatin condensation, DNA fragmentation, intact organelles, and blebbing of the cell membrane. Acute heat shock caused general swelling and altered plasma membrane, but the presence of chromatin clusters and DNA strand breaks suggested a necrotic-like event. UV irradiated cells presented changes typical for necrosis, together with apoptotic characteristics resembling an intermediate cell-death phenotype termed aponecrosis-like. Cells subjected to hyperosmotic shock revealed chromatin spotting without DNA fragmentation, and extensive cytoplasmic swelling and vacuolization, comparable to a paraptotic-like cell death phenotype. Nitrogen-starved cells showed pyknosis, blebbing, and cytoplasmic consumption, indicating a similarity to autophagic/vacuolar-like cell death. The caspase-like activity DEVDase was measured by using the fluorescent substrate Ac-DEVD-AMC and antibodies against the human caspase-3 active enzyme cross-reacted with bands, the intensity of which paralleled the activity. All the environmental stresses tested produced a substantial increase in both DEVDase activity and protein levels. The irreversible caspase-3 inhibitor Z-DEVD-FMK completely inhibited the enzymatic activity whereas serine and aspartyl proteases inhibitors did not. These results show that cell death in D. viridis does not conform to a single pattern and that environmental stimuli may produce different types of cell death depending on the type and intensity of the stimulus, all of which help to understand the cell death-dependent and cell death-independent functions of caspase-like proteins. Hence, these data support the theory that alternative, non-apoptotic programmed cell death (PCDs), exist either in parallel or in an independent manner with apoptosis and were already present in single-celled organisms that evolved some 1.2-1.6 billion years ago.
Collapse
Affiliation(s)
- Carlos Jiménez
- Department of Ecology, Faculty of Sciences, University of Málaga, Bvd. Louis Pasteur s/n, E-29071 Málaga, Spain
| | - Juan M. Capasso
- Department of Renal Diseases and Hypertension, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - Charles L. Edelstein
- Department of Renal Diseases and Hypertension, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - Christopher J. Rivard
- Department of Renal Diseases and Hypertension, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - Scott Lucia
- Department of Pathology, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - Sophia Breusegem
- Department of Renal Diseases and Hypertension, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - Tomás Berl
- Department of Renal Diseases and Hypertension, School of Medicine, University of Colorado Health Sciences Center, 4200 E. 9th Av. Denver, CO 80262, USA
| | - María Segovia
- Department of Ecology, Faculty of Sciences, University of Málaga, Bvd. Louis Pasteur s/n, E-29071 Málaga, Spain
| |
Collapse
|
77
|
Nedelcu AM. Comparative Genomics of Phylogenetically Diverse Unicellular Eukaryotes Provide New Insights into the Genetic Basis for the Evolution of the Programmed Cell Death Machinery. J Mol Evol 2009; 68:256-68. [DOI: 10.1007/s00239-009-9201-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/21/2008] [Accepted: 01/12/2009] [Indexed: 11/30/2022]
|
78
|
|
79
|
Giusti C, Tresse E, Luciani MF, Golstein P. Autophagic cell death: analysis in Dictyostelium. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:1422-31. [PMID: 19133302 DOI: 10.1016/j.bbamcr.2008.12.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/04/2008] [Accepted: 12/04/2008] [Indexed: 11/24/2022]
Abstract
Autophagic cell death (ACD) can be operationally described as cell death with an autophagic component. While most molecular bases of this autophagic component are known, in ACD the mechanism of cell death proper is not well defined, in particular because in animal cells there is poor experimental distinction between what triggers autophagy and what triggers ACD. Perhaps as a consequence, it is often thought that in animal cells a little autophagy is protective while a lot is destructive and leads to ACD, thus that the shift from autophagy to ACD is quantitative. The aim of this article is to review current knowledge on ACD in Dictyostelium, a very favorable model, with emphasis on (1) the qualitative, not quantitative nature of the shift from autophagy to ACD, in contrast to the above, and (2) random or targeted mutations of in particular the following genes: iplA (IP3R), TalB (talinB), DcsA (cellulose synthase), GbfA, ugpB, glcS (glycogen synthase) and atg1. These mutations allowed the genetic dissection of ACD features, dissociating in particular vacuolisation from cell death.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université, INSERM U631, CNRS UMR6102, Case 906, Faculté des Sciences de Luminy, Marseille F-13288, France
| | | | | | | |
Collapse
|
80
|
