51
|
Huey DJ, Athanasiou KA. Tension-compression loading with chemical stimulation results in additive increases to functional properties of anatomic meniscal constructs. PLoS One 2011; 6:e27857. [PMID: 22114714 PMCID: PMC3218070 DOI: 10.1371/journal.pone.0027857] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study aimed to improve the functional properties of anatomically-shaped meniscus constructs through simultaneous tension and compression mechanical stimulation in conjunction with chemical stimulation. METHODS Scaffoldless meniscal constructs were subjected to simultaneous tension and compressive stimulation and chemical stimulation. The temporal aspect of mechanical loading was studied by employing two separate five day stimulation periods. Chemical stimulation consisted of the application of a catabolic GAG-depleting enzyme, chondroitinase ABC (C-ABC), and an anabolic growth factor, TGF-β1. Mechanical and chemical stimulation combinations were studied through a full-factorial experimental design and assessed for histological, biochemical, and biomechanical properties following 4 wks of culture. RESULTS Mechanical loading applied from days 10-14 resulted in significant increases in compressive, tensile, and biochemical properties of meniscal constructs. When mechanical and chemical stimuli were combined significant additive increases in collagen per wet weight (4-fold), compressive instantaneous (3-fold) and relaxation (2-fold) moduli, and tensile moduli in the circumferential (4-fold) and radial (6-fold) directions were obtained. CONCLUSIONS This study demonstrates that a stimulation regimen of simultaneous tension and compression mechanical stimulation, C-ABC, and TGF-β1 is able to create anatomic meniscus constructs replicating the compressive mechanical properties, and collagen and GAG content of native tissue. In addition, this study significantly advances meniscus tissue engineering by being the first to apply simultaneous tension and compression mechanical stimulation and observe enhancement of tensile and compressive properties following mechanical stimulation.
Collapse
Affiliation(s)
- Daniel J. Huey
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| | - Kyriacos A. Athanasiou
- Department of Biomedical Engineering, University of California Davis, Davis, California, United States of America
| |
Collapse
|
52
|
Gao X, Zhang X, Tong H, Lin B, Qin J. A simple elastic membrane-based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress. Electrophoresis 2011; 32:3431-6. [DOI: 10.1002/elps.201100237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/16/2011] [Accepted: 08/24/2011] [Indexed: 11/06/2022]
|
53
|
Grad S, Eglin D, Alini M, Stoddart MJ. Physical stimulation of chondrogenic cells in vitro: a review. Clin Orthop Relat Res 2011; 469:2764-72. [PMID: 21344272 PMCID: PMC3171534 DOI: 10.1007/s11999-011-1819-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mechanical stimuli are of crucial importance for the development and maintenance of articular cartilage. For conditioning of cartilaginous tissues, various bioreactor systems have been developed that have mainly aimed to produce cartilaginous grafts for tissue engineering applications. Emphasis has been on in vitro preconditioning, whereas the same devices could be used to attempt to predict the response of the cells in vivo or as a prescreening method before animal studies. As a result of the complexity of the load and motion patterns within an articulating joint, no bioreactor can completely recreate the in vivo situation. QUESTIONS/PURPOSES This article aims to classify the various loading bioreactors into logical categories, highlight the response of mesenchymal stem cells and chondrocytes to the various stimuli applied, and determine which data could be used within a clinical setting. METHODS We performed a Medline search using specific search terms, then selectively reviewed relevant research relating to physical stimulation of chondrogenic cells in vitro, focusing on cellular responses to the specific load applied. RESULTS There is much data pertaining to increases in chondrogenic gene expression as a result of controlled loading protocols. Uniaxial loading leads to selective upregulation of genes normally associated with a chondrogenic phenotype, whereas multiaxial loading results in a broader pattern of chondrogenic gene upregulation. The potential for the body to be used as an in vivo bioreactor is being increasingly explored. CONCLUSIONS Bioreactors are important tools for understanding the potential response of chondrogenic cells within the joint environment. However, to replicate the natural in vivo situation, more complex motion patterns are required to induce more physiological chondrogenic gene upregulation.
