51
|
Jamar NH, Kritsiligkou P, Grant CM. Loss of mRNA surveillance pathways results in widespread protein aggregation. Sci Rep 2018; 8:3894. [PMID: 29497115 PMCID: PMC5832753 DOI: 10.1038/s41598-018-22183-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/15/2018] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic cells contain translation-associated mRNA surveillance pathways which prevent the production of potentially toxic proteins from aberrant mRNA translation events. We found that loss of mRNA surveillance pathways in mutants deficient in nonsense-mediated decay (NMD), no-go decay (NGD) and nonstop decay (NSD) results in increased protein aggregation. We have isolated and identified the proteins that aggregate and our bioinformatic analyses indicates that increased aggregation of aggregation-prone proteins is a general occurrence in mRNA surveillance mutants, rather than being attributable to specific pathways. The proteins that aggregate in mRNA surveillance mutants tend to be more highly expressed, more abundant and more stable proteins compared with the wider proteome. There is also a strong correlation with the proteins that aggregate in response to nascent protein misfolding and an enrichment for proteins that are substrates of ribosome-associated Hsp70 chaperones, consistent with susceptibility for aggregation primarily occurring during translation/folding. We also identified a significant overlap between the aggregated proteins in mRNA surveillance mutants and ageing yeast cells suggesting that translation-dependent protein aggregation may be a feature of the loss of proteostasis that occurs in aged cell populations.
Collapse
Affiliation(s)
- Nur Hidayah Jamar
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.,School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Malaysia
| | - Paraskevi Kritsiligkou
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK
| | - Chris M Grant
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
52
|
Bambino K, Zhang C, Austin C, Amarasiriwardena C, Arora M, Chu J, Sadler KC. Inorganic arsenic causes fatty liver and interacts with ethanol to cause alcoholic liver disease in zebrafish. Dis Model Mech 2018; 11:dmm.031575. [PMID: 29361514 PMCID: PMC5894941 DOI: 10.1242/dmm.031575] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022] Open
Abstract
The rapid increase in fatty liver disease (FLD) incidence is attributed largely to genetic and lifestyle factors; however, environmental toxicants are a frequently overlooked factor that can modify the effects of more common causes of FLD. Chronic exposure to inorganic arsenic (iAs) is associated with liver disease in humans and animal models, but neither the mechanism of action nor the combinatorial interaction with other disease-causing factors has been fully investigated. Here, we examined the contribution of iAs to FLD using zebrafish and tested the interaction with ethanol to cause alcoholic liver disease (ALD). We report that zebrafish exposed to iAs throughout development developed specific phenotypes beginning at 4 days post-fertilization (dpf), including the development of FLD in over 50% of larvae by 5 dpf. Comparative transcriptomic analysis of livers from larvae exposed to either iAs or ethanol revealed the oxidative stress response and the unfolded protein response (UPR) caused by endoplasmic reticulum (ER) stress as common pathways in both these models of FLD, suggesting that they target similar cellular processes. This was confirmed by our finding that arsenic is synthetically lethal with both ethanol and a well-characterized ER-stress-inducing agent (tunicamycin), suggesting that these exposures work together through UPR activation to cause iAs toxicity. Most significantly, combined exposure to sub-toxic concentrations of iAs and ethanol potentiated the expression of UPR-associated genes, cooperated to induce FLD, reduced the expression of as3mt, which encodes an arsenic-metabolizing enzyme, and significantly increased the concentration of iAs in the liver. This demonstrates that iAs exposure is sufficient to cause FLD and that low doses of iAs can potentiate the effects of ethanol to cause liver disease. This article has an associated First Person interview with the first author of the paper. Summary: Using zebrafish, the authors show that exposure to a common environmental contaminant, inorganic arsenic, increases the risk of alcoholic liver disease.
Collapse
Affiliation(s)
- Kathryn Bambino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chi Zhang
- Program in Biology, New York University Abu Dhabi, Saadiyat Island Campus, PO Box 129188 Abu Dhabi, United Arab Emirates
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jaime Chu
- Department of Pediatrics, Division of Pediatric Hepatology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kirsten C Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island Campus, PO Box 129188 Abu Dhabi, United Arab Emirates
| |
Collapse
|
53
|
Lin YL, Tsai HC, Liu PY, Benneyworth M, Wei LN. Receptor-interacting protein 140 as a co-repressor of Heat Shock Factor 1 regulates neuronal stress response. Cell Death Dis 2017; 8:3203. [PMID: 29233969 PMCID: PMC5870597 DOI: 10.1038/s41419-017-0008-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/23/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022]
Abstract
Heat shock response (HSR) is a highly conserved transcriptional program that protects organisms against various stressful conditions. However, the molecular mechanisms modulating HSR, especially the suppression of HSR, is poorly understood. Here, we found that RIP140, a wide-spectrum cofactor of nuclear hormone receptors, acts as a co-repressor of heat shock factor 1 (HSF1) to suppress HSR in healthy neurons. When neurons are stressed such as by heat shock or sodium arsenite (As), cells engage specific proteosome-mediated degradation to reduce RIP140 level, thereby relieving the suppression and activating HSR. RIP140 degradation requires specific Tyr-phosphorylation by Syk that is activated in stressful conditions. Lowering RIP140 level protects hippocampal neurons from As stress, significantly it increases neuron survival and improves spine density. Reducing hippocampal RIP140 in the mouse rescues chronic As-induced spatial learning deficits. This is the first study elucidating RIP140-mediated suppression of HSF1-activated HSR in neurons and brain. Importantly, degradation of RIP140 in stressed neurons relieves this suppression, allowing neurons to efficiently and timely engage HSR programs and recover. Therefore, stimulating RIP140 degradation to activate anti-stress program provides a potential preventive or therapeutic strategy for neurodegeneration diseases.
Collapse
Affiliation(s)
- Yu-Lung Lin
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hong-Chieh Tsai
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan, ROC.,Department of Neurosurgery, Chang-Gung Memorial Hospital and University, Tao-Yuan, Taiwan, ROC
| | - Pei-Yao Liu
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Benneyworth
- Departments of Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Li-Na Wei
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
54
|
Varma N, Singh I, Dahiya MS, Ravi VK, Kumar S. Structural perturbation by arsenic triggers the aggregation of hen egg white lysozyme by promoting oligomers formation. Int J Biol Macromol 2017; 109:1108-1114. [PMID: 29153291 DOI: 10.1016/j.ijbiomac.2017.11.096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
Arsenic trioxide is one of the most common metallic pollutants entering the food chain both by human activities and nature. Its entry inside the living organism through food, air and water results into the accumulation of heavy metal in several tissues which manifest several metabolic or hormonal disorders. Till now the effect of arsenic trioxide on protein misfolding and aggregation culminating into several neurodegenerative disorders is poorly understood. In the present study, we reveal the aggregation process of Hen Egg White Lysozyme (HEWL) in presence of arsenic trioxide (As2O3) at physiological conditions. We show that As2O3 promote the in vitro aggregation of HEWL in concentration dependent manner. Early phase of aggregation is observed to be induced by exposure of hydrophobic surfaces which later reorganized to promote further self-association leading to β sheet structure. Presence of lower ordered oligomers after two days and higher ordered oligomers along with amorphous aggregates after week long incubation indicate that As2O3 drives the self-assembly of lysozyme towards oligomeric form.
Collapse
Affiliation(s)
- Neelakant Varma
- Laboratory of Forensic Biology and Biotechnology, Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, 382 007, India
| | - Inderbhan Singh
- Laboratory of Forensic Biology and Biotechnology, Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, 382 007, India
| | - Mohinder Singh Dahiya
- Laboratory of Forensic Biology and Biotechnology, Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, 382 007, India
| | - Vijay Kumar Ravi
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, India
| | - Satish Kumar
- Laboratory of Forensic Biology and Biotechnology, Institute of Forensic Science, Gujarat Forensic Sciences University, Gandhinagar, Gujarat, 382 007, India.
| |
Collapse
|
55
|
Jamar NH, Kritsiligkou P, Grant CM. The non-stop decay mRNA surveillance pathway is required for oxidative stress tolerance. Nucleic Acids Res 2017; 45:6881-6893. [PMID: 28472342 PMCID: PMC5499853 DOI: 10.1093/nar/gkx306] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/12/2017] [Indexed: 01/09/2023] Open
Abstract
Reactive oxygen species (ROS) are toxic by-products of normal aerobic metabolism. ROS can damage mRNAs and the translational apparatus resulting in translational defects and aberrant protein production. Three mRNA quality control systems monitor mRNAs for translational errors: nonsense-mediated decay, non-stop decay (NSD) and no-go decay (NGD) pathways. Here, we show that factors required for the recognition of NSD substrates and components of the SKI complex are required for oxidant tolerance. We found an overlapping requirement for Ski7, which bridges the interaction between the SKI complex and the exosome, and NGD components (Dom34/Hbs1) which have been shown to function in both NSD and NGD. We show that ski7 dom34 and ski7 hbs1 mutants are sensitive to hydrogen peroxide stress and accumulate an NSD substrate. We further show that NSD substrates are generated during ROS exposure as a result of aggregation of the Sup35 translation termination factor, which increases stop codon read-through allowing ribosomes to translate into the 3΄-end of mRNAs. Overexpression of Sup35 decreases stop codon read-through and rescues oxidant tolerance consistent with this model. Our data reveal an unanticipated requirement for the NSD pathway during oxidative stress conditions which prevents the production of aberrant proteins from NSD mRNAs.