Autophagic or necrotic cell death triggered by distinct motifs of the differentiation factor DIF-1. Cell Death Differ 2008; 16:564-70. [PMID: 19079140 DOI: 10.1038/cdd.2008.177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Autophagic or necrotic cell death (ACD and NCD, respectively), studied in the model organism Dictyostelium which offers unique advantages, require triggering by the same differentiation-inducing factor DIF-1. To initiate these two types of cell death, does DIF-1 act through only one or through two distinct recognition structures? Such distinct structures may recognize distinct motifs of DIF-1. To test this albeit indirectly, DIF-1 was modified at one or two of several positions, and the corresponding derivatives were tested for their abilities to induce ACD or NCD. The results strongly indicated that distinct biochemical motifs of DIF-1 were required to trigger ACD or NCD, and that these motifs were separately recognized at the onset of ACD or NCD. In addition, both ACD and NCD were induced more efficiently by DIF-1 than by either its precursors or its immediate catabolite. These results showed an unexpected relation between a differentiation factor, the cellular structures that recognize it, the cell death types it can trigger and the metabolic state of the cell. The latter seems to guide the choice of the signaling pathway to cell death, which in turn imposes the cell death type and the recognition pattern of the differentiation factor.
Collapse
|
81
|
Giusti C, Luciani MF, Klein G, Aubry L, Tresse E, Kosta A, Golstein P. Necrotic cell death: From reversible mitochondrial uncoupling to irreversible lysosomal permeabilization. Exp Cell Res 2008; 315:26-38. [PMID: 18951891 DOI: 10.1016/j.yexcr.2008.09.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/24/2008] [Accepted: 09/24/2008] [Indexed: 11/19/2022]
Abstract
Dictyostelium atg1- mutant cells provide an experimentally and genetically favorable model to study necrotic cell death (NCD) with no interference from apoptosis or autophagy. In such cells subjected to starvation and cAMP, induction by the differentiation-inducing factor DIF or by classical uncouplers led within minutes to mitochondrial uncoupling, which causally initiated NCD. We now report that (1) in this model, NCD included a mitochondrial-lysosomal cascade of events, (2) mitochondrial uncoupling and therefore initial stages of death showed reversibility for a surprisingly long time, (3) subsequent lysosomal permeabilization could be demonstrated using Lysosensor blue, acridin orange, Texas red-dextran and cathepsin B substrate, (4) this lysosomal permeabilization was irreversible, and (5) the presence of the uncoupler was required to maintain mitochondrial lesions but also to induce lysosomal lesions, suggesting that signaling from mitochondria to lysosomes must be sustained by the continuous presence of the uncoupler. These results further characterized the NCD pathway in this priviledged model, contributed to a definition of NCD at the lysosomal level, and suggested that in mammalian NCD even late reversibility attempts by removal of the inducer may be of therapeutic interest.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie de Marseille-Luminy (CIML), Faculté des Sciences de Luminy, Aix Marseille Université, Marseille F-13288, France
| | | | | | | | | | | | | |
Collapse
|
82
|
Kosta A, Luciani MF, Geerts WJ, Golstein P. Marked mitochondrial alterations upon starvation without cell death, caspases or Bcl-2 family members. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2013-9. [DOI: 10.1016/j.bbamcr.2008.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/03/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
|
83
|
Abstract
Macroautophagy, often referred to as autophagy, designates the process by which portions of the cytoplasm, intracellular organelles and long-lived proteins are engulfed in double-membraned vacuoles (autophagosomes) and sent for lysosomal degradation. Basal levels of autophagy contribute to the maintenance of intracellular homoeostasis by ensuring the turnover of supernumerary, aged and/or damaged components. Under conditions of starvation, the autophagic pathway operates to supply cells with metabolic substrates, and hence represents an important pro-survival mechanism. Moreover, autophagy is required for normal development and for the protective response to intracellular pathogens. Conversely, uncontrolled autophagy is associated with a particular type of cell death (termed autophagic, or type II) that is characterized by the massive accumulation of autophagosomes. Regulators of apoptosis (e.g. Bcl-2 family members) also modulate autophagy, suggesting an intimate cross-talk between these two degradative pathways. It is still unclear whether autophagic vacuolization has a causative role in cell death or whether it represents the ultimate attempt of cells to cope with lethal stress. For a multicellular organism, autophagic cell death might well represent a pro-survival mechanism, by providing metabolic supplies during whole-body nutrient deprivation. Alternatively, type II cell death might contribute to the disposal of cell corpses when heterophagy is deficient. Here, we briefly review the roles of autophagy in cell death and its avoidance.