Collapse
Affiliation(s)
- Sibylle Grad
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| |
Collapse
|
54
|
Park SH, Choi BH, Park SR, Min BH. Chondrogenesis of Rabbit Mesenchymal Stem Cells in Fibrin/Hyaluronan Composite ScaffoldIn Vitro. Tissue Eng Part A 2011; 17:1277-86. [DOI: 10.1089/ten.tea.2010.0337] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sang-Hyug Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University Medical Center, Suwon, Korea
| | - Byung Hyune Choi
- Division of Biomedical and Bioengineering Sciences, Inha University College of Medicine, Incheon, Korea
| | - So Ra Park
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
- Department of Molecular Science and Technology, Ajou University Medical Center, Suwon, Korea
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| |
Collapse
|
55
|
Relation of low-intensity pulsed ultrasound to the cell density of scaffold-free cartilage in a high-density static semi-open culture system. J Orthop Sci 2010; 15:816-24. [PMID: 21116901 DOI: 10.1007/s00776-010-1544-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 08/10/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND A scaffold-free cartilage construct, analogous to those found during embryonic precartilage condensation, has received much attention as a novel modality for tissue-engineered cartilage. In the present study, we developed an uncomplicated culture system by which scaffold-free cartilage-like tissues are produced using cell-cell interactions. With this system, we attempted to prevent dedifferentiation and reverse the phenotypic modulations by adjusting the cell density. We investigated whether low-intensity pulsed ultrasound (LIPUS) enhances matrix synthesis of the scaffold-free cartilage construct. METHODS Rat articular chondrocytes multiplied in monolayers were seeded onto the synthetic porous membrane at stepwise cell densities (i.e., 1.0, 2.0, and 4.0 × 10(7) cells/cm(2)) to allow formation of a scaffold-free cartilage construct via cell-cell interaction. The cartilage constructs were then stimulated by LIPUS for 20 min/day. To investigate the effect of LIPUS stimulation on matrix synthesis, expression of mRNA for cartilage matrix molecules was quantified by a real-time reverse transcription-polymerase chain reaction. Synthesis of type II collagen, type I collagen, and proteoglycan was also assessed histologically. RESULTS Only the chondrocytes cultured at high cell densities in the 2.0 × 10(7)cells/cm(2) group became concentrated and formed a plate-like construct similar to native articular cartilage by macroscopic and histological assessments. Statistical analysis on the matrix gene expression demonstrated that the levels of type II collagen and aggrecan mRNA of the 2.0 × 10(7)cells/cm(2) group were significantly higher than with the other two cell-density groups. Interestingly, the LIPUS application led to a statistically significant enhancement of aggrecan gene expression only in the 2.0 × 10(7) cells/cm(2) group. CONCLUSIONS The current study presents a semi-open static culture system that facilitates production of the scaffold-free constructs from monolayer-cultured chondrocytes. It suggests that the LIPUS application enhances matrix production in the construct, and its combination with the scaffold-free construct might become a feasible tool for production of implantable constructs of better quality.
Collapse
|
56
|
Song MJ, Dean D, Knothe Tate ML. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale. PLoS One 2010; 5. [PMID: 20862249 PMCID: PMC2941457 DOI: 10.1371/journal.pone.0012796] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/24/2010] [Indexed: 01/14/2023] Open
Abstract
A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.
Collapse
Affiliation(s)
- Min Jae Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David Dean
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Melissa L. Knothe Tate
- Department of Biomedical Engineering, Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
57
|
Kupcsik L, Stoddart MJ, Li Z, Benneker LM, Alini M. Improving chondrogenesis: potential and limitations of SOX9 gene transfer and mechanical stimulation for cartilage tissue engineering. Tissue Eng Part A 2010; 16:1845-55. [PMID: 20067399 DOI: 10.1089/ten.tea.2009.0531] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Articular cartilage injuries and degeneration affect a large proportion of the population in developed countries world wide. Stem cells can be differentiated into chondrocytes by adding transforming growth factor-beta1 and dexamethasone to a pellet culture, which are unfeasible for tissue engineering purposes. We attempted to achieve stable chondrogenesis without any requirement for exogenous growth factors. Human mesenchymal stem cells were transduced with an adenoviral vector containing the SRY-related HMG-box gene 9 (SOX9), and were cultured in a three-dimensional (3D) hydrogel scaffold composite. As an additional treatment, mechanical stimulation was applied in a custom-made bioreactor. SOX9 increased the expression level of its known target genes, as well as its cofactors: the long form of SOX5 and SOX6. However, it was unable to increase the synthesis of sulfated glycosaminoglycans (GAGs). Mechanical stimulation slightly enhanced collagen type X and increased lubricin expression. The combination of SOX9 and mechanical load boosted GAG synthesis as shown by (35)S incorporation. GAG production rate corresponded well with the amount of (endogenous) transforming growth factor-beta1. Finally, cartilage oligomeric matrix protein expression was increased by both treatments. These findings provide insight into the mechanotransduction of mesenchymal stem cells and demonstrate the potential of a transcription factor in stem cell therapy.
