51
|
Jeske YW, Ali S, Byron SA, Gao F, Mannel RS, Ghebre RG, DiSilvestro PA, Lele SB, Pearl ML, Schmidt AP, Lankes HA, Ramirez NC, Rasty G, Powell M, Goodfellow PJ, Pollock PM. FGFR2 mutations are associated with poor outcomes in endometrioid endometrial cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol Oncol 2017; 145:366-373. [PMID: 28314589 PMCID: PMC5433848 DOI: 10.1016/j.ygyno.2017.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 11/19/2022]
Abstract
PURPOSE Activating FGFR2 mutations have been identified in ~10% of endometrioid endometrial cancers (ECs). We have previously reported that mutations in FGFR2 are associated with shorter disease free survival (DFS) in stage I/II EC patients. Here we sought to validate the prognostic importance of FGFR2 mutations in a large, multi-institutional patient cohort. METHODS Tumors were collected as part of the GOG 210 clinical trial "Molecular Staging of Endometrial Cancer" where samples underwent rigorous pathological review and had more than three years of detailed clinical follow-up. DNA was extracted and four exons encompassing the FGFR2 mutation hotspots were amplified and sequenced. RESULTS Mutations were identified in 144 of the 973 endometrioid ECs, of which 125 were classified as known activating mutations and were included in the statistical analyses. Consistent with FGFR2 having an association with more aggressive disease, FGFR2 mutations were more common in patients initially diagnosed with stage III/IV EC (29/170;17%) versus stage I/II EC (96/803; 12%; p=0.07, Chi-square test). Additionally, incidence of progression (progressed, recurred or died from disease) was significantly more prevalent (32/125, 26%) among patients with FGFR2 mutation versus wild type (120/848, 14%; p<0.001, Chi-square test). Using Cox regression analysis adjusting for known prognostic factors, patients with FGFR2 mutation had significantly (p<0.025) shorter progression-free survival (PFS; HR 1.903; 95% CI 1.177-3.076) and endometrial cancer specific survival (ECS; HR 2.013; 95% CI 1.096-3.696). CONCLUSION In summary, our findings suggest that clinical trials testing the efficacy of FGFR inhibitors in the adjuvant setting to prevent recurrence and death are warranted.
Collapse
Affiliation(s)
- Yvette W Jeske
- Queensland University of Technology (QUT) at the Translational Research Institute, Brisbane, Australia
| | - Shamshad Ali
- NRG Oncology Statistics and Data Management Center, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Sara A Byron
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Feng Gao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Robert S Mannel
- Gynecologic Oncology, The Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rahel G Ghebre
- University of Minnesota Medical Center - Fairview, Minneapolis, MN, USA
| | | | - Shashikant B Lele
- Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michael L Pearl
- Obstetrics and Gynecology, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Amy P Schmidt
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA
| | - Heather A Lankes
- NRG Oncology Statistics and Data Management Center, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Nilsa C Ramirez
- GOG Tissue Bank/NRG Oncology Biospecimen Bank - Columbus, Biopathology Center, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Golnar Rasty
- Department of Laboratory Medicine, University of Toronto, ON, M5G2C, CANADA
| | - Matthew Powell
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA
| | - Paul J Goodfellow
- Department of Obstetrics and Gynecology, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH, USA
| | - Pamela M Pollock
- Queensland University of Technology (QUT) at the Translational Research Institute, Brisbane, Australia; Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA.
| |
Collapse
|
52
|
The small G protein Arf6 expressed in keratinocytes by HGF stimulation is a regulator for skin wound healing. Sci Rep 2017; 7:46649. [PMID: 28429746 PMCID: PMC5399375 DOI: 10.1038/srep46649] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/24/2017] [Indexed: 12/21/2022] Open
Abstract
The earlier step of cutaneous wound healing process, re-epithelialization of the wounded skin, is triggered by a variety of growth factors. However, molecular mechanisms through which growth factors trigger skin wound healing are less understood. Here, we demonstrate that hepatocyte growth factor (HGF)/c-Met signaling-induced expression of the small G protein Arf6 mRNA in keratinocytes is essential for the skin wound healing. Arf6 mRNA expression was dramatically induced in keratinocytes at the wounded skin, which was specifically suppressed by the c-Met inhibitor. Wound healing of the skin was significantly delayed in keratinocyte-specific Arf6 conditional knockout mice. Furthermore, Arf6 deletion from keratinocytes remarkably suppressed HGF-stimulated cell migration and peripheral membrane ruffle formation, but did not affect skin morphology and proliferation/differentiation of keratinocytes. These results are consistent with the notion that Arf6 expressed in skin keratinocytes through the HGF/c-Met signaling pathway in response to skin wounding plays an important role in skin wound healing by regulating membrane dynamics-based motogenic cellular function of keratinocytes.
Collapse
|
53
|
Klein RH, Lin Z, Hopkin AS, Gordon W, Tsoi LC, Liang Y, Gudjonsson JE, Andersen B. GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states. PLoS Genet 2017; 13:e1006745. [PMID: 28445475 PMCID: PMC5425218 DOI: 10.1371/journal.pgen.1006745] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 05/10/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022] Open
Abstract
Transcription factor binding, chromatin modifications and large scale chromatin re-organization underlie progressive, irreversible cell lineage commitments and differentiation. We know little, however, about chromatin changes as cells enter transient, reversible states such as migration. Here we demonstrate that when human progenitor keratinocytes either differentiate or migrate they form complements of typical enhancers and super-enhancers that are unique for each state. Unique super-enhancers for each cellular state link to gene expression that confers functions associated with the respective cell state. These super-enhancers are also enriched for skin disease sequence variants. GRHL3, a transcription factor that promotes both differentiation and migration, binds preferentially to super-enhancers in differentiating keratinocytes, while during migration, it binds preferentially to promoters along with REST, repressing the expression of migration inhibitors. Key epidermal differentiation transcription factor genes, including GRHL3, are located within super-enhancers, and many of these transcription factors in turn bind to and regulate super-enhancers. Furthermore, GRHL3 represses the formation of a number of progenitor and non-keratinocyte super-enhancers in differentiating keratinocytes. Hence, chromatin relocates GRHL3 binding and enhancers to regulate both the irreversible commitment of progenitor keratinocytes to differentiation and their reversible transition to migration.