Collapse
Affiliation(s)
- Nur H Jamar
- The University of Manchester, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK.,School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Paraskevi Kritsiligkou
- The University of Manchester, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK
| | - Chris M Grant
- The University of Manchester, Faculty of Biology, Medicine and Health, Manchester M13 9PT, UK
| |
Collapse
|
56
|
MPSR1 is a cytoplasmic PQC E3 ligase for eliminating emergent misfolded proteins in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:E10009-E10017. [PMID: 29087340 PMCID: PMC5699081 DOI: 10.1073/pnas.1713574114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The essential roles of cytoplasmic E3 ligases in the protein quality control (PQC) pathways have been increasingly highlighted in yeast and animal studies. However, in plants, only CHIP E3 ligase has been characterized, while the knowledge of cytoplasmic PQC E3 ligases remains rudimentary. Misfolded Protein Sensing RING E3 ligase 1 (MPSR1), a self-regulatory sensor system that functions only in the occurrence of misfolded proteins, is an identified cytoplasmic PQC E3 ligase in plants that directly recognizes emergent misfolded proteins independently of chaperones. In addition, MPSR1 sustains the integrity and activity of the 26S proteasome under proteotoxic stress. Given that MPSR1 RING E3 ligase is well conserved in eukaryotes, this study sheds light on a PQC pathway that is present particularly in plants and beyond. Ubiquitin E3 ligases are crucial for eliminating misfolded proteins before they form cytotoxic aggregates that threaten cell fitness and survival. However, it remains unclear how emerging misfolded proteins in the cytoplasm can be selectively recognized and eliminated by E3 ligases in plants. We found that Misfolded Protein Sensing RING E3 ligase 1 (MPSR1) is an indispensable E3 ligase required for plant survival after protein-damaging stress. Under no stress, MPSR1 is prone to rapid degradation by the 26S proteasome, concealing its protein quality control (PQC) E3 ligase activity. Upon proteotoxic stress, MPSR1 directly senses incipient misfolded proteins and tethers ubiquitins for subsequent degradation. Furthermore, MPSR1 sustains the structural integrity of the proteasome complex at the initial stage of proteotoxic stress. Here, we suggest that the MPSR1 pathway is a constitutive mechanism for proteostasis under protein-damaging stress, as a front-line surveillance system in the cytoplasm.
Collapse
|
57
|
Tamás MJ, Fauvet B, Christen P, Goloubinoff P. Misfolding and aggregation of nascent proteins: a novel mode of toxic cadmium action in vivo. Curr Genet 2017; 64:177-181. [PMID: 28936749 PMCID: PMC5778182 DOI: 10.1007/s00294-017-0748-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 01/29/2023]
Abstract
Cadmium is a highly poisonous metal and a human carcinogen, but the molecular mechanisms underlying its cellular toxicity are not fully understood. Recent findings in yeast cells indicate that cadmium exerts its deleterious effects by inducing widespread misfolding and aggregation of nascent proteins. Here, we discuss this novel mode of toxic heavy metal action and propose a mechanism by which molecular chaperones may reduce the damaging effects of heavy metal ions on protein structures.
Collapse
Affiliation(s)
- Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30, Gothenburg, Sweden.
| | - Bruno Fauvet
- Department of Plant Molecular Biology, Lausanne University, 1015, Lausanne, Switzerland
| | - Philipp Christen
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Lausanne University, 1015, Lausanne, Switzerland
| |
Collapse
|
58
|
Hasan MK, Cheng Y, Kanwar MK, Chu XY, Ahammed GJ, Qi ZY. Responses of Plant Proteins to Heavy Metal Stress-A Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1492. [PMID: 28928754 PMCID: PMC5591867 DOI: 10.3389/fpls.2017.01492] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 05/17/2023]
Abstract
Plants respond to environmental pollutants such as heavy metal(s) by triggering the expression of genes that encode proteins involved in stress response. Toxic metal ions profoundly affect the cellular protein homeostasis by interfering with the folding process and aggregation of nascent or non-native proteins leading to decreased cell viability. However, plants possess a range of ubiquitous cellular surveillance systems that enable them to efficiently detoxify heavy metals toward enhanced tolerance to metal stress. As proteins constitute the major workhorses of living cells, the chelation of metal ions in cytosol with phytochelatins and metallothioneins followed by compartmentalization of metals in the vacuoles as well as the repair of stress-damaged proteins or removal and degradation of proteins that fail to achieve their native conformations are critical for plant tolerance to heavy metal stress. In this review, we provide a broad overview of recent advances in cellular protein research with regards to heavy metal tolerance in plants. We also discuss how plants maintain functional and healthy proteomes for survival under such capricious surroundings.
Collapse
Affiliation(s)
- Md. Kamrul Hasan
- Department of Horticulture, Zhejiang UniversityHangzhou, China
- Department of Agricultural Chemistry, Sylhet Agricultural UniversitySylhet, Bangladesh
| | - Yuan Cheng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | | | - Xian-Yao Chu
- Zhejiang Institute of Geological Survey, Geological Research Center for Agricultural Applications, China Geological SurveyBeijing, China
| | | | - Zhen-Yu Qi
- Agricultural Experiment Station, Zhejiang UniversityHangzhou, China
| |
Collapse
|
59
|
Jacobson T, Priya S, Sharma SK, Andersson S, Jakobsson S, Tanghe R, Ashouri A, Rauch S, Goloubinoff P, Christen P, Tamás MJ. Cadmium Causes Misfolding and Aggregation of Cytosolic Proteins in Yeast. Mol Cell Biol 2017; 37:e00490-16. [PMID: 28606932 PMCID: PMC5559669 DOI: 10.1128/mcb.00490-16] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/05/2016] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Cadmium is a highly poisonous metal and is classified as a human carcinogen. While its toxicity is undisputed, the underlying in vivo molecular mechanisms are not fully understood. Here, we demonstrate that cadmium induces aggregation of cytosolic proteins in living Saccharomyces cerevisiae cells. Cadmium primarily targets proteins in the process of synthesis or folding, probably by interacting with exposed thiol groups in not-yet-folded proteins. On the basis of in vitro and in vivo data, we show that cadmium-aggregated proteins form seeds that increase the misfolding of other proteins. Cells that cannot efficiently protect the proteome from cadmium-induced aggregation or clear the cytosol of protein aggregates are sensitized to cadmium. Thus, protein aggregation may contribute to cadmium toxicity. This is the first report on how cadmium causes misfolding and aggregation of cytosolic proteins in vivo The proposed mechanism might explain not only the molecular basis of the toxic effects of cadmium but also the suggested role of this poisonous metal in the pathogenesis of certain protein-folding disorders.
Collapse
Affiliation(s)
- Therese Jacobson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Sandeep K Sharma
- Nanotherapeutics and Nanomaterial Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Stefanie Andersson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Jakobsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Robbe Tanghe
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Arghavan Ashouri
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Sebastien Rauch
- Water Environment Technology, Department of Civil and Environmental Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Pierre Goloubinoff
- Department of Plant Molecular Biology, Lausanne University, Lausanne, Switzerland
| | - Philipp Christen
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
60
|
Shammi M, Pan X, Mostofa KMG, Zhang D, Liu CQ. Photo-flocculation of microbial mat extracellular polymeric substances and their transformation into transparent exopolymer particles: Chemical and spectroscopic evidences. Sci Rep 2017; 7:9074. [PMID: 28831092 PMCID: PMC5567378 DOI: 10.1038/s41598-017-09066-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/21/2017] [Indexed: 11/13/2022] Open
Abstract
Upon exposure to sunlight extracellular polymeric substances (EPS) were partially transformed into transparent exopolymer particles (TEP) and unstable flocs of different sizes without the addition of any precursors. Parallel factor (PARAFAC) modelling of the sample fluorescence spectra identified humic-like and protein-like or tyrosine-like components in both untreated and irradiated EPS samples. After 58 hours of solar irradiation, humic-like substances were entirely decomposed, while the regenerated protein-like substance from EPS was the key component in the irradiated samples. Degradation and reformation of EPS occurred which was confirmed by the results of size exclusion chromatography, dissolved organic carbon, total protein and total polysaccharide analyses. Irradiated EPS was composed of -COOH or C = O (amide I band) and -NH and -CN (amide II band), while Fourier transform infrared spectroscopy (FTIR) of TEP revealed more acidic -COOH and -C-O groups, indicating typical acidic protein-like TEP. The regenerated protein-like substances could form complexes with free metals originating from degraded EPS in irradiated samples, which could be responsible for the formation of TEP/floc in the aqueous media. These results suggest that TEP/floc formation from EPS could occur by a complexation mechanism between dissolved organic matter and metals, thereby causing ionic charge neutralisation upon sunlight exposure.