Collapse
|
58
|
|
59
|
Lange J, Sapozhnikova A, Lu C, Hu D, Li X, Miclau T, Marcucio RS. Action of IL-1beta during fracture healing. J Orthop Res 2010; 28:778-84. [PMID: 20041490 PMCID: PMC2858256 DOI: 10.1002/jor.21061] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
After bone injury, developmental processes such as endochondral and intramembranous ossification are recapitulated as the skeleton regenerates. In contrast to development, skeletal healing involves inflammation. During the early stages of healing a variety of inflammatory cells infiltrate the injured site, debride the wound, and stimulate the repair process. Little is known about the inflammatory process during bone repair. In this work, we examined the effect of a pro-inflammatory cytokine, Interleukin-1 beta (IL-1beta), on osteoblast and stem cell differentiation and on intramembranous and endochondral ossification, because IL-1beta exerts effects on skeletal homeostasis and is upregulated in response to fracture. We determined that IL-1beta stimulated proliferation of osteoblasts and production of mineralized bone matrix, but suppressed proliferation and inhibited differentiation of bone marrow derived MSCs. We next performed loss- and gain-of-function experiments to determine if altering IL-1beta signaling affects fracture healing. We did not detect any differences in callus, cartilage, and bone matrix production during healing of nonstabilized or stabilized fractures in mice that lacked the IL-1beta receptor compared to wild-type animals. We observed subtle alterations in the healing process after administering IL-1beta during the early phases of repair. At day 10 after injury, the ratio of cartilage to callus was increased, and by day 14, the proportion of cartilage to total callus and to bone was reduced. These changes could reflect a slight acceleration of endochondral ossification, or direct effects on cartilage and bone formation.
Collapse
Affiliation(s)
- Jeffrey Lange
- Department of Orthopaedic Surgery, University of Massachusetts Medical School, Worcester, MA 01655
| | - Anna Sapozhnikova
- Institute of Personality and Social Research, University of California, Berkeley, Berkeley, California 94720-5050
| | - Chuanyong Lu
- Orthopaedic Trauma Institute, UCSF, SFGH, San Francisco, CA, 94110
| | - Diane Hu
- Orthopaedic Trauma Institute, UCSF, SFGH, San Francisco, CA, 94110
| | - Xin Li
- Orthopaedic Trauma Institute, UCSF, SFGH, San Francisco, CA, 94110
| | - Theodore Miclau
- Orthopaedic Trauma Institute, UCSF, SFGH, San Francisco, CA, 94110
| | - Ralph S. Marcucio
- Orthopaedic Trauma Institute, UCSF, SFGH, San Francisco, CA, 94110,Author for Correspondence: , Phone: 415-206-5366, Fax: 415-206-8244
| |
Collapse
|
60
|
Salisbury Palomares KT, Gerstenfeld LC, Wigner NA, Lenburg ME, Einhorn TA, Morgan EF. Transcriptional profiling and biochemical analysis of mechanically induced cartilaginous tissues in a rat model. ACTA ACUST UNITED AC 2010; 62:1108-18. [PMID: 20131271 DOI: 10.1002/art.27343] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To characterize patterns of molecular expression that lead to cartilage formation in vivo in a postnatal setting, by profiling messenger RNA expression across the time course of mechanically induced chondrogenesis. METHODS Retired breeder Sprague-Dawley rats underwent a noncritical-sized transverse femoral osteotomy. Experimental animals (n = 45) were subjected to bending stimulation (60 degrees cyclic motion in the sagittal plane for 15 minutes/day) of the osteotomy gap beginning on day 10 after the operation. Control animals (n = 32) experienced continuous rigid fixation. Messenger RNA isolated on days 10, 17, 24, and 38 after surgery was analyzed using a microarray containing 608 genes involved in skeletal development, tissue differentiation, fracture healing, and mechanotransduction. The glycosaminoglycan (GAG) content in the stimulated tissues was compared with that in native articular cartilage as a means of assessing the progression of chondrogenic development of the tissues. RESULTS The majority of the 100 genes that were differentially expressed were up-regulated in response to mechanical stimulation. Many of these genes are associated with articular cartilage development and maintenance, diarthrodial joint development, cell adhesion, extracellular matrix synthesis, signal transduction, and skeletal development. Quantitative real-time polymerase chain reaction results were consistent with the microarray findings. The GAG content of the stimulated tissues increased over time and was no different from that of articular cartilage on day 38 after surgery. CONCLUSION Our findings indicate that mechanical stimulation causes up-regulation of genes that are principally involved in joint cavity morphogenesis and critical to articular cartilage function. Further study of this type of stimulation may identify key signaling events required for postnatal hyaline cartilage formation.