Collapse
Affiliation(s)
- Rachel Herndon Klein
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ziguang Lin
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Amelia Soto Hopkin
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - William Gordon
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yun Liang
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Johann E. Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California Irvine, Irvine, California, United States of America
- Department of Medicine, School of Medicine, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
54
|
Roan JN, Cheng HN, Young CC, Lee CJ, Yeh ML, Luo CY, Tsai YS, Lam CF. Exendin-4, a glucagon-like peptide-1 analogue, accelerates diabetic wound healing. J Surg Res 2017; 208:93-103. [DOI: 10.1016/j.jss.2016.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/19/2016] [Accepted: 09/09/2016] [Indexed: 10/21/2022]
|
55
|
Zhang J, Yang J, Huang T, Shu Y, Chen L. Identification of novel proliferative diabetic retinopathy related genes on protein–protein interaction network. Neurocomputing 2016. [DOI: 10.1016/j.neucom.2015.09.136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
56
|
Keshri GK, Gupta A, Yadav A, Sharma SK, Singh SB. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats. PLoS One 2016; 11:e0166705. [PMID: 27861614 PMCID: PMC5115773 DOI: 10.1371/journal.pone.0166705] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022] Open
Abstract
Chronic non-healing cutaneous wounds are often vulnerable in one or more repair phases that prevent normal healing and pose challenges to the use of conventional wound care modalities. In immunosuppressed subject, the sequential stages of healing get hampered, which may be the consequences of dysregulated or stagnant wound inflammation. Photobiomodulation (PBM) or low-level laser (light) therapy (LLLT) emerges as a promising drug-free, non-invasive biophysical approach for promoting wound healing, reduction of inflammation, pain and restoration of functions. The present study was therefore undertaken to evaluate the photobiomodulatory effects of 810 nm diode laser (40 mW/cm2; 22.6 J/cm2) with pulsed (10 and 100 Hz, 50% duty cycle) and continuous wave on full-thickness excision-type dermal wound healing in hydrocortisone-induced immunosuppressed rats. Results clearly delineated that 810 nm PBM at 10 Hz was more effective over continuous and 100 Hz frequency in accelerating wound healing by attenuating the pro-inflammatory markers (NF-kB, TNF-α), augmenting wound contraction (α-SM actin), enhancing cellular proliferation, ECM deposition, neovascularization (HIF-1α, VEGF), re-epithelialization along with up-regulated protein expression of FGFR-1, Fibronectin, HSP-90 and TGF-β2 as compared to the non-irradiated controls. Additionally, 810 nm laser irradiation significantly increased CCO activity and cellular ATP contents. Overall, the findings from this study might broaden the current biological mechanism that could be responsible for photobiomodulatory effect mediated through pulsed NIR 810 nm laser (10 Hz) for promoting dermal wound healing in immunosuppressed subjects.
Collapse
Affiliation(s)
- Gaurav K. Keshri
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| | - Asheesh Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
- * E-mail:
| | - Anju Yadav
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| | - Sanjeev K. Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| | - Shashi Bala Singh
- Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Timarpur, Delhi, India
| |
Collapse
|
57
|
Altmeier S, Toska A, Sparber F, Teijeira A, Halin C, LeibundGut-Landmann S. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa. PLoS Pathog 2016; 12:e1005882. [PMID: 27632536 PMCID: PMC5025078 DOI: 10.1371/journal.ppat.1005882] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022] Open
Abstract
Mucosal infections with Candida albicans belong to the most frequent forms of fungal diseases. Host protection is conferred by cellular immunity; however, the induction of antifungal immunity is not well understood. Using a mouse model of oropharyngeal candidiasis (OPC) we show that interleukin-1 receptor (IL-1R) signaling is critical for fungal control at the onset of infection through its impact on neutrophils at two levels. We demonstrate that both the recruitment of circulating neutrophils to the site of infection and the mobilization of newly generated neutrophils from the bone marrow depended on IL-1R. Consistently, IL-1R-deficient mice displayed impaired chemokine production at the site of infection and defective secretion of granulocyte colony-stimulating factor (G-CSF) in the circulation in response to C. albicans. Strikingly, endothelial cells were identified as the primary cellular source of G-CSF during OPC, which responded to IL-1α that was released from keratinocytes in the infected tissue. The IL-1-dependent crosstalk between two different cellular subsets of the nonhematopoietic compartment was confirmed in vitro using a novel murine tongue-derived keratinocyte cell line and an established endothelial cell line. These data establish a new link between IL-1 and granulopoiesis in the context of fungal infection. Together, we identified two complementary mechanisms coordinating the neutrophil response in the oral mucosa, which is critical for preventing fungal growth and dissemination, and thus protects the host from disease. The opportunistic pathogen Candida albicans is a major risk factor for immunosuppressed individuals, and oropharyngeal candidiasis (OPC) is a frequent complication in patients with weakened cellular immunity. The cytokine interleukin-17 (IL-17) plays a critical role for antifungal host defense and was proposed to act by regulating neutrophil recruitment to the oral mucosa. However, although IL-17 can promote neutrophil trafficking in some situations, we recently showed in a mouse model that this is not the case during OPC. Thus, the mechanism governing the neutrophil response to C. albicans remained to be determined. Here, we demonstrate an essential role of IL-1 receptor (IL-1R) signaling in the recruitment of neutrophils from the circulation to the infected tissue via enhanced secretion of chemokines and increased output of neutrophils from the bone marrow. We found that IL-1α is released from keratinocytes upon invasion of C. albicans and acts on endothelial cells to induce the production of granulocyte colony-stimulating factor (G-CSF), a key trigger of emergency granulopoiesis. Thereby, IL-1R signaling translates the local response to the fungus in the oral mucosa into a systemic response that critically contributes to protection from infection.