Collapse
|
84
|
Kourtis N, Tavernarakis N. Autophagy and cell death in model organisms. Cell Death Differ 2008; 16:21-30. [DOI: 10.1038/cdd.2008.120] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
85
|
Durand PM, Coetzer TL. Utility of computational methods to identify the apoptosis machinery in unicellular eukaryotes. Bioinform Biol Insights 2008; 2:101-17. [PMID: 19812769 PMCID: PMC2735952 DOI: 10.4137/bbi.s430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Apoptosis is the phenotypic result of an active, regulated process of self-destruction. Following various cellular insults, apoptosis has been demonstrated in numerous unicellular eukaryotes, but very little is known about the genes and proteins that initiate and execute this process in this group of organisms. A bioinformatic approach presents an array of powerful methods to direct investigators in the identification of the apoptosis machinery in protozoans. In this review, we discuss some of the available computational methods and illustrate how they may be applied using the identification of a Plasmodium falciparum metacaspase gene as an example.
Collapse
Affiliation(s)
- Pierre Marcel Durand
- Department of Molecular Medicine and Haematology, University of the Witwatersrand and National Health Laboratory Service, Johannesburg, South Africa.
| | | |
Collapse
|
86
|
Deponte M. Programmed cell death in protists. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1396-405. [PMID: 18291111 DOI: 10.1016/j.bbamcr.2008.01.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/11/2008] [Accepted: 01/19/2008] [Indexed: 12/01/2022]
Abstract
Programmed cell death in protists does not seem to make sense at first sight. However, apoptotic markers in unicellular organisms have been observed in all but one of the six/eight major groups of eukaryotes suggesting an ancient evolutionary origin of this regulated process. This review summarizes the available data on apoptotic markers in non-opisthokonts and elucidates potential functions and evolution of programmed cell death. A newly discovered family of caspase-like proteases, the metacaspases, is considered to exert the function of caspases in unicellular organisms. Important results on metacaspases, however, showed that they cannot be always correlated to the measured proteolytic activity during protist cell death. Thus, a major challenge for apoptosis research in a variety of protists remains the identification of the molecular cell death machinery.
Collapse
Affiliation(s)
- Marcel Deponte
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians Universität, Munich, Germany.