Collapse
|
61
|
Hu K, Wang C, Zhang X. High pressure may inhibit periprosthetic osteogenesis. J Bone Miner Metab 2010; 28:289-98. [PMID: 19921349 DOI: 10.1007/s00774-009-0137-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 09/27/2009] [Indexed: 10/20/2022]
Abstract
Mechanical effects have been demonstrated to activate periprosthetic osteoclasts and hence to promote bone resorption. However, the periprosthetic mechanical effect on osteoblast function is not clearly understood. The purpose of this study was to explore whether the high pressure on bone caused by a prosthesis affects periprosthetic osteoblast function. We applied static pressure of various magnitudes to SV40-transfected human fetal osteoblast cells, then assayed bioactivities compared to cells cultured without pressure (control). The results showed that osteoblast proliferation, differentiation, apoptosis, necrosis, and mineralization were all sensitive to static pressure, and the effects were magnitude dependent. Low-level static pressure (20 kPa) enhanced osteogenesis. Under 50-100 kPa static pressure, proliferation was inhibited and apoptosis was enhanced, but the cellular phenotype could be maintained. High pressure (250-500 kPa) totally inhibited the bioactivity of the osteoblasts and induced necrosis. Mineralization nodules decreased significantly under 100 kPa pressure, while no nodules could be found under 250 and 500 kPa pressure. RUNX2, COL-1, and BGP mRNA expression was significantly downregulated under 250 and 500 kPa. SOX9 expression was significantly upregulated at 100 kPa but significantly downregulated at 250 and 500 kPa. RANKL/OPG expression was increased under pressure, and the differences were significant at 100 and 500 kPa. These results suggest that periprosthetic high pressure may inhibit osteogenesis and promote osteoclastogenesis. Countermeasures should be developed to improve periprosthetic osteogenesis.
Collapse
Affiliation(s)
- Kongzu Hu
- Department of Orthopaedics, Shanghai 6th Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | | | | |
Collapse
|
62
|
Kelly DJ, Jacobs CR. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2010; 90:75-85. [PMID: 20301221 DOI: 10.1002/bdrc.20173] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is becoming increasingly clear that mesenchymal stem cell (MSC) differentiation is regulated by mechanical signals. Mechanical forces generated intrinsically within the cell in response to its extracellular environment, and extrinsic mechanical signals imposed upon the cell by the extracellular environment, play a central role in determining MSC fate. This article reviews chondrogenesis and osteogenesis during skeletogenesis, and then considers the role of mechanics in regulating limb development and regenerative events such as fracture repair. However, observing skeletal changes under altered loading conditions can only partially explain the role of mechanics in controlling MSC differentiation. Increasingly, understanding how epigenetic factors, such as the mechanical environment, regulate stem cell fate is undertaken using tightly controlled in vitro models. Factors such as bioengineered surfaces, substrates, and bioreactor systems are used to control the mechanical forces imposed upon, and generated within, MSCs. From these studies, a clearer picture of how osteogenesis and chondrogenesis of MSCs is regulated by mechanical signals is beginning to emerge. Understanding the response of MSCs to such regulatory factors is a key step towards understanding their role in development, disease and regeneration.