Collapse
Affiliation(s)
- Mashura Shammi
- Laboratory of Bioremediation, Department of Environmental Pollution and Process Control, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi-830011, Xinjiang, P.R. China
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xiangliang Pan
- Laboratory of Bioremediation, Department of Environmental Pollution and Process Control, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi-830011, Xinjiang, P.R. China.
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P.R. China.
| | - Khan M G Mostofa
- Institute of Surface-Earth System Science, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, P.R. China.
| | - Daoyong Zhang
- Laboratory of Bioremediation, Department of Environmental Pollution and Process Control, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi-830011, Xinjiang, P.R. China
| | - Cong-Qiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, Guizhou, P.R. China
| |
Collapse
|
61
|
Antonucci I, Gallo G, Limauro D, Contursi P, Ribeiro AL, Blesa A, Berenguer J, Bartolucci S, Fiorentino G. An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27. Microb Biotechnol 2017; 10:1690-1701. [PMID: 28696001 PMCID: PMC5658604 DOI: 10.1111/1751-7915.12761] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023] Open
Abstract
Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As‐sensitive transcription factor. In the As‐resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, encoding an ArsR/SmtB transcriptional repressor and, TTC0354, encoding a Zn2+/Cd2+‐dependent membrane ATPase are involved in As resistance; differently from characterized ars operons, the two genes are transcribed from dedicated promoters upstream of their respective genes, whose expression is differentially regulated at transcriptional level. Mutants defective in TtsmtB or TTC0354 are more sensitive to As than the wild type, proving their role in arsenic resistance. Recombinant dimeric TtSmtB binds in vitro to both promoters, but its binding capability decreases upon interaction with arsenate and, less efficiently, with arsenite. In vivo and in vitro experiments also demonstrate that the arsenate reductase (TtArsC) is subjected to regulation by TtSmtB. We propose a model for the regulation of As resistance in T. thermophilus in which TtSmtB is the arsenate sensor responsible for the induction of TtArsC which generates arsenite exported by TTC0354 efflux protein to detoxify cells.
Collapse
Affiliation(s)
- Immacolata Antonucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Giovanni Gallo
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Danila Limauro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Patrizia Contursi
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Ana Luisa Ribeiro
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alba Blesa
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - José Berenguer
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, 80126, Naples, Italy
| |
Collapse
|
62
|
Tóth EN, May NV, Rockenbauer A, Peintler G, Gyurcsik B. Exploring the boundaries of direct detection and characterization of labile isomers - a case study of copper(ii)-dipeptide systems. Dalton Trans 2017; 46:8157-8166. [PMID: 28607997 DOI: 10.1039/c7dt00884h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The investigation of the linkage isomers of biologically essential and kinetically labile metal complexes in aqueous solutions poses a challenge, as these microspecies cannot be separately studied. Therefore, derivatives are commonly used to initially determine the stability or spectral characteristics of at least one of the isomers. Here we directly detect the isomers, describe the metal ion coordination sphere, speciation and thermodynamic parameters by a synergistic application of temperature dependent EPR and CD spectroscopic measurements in copper(ii)-dipeptide systems including His-Gly and His-Ala ligands. The ΔH = (-23 ± 4) kJ mol-1 value of the standard enthalpy change corresponding to the peptide-type to histamine-type isomerisation equilibrium of the [CuL]+ complex was corroborated by several techniques. The preferential coordination of the side-chains was observed at lower temperatures, whereas, metal-binding of the backbone atoms became favourable upon increasing temperature. This study exemplifies the necessity of using temperature dependent multiple methodologies for a reliable description of similar systems for upstream applications.
Collapse
Affiliation(s)
- Eszter N Tóth
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary. and PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Japan
| | - Nóra V May
- Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2, Hungary
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Magyar tudósok körútja 2, Hungary and Department of Physics, Budapest University of Technology and Economics and MTA-BME Lendület Spintronics Research Group (PROSPIN), P.O. Box 91, H-1521 Budapest, Hungary
| | - Gábor Peintler
- Department of Physical Chemistry and Material Sciences, University of Szeged, Aradi Vértanuk tere 1, H-6720 Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary.
| |
Collapse
|
63
|
Verdugo M, Ogra Y, Quiroz W. Mechanisms underlying the toxic effects of antimony species in human embryonic kidney cells (HEK-293) and their comparison with arsenic species. J Toxicol Sci 2017; 41:783-792. [PMID: 27853107 DOI: 10.2131/jts.41.783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antimony cytotoxicity was assessed in human embryonic kidney cells (HEK-293). Uptake, mitochondrial respiratory activity, ROS generation and diffusional kinetics were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, the toxic effect induced by Sb was compared with As toxicity in regard to ROS generation and diffusional kinetics, which provides information on the protein aggregation process. Our results show a favored uptake of Sb(III) and a more severe effect, decreasing the mitochondrial activity more than in the presence of Sb(V). In comparison with As, the Sb species did not generate a significant increase in ROS generation, which was observed with As(III) and As(V). FRAP analysis yielded important information on the diffusion and binding dynamics of live cells in presence of these metalloids. The mobile fraction showed a strong decrease with the As species and Sb(III). The diffusion rate and the koff-rate were significantly decreased for the As and Sb species but were more strong in the presence of As(III).
Collapse
Affiliation(s)
- Marcelo Verdugo
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | |
Collapse
|
64
|
Lee H, Kim MN, Ryu KY. Effect of p62/SQSTM1 polyubiquitination on its autophagic adaptor function and cellular survival under oxidative stress induced by arsenite. Biochem Biophys Res Commun 2017; 486:839-844. [PMID: 28359760 DOI: 10.1016/j.bbrc.2017.03.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/27/2017] [Indexed: 11/19/2022]
Abstract
Oxidative stress induced by arsenite [As(III)] affects protein folding and results in increased levels of misfolded proteins or protein aggregates. Accumulation of misfolded protein aggregates may act as a cue signal for the oligomerization of the autophagic adaptor protein p62, which facilitates recognition of misfolded protein aggregates that are polyubiquitinated with K63 linkages. However, as the autophagic flux is impaired under exposure to As(III), p62 oligomers cannot be cleared by autophagy and accumulate as aggregates with Keap1. This results in the sequestration of Keap1 and the stabilization of Nrf2, which activates the non-canonical Nrf2-Keap1 pathway as an antioxidant response. In this study, we found that polyubiquitination of p62 itself increased upon exposure to As(III) to prevent further oligomerization of p62 and to increase the availability of functional free monomeric p62. We also found that monomeric p62 could also interact with ubiquitinated proteins and that the forced dimerization of p62 was sufficient to increase the interactions with ubiquitinated proteins, probably polyubiquitinated with K63 linkages. Upon exposure to As(III), (1) inability to form oligomeric p62 because of a mutation in the PB1 dimerization domain, or (2) reduced capability to generate monomeric p62 owing to diminished polyubiquitination of p62 itself, resulted in reduced viability of cells. Therefore, upon exposure to As(III), p62 initially needs to form oligomers to activate an antioxidant response pathway. Subsequently, p62 is polyubiquitinated to prevent further oligomerization and ensure the availability of free p62 monomers. We propose that the polyubiquitination of p62 under exposure to As(III) plays an important role in overcoming the impaired autophagic flux by regulating the oligomerization status of p62.
Collapse
Affiliation(s)
- Hyuna Lee
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Mi-Nam Kim
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
65
|
Speldewinde SH, Grant CM. The frequency of yeast [ PSI+] prion formation is increased during chronological ageing. MICROBIAL CELL 2017; 4:127-132. [PMID: 28435839 PMCID: PMC5376352 DOI: 10.15698/mic2017.04.568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ageing involves a time-dependent decline in a variety of intracellular mechanisms and is associated with cellular senescence. This can be exacerbated by prion diseases which can occur in a sporadic manner, predominantly during the later stages of life. Prions are infectious, self-templating proteins responsible for several neurodegenerative diseases in mammals and several prion-forming proteins have been found in yeast. We show here that the frequency of formation of the yeast [PSI+ ] prion, which is the altered form of the Sup35 translation termination factor, is increased during chronological ageing. This increase is exacerbated in an atg1 mutant suggesting that autophagy normally acts to suppress age-related prion formation. We further show that cells which have switched to [PSI+ ] have improved viability during chronological ageing which requires active autophagy. [PSI+ ] stains show increased autophagic flux which correlates with increased viability and decreased levels of cellular protein aggregation. Taken together, our data indicate that the frequency of [PSI+ ] prion formation increases during yeast chronological ageing, and switching to the [PSI+ ] form can exert beneficial effects via the promotion of autophagic flux.