| |
Collapse
|
87
|
Bidle KD, Bender SJ. Iron starvation and culture age activate metacaspases and programmed cell death in the marine diatom Thalassiosira pseudonana. EUKARYOTIC CELL 2008; 7:223-36. [PMID: 18039944 PMCID: PMC2238155 DOI: 10.1128/ec.00296-07] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 11/13/2007] [Indexed: 11/20/2022]
Abstract
In the modern ocean, phytoplankton maintain extremely high primary production/biomass ratios, indicating that they bloom, die, and are replaced weekly. The molecular mechanisms regulating cellular mortality and turnover are largely unknown, even though they effectively short-circuit carbon export to the deep ocean and channel primary productivity to microbial food webs. Here, we present morphological, biochemical, and molecular evidence of caspase-mediated, autocatalytic programmed cell death (PCD) in the diatom Thalassiosira pseudonana in response to iron starvation. Transmission electron microscopy revealed internal degradation of nuclear, chloroplastic, and mitochondrial organelles, all while the plasma membranes remained intact. Cellular degradation was concomitant with dramatic decreases in photosynthetic efficiency, externalization of phosphatidylserine, and significantly elevated caspase-specific activity, with the addition of a broad-spectrum caspase inhibitor rescuing cells from death. A search of the T. pseudonana genome identified six distinct putative metacaspases containing a conserved caspase domain structure. Quantitative reverse transcription-PCR and Western blot analysis revealed differential gene and protein expression of T. pseudonana metacaspases, some of which correlated with physiological stress and caspase activity. Taken together with the recent discovery of the metacaspase-mediated viral infection of phytoplankton (K. D. Bidle, L. Haramaty, J. Barcelos-Ramos, and P. G. Falkowski, Proc. Natl. Acad. Sci. USA 104:6049-6054, 2007), our findings reveal a key role for metacaspases in the turnover of phytoplankton biomass in the oceans. Furthermore, given that Fe is required for photosynthetic electron transfer and is chronically limiting in a variety of oceanic systems, including high-nutrient low-chlorophyll regions, our findings provide a potential ecological context for PCD in these unicellular photoautotrophs.
Collapse
Affiliation(s)
- Kay D Bidle
- Environmental Biophysics and Molecular Ecology Group, Institute of Marine and Coastal Sciences, Rutgers University, 71 Dudley Road, New Brunswick, NJ 08901, USA.
| | | |
Collapse
|
88
|
Villalba JD, Gómez C, Medel O, Sánchez V, Carrero JC, Shibayama M, Ishiwara DGP. Programmed cell death in Entamoeba histolytica induced by the aminoglycoside G418. MICROBIOLOGY-SGM 2008; 153:3852-3863. [PMID: 17975094 DOI: 10.1099/mic.0.2007/008599-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study presents morphological and biochemical evidence of programmed cell death (PCD) in Entamoeba histolytica induced by exposure of trophozoites to the aminoglycoside antibiotic G418. Morphological characteristics of PCD, including cell shrinkage, reduced cellular volume, nuclear condensation, DNA fragmentation and vacuolization were observed, with preservation of trophozoite membrane integrity. PCD is orchestrated biochemically by alterations in intracellular ion fluxes. In G418-treated trophozoites, overproduction of reactive oxygen species (ROS), decreased intracellular K+, increased cytosolic calcium, and decreased intracellular pH levels were observed. However, externalization of phosphatidylserine was not detected. These results suggest that amoebae can undergo PCD under stress conditions, and that this PCD shares several properties with PCD reported in mammals and in a variety of unicellular organisms.
Collapse
Affiliation(s)
- J D'Artagnan Villalba
- Programa de Biomedicina Molecular ENMyH, Instituto Politécnico Nacional, CP 07320, Mexico
| | - Consuelo Gómez
- Programa de Biomedicina Molecular ENMyH, Instituto Politécnico Nacional, CP 07320, Mexico
| | - Olivia Medel
- Programa de Biomedicina Molecular ENMyH, Instituto Politécnico Nacional, CP 07320, Mexico
| | - Virginia Sánchez
- Escuela Militar de Graduados de Sanidad, UDEFA CP 11620, Mexico.,Programa de Biomedicina Molecular ENMyH, Instituto Politécnico Nacional, CP 07320, Mexico
| | | | - Mineko Shibayama
- Departamento de Patología Experimental CINVESTAV-IPN, CP 07300, Mexico
| | | |
Collapse
|
89
|
Giusti C, Kosta A, Lam D, Tresse E, Luciani MF, Golstein P. Analysis of autophagic and necrotic cell death in Dictyostelium. Methods Enzymol 2008; 446:1-15. [PMID: 18603113 DOI: 10.1016/s0076-6879(08)01601-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-apoptotic cell death types can be conveniently studied in Dictyostelium discoideum, an exceptionally favorable model not only because of its well-known genetic and experimental advantages, but also because in Dictyostelium there is no apoptosis machinery that could interfere with non-apoptotic cell death. We show here how to conveniently demonstrate, assess, and study these non-apoptotic cell death types. These can be generated by use of modifications of the monolayer technique of Rob Kay et al., and either wild-type HMX44A Dictyostelium cells, leading to autophagic cell death, or the corresponding atg1- autophagy gene mutant cells, leading to necrotic cell death. Methods to follow these non-apoptotic cell death types qualitatively and quantitatively will be reported.