Collapse
Affiliation(s)
- Daniel J Kelly
- Trinity Center for Bioengineering, School of Engineering, Trinity College Dublin, Ireland.
| | | |
Collapse
|
63
|
Li Z, Yao SJ, Alini M, Stoddart MJ. Chondrogenesis of Human Bone Marrow Mesenchymal Stem Cells in Fibrin–Polyurethane Composites Is Modulated by Frequency and Amplitude of Dynamic Compression and Shear Stress. Tissue Eng Part A 2010; 16:575-84. [DOI: 10.1089/ten.tea.2009.0262] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Zhen Li
- AO Research Institute Davos, AO Foundation, Davos Platz, Switzerland
- Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Shan-Jing Yao
- Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou, P.R. China
| | - Mauro Alini
- AO Research Institute Davos, AO Foundation, Davos Platz, Switzerland
| | | |
Collapse
|
64
|
Hagiwara Y, Ando A, Chimoto E, Tsuchiya M, Takahashi I, Sasano Y, Onoda Y, Suda H, Itoi E. Expression of collagen types I and II on articular cartilage in a rat knee contracture model. Connect Tissue Res 2010; 51:22-30. [PMID: 20067413 DOI: 10.3109/03008200902859406] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of our study was to clarify the expression patterns of collagen types I and II on articular cartilage after immobilization in a rat knee contracture model in 3 specific areas (noncontact area, transitional area, contact area). The unilateral knee joints of adult male rats were rigidly immobilized at 150 degrees of flexion using screws and a rigid plastic plate. Sham-operated animals had holes drilled in the femur and the tibia and screws inserted but were not plated. The expression patterns of collagen types I and II in each area were evaluated by in situ hybridization (ISH), immunohistochemistry (IHC), and quantitative real-time polymerase chain reaction (qPCR). The expression of collagen type II in the noncontact area was decreased by ISH but appeared unchanged when examined by IHC. In the transitional and contact areas, the expression of collagen type II was initially shown to have decreased and then increased at the hypertrophic chondrocytes by ISH but appeared decreased by IHC. Quantitative PCR revealed the decreased expression of type II collagen in the contact area. Immunostaining of collagen type I was increased at the noncontact area and transitional areas. Alterations of collagen types I and II expression may also affect the degeneration of articular cartilage after immobilization and the changes were different in the three areas.
Collapse
Affiliation(s)
- Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai; Takeda General Hospital, Aizuwakamatsu, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Lienau J, Schmidt-Bleek K, Peters A, Weber H, Bail HJ, Duda GN, Perka C, Schell H. Insight into the Molecular Pathophysiology of Delayed Bone Healing in a Sheep Model. Tissue Eng Part A 2010; 16:191-9. [DOI: 10.1089/ten.tea.2009.0187] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jasmin Lienau
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Anja Peters
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Hauke Weber
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Hermann J. Bail
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Perka
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Hanna Schell
- Julius Wolff Institut and Center for Musculoskeletal Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
66
|
Li Y, Zhao Z, Song J, Feng Y, Wang Y, Li X, Liu Y, Yang P. Cyclic force upregulates mechano-growth factor and elevates cell proliferation in 3D cultured skeletal myoblasts. Arch Biochem Biophys 2009; 490:171-6. [PMID: 19720043 DOI: 10.1016/j.abb.2009.08.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 01/25/2023]
Abstract
Mechano-growth factor (MGF), the insulin growth factor- I (IGF-I) splice variant, has drawn an increasing attention in recent years. In this study, using a newly established system, we three-dimensionally (3D) cultured rat skeletal myoblasts and loaded them with cyclic uniaxial tensile strain of different magnitudes or time duration. After that, the cell proliferative index (PI) and mRNA expression of MGF, IGF-IEa and integrin beta1 were assayed. The major findings are: (1) mechanical stimulation induced MGF upregulation commensurate with cell PI elevation both in the 3D and 2D cultured myoblasts, but stronger mechanical force was needed to activate MGF expression in the 3D cultures; (2) MGF but not IGF-IEa was essential for mechano-induced myoblast replication, as IGF-IEa upregulation lagged cell PI elevation; and (3) the time course upregulation of MGF and integrin beta1 was correlated with each other, suggesting they shared a common mechanotransduction pathway.