Collapse
Affiliation(s)
- Simon Altmeier
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Albulena Toska
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Florian Sparber
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Alvaro Teijeira
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | |
Collapse
|
58
|
Ashrafi M, Sebastian A, Shih B, Greaves N, Alonso-Rasgado T, Baguneid M, Bayat A. Whole genome microarray data of chronic wound debridement prior to application of dermal skin substitutes. Wound Repair Regen 2016; 24:870-875. [DOI: 10.1111/wrr.12460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/27/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Mohammed Ashrafi
- Plastic and Reconstructive Surgery Research, Centre for Dermatological Research, Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
| | - Anil Sebastian
- Plastic and Reconstructive Surgery Research, Centre for Dermatological Research, Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
| | - Barbara Shih
- Plastic and Reconstructive Surgery Research, Centre for Dermatological Research, Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
| | - Nicholas Greaves
- Plastic and Reconstructive Surgery Research, Centre for Dermatological Research, Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
| | - Teresa Alonso-Rasgado
- Bioengineering Group, School of Materials; University of Manchester; Manchester United Kingdom
| | - Mohamed Baguneid
- Wythenshawe Hospital; University Hospital South Manchester NHS Foundation Trust; Manchester United Kingdom
| | - Ardeshir Bayat
- Plastic and Reconstructive Surgery Research, Centre for Dermatological Research, Institute of Inflammation and Repair, University of Manchester; Manchester United Kingdom
| |
Collapse
|
59
|
Peng Y, Li P, Zhao ZA, Chen L, Zhao XG, Chen X, Zhao Y, Xiong RP, Ning YL, Yang N, Ye J, Zhou YG. Comparative evaluation of the wound-healing potency of recombinant bFGF and ski gene therapy in rats. Growth Factors 2016; 34:119-27. [PMID: 27418111 DOI: 10.1080/08977194.2016.1200570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We previously demonstrated that cellular Sloan-Kettering Institute (c-Ski) played a dual role, both promoting wound healing and alleviating scar formation. However, its mechanism and therapeutic effects are not clear, especially compared with widely used treatments, such as basic fibroblast growth factor (bFGF) administration. However, Ski treatment led to an even shorter healing time and a more significant reduction in scar area than bFGF treatment. The mechanism underlying this difference was related to a reduced inflammatory response, more rapid re-epithelialization, less collagen after healing and a greater reduction in the proportion of alpha-smooth muscle actin and SMemb-positive cells after Ski treatment. These results not only confirm that Ski plays a dual role in promoting healing and reducing scarring but also suggest that Ski yields better treatment effects than bFGF, indicating better potential therapeutic effects in wound repair.
Collapse
Affiliation(s)
- Yan Peng
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Ping Li
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Zi-Ai Zhao
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Lei Chen
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Xiao-Guang Zhao
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Xing Chen
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Yan Zhao
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Ren-Ping Xiong
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Ya-Lei Ning
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Nan Yang
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| | - Jian Ye
- b Department of Ophthalmology , Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China
| | - Yuan-Guo Zhou
- a The Molecular Biology Centre, State Key Laboratory of Trauma Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University , Chongqing , China and
| |
Collapse
|
60
|
Nguyen T, Mège RM. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations. Eur J Cell Biol 2016; 95:415-426. [PMID: 27320194 DOI: 10.1016/j.ejcb.2016.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - René Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France.
| |
Collapse
|
61
|
Richardson R, Metzger M, Knyphausen P, Ramezani T, Slanchev K, Kraus C, Schmelzer E, Hammerschmidt M. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development 2016; 143:2077-88. [PMID: 27122176 DOI: 10.1242/dev.130492] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/12/2016] [Indexed: 01/08/2023]
Abstract
Re-epithelialization of cutaneous wounds in adult mammals takes days to complete and relies on numerous signalling cues and multiple overlapping cellular processes that take place both within the epidermis and in other participating tissues. Re-epithelialization of partial- or full-thickness skin wounds of adult zebrafish, however, is extremely rapid and largely independent of the other processes of wound healing. Live imaging after treatment with transgene-encoded or chemical inhibitors reveals that re-epithelializing keratinocytes repopulate wounds by TGF-β- and integrin-dependent lamellipodial crawling at the leading edges of the epidermal tongue. In addition, re-epithelialization requires long-range epithelial rearrangements, involving radial intercalations, flattening and directed elongation of cells - processes that are dependent on Rho kinase, JNK and, to some extent, planar cell polarity within the epidermis. These rearrangements lead to a massive recruitment of keratinocytes from the adjacent epidermis and make re-epithelialization independent of keratinocyte proliferation and the mitogenic effect of FGF signalling, which are only required after wound closure, allowing the epidermis outside the wound to re-establish its normal thickness. Together, these results demonstrate that the adult zebrafish is a valuable in vivo model for studying and visualizing the processes involved in cutaneous wound closure, facilitating the dissection of direct from indirect and motogenic from mitogenic effects of genes and molecules affecting wound re-epithelialization.