Collapse
Affiliation(s)
- Shaun H Speldewinde
- University of Manchester, Faculty of Biology, Medicine and Health, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Chris M Grant
- University of Manchester, Faculty of Biology, Medicine and Health, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
66
|
Study of conformational changes and protein aggregation of bovine serum albumin in presence of Sb(III) and Sb(V). PLoS One 2017; 12:e0170869. [PMID: 28151990 PMCID: PMC5289473 DOI: 10.1371/journal.pone.0170869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022] Open
Abstract
Antimony is a metalloid that affects biological functions in humans due to a mechanism still not understood. There is no doubt that the toxicity and physicochemical properties of Sb are strongly related with its chemical state. In this paper, the interaction between Sb(III) and Sb(V) with bovine serum albumin (BSA) was investigated in vitro by fluorescence spectroscopy, and circular dichroism (CD) under simulated physiological conditions. Moreover, the coupling of the separation technique, asymmetric flow field-flow fractionation, with elemental mass spectrometry to understand the interaction of Sb(V) and Sb(III) with the BSA was also used. Our results showed a different behaviour of Sb(III) vs. Sb(V) regarding their effects on the interaction with the BSA. The effects in terms of protein aggregates and conformational changes were higher in the presence of Sb(III) compared to Sb(V) which may explain the differences in toxicity between both Sb species in vivo. Obtained results demonstrated the protective effect of GSH that modifies the degree of interaction between the Sb species with BSA. Interestingly, in our experiments it was possible to detect an interaction between BSA and Sb species, which may be related with the presence of labile complex between the Sb and a protein for the first time.
Collapse
|
67
|
Park HR, Oh R, Wagner P, Panganiban R, Lu Q. New Insights Into Cellular Stress Responses to Environmental Metal Toxicants. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:55-82. [PMID: 28325215 DOI: 10.1016/bs.ircmb.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposures to metal toxicants in the environment disrupt normal physiological functions and have been linked to the development of a myriad of human diseases. While the molecular and cellular mechanisms underlying metal toxicities remain to be fully understood, it is well appreciated that metal toxicants induce cellular stresses and that how cells respond to the stresses plays an important role in metal toxicity. In this review, we focus on how metal exposures induce stresses in the endoplasmic reticulum (ER) to elicit the unfolded protein response (UPR). We document the emerging evidence that induction of ER stress and UPR in the development of human diseases is associated with metal exposures. We also discuss the role of the interplay between ER stress and oxidative stress in metal toxicity. Finally, we review recent advances in functional genomics approaches and discuss how applications of these new tools could help elucidate the molecular mechanisms underlying cellular stresses induced by environmental metal toxicants.
Collapse
Affiliation(s)
- H-R Park
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - R Oh
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - P Wagner
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - R Panganiban
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Q Lu
- Program in Molecular and Integrative Physiological Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States.
| |
Collapse
|
68
|
Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast. G3-GENES GENOMES GENETICS 2016; 6:3317-3333. [PMID: 27558664 PMCID: PMC5068951 DOI: 10.1534/g3.116.033829] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms.
Collapse
|
69
|
Puente-Sánchez F, Olsson S, Aguilera A. Comparative Transcriptomic Analysis of the Response of Dunaliella acidophila (Chlorophyta) to Short-Term Cadmium and Chronic Natural Metal-Rich Water Exposures. MICROBIAL ECOLOGY 2016; 72:595-607. [PMID: 27484342 DOI: 10.1007/s00248-016-0824-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
Heavy metals are toxic compounds known to cause multiple and severe cellular damage. However, acidophilic extremophiles are able to cope with very high concentrations of heavy metals. This study investigated the stress response under natural environmental heavy metal concentrations in an acidophilic Dunaliella acidophila. We employed Illumina sequencing for a de novo transcriptome assembly and to identify changes in response to high cadmium concentrations and natural metal-rich water. The photosynthetic performance was also estimated by pulse amplitude-modulated (PAM) fluorescence. Transcriptomic analysis highlights a number of processes mainly related to a high constitutive expression of genes involved in oxidative stress and response to reactive oxygen species (ROS), even in the absence of heavy metals. Photosynthetic activity seems to be unaltered under short-term exposition to Cd and chronic exposure to natural metal-rich water, probably due to an increase in the synthesis of structural photosynthetic components preserving their functional integrity. An overrepresentation of Gene Ontology (GO) terms related to metabolic activities, transcription, and proteosomal catabolic process was observed when D. acidophila grew under chronic exposure to natural metal-rich water. GO terms involved in carbohydrate metabolic process, reticulum endoplasmic and Golgi bodies, were also specifically overrepresented in natural metal-rich water library suggesting an endoplasmic reticulum stress response.
Collapse
Affiliation(s)
- Fernando Puente-Sánchez
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain
- Present address: Systems Biology Program. Centro Nacional de Biotecnología (CSIC). c/ Darwin 3, 28049, Madrid, Spain
| | - Sanna Olsson
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, FI-00014, Helsinki, Finland
- Department of Forest Ecology and Genetics, INIA, Forest Research Centre, Carretera A Coruña km 7.5, 28040, Madrid, Spain
| | - Angeles Aguilera
- Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir Km 4, Torrejón de Ardoz, 28850, Madrid, Spain.
| |
Collapse
|
70
|
Cholanians AB, Phan AV, Ditzel EJ, Camenisch TD, Lau SS, Monks TJ. From the Cover: Arsenic Induces Accumulation of α-Synuclein: Implications for Synucleinopathies and Neurodegeneration. Toxicol Sci 2016; 153:271-81. [PMID: 27413109 DOI: 10.1093/toxsci/kfw117] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Synucleinopathies, including Parkinson's disease (PD), are neurodegenerative diseases characterized by accumulation of α-synuclein (SYN), a small neuronal protein with prion like properties that plays a central role in PD pathogenesis. SYN can misfold and generate toxic oligomers/aggregates, which can be cytotoxic. Environmental arsenic (As)-containing pesticide use correlates with increased incidence of PD. Moreover, because As exposure can lead to inhibition of autophagic flux we hypothesize that As can facilitate the accumulation of toxic SYN oligomers/aggregates and subsequent increases in markers of autophagy. We therefore examined the role of As in the oligomerization of SYN, and the consequences thereof. Chronic exposure of SH-SY5Y cells overexpressing SYN to As caused a dose-dependent oligomerization of SYN, with concomitant increases in protein ubiquitination and expression of other stress markers (protein glutathione binding, γ-GCS, light chain 3 (LC3)-I/II, P62, and NAD(P)H dehydrogenase quinone 1), indicative of an increased proteotoxic stress. Immunocytochemical analyses revealed an accumulation of SYN, and it's colocalization with LC3, a major autophagic protein. Mice exposed to As (100 ppb) for 1 month, exhibited elevated SYN accumulation in the cortex and striatum, and elevations in protein ubiquitination and LC3-I and II levels. However, tyrosine hydroxylase (TH), an indicator of dopaminergic cell density, was upregulated in the As exposed animals. Because SYN can inhibit TH function, and As can decrease monoamine levels, As exposure possibly leads to compensatory mechanisms leading to an increase in TH expression. Our findings suggest that susceptible individuals may be at higher risk of developing synucleinopathies and/or neurodegeneration due to environmental As exposure.
Collapse
Affiliation(s)
- Aram B Cholanians
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| | - Andy V Phan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| | - Eric J Ditzel
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| | - Todd D Camenisch
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| | - Serrine S Lau
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| | - Terrence J Monks
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Arizona 85721
| |
Collapse
|
71
|
Guerra-Moreno A, Hanna J. Tmc1 Is a Dynamically Regulated Effector of the Rpn4 Proteotoxic Stress Response. J Biol Chem 2016; 291:14788-95. [PMID: 27226598 DOI: 10.1074/jbc.m116.726398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin-proteasome system represents the major pathway of selective intracellular protein degradation in eukaryotes. Misfolded proteins represent an important class of substrates for this pathway, and the failure to destroy misfolded proteins is associated with a number of human diseases. The transcription factor Rpn4 mediates a key proteotoxic stress response whose best known function is to control proteasome abundance by a homeostatic feedback mechanism. Here we identify the uncharacterized zinc finger protein Tmc1 as a dynamically regulated stress-responsive protein. Rpn4 induces TMC1 transcription in response to misfolded proteins. However, this response is counteracted by rapid proteasome-dependent degradation of Tmc1, which serves to normalize Tmc1 protein levels after induction. Precise control of Tmc1 levels is needed in vivo to survive multiple stressors related to proteostasis. Thus, Tmc1 represents a novel effector and substrate of the Rpn4 proteotoxic stress response.