Collapse
Affiliation(s)
- Yu Li
- State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Ramage L, Nuki G, Salter DM. Signalling cascades in mechanotransduction: cell-matrix interactions and mechanical loading. Scand J Med Sci Sports 2009; 19:457-69. [PMID: 19538538 DOI: 10.1111/j.1600-0838.2009.00912.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mechanical loading of articular cartilage stimulates the metabolism of resident chondrocytes and induces the synthesis of molecules to maintain the integrity of the cartilage. Mechanical signals modulate biochemical activity and changes in cell behavior through mechanotransduction. Compression of cartilage results in complex changes within the tissue including matrix and cell deformation, hydrostatic and osmotic pressure, fluid flow, altered matrix water content, ion concentration and fixed charge density. These changes are detected by mechanoreceptors on the cell surface, which include mechanosensitive ion channels and integrins that on activation initiate intracellular signalling cascades leading to tissue remodelling. Excessive mechanical loading also influences chondrocyte metabolism but unlike physiological stimulation leads to a quantitative imbalance between anabolic and catabolic activity resulting in depletion of matrix components. In this article we focus on the role of mechanical signalling in the maintenance of articular cartilage, and discuss how alterations in normal signalling can lead to pathology.
Collapse
Affiliation(s)
- L Ramage
- Osteoarticular Research Group, Centre for Inflammation Research, The Queens Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
68
|
Min BH, Lee HJ, Kim YJ. Cartilage Repair Using Mesenchymal Stem Cells. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2009. [DOI: 10.5124/jkma.2009.52.11.1077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Byoung-Hyun Min
- Department of Orthopedic Surgery, Ajou University College of Medicine, Korea.
| | - Hyun Jung Lee
- Cell Therapy Center, Ajou University Medical Center, Korea
| | - Young Jick Kim
- Cell Therapy Center, Ajou University Medical Center, Korea
| |
Collapse
|
69
|
Wescoe KE, Schugar RC, Chu CR, Deasy BM. The Role of the Biochemical and Biophysical Environment in Chondrogenic Stem Cell Differentiation Assays and Cartilage Tissue Engineering. Cell Biochem Biophys 2008; 52:85-102. [DOI: 10.1007/s12013-008-9029-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2008] [Indexed: 01/13/2023]
|
70
|
Tan SCW, Pan WX, Ma G, Cai N, Leong KW, Liao K. Viscoelastic behaviour of human mesenchymal stem cells. BMC Cell Biol 2008; 9:40. [PMID: 18644160 PMCID: PMC2500016 DOI: 10.1186/1471-2121-9-40] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 07/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this study, we have investigated the viscoelastic behaviour of individual human adult bone marrow-derived mesenchymal stem cells (hMSCs) and the role of F-actin filaments in maintaining these properties, using micropipette aspiration technique together with a standard linear viscoelastic solid model. RESULTS Under a room temperature of 20 degrees C, the instantaneous and equilibrium Young's modulus, E0 and Einfinity, were found to be 886 +/- 289 Pa and 372 +/- 125 Pa, respectively, while the apparent viscosity, mu, was 2710 +/- 1630 Pa.s. hMSCs treated with cytochalasin D up to 20 microM at 20 degrees C registered significant drop of up to 84% in stiffness and increase of up to 255% in viscosity. At the physiological temperature of 37 degrees C, E0 and Einfinity have decreased by 42-66% whereas mu has increased by 95%, compared to the control. Majority of the hMSCs behave as viscoelastic solid with a rapid initial increase in aspiration length and it gradually levels out with time. Three other types of non-typical viscoelastic behavior of hMSCs were also seen. CONCLUSION hMSCs behave as viscoelastic solid. Its viscoelstic behaviour are dependent on the structural integrity of the F-actin filaments and temperature.