Collapse
Affiliation(s)
- Rebecca Richardson
- Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany
| | - Manuel Metzger
- Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany
| | - Philipp Knyphausen
- Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany Graduate School for Biological Sciences, University of Cologne, Cologne D-50674, Germany
| | - Thomas Ramezani
- Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany
| | - Krasimir Slanchev
- Georges-Koehler Laboratory, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg D-79108, Germany
| | - Christopher Kraus
- Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany
| | - Elmon Schmelzer
- Cell Biology, Max-Planck Institute for Plant Breeding Research, Cologne D-50829, Germany
| | - Matthias Hammerschmidt
- Institute of Developmental Biology, University of Cologne, Cologne D-50674, Germany Center for Molecular Medicine Cologne, University of Cologne, Cologne D-50931, Germany Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne D-50931, Germany
| |
Collapse
|
62
|
Karuppaiah K, Yu K, Lim J, Chen J, Smith C, Long F, Ornitz DM. FGF signaling in the osteoprogenitor lineage non-autonomously regulates postnatal chondrocyte proliferation and skeletal growth. Development 2016; 143:1811-22. [PMID: 27052727 DOI: 10.1242/dev.131722] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/18/2016] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor (FGF) signaling is important for skeletal development; however, cell-specific functions, redundancy and feedback mechanisms regulating bone growth are poorly understood. FGF receptors 1 and 2 (Fgfr1 and Fgfr2) are both expressed in the osteoprogenitor lineage. Double conditional knockout mice, in which both receptors were inactivated using an osteoprogenitor-specific Cre driver, appeared normal at birth; however, these mice showed severe postnatal growth defects that include an ∼50% reduction in body weight and bone mass, and impaired longitudinal bone growth. Histological analysis showed reduced cortical and trabecular bone, suggesting cell-autonomous functions of FGF signaling during postnatal bone formation. Surprisingly, the double conditional knockout mice also showed growth plate defects and an arrest in chondrocyte proliferation. We provide genetic evidence of a non-cell-autonomous feedback pathway regulating Fgf9, Fgf18 and Pthlh expression, which led to increased expression and signaling of Fgfr3 in growth plate chondrocytes and suppression of chondrocyte proliferation. These observations show that FGF signaling in the osteoprogenitor lineage is obligately coupled to chondrocyte proliferation and the regulation of longitudinal bone growth.
Collapse
Affiliation(s)
- Kannan Karuppaiah
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Kai Yu
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA Division of Craniofacial Medicine, Department of Pediatrics, University of Washington and Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Joohyun Lim
- Departments of Orthopaedic Surgery and Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jianquan Chen
- Departments of Orthopaedic Surgery and Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Craig Smith
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Fanxin Long
- Departments of Orthopaedic Surgery and Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
63
|
Abstract
Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings.
Collapse
|
64
|
Nakai K, Yoneda K, Haba R, Kushida Y, Katsuki N, Moriue J, Moriue T, Koura A, Yokoi I, Ishikawa E, Inoue S, Kubota Y. βKlotho expression is reduced in human non-melanoma skin cancer. Int J Dermatol 2015; 54:e431-3. [PMID: 26234379 DOI: 10.1111/ijd.12924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 11/16/2014] [Accepted: 11/22/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Kozo Nakai
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Kozo Yoneda
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Reiji Haba
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoshio Kushida
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naomi Katsuki
- Department of Diagnostic Pathology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Junko Moriue
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tetsuya Moriue
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Ayako Koura
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Ikumi Yokoi
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Emiko Ishikawa
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shigeaki Inoue
- Institute of Innovative Science and Technology, Tokai University, Kanagawa, Japan
| | - Yasuo Kubota
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
65
|
Martin P, Nunan R. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol 2015; 173:370-8. [PMID: 26175283 PMCID: PMC4671308 DOI: 10.1111/bjd.13954] [Citation(s) in RCA: 622] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
Summary A considerable understanding of the fundamental cellular and molecular mechanisms underpinning healthy acute wound healing has been gleaned from studying various animal models, and we are now unravelling the mechanisms that lead to chronic wounds and pathological healing including fibrosis. A small cut will normally heal in days through tight orchestration of cell migration and appropriate levels of inflammation, innervation and angiogenesis. Major surgeries may take several weeks to heal and leave behind a noticeable scar. At the extreme end, chronic wounds – defined as a barrier defect that has not healed in 3 months – have become a major therapeutic challenge throughout the Western world and will only increase as our populations advance in age, and with the increasing incidence of diabetes, obesity and vascular disorders. Here we describe the clinical problems and how, through better dialogue between basic researchers and clinicians, we may extend our current knowledge to enable the development of novel potential therapeutic treatments. What's already known about this topic? What does this study add?
Collapse
Affiliation(s)
- P Martin
- Schools of Biochemistry and Physiology & Pharmacology, University of Bristol, Bristol, U.K.,School of Medicine, University of Cardiff, Cardiff, U.K
| | - R Nunan
- School of Medicine, University of Cardiff, Cardiff, U.K
| |
Collapse
|
66
|
Gupta A, Keshri GK, Yadav A, Gola S, Chauhan S, Salhan AK, Bala Singh S. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. JOURNAL OF BIOPHOTONICS 2015; 8:489-501. [PMID: 25207838 DOI: 10.1002/jbio.201400058] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Low-level laser therapy (LLLT) using superpulsed near-infrared light can penetrate deeper in the injured tissue and could allow non-pharmacological treatment for chronic wound healing. This study investigated the effects of superpulsed laser (Ga-As 904 nm, 200 ns pulse width; 100 Hz; 0.7 mW mean output power; 0.4 mW/cm(2) average irradiance; 0.2 J/cm(2) total fluence) on the healing of burn wounds in rats, and further explored the probable associated mechanisms of action. Irradiated group exhibited enhanced DNA, total protein, hydroxyproline and hexosamine contents compared to the control and silver sulfadiazine (reference care) treated groups. LLLT exhibited decreased TNF-α level and NF-kB, and up-regulated protein levels of VEGF, FGFR-1, HSP-60, HSP-90, HIF-1α and matrix metalloproteinases-2 and 9 compared to the controls. In conclusion, LLLT using superpulsed 904 nm laser reduced the inflammatory response and was able to enhance cellular proliferation, collagen deposition and wound contraction in the repair process of burn wounds. Photomicrographs showing no, absence inflammation and faster wound contraction in LLLT superpulsed (904 nm) laser treated burn wounds as compared to the non-irradiated control and silver sulfadiazine (SSD) ointment (reference care) treated wounds.
