51
|
Lüder CG, Lang T, Beuerle B, Gross U. Down-regulation of MHC class II molecules and inability to up-regulate class I molecules in murine macrophages after infection with Toxoplasma gondii. Clin Exp Immunol 1998; 112:308-16. [PMID: 9649196 PMCID: PMC1904980 DOI: 10.1046/j.1365-2249.1998.00594.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/1998] [Indexed: 11/20/2022] Open
Abstract
Toxoplasma gondii is able to invade phagocytic cells of the monocyte-macrophage lineage and replicates within a parasitophorous vacuole. Since macrophages may activate specific T lymphocytes by presenting pathogen-derived antigens in association with molecules of the MHC, we investigated the in vitro expression of host cell molecules involved in antigen processing and presentation before and during infection of murine bone marrow-derived macrophages (BMM) with T. gondii. Fifty-one hours after addition of T. gondii tachyzoites at different parasite-to-host ratios, up-regulation of total MHC class II molecules by interferon-gamma (IFN-gamma) was dose-dependently abrogated in up to 50% of macrophages compared with uninfected control cultures. Quantitative analyses by flow cytometry revealed that the IFN-gamma-induced surface expression of class II antigens as well as the IFN-gamma-induced upregulation of class I molecules was significantly decreased in T. gondii-infected macrophage cultures compared with uninfected controls. However, the constitutive expression of MHC class I antigens was not altered after parasitic infection, and infected BMM remained clearly positive for these molecules. After infection of macrophages preactivated with IFN-gamma for 48 h, T. gondii also actively down-regulated an already established expression of MHC class II molecules. Furthermore, kinetic analysis revealed that the reduction in intracellular and plasma membrane-bound class II molecules started approximately 20 h after infection. While MHC class II antigens were most prominently reduced in parasite-positive host cells, culture supernatant from T. gondii-infected BMM cultures also significantly inhibited expression of these molecules in uninfected macrophages. However, down-regulation of MHC class II molecules was not mediated by an increased production of prostaglandin E2, IL-10, transforming growth factor-beta or nitric oxide by infected BMM compared with uninfected controls. Our data indicate that intracellular T. gondii interferes with the MHC class I and class II antigen presentation pathway of murine macrophages and this may be an important strategy for evasion from the host's immune response and for intracellular survival of the parasite.
Collapse
Affiliation(s)
- C G Lüder
- Institute of Hygiene and Microbiology, University of Würzburg, Germany
| | | | | | | |
Collapse
|
52
|
Tjelle TE, Saigal B, Froystad M, Berg T. Degradation of phagosomal components in late endocytic organelles. J Cell Sci 1998; 111 ( Pt 1):141-148. [PMID: 9394020 DOI: 10.1242/jcs.111.1.141] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phagosomes are formed when phagocytic cells ingest particles such as bacteria, viruses or synthetic beads of different kinds. The environment within the phagosome gradually changes to generate degradative conditions. These changes require multiple interactions between the maturing phagosomes and the endocytic and the biosynthetic pathway. The phagosomes probably communicate with endocytic organelles by a transient fusion event, often referred to as the 'kiss-and-run' hypothesis. We have studied the role of endocytic organelles in the phagocytic pathway of J774 cells, a mouse macrophage cell line. We have used magnetic Dynabeads coated with 125ITC-IgG and 125ITC-OVA as phagocytic probes and were able to isolate the phagosomal fraction by means of a magnet. To separate lysosomes from other organelles in the endocytic pathway we allowed the cells to endocytose a pulse of colloidal gold particles complexed with ovalbumin. By combining this density shift technique with subcellular fractionation of a postnuclear supernatant in Percoll gradients we could isolate three endocytic fractions corresponding to early endosomes (the light Percoll fraction), late endosomes (the dense Percoll fraction) and lysosomes (the gold fraction). We observed that the proteins linked to the ingested beads are initially cleaved in the phagosomes. This cleavage is inhibited by leupeptin, a thiol-protease inhibitor, and requires an acidic environment. However, efficient communication between the phagosomes and the endocytic pathway leads to the transfer of dissociated phagocytosed peptides of different sizes to late endosomes and lysosomes for further processing. Consequently, the late endosomes and the lysosomes may be involved in the degradation of phagocytosed compounds.