Collapse
Affiliation(s)
- Angel Guerra-Moreno
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - John Hanna
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
72
|
Weids AJ, Ibstedt S, Tamás MJ, Grant CM. Distinct stress conditions result in aggregation of proteins with similar properties. Sci Rep 2016; 6:24554. [PMID: 27086931 PMCID: PMC4834537 DOI: 10.1038/srep24554] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/23/2016] [Indexed: 12/14/2022] Open
Abstract
Protein aggregation is the abnormal association of proteins into larger aggregate structures which tend to be insoluble. This occurs during normal physiological conditions and in response to age or stress-induced protein misfolding and denaturation. In this present study we have defined the range of proteins that aggregate in yeast cells during normal growth and after exposure to stress conditions including an oxidative stress (hydrogen peroxide), a heavy metal stress (arsenite) and an amino acid analogue (azetidine-2-carboxylic acid). Our data indicate that these three stress conditions, which work by distinct mechanisms, promote the aggregation of similar types of proteins probably by lowering the threshold of protein aggregation. The proteins that aggregate during physiological conditions and stress share several features; however, stress conditions shift the criteria for protein aggregation propensity. This suggests that the proteins in aggregates are intrinsically aggregation-prone, rather than being proteins which are affected in a stress-specific manner. We additionally identified significant overlaps between stress aggregating yeast proteins and proteins that aggregate during ageing in yeast and C. elegans. We suggest that similar mechanisms may apply in disease- and non-disease settings and that the factors and components that control protein aggregation may be evolutionary conserved.
Collapse
Affiliation(s)
- Alan J Weids
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Sebastian Ibstedt
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Chris M Grant
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
73
|
Koechler S, Bertin PN, Plewniak F, Baltenweck R, Casiot C, Heipieper HJ, Bouchez O, Arsène-Ploetze F, Hugueney P, Halter D. Arsenite response in Coccomyxa sp. Carn explored by transcriptomic and non-targeted metabolomic approaches. Environ Microbiol 2016; 18:1289-300. [PMID: 26769162 DOI: 10.1111/1462-2920.13227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/20/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
Abstract
Arsenic is a toxic metalloid known to generate an important oxidative stress in cells. In the present study, we focused our attention on an alga related to the genus Coccomyxa, exhibiting an extraordinary capacity to resist high concentrations of arsenite and arsenate. The integrated analysis of high-throughput transcriptomic data and non-targeted metabolomic approaches highlighted multiple levels of protection against arsenite. Indeed, Coccomyxa sp. Carn induced a set of transporters potentially preventing the accumulation of this metalloid in the cells and presented a distinct arsenic metabolism in comparison to another species more sensitive to that compound, i.e. Euglena gracilis, especially in regard to arsenic methylation. Interestingly, Coccomyxa sp. Carn was characterized by a remarkable accumulation of the strong antioxidant glutathione (GSH). Such observation could explain the apparent low oxidative stress in the intracellular compartment, as suggested by the transcriptomic analysis. In particular, the high amount of GSH in the cell could play an important role for the tolerance to arsenate, as suggested by its partial oxidation into oxidized glutathione in presence of this metalloid. Our results therefore reveal that this alga has acquired multiple and original defence mechanisms allowing the colonization of extreme ecosystems such as acid mine drainages.
Collapse
Affiliation(s)
- Sandrine Koechler
- Génétique Moléculaire, Génomique et Microbiologie, Département Microorganismes, Génomes, Environnement UMR7156 Université de Strasbourg/CNRS, 28 rue Goethe, 67083, Strasbourg Cedex, France
| | - Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, Département Microorganismes, Génomes, Environnement UMR7156 Université de Strasbourg/CNRS, 28 rue Goethe, 67083, Strasbourg Cedex, France
| | - Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, Département Microorganismes, Génomes, Environnement UMR7156 Université de Strasbourg/CNRS, 28 rue Goethe, 67083, Strasbourg Cedex, France
| | - Raymonde Baltenweck
- Unité Mixte de Recherche Santé de la Vigne et Qualité du Vin, Equipe Métabolisme secondaire de la vigne INRA, 68021, Colmar, France
| | - Corinne Casiot
- Hydrosciences Montpellier, UMR 5569 (CNRS, IRD, UM1, UM2), Université Montpellier 2, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Hermann J Heipieper
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Biotechnology, Permoserstr. 15, Leipzig, Germany
| | - Olivier Bouchez
- GeT-PlaGe (Plateforme Génomique) Campus INRA, 24 Chemin de Borde Rouge - Auzeville CS 52627, 31326, Castanet-Tolosan, France
| | - Florence Arsène-Ploetze
- Génétique Moléculaire, Génomique et Microbiologie, Département Microorganismes, Génomes, Environnement UMR7156 Université de Strasbourg/CNRS, 28 rue Goethe, 67083, Strasbourg Cedex, France
| | - Philippe Hugueney
- Unité Mixte de Recherche Santé de la Vigne et Qualité du Vin, Equipe Métabolisme secondaire de la vigne INRA, 68021, Colmar, France
| | - David Halter
- Unité Mixte de Recherche Santé de la Vigne et Qualité du Vin, Equipe Métabolisme secondaire de la vigne INRA, 68021, Colmar, France
| |
Collapse
|
74
|
Foufelle F, Fromenty B. Role of endoplasmic reticulum stress in drug-induced toxicity. Pharmacol Res Perspect 2016; 4:e00211. [PMID: 26977301 PMCID: PMC4777263 DOI: 10.1002/prp2.211] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/14/2015] [Indexed: 12/13/2022] Open
Abstract
Drug‐induced toxicity is a key issue for public health because some side effects can be severe and life‐threatening. These adverse effects can also be a major concern for the pharmaceutical companies since significant toxicity can lead to the interruption of clinical trials, or the withdrawal of the incriminated drugs from the market. Recent studies suggested that endoplasmic reticulum (ER) stress could be an important event involved in drug liability, in addition to other key mechanisms such as mitochondrial dysfunction and oxidative stress. Indeed, drug‐induced ER stress could lead to several deleterious effects within cells and tissues including accumulation of lipids, cell death, cytolysis, and inflammation. After recalling important information regarding drug‐induced adverse reactions and ER stress in diverse pathophysiological situations, this review summarizes the main data pertaining to drug‐induced ER stress and its potential involvement in different adverse effects. Drugs presented in this review are for instance acetaminophen (APAP), arsenic trioxide and other anticancer drugs, diclofenac, and different antiretroviral compounds. We also included data on tunicamycin (an antibiotic not used in human medicine because of its toxicity) and thapsigargin (a toxic compound of the Mediterranean plant Thapsia garganica) since both molecules are commonly used as prototypical toxins to induce ER stress in cellular and animal models.
Collapse
|
75
|
Ahmed A, Malik A, Jagirdar H, Rabbani N, Khan MS, Al-Senaidy AM, Ismael MA. Copper-Induced Inactivation of Camel Liver Glutathione S-Transferase. Biol Trace Elem Res 2016; 169:69-76. [PMID: 26043917 DOI: 10.1007/s12011-015-0388-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
Glutathione S-transferases (GSTs) are multifunctional enzymes and play an important role in detoxification of xenobiotics and protection against oxidative stress. Camel liver glutathione transferase (cGST) was recently isolated and characterized in our lab. In this study, we have evaluated the effect of monovalent, divalent, and trivalent cations on its activity and stability. Cu(++) was found to be the potent inhibitor of GST activity which loses complete activity at 0.5-mM concentration. Other metal ions did not inhibit GST even at higher concentration of 2 mM. GST incubated with Cu(++) (0.1 mM) resulted decrease in free sulfhydryl groups by 55%, whereas other metal ions did not show any effect on free thiol content. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis showed formation of GST aggregates instantly in the presence of Cu(++), which further increased in molecular size with increase in time of incubation. DTT treatment resulted in de-aggregation of GST oligomers to its monomeric form. However, the GST activity was not recovered completely after de-aggregation. Cu(++) was found to inhibit GST activity by accelerating the inter- and intra-disulfide bond formation. Far-UV circular dichroism (CD) results showed that Cu(++)-catalyzed air oxidation of sulfhydryl groups leads to minor conformational changes in the GST.
Collapse
Affiliation(s)
- Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
- Center of Excellence in Biotechnology Research, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Ajamaluddin Malik
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Haseeb Jagirdar
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nayyar Rabbani
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman M Al-Senaidy
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Ismael
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
76
|
Wallace EWJ, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski PR, Rojek AE, Katanski CD, Riback JA, Dion MF, Franks AM, Airoldi EM, Pan T, Budnik BA, Drummond DA. Reversible, Specific, Active Aggregates of Endogenous Proteins Assemble upon Heat Stress. Cell 2015; 162:1286-98. [PMID: 26359986 DOI: 10.1016/j.cell.2015.08.041] [Citation(s) in RCA: 362] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/19/2015] [Accepted: 08/05/2015] [Indexed: 01/03/2023]
Abstract
Heat causes protein misfolding and aggregation and, in eukaryotic cells, triggers aggregation of proteins and RNA into stress granules. We have carried out extensive proteomic studies to quantify heat-triggered aggregation and subsequent disaggregation in budding yeast, identifying >170 endogenous proteins aggregating within minutes of heat shock in multiple subcellular compartments. We demonstrate that these aggregated proteins are not misfolded and destined for degradation. Stable-isotope labeling reveals that even severely aggregated endogenous proteins are disaggregated without degradation during recovery from shock, contrasting with the rapid degradation observed for many exogenous thermolabile proteins. Although aggregation likely inactivates many cellular proteins, in the case of a heterotrimeric aminoacyl-tRNA synthetase complex, the aggregated proteins remain active with unaltered fidelity. We propose that most heat-induced aggregation of mature proteins reflects the operation of an adaptive, autoregulatory process of functionally significant aggregate assembly and disassembly that aids cellular adaptation to thermal stress.