Collapse
Affiliation(s)
- Asheesh Gupta
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, 110 054, Timarpur, Delhi, India.
| | - Gaurav K Keshri
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, 110 054, Timarpur, Delhi, India
| | - Anju Yadav
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, 110 054, Timarpur, Delhi, India
| | - Shefali Gola
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, 110 054, Timarpur, Delhi, India
| | - Satish Chauhan
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, 110 054, Timarpur, Delhi, India
| | - Ashok K Salhan
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, 110 054, Timarpur, Delhi, India
| | - Shashi Bala Singh
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, 110 054, Timarpur, Delhi, India
| |
Collapse
|
67
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1457] [Impact Index Per Article: 145.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
68
|
Seeger MA, Paller AS. The Roles of Growth Factors in Keratinocyte Migration. Adv Wound Care (New Rochelle) 2015; 4:213-224. [PMID: 25945284 DOI: 10.1089/wound.2014.0540] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/07/2014] [Indexed: 01/10/2023] Open
Abstract
Significance: The re-epithelialization of wounded skin requires the rapid and coordinated migration of keratinocytes (KC) into the wound bed. Almost immediately after wounding, cells present at or attracted to the wound site begin to secrete a complex milieu of growth factors. These growth factors exert mitogenic and motogenic effects on KCs, inducing the rapid proliferation and migration of KCs at the wound edge. Recent Advances: New roles for growth factors in KC biology are currently being discovered and investigated. This review will highlight the growth factors, particularly transforming growth factor-α (TGF-α), heparin-binding epidermal growth factor (HB-EGF), insulin-like growth factor 1 (IGF-1), fibroblast growth factor 7 (FGF-7), FGF-10, and hepatocyte growth factor (HGF), which have conclusively been shown to be the most motogenic for KCs. Critical Issues: The cellular and molecular heterogeneity of wounded tissue makes establishing direct relationships between specific growth factors and KC migration difficult in situ. The absence of this complexity in simplified in vitro experimental models of migration makes the clinical relevance of the results obtained from these in vitro studies ambiguous. Future Directions: Deciphering the relationship between growth factors and KC migration is critical for understanding the process of wound healing in normal and disease states. Insights into the basic science of the effects of growth factors on KC migration will hopefully lead to the development of new therapies to treat acute and chronic wounds.
Collapse
Affiliation(s)
- Mark A. Seeger
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Amy S. Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
69
|
A modeling approach to study the effect of cell polarization on keratinocyte migration. PLoS One 2015; 10:e0117676. [PMID: 25671585 PMCID: PMC4324939 DOI: 10.1371/journal.pone.0117676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/30/2014] [Indexed: 01/25/2023] Open
Abstract
The skin forms an efficient barrier against the environment, and rapid cutaneous wound healing after injury is therefore essential. Healing of the uppermost layer of the skin, the epidermis, involves collective migration of keratinocytes, which requires coordinated polarization of the cells. To study this process, we developed a model that allows analysis of live-cell images of migrating keratinocytes in culture based on a small number of parameters, including the radius of the cells, their mass and their polarization. This computational approach allowed the analysis of cell migration at the front of the wound and a reliable identification and quantification of the impaired polarization and migration of keratinocytes from mice lacking fibroblast growth factors 1 and 2 – an established model of impaired healing. Therefore, our modeling approach is suitable for large-scale analysis of migration phenotypes of cells with specific genetic defects or upon treatment with different pharmacological agents.
Collapse
|
70
|
|
71
|
Abstract
The cellular and molecular mechanisms underpinning tissue repair and its failure to heal are still poorly understood, and current therapies are limited. Poor wound healing after trauma, surgery, acute illness, or chronic disease conditions affects millions of people worldwide each year and is the consequence of poorly regulated elements of the healthy tissue repair response, including inflammation, angiogenesis, matrix deposition, and cell recruitment. Failure of one or several of these cellular processes is generally linked to an underlying clinical condition, such as vascular disease, diabetes, or aging, which are all frequently associated with healing pathologies. The search for clinical strategies that might improve the body's natural repair mechanisms will need to be based on a thorough understanding of the basic biology of repair and regeneration. In this review, we highlight emerging concepts in tissue regeneration and repair, and provide some perspectives on how to translate current knowledge into viable clinical approaches for treating patients with wound-healing pathologies.
Collapse
Affiliation(s)
- Sabine A Eming
- Department of Dermatology, University of Cologne, Cologne 50937, Germany. Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany. Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne 50931, Germany.
| | - Paul Martin
- Schools of Biochemistry and Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK. School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
72
|
Carter EP, Fearon AE, Grose RP. Careless talk costs lives: fibroblast growth factor receptor signalling and the consequences of pathway malfunction. Trends Cell Biol 2014; 25:221-33. [PMID: 25467007 DOI: 10.1016/j.tcb.2014.11.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/31/2022]
Abstract
Since its discovery 40 years ago, fibroblast growth factor (FGF) receptor (FGFR) signalling has been found to regulate fundamental cellular behaviours in a wide range of cell types. FGFRs regulate development, homeostasis, and repair and are implicated in many disorders and diseases; and indeed, there is extensive potential for severe consequences, be they developmental, homeostatic, or oncogenic, should FGF-FGFR signalling go awry, so careful control of the pathway is critically important. In this review, we discuss the recent developments in the FGF field, highlighting how FGFR signalling works in normal cells, how it can go wrong, how frequently it is compromised, and how it is being targeted therapeutically.