Collapse
Affiliation(s)
- Corinne Giusti
- Centre d'Immunologie INSERM-CNRS-Univ.Medit. de Marseille-Luminy, Marseille, France
| | | | | | | | | | | |
Collapse
|
90
|
Tresse E, Giusti C, Kosta A, Luciani M, Golstein P. Chapter 23 Autophagy and Autophagic Cell Death in Dictyostelium. Methods Enzymol 2008; 451:343-58. [DOI: 10.1016/s0076-6879(08)03223-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
91
|
Lam D, Kosta A, Luciani MF, Golstein P. The inositol 1,4,5-trisphosphate receptor is required to signal autophagic cell death. Mol Biol Cell 2007; 19:691-700. [PMID: 18077554 DOI: 10.1091/mbc.e07-08-0823] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The signaling pathways governing pathophysiologically important autophagic (ACD) and necrotic (NCD) cell death are not entirely known. In the Dictyostelium eukaryote model, which benefits from both unique analytical and genetic advantages and absence of potentially interfering apoptotic machinery, the differentiation factor DIF leads from starvation-induced autophagy to ACD, or, if atg1 is inactivated, to NCD. Here, through random insertional mutagenesis, we found that inactivation of the iplA gene, the only gene encoding an inositol 1,4,5-trisphosphate receptor (IP3R) in this organism, prevented ACD. The IP3R is a ligand-gated channel governing Ca(2+) efflux from endoplasmic reticulum stores to the cytosol. Accordingly, Ca(2+)-related drugs also affected DIF signaling leading to ACD. Thus, in this system, a main pathway signaling ACD requires IP3R and further Ca(2+)-dependent steps. This is one of the first insights in the molecular understanding of a signaling pathway leading to autophagic cell death.
Collapse
Affiliation(s)
- David Lam
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale U631, and Centre National de la Recherche Scientifique Unité Mixte de Recherche 6102, Aix Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
92
|
Abstract
The identification of caspases as major regulators of apoptotic cell death in animals initiated a quest for homologous peptidases in other kingdoms. With the discovery of metacaspases in plants, fungi, and protozoa, this search had apparently reached its goal. However, there is compelling evidence that metacaspases lack caspase activity and that they are not responsible for the caspaselike activities detected during plant and fungal cell death. In this paper, we attempt to broaden the discussion of these peptidases to biological functions beyond apoptosis and cell death. We further suggest that metacaspases and paracaspases, although sharing structural and mechanistic features with the metazoan caspases, form a distinct family of clan CD cysteine peptidases.