Collapse
Affiliation(s)
- Edward W J Wallace
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Jamie L Kear-Scott
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Evgeny V Pilipenko
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Michael H Schwartz
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Pawel R Laskowski
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Alexandra E Rojek
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher D Katanski
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Joshua A Riback
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Michael F Dion
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Edoardo M Airoldi
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Statistics, Harvard University, Cambridge, MA 02138, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA
| | - Bogdan A Budnik
- FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - D Allan Drummond
- Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57(th) Street, Chicago, IL 60637, USA.
| |
Collapse
|
77
|
Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int J Mol Sci 2015; 16:29592-630. [PMID: 26690422 PMCID: PMC4691126 DOI: 10.3390/ijms161226183] [Citation(s) in RCA: 555] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023] Open
Abstract
Heavy metals, which have widespread environmental distribution and originate from natural and anthropogenic sources, are common environmental pollutants. In recent decades, their contamination has increased dramatically because of continuous discharge in sewage and untreated industrial effluents. Because they are non-degradable, they persist in the environment; accordingly, they have received a great deal of attention owing to their potential health and environmental risks. Although the toxic effects of metals depend on the forms and routes of exposure, interruptions of intracellular homeostasis include damage to lipids, proteins, enzymes and DNA via the production of free radicals. Following exposure to heavy metals, their metabolism and subsequent excretion from the body depends on the presence of antioxidants (glutathione, α-tocopherol, ascorbate, etc.) associated with the quenching of free radicals by suspending the activity of enzymes (catalase, peroxidase, and superoxide dismutase). Therefore, this review was written to provide a deep understanding of the mechanisms involved in eliciting their toxicity in order to highlight the necessity for development of strategies to decrease exposure to these metals, as well as to identify substances that contribute significantly to overcome their hazardous effects within the body of living organisms.
Collapse
|
78
|
The small heat shock protein, HSP30, is associated with aggresome-like inclusion bodies in proteasomal inhibitor-, arsenite-, and cadmium-treated Xenopus kidney cells. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:130-40. [DOI: 10.1016/j.cbpa.2015.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/20/2023]
|
79
|
Guerra-Moreno A, Isasa M, Bhanu MK, Waterman DP, Eapen VV, Gygi SP, Hanna J. Proteomic Analysis Identifies Ribosome Reduction as an Effective Proteotoxic Stress Response. J Biol Chem 2015; 290:29695-706. [PMID: 26491016 DOI: 10.1074/jbc.m115.684969] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Indexed: 11/06/2022] Open
Abstract
Stress responses are adaptive cellular programs that identify and mitigate potentially dangerous threats. Misfolded proteins are a ubiquitous and clinically relevant stress. Trivalent metalloids, such as arsenic, have been proposed to cause protein misfolding. Using tandem mass tag-based mass spectrometry, we show that trivalent arsenic results in widespread reorganization of the cell from an anabolic to a catabolic state. Both major pathways of protein degradation, the proteasome and autophagy, show increased abundance of pathway components and increased functional output, and are required for survival. Remarkably, cells also showed a down-regulation of ribosomes at the protein level. That this represented an adaptive response and not an adverse toxic effect was indicated by enhanced survival of ribosome mutants after arsenic exposure. These results suggest that a major source of toxicity of trivalent arsenic derives from misfolding of newly synthesized proteins and identifies ribosome reduction as a rapid, effective, and reversible proteotoxic stress response.
Collapse
Affiliation(s)
- Angel Guerra-Moreno
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Marta Isasa
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, and
| | - Meera K Bhanu
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - David P Waterman
- Rosenstiel Basic Medical Sciences Research Center and the Department of Biology, Brandeis University, Waltham, Massachusetts 02254
| | - Vinay V Eapen
- Rosenstiel Basic Medical Sciences Research Center and the Department of Biology, Brandeis University, Waltham, Massachusetts 02254
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, 02115, and
| | - John Hanna
- From the Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115,
| |
Collapse
|
80
|
Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress. FEBS Lett 2015; 589:3654-64. [PMID: 26484595 DOI: 10.1016/j.febslet.2015.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/16/2015] [Accepted: 10/11/2015] [Indexed: 12/22/2022]
Abstract
Environmental stress causes the sequestration of proteins into insoluble deposits including cytoplasmic stress granules (SGs), containing mRNA and a variety of translation factors. Here we systematically identified proteins sequestered in Saccharomyces cerevisiae at 46 °C by a SG co-localization screen and proteomic analysis of insoluble protein fractions. We identified novel SG components including essential aminoacyl-tRNA synthetases. Moreover, we discovered nucleus-associated deposits containing ribosome biogenesis factors. Our study suggests downregulation of cytosolic protein synthesis and nuclear ribosome production at multiple levels through heat shock induced protein sequestrations.
Collapse
|
81
|
Ferreira RT, Menezes RA, Rodrigues-Pousada C. E4-Ubiquitin ligase Ufd2 stabilizes Yap8 and modulates arsenic stress responses independent of the U-box motif. Biol Open 2015; 4:1122-31. [PMID: 26276098 PMCID: PMC4582114 DOI: 10.1242/bio.010405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Adaptation of Saccharomyces cerevisiae cells to arsenic stress is mediated through the activation of arsenic detoxification machinery by the Yap8 transcription factor. Yap8 is targeted by the ubiquitin proteasome system for degradation under physiological conditions, yet it escapes proteolysis in arsenic-injured cells by a mechanism that remains to be elucidated. Here, we show that Ufd2, an E4-Ubiquitin (Ub) ligase, is upregulated by arsenic compounds both at mRNA and protein levels. Under these conditions, Ufd2 interacts with Yap8 mediating its stabilization, thereby controlling expression of ACR3 and capacity of cells to adapt to arsenic injury. We also show that Ufd2 U-box domain, which is associated to the ubiquitination activity of specific ubiquitin ligases, is dispensable for Yap8 stability and has no role in cell tolerance to arsenic stress. Thus, our data disclose a novel Ufd2 role beyond degradation. This finding is further supported by genetic analyses showing that proteins belonging to Ufd2 proteolytic pathways, namely Ubc4, Rad23 and Dsk2, mediate Yap8 degradation.
Collapse
Affiliation(s)
- Rita T Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2781-901, Portugal
| | - Regina A Menezes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2781-901, Portugal
| | - Claudina Rodrigues-Pousada
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, EAN, Oeiras 2781-901, Portugal
| |
Collapse
|
82
|
Suresh HG, da Silveira Dos Santos AX, Kukulski W, Tyedmers J, Riezman H, Bukau B, Mogk A. Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:1601-15. [PMID: 25761633 PMCID: PMC4436773 DOI: 10.1091/mbc.e14-11-1559] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 03/02/2015] [Indexed: 11/11/2022] Open
Abstract
Lipid homeostasis is modulated upon starvation at three different levels manifested in reversible 1) spatial confinement of lipid biosynthetic enzymes, 2) mitochondrial and endoplasmic reticular reorganization, and 3) loss of organelle contact sites, thus highlighting a novel mechanism regulating lipid biosynthesis by simply modulating flux through the pathway. Cells adapt to changing nutrient availability by modulating a variety of processes, including the spatial sequestration of enzymes, the physiological significance of which remains controversial. These enzyme deposits are claimed to represent aggregates of misfolded proteins, protein storage, or complexes with superior enzymatic activity. We monitored spatial distribution of lipid biosynthetic enzymes upon glucose depletion in Saccharomyces cerevisiae. Several different cytosolic-, endoplasmic reticulum–, and mitochondria-localized lipid biosynthetic enzymes sequester into distinct foci. Using the key enzyme fatty acid synthetase (FAS) as a model, we show that FAS foci represent active enzyme assemblies. Upon starvation, phospholipid synthesis remains active, although with some alterations, implying that other foci-forming lipid biosynthetic enzymes might retain activity as well. Thus sequestration may restrict enzymes' access to one another and their substrates, modulating metabolic flux. Enzyme sequestrations coincide with reversible drastic mitochondrial reorganization and concomitant loss of endoplasmic reticulum–mitochondria encounter structures and vacuole and mitochondria patch organelle contact sites that are reflected in qualitative and quantitative changes in phospholipid profiles. This highlights a novel mechanism that regulates lipid homeostasis without profoundly affecting the activity status of involved enzymes such that, upon entry into favorable growth conditions, cells can quickly alter lipid flux by relocalizing their enzymes.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | | | - Wanda Kukulski
- Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany Structural and Computational Biology Unit and Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Jens Tyedmers
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Howard Riezman
- NCCR Chemical Biology, Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Bernd Bukau
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of the University of Heidelberg (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany
| |
Collapse
|
83
|
Kim MN, Choi J, Ryu HW, Ryu KY. Disruption of polyubiquitin gene Ubc leads to attenuated resistance against arsenite-induced toxicity in mouse embryonic fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:996-1009. [PMID: 25701757 DOI: 10.1016/j.bbamcr.2015.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/27/2015] [Accepted: 02/10/2015] [Indexed: 12/30/2022]
Abstract
The polyubiquitin gene Ubc is upregulated under oxidative stress induced by arsenite [As(III)]. However, the detailed mechanism of Ubc upregulation and the exact role of ubiquitin (Ub) to protect cells against As(III)-induced toxicity remain unknown. Here, we found that Ubc-/- mouse embryonic fibroblasts (MEFs) exhibited reduced viability under As(III) exposure, although the Nrf2-Keap1 pathway was activated as a cytoprotective response. Intriguingly, due to the reduced polyubiquitination and delayed onset of degradation of Nrf2 in Ubc-/- MEFs, the basal expression levels of Nrf2 target genes were elevated. As(III)-induced accumulation of Ub conjugates occurred in an Nrf2-independent manner, probably due to cellular stress conditions, including reduced proteasomal activity. Increased cellular Ub levels were essential to polyubiquitinate misfolded proteins generated under As(III) exposure and to degrade them by the proteasome. However, when cellular Ub levels decreased, these misfolded proteins were not efficiently polyubiquitinated, but rather accumulated as large protein aggregates inside the cells, causing cytotoxicity. Furthermore, increased activity of the autophagic pathway to clear these aggregates was not observed in Ubc-/- MEFs. Therefore, reduced viability of Ubc-/- MEFs under As(III) exposure may not be due to dysregulation of the Nrf2-Keap1 pathway, but mostly to reduced efficacy to polyubiquitinate and degrade misfolded protein aggregates.