Collapse
Affiliation(s)
- Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK
| | - Abbie E Fearon
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute - a CR-UK Centre of Excellence, Queen Mary University of London, London EC1M 6BQ, England, UK.
| |
Collapse
|
73
|
Schepeler T, Page ME, Jensen KB. Heterogeneity and plasticity of epidermal stem cells. Development 2014; 141:2559-67. [PMID: 24961797 PMCID: PMC4067958 DOI: 10.1242/dev.104588] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The epidermis is an integral part of our largest organ, the skin, and protects us against the hostile environment. It is a highly dynamic tissue that, during normal steady-state conditions, undergoes constant turnover. Multiple stem cell populations residing in autonomously maintained compartments facilitate this task. In this Review, we discuss stem cell behaviour during normal tissue homeostasis, regeneration and disease within the pilosebaceous unit, an integral structure of the epidermis that is responsible for hair growth and lubrication of the epithelium. We provide an up-to-date view of the pilosebaceous unit, encompassing the heterogeneity and plasticity of multiple discrete stem cell populations that are strongly influenced by external cues to maintain their identity and function.
Collapse
Affiliation(s)
- Troels Schepeler
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Mahalia E Page
- Wellcome Trust & Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Kim B Jensen
- BRIC - Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark Wellcome Trust & Medical Research Council Cambridge Stem Cell Institute, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
74
|
Endothelial cell FGF signaling is required for injury response but not for vascular homeostasis. Proc Natl Acad Sci U S A 2014; 111:13379-84. [PMID: 25139991 DOI: 10.1073/pnas.1324235111] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Endothelial cells (ECs) express fibroblast growth factor receptors (FGFRs) and are exquisitely sensitive to FGF signals. However, whether the EC or another vascular cell type requires FGF signaling during development, homeostasis, and response to injury is not known. Here, we show that Flk1-Cre or Tie2-Cre mediated deletion of FGFR1 and FGFR2 (Fgfr1/2(Flk1-Cre) or Fgfr1/2(Tie2-Cre) mice), which results in deletion in endothelial and hematopoietic cells, is compatible with normal embryonic development. As adults, Fgfr1/2(Flk1-Cre) mice maintain normal blood pressure and vascular reactivity and integrity under homeostatic conditions. However, neovascularization after skin or eye injury was significantly impaired in both Fgfr1/2(Flk1-Cre) and Fgfr1/2(Tie2-Cre) mice, independent of either hematopoietic cell loss of FGFR1/2 or vascular endothelial growth factor receptor 2 (Vegfr2) haploinsufficiency. Also, impaired neovascularization was associated with delayed cutaneous wound healing. These findings reveal a key requirement for cell-autonomous EC FGFR signaling in injury-induced angiogenesis, but not for vascular homeostasis, identifying the EC FGFR signaling pathway as a target for diseases associated with aberrant vascular proliferation, such as age-related macular degeneration, and for modulating wound healing without the potential toxicity associated with direct manipulation of systemic FGF or VEGF activity.
Collapse
|
75
|
Acute Wounding Alters the Beta2-Adrenergic Signaling and Catecholamine Synthetic Pathways in Keratinocytes. J Invest Dermatol 2014; 134:2258-2266. [DOI: 10.1038/jid.2014.137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 01/01/2023]
|
76
|
Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2465-79. [PMID: 25010393 DOI: 10.1016/j.ajpath.2014.05.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/21/2014] [Accepted: 05/16/2014] [Indexed: 12/12/2022]
Abstract
The forkhead box O (FOXO) family has been extensively investigated in aging and metabolism, but its role in tissue-repair processes remains largely unknown. Herein, we clarify the molecular aspect of the FOXO family in skin wound healing. We demonstrated that Foxo1 and Foxo3a were both up-regulated during murine skin wound healing. Partial knockout of Foxo1 in Foxo1(+/-) mice throughout the body led to accelerated skin wound healing with enhanced keratinocyte migration, reduced granulation tissue formation, and decreased collagen density, accompanied by an attenuated inflammatory response, but we observed no wound phenotype in Foxo3a(-/-) mice. Fibroblast growth factor 2, adiponectin, and notch1 genes were significantly increased at wound sites in Foxo1(+/-) mice, along with markedly altered extracellular signal-regulated kinase 1/2 and AKT phosphorylation. Similarly, transient knockdown of Foxo1 at the wound site by local delivery of antisense oligodeoxynucleotides enhanced skin wound healing. The link between FOXO1 and scarring extends to patients, in particular keloid scars, where we see FOXO1 expression markedly increased in fibroblasts and inflammatory cells within the otherwise normal dermis. This occurs in the immediate vicinity of the keloid by comparison to the center of the mature keloid, indicating that FOXO1 is associated with the overgrowth of this fibrotic response into adjacent normal skin. Overall, our data indicate that molecular targeting of FOXO1 may improve the quality of healing and reduce pathological scarring.