Collapse
Affiliation(s)
- Dominique Vercammen
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
93
|
Regulation of ammonia homeostasis by the ammonium transporter AmtA in Dictyostelium discoideum. EUKARYOTIC CELL 2007; 6:2419-28. [PMID: 17951519 DOI: 10.1128/ec.00204-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ammonia has been shown to function as a morphogen at multiple steps during the development of the cellular slime mold Dictyostelium discoideum; however, it is largely unknown how intracellular ammonia levels are controlled. In the Dictyostelium genome, there are five genes that encode putative ammonium transporters: amtA, amtB, amtC, rhgA, and rhgB. Here, we show that AmtA regulates ammonia homeostasis during growth and development. We found that cells lacking amtA had increased levels of ammonia/ammonium, whereas their extracellular ammonia/ammonium levels were highly decreased. These results suggest that AmtA mediates the excretion of ammonium. In support of a role for AmtA in ammonia homeostasis, AmtA mRNA is expressed throughout the life cycle, and its expression level increases during development. Importantly, AmtA-mediated ammonia homeostasis is critical for many developmental processes. amtA(-) cells are more sensitive to NH(4)Cl than wild-type cells in inhibition of chemotaxis toward cyclic AMP and of formation of multicellular aggregates. Furthermore, even in the absence of exogenously added ammonia, we found that amtA(-) cells produced many small fruiting bodies and that the viability and germination of amtA(-) spores were dramatically compromised. Taken together, our data clearly demonstrate that AmtA regulates ammonia homeostasis and plays important roles in multiple developmental processes in Dictyostelium.
Collapse
|
94
|
Odat O, Matta S, Khalil H, Kampranis SC, Pfau R, Tsichlis PN, Makris AM. Old yellow enzymes, highly homologous FMN oxidoreductases with modulating roles in oxidative stress and programmed cell death in yeast. J Biol Chem 2007; 282:36010-23. [PMID: 17897954 DOI: 10.1074/jbc.m704058200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In a genetic screen to identify modifiers of Bax-dependent lethality in yeast, the C terminus of OYE2 was isolated based on its capacity to restore sensitivity to a Bax-resistant yeast mutant strain. Overexpression of full-length OYE2 suppresses Bax lethality in yeast, lowers endogenous reactive oxygen species (ROS), increases resistance to H(2)O(2)-induced programmed cell death (PCD), and significantly lowers ROS levels generated by organic prooxidants. Reciprocally, Delta oye2 yeast strains are sensitive to prooxidant-induced PCD. Overexpression and knock-out analysis indicate these OYE2 antioxidant activities are opposed by OYE3, a highly homologous heterodimerizing protein, which functions as a prooxidant promoting H(2)O(2)-induced PCD in wild type yeast. To exert its effect OYE3 requires the presence of OYE2. Deletion of the 12 C-terminal amino acids and catalytic inactivation of OYE2 by a Y197F mutation enhance significantly survival upon H(2)O(2)-induced PCD in wild type cells, but accelerate PCD in Delta oye3 cells, implicating the oye2p-oye3p heterodimer for promoting cell death upon oxidative stress. Unexpectedly, a strain with a double knock-out of these genes (Delta oye2 oye3) is highly resistant to H(2)O(2)-induced PCD, exhibits increased respiratory capacity, and undergoes less cell death during the adaptive response in chronological aging. Simultaneous deletion of OYE2 and other antioxidant genes hyperinduces endogenous levels of ROS, promoting H(2)O(2)-induced cell death: in Delta oye2 glr1 yeast high levels of oxidized glutathione elicited gross morphological aberrations involving the actin cytoskeleton and defects in organelle partitioning. Altering the ratio of reduced to oxidized glutathione by exogenous addition of GSH fully reversed these alterations. Based on this work, OYE proteins are firmly placed in the signaling network connecting ROS generation, PCD modulation, and cytoskeletal dynamics in yeast.
Collapse
Affiliation(s)
- Osama Odat
- Department of Natural Products, Mediterranean Agronomic Institute of Chania, Chania 73100, Greece
| | | | | | | | | | | | | |
Collapse
|
95
|
Lam D, Levraud JP, Luciani MF, Golstein P. Autophagic or necrotic cell death in the absence of caspase and bcl-2 family members. Biochem Biophys Res Commun 2007; 363:536-41. [PMID: 17889831 DOI: 10.1016/j.bbrc.2007.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 09/02/2007] [Indexed: 11/15/2022]
Abstract
How is one to investigate autophagic or necrotic cell death in the absence of interference from the apoptosis machinery? In the protist Dictyostelium, a model for the study of these two cell death types, we previously showed that autophagic cell death does not require paracaspase, the only caspase family member in this organism. In this report, we prepared two distinct paracaspase- atg1- double mutants, and we used them to demonstrate that paracaspase is not required for necrotic cell death either. Also, in silico investigation showed that the genome of Dictyostelium harbored no detectable member of the bcl-2 family and no single BH3 domain-bearing molecules. Altogether, in this model system both autophagic and necrotic cell death could occur, and could be investigated, with no interference from the two main molecular families involved in apoptosis, the caspase and the bcl-2 families.