Collapse
Affiliation(s)
- T E Tjelle
- University of Oslo, Institute of Biology, Division of Cell Biology, Oslo, Norway
| | | | | | | |
Collapse
|
53
|
Flohé S, Lang T, Moll H. Synthesis, stability, and subcellular distribution of major histocompatibility complex class II molecules in Langerhans cells infected with Leishmania major. Infect Immun 1997; 65:3444-50. [PMID: 9234810 PMCID: PMC175487 DOI: 10.1128/iai.65.8.3444-3450.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protozoan parasites of the genus Leishmania exist as obligatory intracellular amastigotes and invade macrophages and Langerhans cells, the dendritic cells of the skin. Langerhans cells are much more efficient in presenting Leishmania major antigen to T cells than macrophages are and have the unique ability to retain parasite antigen in immunogenic form for prolonged periods. To analyze the mechanisms that are responsible for this potency, we defined the synthesis, turnover, conformation, and localization of major histocompatibility complex (MHC) class II molecules in Langerhans cells. Hence, Langerhans cells were pulse-labeled; immunoprecipitation of MHC class II molecules and gel electrophoresis followed. In addition, the subcellular distribution of MHC class II molecules in L. major-infected Langerhans cells was analyzed by confocal microscopy. The results show that (i) newly synthesized MHC class II molecules are required for L. major antigen presentation by Langerhans cells, (ii) MHC class II-peptide complexes in Langerhans cells are long-lived, (iii) phagocytosis of L. major modulates MHC class II biosynthesis by reducing its downregulation during Langerhans cell differentiation, and (iv) newly synthesized MHC class II molecules are associated with the parasitophorous vacuole of infected Langerhans cells. These findings support the conclusion that the traits of MHC class II expression correspond to the highly specialized functions of Langerhans cells in the immunoregulation of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- S Flohé
- Research Center for Infectious Diseases, University of Würzburg, Germany
| | | | | |
Collapse
|
54
|
Garcia MR, Graham S, Harris RA, Beverley SM, Kaye PM. Epitope cleavage by Leishmania endopeptidase(s) limits the efficiency of the exogenous pathway of major histocompatibility complex class I-associated antigen presentation. Eur J Immunol 1997; 27:1005-13. [PMID: 9130657 DOI: 10.1002/eji.1830270430] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The activation of CD8+ T cell responses is commonplace during infection with a number of nonviral pathogens. Consequently, there has been much interest in the pathways of presentation of such exogenous antigens for major histocompatibility complex class I-restricted recognition. We had previously shown that Leishmania promastigotes transfected with the ovalbumin (OVA) gene could efficiently target OVA to the parasitophorous vacuole (PV), with subsequent recognition by class II-restricted T cells. We now report the results of studies aimed at evaluating the PV as a route of entry into the exogenous class I pathway. Bone marrow-derived macrophages can present soluble OVA (albeit at high concentrations) to the OVA(257-264)-specific T cell hybridoma 13.13. In contrast, infection with OVA-transfected Leishmania promastigotes failed to result in the stimulation of this hybridoma. This appeared unrelated to variables such as antigen concentration, parasite survival, and macrophage activation status. These results prompted an analysis of the effects of promastigotes on class I peptide binding using RMA-S cells and OVA(257-264). Our data indicate that the major surface protease of Leishmania, gp63, inhibits this interaction by virtue of its endopeptidase activity against the OVA(257-264) peptide. The data suggest that this activity, if maintained within the PV, would result in loss of the OVA(257-264) epitope. Although we can therefore draw no conclusions from these studies regarding the efficiency of the PV as a site of entry of antigen into the exogenous class I pathway, we have identified a further means by which parasites may manipulate the immune repertoire of their host.