Collapse
Affiliation(s)
- Mi-Nam Kim
- Department of Life Science, University of Seoul, Seoul 130-743, Republic of Korea
| | - Juhee Choi
- Department of Life Science, University of Seoul, Seoul 130-743, Republic of Korea
| | - Han-Wook Ryu
- Department of Life Science, University of Seoul, Seoul 130-743, Republic of Korea
| | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul 130-743, Republic of Korea.
| |
Collapse
|
84
|
Elucidating the response of Kluyveromyces lactis to arsenite and peroxide stress and the role of the transcription factor KlYap8. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1295-306. [DOI: 10.1016/j.bbagrm.2014.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 11/24/2022]
|
85
|
Ibstedt S, Sideri TC, Grant CM, Tamás MJ. Global analysis of protein aggregation in yeast during physiological conditions and arsenite stress. Biol Open 2014; 3:913-23. [PMID: 25217615 PMCID: PMC4197440 DOI: 10.1242/bio.20148938] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Protein aggregation is a widespread phenomenon in cells and associated with pathological conditions. Yet, little is known about the rules that govern protein aggregation in living cells. In this study, we biochemically isolated aggregation-prone proteins and used computational analyses to identify characteristics that are linked to physiological and arsenite-induced aggregation in living yeast cells. High protein abundance, extensive physical interactions, and certain structural properties are positively correlated with an increased aggregation propensity. The aggregated proteins have high translation rates and are substrates of ribosome-associated Hsp70 chaperones, indicating that they are susceptible for aggregation primarily during translation/folding. The aggregation-prone proteins are enriched for multiple chaperone interactions, thus high protein abundance is probably counterbalanced by molecular chaperones to allow soluble expression in vivo. Our data support the notion that arsenite interferes with chaperone activity and indicate that arsenite-aggregated proteins might engage in extensive aberrant protein–protein interactions. Expression of aggregation-prone proteins is down-regulated during arsenite stress, possibly to prevent their toxic accumulation. Several aggregation-prone yeast proteins have human homologues that are implicated in misfolding diseases, suggesting that similar mechanisms may apply in disease- and non-disease settings.
Collapse
Affiliation(s)
- Sebastian Ibstedt
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Theodora C Sideri
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK Current address: Department of Genetics, Evolution and Environment and UCL Cancer Institute, University College London, WC1E 6BT, London, UK
| | - Chris M Grant
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| |
Collapse
|
86
|
Seguin SJ, Morelli FF, Vinet J, Amore D, De Biasi S, Poletti A, Rubinsztein DC, Carra S. Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death Differ 2014; 21:1838-51. [PMID: 25034784 PMCID: PMC4227144 DOI: 10.1038/cdd.2014.103] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 12/15/2022] Open
Abstract
Stress granules (SGs) are mRNA-protein aggregates induced during stress, which accumulate in many neurodegenerative diseases. Previously, the autophagy-lysosome pathway and valosin-containing protein (VCP), key players of the protein quality control (PQC), were shown to regulate SG degradation. This is consistent with the idea that PQC may survey and/or assist SG dynamics. However, despite these observations, it is currently unknown whether the PQC actively participates in SG assembly. Here, we describe that inhibition of autophagy, lysosomes and VCP causes defective SG formation after induction. Silencing the VCP co-factors UFD1L and PLAA, which degrade defective ribosomal products (DRIPs) and 60S ribosomes, also impaired SG assembly. Intriguingly, DRIPs and 60S, which are released from disassembling polysomes and are normally excluded from SGs, were significantly retained within SGs in cells with impaired autophagy, lysosome or VCP function. Our results suggest that deregulated autophagy, lysosomal or VCP activities, which occur in several neurodegenerative (VCP-associated) diseases, may alter SG morphology and composition.
Collapse
Affiliation(s)
- S J Seguin
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universita' di Modena e Reggio Emilia, Modena, Italy
| | - F F Morelli
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universita' di Modena e Reggio Emilia, Modena, Italy
| | - J Vinet
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universita' di Modena e Reggio Emilia, Modena, Italy
| | - D Amore
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universita' di Modena e Reggio Emilia, Modena, Italy
| | - S De Biasi
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche, Universita' di Modena e Reggio Emilia, Modena, Italy
| | - A Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Universita' di Milano, Milan, Italy
| | - D C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge, UK
| | - S Carra
- Dipartimento di Scienze Biomediche, Metaboliche e Neuroscienze, Universita' di Modena e Reggio Emilia, Modena, Italy
| |
Collapse
|
87
|
Talemi SR, Jacobson T, Garla V, Navarrete C, Wagner A, Tamás MJ, Schaber J. Mathematical modelling of arsenic transport, distribution and detoxification processes in yeast. Mol Microbiol 2014; 92:1343-56. [PMID: 24798644 DOI: 10.1111/mmi.12631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2014] [Indexed: 11/29/2022]
Abstract
Arsenic has a dual role as causative and curative agent of human disease. Therefore, there is considerable interest in elucidating arsenic toxicity and detoxification mechanisms. By an ensemble modelling approach, we identified a best parsimonious mathematical model which recapitulates and predicts intracellular arsenic dynamics for different conditions and mutants, thereby providing novel insights into arsenic toxicity and detoxification mechanisms in yeast, which could partly be confirmed experimentally by dedicated experiments. Specifically, our analyses suggest that: (i) arsenic is mainly protein-bound during short-term (acute) exposure, whereas glutathione-conjugated arsenic dominates during long-term (chronic) exposure, (ii) arsenic is not stably retained, but can leave the vacuole via an export mechanism, and (iii) Fps1 is controlled by Hog1-dependent and Hog1-independent mechanisms during arsenite stress. Our results challenge glutathione depletion as a key mechanism for arsenic toxicity and instead suggest that (iv) increased glutathione biosynthesis protects the proteome against the damaging effects of arsenic and that (v) widespread protein inactivation contributes to the toxicity of this metalloid. Our work in yeast may prove useful to elucidate similar mechanisms in higher eukaryotes and have implications for the use of arsenic in medical therapy.
Collapse
Affiliation(s)
- Soheil Rastgou Talemi
- Institute for Experimental Internal Medicine, Medical Faculty, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
88
|
Genomic responses to arsenic in the cyanobacterium Synechocystis sp. PCC 6803. PLoS One 2014; 9:e96826. [PMID: 24797411 PMCID: PMC4010505 DOI: 10.1371/journal.pone.0096826] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/11/2014] [Indexed: 12/02/2022] Open
Abstract
Arsenic is a ubiquitous contaminant and a toxic metalloid which presents two main redox states in nature: arsenite [AsIII] and arsenate [AsV]. Arsenic resistance in Synechocystis sp. strain PCC 6803 is mediated by the arsBHC operon and two additional arsenate reductases encoded by the arsI1 and arsI2 genes. Here we describe the genome-wide responses to the presence of arsenate and arsenite in wild type and mutants in the arsenic resistance system. Both forms of arsenic produced similar responses in the wild type strain, including induction of several stress related genes and repression of energy generation processes. These responses were transient in the wild type strain but maintained in time in an arsB mutant strain, which lacks the arsenite transporter. In contrast, the responses observed in a strain lacking all arsenate reductases were somewhat different and included lower induction of genes involved in metal homeostasis and Fe-S cluster biogenesis, suggesting that these two processes are targeted by arsenite in the wild type strain. Finally, analysis of the arsR mutant strain revealed that ArsR seems to only control 5 genes in the genome. Furthermore, the arsR mutant strain exhibited hypersentivity to nickel, copper and cadmium and this phenotype was suppressed by mutation in arsB but not in arsC gene suggesting that overexpression of arsB is detrimental in the presence of these metals in the media.