Collapse
Affiliation(s)
- David Lam
- Centre d'Immunologie de Marseille-Luminy, Case 906, Faculté des Sciences de Luminy, 13288 Marseille Cedex 9, France
| | | | | | | |
Collapse
|
96
|
Staal J, Dixelius C. Tracing the ancient origins of plant innate immunity. TRENDS IN PLANT SCIENCE 2007; 12:334-42. [PMID: 17644465 DOI: 10.1016/j.tplants.2007.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Revised: 05/31/2007] [Accepted: 06/28/2007] [Indexed: 05/16/2023]
Abstract
Resistance to pathogens is one of the most ancient traits; mechanisms for discriminating self from non-self have evolved to accomplish this task. Animal and plant immune systems use a set of similar receptors to recognize pathogens. These receptors are located either at the cell surface or inside the cell. Kinases modulate further signalling and are either associated to the receptors or are part of the receptors themselves. In this review, we compare gene families and the nucleotide binding (NB) and the Toll-interleukin-1 receptor (TIR) domains of various kingdoms that are important for the immune systems. Possibilities to deconstruct and reconstruct evolutionary events contributing to the immune systems are explored together with functional aspects.
Collapse
Affiliation(s)
- Jens Staal
- Department of Molecular Biomedical Research, Unit for Molecular Signal Transduction in Inflammation, VIB, Technologiepark 927, B-9052 Ghent (Zwijnaarde), Belgium.
| | | |
Collapse
|
97
|
Bruchhaus I, Roeder T, Rennenberg A, Heussler VT. Protozoan parasites: programmed cell death as a mechanism of parasitism. Trends Parasitol 2007; 23:376-83. [PMID: 17588817 DOI: 10.1016/j.pt.2007.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 04/27/2007] [Accepted: 06/06/2007] [Indexed: 12/25/2022]
Abstract
Programmed cell death (PCD) is a potent mechanism to remove parasitized cells, but it has also been shown that protozoan parasites can induce or inhibit apoptosis in host cells. In recent years, it has become clear that unicellular parasites can also undergo PCD, meaning that they commit suicide in response to various stimuli. This review focuses on the role of protozoan PCD and on the interaction between protozoan parasites and the host cell death machinery from the perspective of parasite survival strategies.
Collapse
Affiliation(s)
- Iris Bruchhaus
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany.
| | | | | | | |
Collapse
|
98
|
Mattei S, Klein G, Satre M, Aubry L. Trafficking and developmental signaling: Alix at the crossroads. Eur J Cell Biol 2007; 85:925-36. [PMID: 16766083 DOI: 10.1016/j.ejcb.2006.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Alix is a phylogenetically conserved protein that participates in mammals in programmed cell death in association with ALG-2, a penta-EF-hand calciprotein. It contains an N-terminal Bro1 domain, a coiled-coil region and a C-terminal proline-rich domain containing several SH3- and WW-binding sites that contribute to its scaffolding properties. Recent data showed that by virtue of its Bro1 domain, Alix is functionally associated to the ESCRT complexes involved in the biogenesis of the multivesicular body and sorting of transmembrane proteins within this specific endosomal compartment. In Dictyostelium, an alx null strain shows a markedly perturbed starvation-induced morphogenetic program while ALG-2 disruptants remain unaffected. This review summarizes Dictyostelium data on Alix and ALG-2 homologues and evaluates whether known functions of Alix in other organisms can account for the developmental arrest of the alx null mutant and how Dictyostelium studies can substantiate the current understanding of the function(s) of this versatile and conserved signaling molecule.