Collapse
Affiliation(s)
- M R Garcia
- Department of Medical Parasitology, London School of Hygiene and Tropical Medicine, GB
| | | | | | | | | |
Collapse
|
55
|
Lang T, Prina E, Sibthorpe D, Blackwell JM. Nramp1 transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on antigen processing and presentation. Infect Immun 1997; 65:380-6. [PMID: 9009286 PMCID: PMC174606 DOI: 10.1128/iai.65.2.380-386.1997] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The natural resistance-associated macrophage protein (Nramp1) regulates macrophage activation. One of its pleiotropic effects on macrophage function is to regulate expression of major histocompatibility class II molecules. In this study macrophages stably transfected with the wild-type (infection-resistant) or the natural mutant (infection-susceptible) allele of the Nramp1 gene were used to study class II expression and processing and presentation of recombinant protein antigens to CD4+ T-cell hybridomas. As demonstrated previously for macrophages from Nramp1-resistant and -susceptible congenic mouse strains, transfected macrophage clones carrying the wild-type allele showed enhanced upregulation of class II molecules in response to gamma interferon compared to that shown by macrophage clones carrying an endogenous mutant allele or transfected with the mutant allele expressed under a viral long terminal repeat promoter. The wild-type allele-transfected macrophage clones also demonstrated an enhanced, lipopolysaccharide-dependent ability to process the recombinant leishmanial antigen LACK-delta 1 (the Leishmania homolog of receptors for activated C kinase) for presentation to LACK-specific CD4+ T cells. An influence on antigen processing must therefore be added to the growing list of pleiotropic effects of the Nramp1 gene potentially contributing to its role in infectious and autoimmune disease susceptibility. These results also have important implications for analysis of T-cell responses to vaccination, especially where antigens are presented to the immune system using live Salmonella species or Mycobacterium bovis BCG as a vaccine vehicle.
Collapse
Affiliation(s)
- T Lang
- Unité d'Immunophysiologie Cellulaire, Institut Pasteur, Paris, France
| | | | | | | |
Collapse
|
56
|
Abstract
Class I and class II MHC molecules bind peptides during their biosynthetic maturation and provide a continuously updated display of intracellular and environmental protein composition, respectively, for scrutiny by T cells. Receptor-mediated endocytosis, phagocytosis, and macropinocytosis all contribute to antigen uptake by class II MHC-positive antigen-presenting cells. Capture of antigenic peptides by class II MHC molecules is facilitated because antigen catabolism and class II MHC maturation take place in the same compartments or in communicating compartments of the endosome/lysosome system. These class II MHC-rich, multivesicular endosomes receive incoming antigen and can support not only antigen processing and class II MHC peptide loading but also the export of peptide/class II MHC complexes to the cell surface. A balance between production and destruction of antigenic peptides is achieved by the activity of local proteases and may be influenced by binding of antigen to other proteins both prior to the onset of processing (e.g. antibodies) and during antigen unfolding (e.g. MHC molecules). T cell determinants that can be released for MHC binding without a substantial processing requirement may be able to utilize a distinct minor population of cell surface class II MHC molecules that become available during peripheral recycling. Although peptides derived from exogenous protein sources are usually excluded from presentation on class I MHC molecules, recent evidence shows that this embargo may be lifted in certain professional antigen-presenting cells to increase the spectrum of antigens that may be displayed on class I MHC.
Collapse
Affiliation(s)
- C Watts
- Department of Biochemistry, Medical Sciences Institute, University of Dundee, United Kingdom.