Collapse
|
89
|
Halter D, Andres J, Plewniak F, Poulain J, Da Silva C, Arsène-Ploetze F, Bertin PN. Arsenic hypertolerance in the protist Euglena mutabilis is mediated by specific transporters and functional integrity maintenance mechanisms. Environ Microbiol 2014; 17:1941-9. [PMID: 24698441 DOI: 10.1111/1462-2920.12474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 02/05/2023]
Abstract
Arsenic is a toxic metalloid known to cause multiple and severe cellular damages, including lipid peroxidation, protein misfolding, mutagenesis and double and single-stranded DNA breaks. Thus, exposure to this compound is lethal for most organisms but some species such as the photosynthetic protist Euglena mutabilis are able to cope with very high concentrations of this metalloid. Our comparative transcriptomic approaches performed on both an arsenic hypertolerant protist, i.e. E. mutabilis, and a more sensitive one, i.e. E. gracilis, revealed multiple mechanisms involved in arsenic tolerance. Indeed, E. mutabilis prevents efficiently the accumulation of arsenic in the cell through the expression of several transporters. More surprisingly, this protist induced the expression of active DNA reparation and protein turnover mechanisms, which allow E. mutabilis to maintain functional integrity of the cell under challenging conditions. Our observations suggest that this protist has acquired specific functions regarding arsenic and has developed an original metabolism to cope with acid mine drainages-related stresses.
Collapse
Affiliation(s)
- David Halter
- Génétique Moléculaire, Génomique et Microbiologie, Département Micro-organismes, Génomes, Environnement, UMR7156 Université de Strasbourg/CNRS, Strasbourg, France
| | - Jérémy Andres
- Génétique Moléculaire, Génomique et Microbiologie, Département Micro-organismes, Génomes, Environnement, UMR7156 Université de Strasbourg/CNRS, Strasbourg, France
| | - Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, Département Micro-organismes, Génomes, Environnement, UMR7156 Université de Strasbourg/CNRS, Strasbourg, France
| | - Julie Poulain
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Evry, France
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Evry, France
| | - Florence Arsène-Ploetze
- Génétique Moléculaire, Génomique et Microbiologie, Département Micro-organismes, Génomes, Environnement, UMR7156 Université de Strasbourg/CNRS, Strasbourg, France
| | - Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, Département Micro-organismes, Génomes, Environnement, UMR7156 Université de Strasbourg/CNRS, Strasbourg, France
| |
Collapse
|
90
|
Mattoo RUH, Goloubinoff P. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cell Mol Life Sci 2014; 71:3311-25. [PMID: 24760129 PMCID: PMC4131146 DOI: 10.1007/s00018-014-1627-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 01/01/2023]
Abstract
By virtue of their general ability to bind (hold) translocating or unfolding polypeptides otherwise doomed to aggregate, molecular chaperones are commonly dubbed “holdases”. Yet, chaperones also carry physiological functions that do not necessitate prevention of aggregation, such as altering the native states of proteins, as in the disassembly of SNARE complexes and clathrin coats. To carry such physiological functions, major members of the Hsp70, Hsp110, Hsp100, and Hsp60/CCT chaperone families act as catalytic unfolding enzymes or unfoldases that drive iterative cycles of protein binding, unfolding/pulling, and release. One unfoldase chaperone may thus successively convert many misfolded or alternatively folded polypeptide substrates into transiently unfolded intermediates, which, once released, can spontaneously refold into low-affinity native products. Whereas during stress, a large excess of non-catalytic chaperones in holding mode may optimally prevent protein aggregation, after the stress, catalytic disaggregases and unfoldases may act as nanomachines that use the energy of ATP hydrolysis to repair proteins with compromised conformations. Thus, holding and catalytic unfolding chaperones can act as primary cellular defenses against the formation of early misfolded and aggregated proteotoxic conformers in order to avert or retard the onset of degenerative protein conformational diseases.
Collapse
Affiliation(s)
- Rayees U H Mattoo
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | | |
Collapse
|
91
|
Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 2014; 4:252-67. [PMID: 24970215 PMCID: PMC4030994 DOI: 10.3390/biom4010252] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 11/30/2022] Open
Abstract
While the toxicity of metals and metalloids, like arsenic, cadmium, mercury, lead and chromium, is undisputed, the underlying molecular mechanisms are not entirely clear. General consensus holds that proteins are the prime targets; heavy metals interfere with the physiological activity of specific, particularly susceptible proteins, either by forming a complex with functional side chain groups or by displacing essential metal ions in metalloproteins. Recent studies have revealed an additional mode of metal action targeted at proteins in a non-native state; certain heavy metals and metalloids have been found to inhibit the in vitro refolding of chemically denatured proteins, to interfere with protein folding in vivo and to cause aggregation of nascent proteins in living cells. Apparently, unfolded proteins with motile backbone and side chains are considerably more prone to engage in stable, pluridentate metal complexes than native proteins with their well-defined 3D structure. By interfering with the folding process, heavy metal ions and metalloids profoundly affect protein homeostasis and cell viability. This review describes how heavy metals impede protein folding and promote protein aggregation, how cells regulate quality control systems to protect themselves from metal toxicity and how metals might contribute to protein misfolding disorders.
Collapse
|
92
|
O'Connell JD, Tsechansky M, Royal A, Boutz DR, Ellington AD, Marcotte EM. A proteomic survey of widespread protein aggregation in yeast. MOLECULAR BIOSYSTEMS 2014; 10:851-861. [PMID: 24488121 DOI: 10.1039/c3mb70508k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many normally cytosolic yeast proteins form insoluble intracellular bodies in response to nutrient depletion, suggesting the potential for widespread protein aggregation in stressed cells. Nearly 200 such bodies have been found in yeast by screening libraries of fluorescently tagged proteins. In order to more broadly characterize the formation of these bodies in response to stress, we employed a proteome-wide shotgun mass spectrometry assay in order to measure shifts in the intracellular solubilities of endogenous proteins following heat stress. As quantified by mass spectrometry, heat stress tended to shift the same proteins into insoluble form as did nutrient depletion; many of these proteins were also known to form foci in response to arsenic stress. Affinity purification of several foci-forming proteins showed enrichment for co-purifying chaperones, including Hsp90 chaperones. Tests of induction conditions and co-localization of metabolic enzymes participating in the same metabolic pathways suggested those foci did not correspond to multi-enzyme organizing centers. Thus, in yeast, the formation of stress bodies appears common across diverse, normally diffuse cytoplasmic proteins and is induced by multiple types of cell stress, including thermal, chemical, and nutrient stress.
Collapse
Affiliation(s)
- Jeremy D O'Connell
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Mark Tsechansky
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, UK
| | - Ariel Royal
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel R Boutz
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| | - Edward M Marcotte
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
93
|
Hydrodynamic Cell Trapping for High Throughput Single-Cell Applications. MICROMACHINES 2013. [DOI: 10.3390/mi4040414] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
94
|
Hanna J, Waterman D, Isasa M, Elsasser S, Shi Y, Gygi S, Finley D. Cuz1/Ynl155w, a zinc-dependent ubiquitin-binding protein, protects cells from metalloid-induced proteotoxicity. J Biol Chem 2013; 289:1876-85. [PMID: 24297164 DOI: 10.1074/jbc.m113.534032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein misfolding is a universal threat to cells. The ubiquitin-proteasome system mediates a cellular stress response capable of eliminating misfolded proteins. Here we identify Cuz1/Ynl155w as a component of the ubiquitin system, capable of interacting with both the proteasome and Cdc48. Cuz1/Ynl155w is regulated by the transcription factor Rpn4, and is required for cells to survive exposure to the trivalent metalloids arsenic and antimony. A related protein, Yor052c, shows similar phenotypes, suggesting a multicomponent stress response pathway. Cuz1/Ynl155w functions as a zinc-dependent ubiquitin-binding protein. Thus, Cuz1/Ynl155w is proposed to protect cells from metalloid-induced proteotoxicity by delivering ubiquitinated substrates to Cdc48 and the proteasome for destruction.
Collapse
Affiliation(s)
- John Hanna
- From the Department of Pathology, Brigham and Women's Hospital, and
| | | | | | | | | | | | | |
Collapse
|