Collapse
|
77
|
Abolhassani A, Riazi GH, Azizi E, Amanpour S, Muhammadnejad S, Haddadi M, Zekri A, Shirkoohi R. FGF10: Type III Epithelial Mesenchymal Transition and Invasion in Breast Cancer Cell Lines. J Cancer 2014; 5:537-47. [PMID: 25057305 PMCID: PMC4107230 DOI: 10.7150/jca.7797] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/09/2014] [Indexed: 11/30/2022] Open
Abstract
Purpose: Fibroblastic growth factor-10 (FGF-10) has an important role in type I epithelial mesenchymal transition (EMT) during the embryonic period of life (gastrulation). Since EMT has a critical role during cancer cells invasion and metastasis (type III) this study sought to investigate the possible role of FGF-10 in type III EMT by monitoring breast cancer cell lines' behavior by FGF-10 regulation. Methods: MCF-7 and MDA-MB-231 cell lines with different levels of FGF10 expression were treated with FGF-10 recombinant protein and FGF-10 siRNA, respectively. Results: The cell viability, migration, colony formation and wound healing have a direct relationship with FGF-10 expression, while FGF-10 expression decreased apoptosis. All mesenchymal factors (such as vimentin, N cadherin, snail, slug, TGF-β) increased due to FGF-10 expression with contrary expression of epithelial markers (such as E-cadherin). Moreover, GSK3β phosphorylation (inactivation) increased with FGF-10 expression. Conclusion: The important role of FGF-10 in type III EMT on cancer cells and initiation of metastasis via various kinds of signaling pathways has been suggested.
Collapse
Affiliation(s)
- Ali Abolhassani
- 1. Group of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran ; 2. Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Gholam Hossein Riazi
- 1. Group of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ebrahim Azizi
- 2. Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Saeid Amanpour
- 3. Group of experimental research in cancer, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Samad Muhammadnejad
- 3. Group of experimental research in cancer, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahnaz Haddadi
- 3. Group of experimental research in cancer, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Zekri
- 4. Department of Genetics, Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Reza Shirkoohi
- 1. Group of Genetics, Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
78
|
Tsarouhas V, Yao L, Samakovlis C. Src kinases and ERK activate distinct responses to Stitcher receptor tyrosine kinase signaling during wound healing in Drosophila. J Cell Sci 2014; 127:1829-39. [DOI: 10.1242/jcs.143016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Metazoans have evolved efficient mechanisms for epidermal repair and survival following injury. Several cellular responses and key signaling molecules that are involved in wound healing have been identified in Drosophila, but the coordination of cytoskeletal rearrangements and the activation of gene expression during barrier repair are poorly understood. The Ret-like receptor tyrosine kinase (RTK) Stitcher (Stit, also known as Cad96Ca) regulates both re-epithelialization and transcriptional activation by Grainy head (Grh) to induce restoration of the extracellular barrier. Here, we describe the immediate downstream effectors of Stit signaling in vivo. Drk (Downstream of receptor kinase) and Src family tyrosine kinases bind to the same docking site in the Stit intracellular domain. Drk is required for the full activation of transcriptional responses but is dispensable for re-epithelialization. By contrast, Src family kinases (SFKs) control both the assembly of a contractile actin ring at the wound periphery and Grh-dependent activation of barrier-repair genes. Our analysis identifies distinct pathways mediating injury responses and reveals an RTK-dependent activation mode for Src kinases and their central functions during epidermal wound healing in vivo.
Collapse
Affiliation(s)
- Vasilios Tsarouhas
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Liqun Yao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
79
|
Razzell W, Wood W, Martin P. Recapitulation of morphogenetic cell shape changes enables wound re-epithelialisation. Development 2014; 141:1814-20. [PMID: 24718989 PMCID: PMC3994776 DOI: 10.1242/dev.107045] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Wound repair is a fundamental, conserved mechanism for maintaining tissue homeostasis and shares many parallels with embryonic morphogenesis. Small wounds in simple epithelia rapidly assemble a contractile actomyosin cable at their leading edge, as well as dynamic filopodia that finally knit the wound edges together. Most studies of wound re-epithelialisation have focused on the actin machineries that assemble in the leading edge of front row cells and that resemble the contractile mechanisms that drive morphogenetic episodes, including Drosophila dorsal closure, but, clearly, multiple cell rows back must also contribute for efficient repair of the wound. Here, we examine the role of cells back from the wound edge and show that they also stretch towards the wound and cells anterior-posterior to the wound edge rearrange their junctions with neighbours to drive cell intercalation events. This process in anterior-posterior cells is active and dependent on pulses of actomyosin that lead to ratcheted shrinkage of junctions; the actomyosin pulses are targeted to breaks in the cell polarity protein Par3 at cell vertices. Inhibiting actomyosin dynamics back from the leading edge prevents junction shrinkage and inhibits the wound edge from advancing. These events recapitulate cell rearrangements that occur during germband extension, in which intercalation events drive the elongation of tissues.