| |
Collapse
|
57
|
Kima PE, Soong L, Chicharro C, Ruddle NH, McMahon-Pratt D. Leishmania-infected macrophages sequester endogenously synthesized parasite antigens from presentation to CD4+ T cells. Eur J Immunol 1996; 26:3163-9. [PMID: 8977318 DOI: 10.1002/eji.1830261249] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
CD4+ T cell lines raised against the protective leishmanial antigens GP46 and P8 were used to study the presentation of endogenously synthesized Leishmania antigens by infected cells. Using two different sources of macrophages, the I4.07 macrophage cell line (H-2k) which constitutively expresses major histocompatibility complex (MHC) class II molecules, and elicited peritoneal exudate cells, we found that cells infected with Leishmania amastigotes presented little, if any endogenously synthesized parasite antigens to CD4+ T cells. In contrast, promastigote-infected macrophages did present endogenous parasite molecules to CD4+ T cells, although only for a limited time, with maximal presentation occurring within 24 h of infection and decreasing to minimal antigen presentation at 72 h post-infection. These observations suggest that once within the macrophage, Leishmania amastigote antigens are sequestered from the MHC class II pathway of antigen presentation. This allows live parasites to persist in infected hosts by evading the activation of CD4+ T cells, a major and critical anti-leishmanial component of the host immune system. Studies with drugs that modify fusion patterns of phagosomes suggest that the mechanism of this antigen sequestration includes targeted fusion of the parasitophorous vacuole with certain endocytic compartments.
Collapse
Affiliation(s)
- P E Kima
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | | | | | | | | |
Collapse
|
58
|
Ojcius DM, Gachelin G, Dautry-Varsat A. Presentation of antigens derived from microorganisms residing in host-cell vacuoles. Trends Microbiol 1996; 4:53-9. [PMID: 8820567 DOI: 10.1016/0966-842x(96)81511-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Antigens presented by major histocompatibility complex molecules have been classified into those presented by 'endogenous' and 'exogenous' pathways. Some microorganisms reside within host-cell vacuoles that appear to avoid both pathways. Novel presentation mechanisms are being unraveled for these microorganisms, and their antigens, rather than being just peptides, can also consist of lipids or DNA fragments.
Collapse
Affiliation(s)
- D M Ojcius
- Unite de Biologie des Interactions Cellulaires, Paris, France.
| | | | | |
Collapse
|
59
|
Garcia-del Portillo F, Finlay BB. The varied lifestyles of intracellular pathogens within eukaryotic vacuolar compartments. Trends Microbiol 1995; 3:373-80. [PMID: 8564355 DOI: 10.1016/s0966-842x(00)88982-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Many bacterial pathogens and eukaryotic parasites can enter mammalian cells and live intracellularly inside membrane-bound vacuoles. The intravacuolar lifestyle of these pathogens plays a key role in pathogenesis. Understanding the molecular basis of the development of these specialized intracellular compartments is critical to understanding how these organisms cause disease.
Collapse
Affiliation(s)
- F Garcia-del Portillo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Facultad de Biología, Universidad Autónoma de Madrid, Spain
| | | |
Collapse
|
60
|
De Souza Leao S, Lang T, Prina E, Hellio R, Antoine JC. Intracellular Leishmania amazonensis amastigotes internalize and degrade MHC class II molecules of their host cells. J Cell Sci 1995; 108 ( Pt 10):3219-31. [PMID: 7593283 DOI: 10.1242/jcs.108.10.3219] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In their amastigote stage, Leishmania live in mammalian macrophages within parasitophorous vacuoles (PV), organelles of phagolysosomal origin that, in macrophages activated with IFN-gamma, contain major histocompatibility complex (MHC) class II molecules apparently devoid of invariant chains. We have now studied the fate of PV-associated class II molecules in mouse bone marrow-derived macrophages infected with L. amazonensis amastigotes using immunocytochemical and biochemical approaches. We have found that at least a part of these class II molecules was internalized by amastigotes and reached structures very often located in their posterior poles. This process was much more obvious if infected macrophages were incubated with protease inhibitors like antipain, chymostatin, Z-Phe-AlaCHN2 and Z-Phe-PheCHN2, or if amastigotes were pre-treated with the irreversible cysteine protease inhibitor Z-Phe-AlaCHN2 before infection, clearly indicating that amastigotes also degraded the internalized class II molecules. Study of infected macrophage cryosections by immuno-electron