Collapse
Affiliation(s)
- Sara Mattei
- Laboratoire de Biochimie et Biophysique des Systemes Integres, DRDC/BBSI, UMR 5092 CNRS-CEA-UJF, CEA-Grenoble, 17 Rue des Martyrs, F-38054 Grenoble cedex 9, France
| | | | | | | |
Collapse
|
99
|
Sakamoto Y, Ando A, Tamai Y, Yajima T. Pileus differentiation and pileus-specific protein expression in Flammulina velutipes. Fungal Genet Biol 2007; 44:14-24. [PMID: 16877016 DOI: 10.1016/j.fgb.2006.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/29/2006] [Accepted: 06/07/2006] [Indexed: 11/29/2022]
Abstract
Fruiting bodies of Flammulina velutipes formed under complete darkness had a poorly developed pileus on top (pinhead fruiting body), and lacked a hymenium. Upon light stimulation, the pileus immediately began to develop on the apical region of the pinhead fruiting body. Swelling of the apical region caused by cell division was observed 2 days after light treatment; at day 4, the junction fracture between the pileus and stipe, and formation of the hymenium primordia were observed; at 6 days, gills were observed. We identified a cell wall-associated protein (PSH) that was specifically induced in the pileus, but not in the stipe, following light treatment of the pinhead fruiting body. Cloning and sequence analysis of the gene encoding PSH (psh) revealed a motif in the C-terminal region of the predicted amino acid sequence that was similar to hydrophobin. The level of transcription of psh was low in the stipe, but it was expressed at a high level in the pileus of the normal fruiting body. Transcription was also low in pinhead fruiting bodies, but increased after light treatment. These results indicate that psh is specifically expressed during pileus differentiation induced by light stimulation.
Collapse
Affiliation(s)
- Yuichi Sakamoto
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami-shi, Iwate, Japan.
| | | | | | | |
Collapse
|
100
|
Barth C, Le P, Fisher PR. Mitochondrial biology and disease in Dictyostelium. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 263:207-52. [PMID: 17725968 DOI: 10.1016/s0074-7696(07)63005-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cellular slime mold Dictyostelium discoideum has become an increasingly useful model for the study of mitochondrial biology and disease. Dictyostelium is an amoebazoan, a sister clade to the animal and fungal lineages. The mitochondrial biology of Dictyostelium exhibits some features which are unique, others which are common to all eukaryotes, and still others that are otherwise found only in the plant or the animal lineages. The AT-rich mitochondrial genome of Dictyostelium is larger than its mammalian counterpart and contains 56kb (compared to 17kb in mammals) encoding tRNAs, rRNAs, and 33 polypeptides (compared to 13 in mammals). It produces a single primary transcript that is cotranscriptionally processed into multiple monocistronic, dicistronic, and tricistronic mRNAs, tRNAs, and rRNAs. The mitochondrial fission mechanism employed by Dictyostelium involves both the extramitochondrial dynamin-based system used by plant, animal, and fungal mitochondria and the ancient FtsZ-based intramitochondrial fission process inherited from the bacterial ancestor. The mitochondrial protein-import apparatus is homologous to that of other eukaryote, and mitochondria in Dictyostelium play an important role in the programmed cell death pathways. Mitochondrial disease in Dictyostelium has been created both by targeted gene disruptions and by antisense RNA and RNAi inhibition of expression of essential nucleus-encoded mitochondrial proteins. This has revealed a regular pattern of aberrant mitochondrial disease phenotypes caused not by ATP insufficiency per se, but by chronic activation of the universal eukaryotic energy-sensing protein kinase AMPK. This novel insight into the cytopathological mechanisms of mitochondrial dysfunction suggests new possibilities for therapeutic intervention in mitochondrial and neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Barth
- Department of Microbiology, La Trobe University, Melbourne VIC 3086, Australia
| | | | | |
Collapse
|