Collapse
Affiliation(s)
- William Razzell
- Schools of Biochemistry and, Physiology and Pharmacology, Faculty of Medical and Veterinary Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
80
|
Bui NT, Ho MT, Kim YM, Lim Y, Cho M. Flavonoids promoting HaCaT migration: II. Molecular mechanism of 4',6,7-trimethoxyisoflavone via NOX2 activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:570-577. [PMID: 24388604 DOI: 10.1016/j.phymed.2013.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/11/2013] [Indexed: 06/03/2023]
Abstract
Flavonoids are major active ingredients in plants and are considered components of food that provide medical or health benefits. They have diversified structures and have effects on human health, including wound healing induction. More than a hundred flavonoids were screened for HaCaT keratinocytes cellular migration measurements and the relationships between their structural properties and the effects promoting cellular migration were examined. Here, among flavonoids used in the previous structure-activity relationship calculations, 4',6,7-trimethoxyisoflavone (TMF) was one of the compounds showing the best activity, so that its molecular mechanism of the wound healing effect on HaCaT keratinocytes was investigated in more detail. Our data revealed that TMF increased the wound healing rate, but not the proliferation rate, in a dose-dependent manner. Treatment of keratinocytes with TMF influenced signaling pathways, affecting the phosphorylation of AKT and ERK in a time-dependent manner. TMF also induced the cell-cell adhesion protein E-cadherin, which is essential for promoting collective cell migration. Furthermore, the TMF treatment group also showed higher ROS and NOX2 transcriptional and protein levels. Correlating with matrix metalloproteinase induction by TMF, levels of extracellular matrix proteins such as collagens I and III were significantly lower in the treatment group. To confirm that the effects of TMF occur through the NOX2 pathway, we co-treated cells with TMF plus an NADPH inhibitor (DPI) or a ROS scavenger (NAC). Western blotting revealed that DPI and NAC attenuated the effect of TMF, suggesting that TMF induces ROS through the NOX2 pathway and regulates keratinocyte migration. In summary, TMF promotes wound healing through NOX2 induction, which leads to collective migration and MMP activation.
Collapse
Affiliation(s)
- Ngoc Thuy Bui
- Department of Biochemistry School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Manh Tin Ho
- Department of Biochemistry School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Young Mee Kim
- Department of Biochemistry School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea
| | - Moonjae Cho
- Department of Biochemistry School of Medicine, Jeju National University, Jeju 690-756, Republic of Korea; Institute of Medical Science, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
81
|
Effect of Tyrosine Kinase Inhibitors on Wound Healing and Tissue Repair: Implications for Surgery in Cancer Patients. Drug Saf 2014; 37:135-49. [DOI: 10.1007/s40264-014-0139-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
82
|
Van Pham P, Dang LTT, Dinh UT, Truong HTT, Huynh BN, Van Le D, Phan NK. In vitro evaluation of the effects of human umbilical cord extracts on human fibroblasts, keratinocytes, and melanocytes. In Vitro Cell Dev Biol Anim 2013; 50:321-30. [DOI: 10.1007/s11626-013-9706-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/09/2013] [Indexed: 12/23/2022]
|
83
|
Bone morphogenetic protein signaling suppresses wound-induced skin repair by inhibiting keratinocyte proliferation and migration. J Invest Dermatol 2013; 134:827-837. [PMID: 24126843 PMCID: PMC3945401 DOI: 10.1038/jid.2013.419] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 09/02/2013] [Accepted: 09/16/2013] [Indexed: 12/29/2022]
Abstract
Bone morphogenetic protein (BMP) signalling plays a key role in the control of skin development and postnatal remodelling by regulating keratinocyte proliferation, differentiation and apoptosis. To study the role of BMPs in wound-induced epidermal repair, we used transgenic mice overexpressing the BMP downstream component Smad1 under the control of a K14 promoter as an in vivo model, as well as ex vivo and in vitro assays. K14-caSmad1 mice exhibited retarded wound healing associated with significant inhibition of proliferation and increased apoptosis in healing wound epithelium. Furthermore, microarray and qRT-PCR analyses revealed decreased expression of a number of cytoskeletal/cell motility-associated genes including wound-associated keratins (Krt16, Krt17) and Myo5a, in the epidermis of K14-caSmad1 mice versus wild-type controls during wound healing. BMP treatment significantly inhibited keratinocyte migration ex vivo, and primary keratinocytes of K14-caSmad1 mice showed retarded migration compared to wild-type controls. Finally, siRNA-mediated silencing of Bmpr-1B in primary mouse keratinocytes accelerated cell migration and was associated with increased expression of Krt16, Krt17 and Myo5a compared to controls. Thus, this study demonstrates that BMPs inhibit keratinocyte proliferation, cytoskeletal organization and migration in regenerating skin epithelium during wound healing, and raises a possibility for using BMP antagonists for the management of chronic wounds.
Collapse
|
84
|
Moik D, Böttcher A, Makhina T, Grashoff C, Bulus N, Zent R, Fässler R. Mutations in the paxillin-binding site of integrin-linked kinase (ILK) destabilize the pseudokinase domain and cause embryonic lethality in mice. J Biol Chem 2013; 288:18863-71. [PMID: 23658024 DOI: 10.1074/jbc.m113.470476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Integrin-linked kinase (ILK) localizes to focal adhesions (FAs) where it regulates cell spreading, migration, and growth factor receptor signaling. Previous reports showed that overexpressed ILK in which Val(386) and Thr(387) were substituted with glycine residues (ILK-VT/GG) could neither interact with paxillin nor localize to FA in cells expressing endogenous wild-type ILK, implying that paxillin binding to ILK is required for its localization to FAs. Here, we show that introducing this mutation into the germ line of mice (ILK-VT/GG) caused vasculogenesis defects, resulting in a general developmental delay and death at around embryonic day 12.5. Fibroblasts isolated from ILK-VT/GG mice contained mutant ILK in FAs, showed normal adhesion to and spreading on extracellular matrix substrates but displayed impaired migration. Biochemical analysis revealed that VT/GG substitutions decreased ILK protein stability leading to decreased ILK levels and reduced binding to paxillin and α-parvin. Because paxillin depletion did not affect ILK localization to FAs, the embryonic lethality and the in vitro migration defects are likely due to the reduced levels of ILK-VT/GG and diminished binding to parvins.
Collapse
Affiliation(s)
- Daniel Moik
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
85
|
The roles of receptor tyrosine kinases and their ligands in the wound repair process. Semin Cell Dev Biol 2012; 23:963-70. [DOI: 10.1016/j.semcdb.2012.09.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/27/2012] [Indexed: 01/22/2023]
|