microscopy allowed the identification of the class II-positive structures in amastigotes as the lysosome-like organelles known as megasomes. Other PV membrane components like the prelysosomal/lysosomal glycoproteins Igp110, Igp120 and macrosialin could not be detected in megasomes of amastigotes even after treatment of macrophages with protease inhibitors, suggesting the involvement of some specific mechanism(s) for the internalization of class II molecules. Interestingly, after treatment of infected macrophages with various protease inhibitors (antipain, leupeptin, E-64, Z-Phe-AlaCHN2, Z-Phe-PheCHN2), PV membrane as well as megasomes of amastigotes become positive for invariant chains. A quantitative analysis of amastigote-associated class II molecules based on enzyme immunoassays showed that: (a) amastigotes extracted from macrophages treated with both IFN-gamma and antipain or Z-Phe-AlaCHN2 contained a much greater amount of class II than amastigotes extracted from macrophages treated with IFN-gamma alone; (b) class II molecules associated with the former were mainly intracellular and, at least some of them, were complexed with invariant chains or fragments of invariant chains; (c) amastigotes pre-incubated with Z-Phe-AlaCHN2 before infection accumulated a greater amount of intracellular class II than amastigotes pre-incubated without inhibitor, clearly indicating that the blockade of parasite cysteine proteases was sufficient to enhance the pool of these molecules within megasomes. On the whole, these data are consistent with the idea that class II molecules reaching PV are newly synthesized and still complexed with intact invariant chains or with partially degraded invariant chains.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S De Souza Leao
- Unité d'Immunophysiologie cellulaire, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
61
|
Mougneau E, Altare F, Wakil AE, Zheng S, Coppola T, Wang ZE, Waldmann R, Locksley RM, Glaichenhaus N. Expression cloning of a protective Leishmania antigen. Science 1995; 268:563-6. [PMID: 7725103 DOI: 10.1126/science.7725103] [Citation(s) in RCA: 282] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Parasite-specific CD4+ T cells have been shown to transfer protection against Leishmania major in susceptible BALB/c mice. An epitope-tagged expression library was used to identify the antigen recognized by a protective CD4+ T cell clone. The expression library allowed recombinant proteins made in bacteria to be captured by macrophages for presentation to T cells restricted to major histocompatibility complex class II. A conserved 36-kilodalton member of the tryptophan-aspartic acid repeat family of proteins was identified that was expressed in both stages of the parasite life cycle. A 24-kilodalton portion of this antigen protected susceptible mice when administered as a vaccine with interleukin-12 before infection.
Collapse
Affiliation(s)
- E Mougneau
- Institut de Pharmacologie Moléculaire et Cellulaire, UPR411 CNRS, Valbonne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Wolfram M, Ilg T, Mottram JC, Overath P. Antigen presentation by Leishmania mexicana-infected macrophages: activation of helper T cells specific for amastigote cysteine proteinases requires intracellular killing of the parasites. Eur J Immunol 1995; 25:1094-100. [PMID: 7737279 DOI: 10.1002/eji.1830250435] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Leishmania mexicana amastigotes proliferate in the phagolysosomes of mammalian macrophages. The parasites abundantly synthesize lysosomal cysteine proteinases, which are encoded by the lmcpb gene family. One of these genes was overexpressed in Escherichia coli, and the purified recombinant protein was used as an antigen to induce and establish a T helper 1 (Th1) cell line. The T cells recognize epitopes shared by the native cysteine proteinases and the recombinant protein. Infected bone marrow-derived macrophages induced to express major histocompatibility complex class II molecules by interferon (IFN)-gamma do not affect parasite viability. These macrophages fail to stimulate the proliferation of the T cell line. In contrast, strong T cell stimulation is observed after the parasites are killed by treatment with L-leucine methylester, or after activation of macrophages by IFN-gamma and tumor necrosis factor-alpha. It is concluded that infected macrophages efficiently present this lysosomal Leishmania antigen once the parasites are inactivated and degraded. This observation may be of considerable relevance for the outcome of Leishmania infections provided that it can be extended to other parasite antigens.
Collapse
Affiliation(s)
- M Wolfram
- Max-Planck-Institut für Biologie, Abteilung Membranbiochemie, Tübingen, Germany
| | | | | | | |
Collapse
|