Collapse
Affiliation(s)
- Samuel C W Tan
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore.
| | | | | | | | | | | |
Collapse
|
71
|
Sakao K, Takahashi KA, Arai Y, Inoue A, Tonomura H, Saito M, Yamamoto T, Kanamura N, Imanishi J, Mazda O, Kubo T. Induction of chondrogenic phenotype in synovium-derived progenitor cells by intermittent hydrostatic pressure. Osteoarthritis Cartilage 2008; 16:805-14. [PMID: 18571101 DOI: 10.1016/j.joca.2007.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 10/29/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of intermittent hydrostatic pressure (IHP) on chondrogenic differentiation of synovium-derived progenitor cells (SPCs). METHODS SPCs, bone marrow-derived progenitor cells and skin fibroblasts from rabbits were subjected to IHP ranging from 1.0 to 5.0 MPa. The mRNA expression of proteoglycan core protein (PG), collagen type II and SOX-9 was examined using real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The production of SOX-9 protein and glycosaminoglycan (GAG) by SPCs was analyzed by Western blot and the dimethylmethylene blue assay. In addition, mitogen-activated protein (MAP) kinase inhibitors for c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and the p38 pathway were used to identify the signal transduction pathways. RESULTS Real-time RT-PCR showed that mRNA expression of PG, collagen type II and SOX-9 was significantly enhanced only in SPCs receiving 5.0 MPa of IHP. The production of SOX-9 protein and GAG by SPCs was also increased by exposure to 5.0 MPa of IHP. These up-regulated expressions were suppressed by pretreatment with an inhibitor of JNK, but not with inhibitors of ERK or p38. CONCLUSION Our results demonstrated that the exposure of SPCs to 5.0 MPa of IHP could facilitate induction of the chondrogenic phenotype by the MAP kinase/JNK pathway. This finding suggests the potential for IHP utilization in regenerative treatments for cartilage injuries or osteoarthritis.
Collapse
Affiliation(s)
- K Sakao
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Freyria AM, Courtes S, Mallein-Gerin F. Différenciation des cellules souches mésenchymateuses adultes humaines : effet chondrogénique de la BMP-2. ACTA ACUST UNITED AC 2008; 56:326-33. [DOI: 10.1016/j.patbio.2007.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 09/19/2007] [Indexed: 01/22/2023]
|
73
|
Knothe Tate ML, Falls TD, McBride SH, Atit R, Knothe UR. Mechanical modulation of osteochondroprogenitor cell fate. Int J Biochem Cell Biol 2008; 40:2720-38. [PMID: 18620888 DOI: 10.1016/j.biocel.2008.05.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/01/2008] [Accepted: 05/04/2008] [Indexed: 12/27/2022]
Abstract
Mesenchymal cells are natural tissue builders. They exhibit an extraordinary capacity to metamorphize into differentiated cells, using extrinsic spatial and temporal inputs and intrinsic algorithms, as well as to build and adapt their own habitat. In addition to providing a habitat for osteoprogenitor cells, tissues of the skeletal system provide mechanical support and protection for the multiple organs of vertebrate organisms. This review examines the role of mechanics on determination of cell fate during pre-, peri- and postnatal development of the skeleton as well as during tissue genesis and repair in postnatal life. The role of cell mechanics is examined and brought into context of intrinsic cues during mesenchymal condensation. Remarkable new insights regarding structure function relationships in mesenchymal stem cells, and their influence on determination of cell fate are integrated in the context of de novo tissue generation and postnatal repair. Key differences in the formation of osteogenic and chondrogenic condensations are discussed in relation to direct intramembranous and indirect endochondral ossification. New approaches are discussed to elucidate and exploit extrinsic cues to generate tissues in the laboratory and in the clinic.
Collapse
Affiliation(s)
- Melissa L Knothe Tate
- Department of Biomedical Engineering, Wickenden 307, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
74
|
Hydrostatic Pressure Enhances Chondrogenic Differentiation of Human Bone Marrow Stromal Cells in Osteochondrogenic Medium. Ann Biomed Eng 2008; 36:813-20. [DOI: 10.1007/s10439-008-9448-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 01/23/2008] [Indexed: 10/22/2022]
|
75
|
Masuda T, Takahashi I, Anada T, Arai F, Fukuda T, Takano-Yamamoto T, Suzuki O. Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells. J Biotechnol 2008; 133:231-8. [PMID: 17904677 DOI: 10.1016/j.jbiotec.2007.08.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 07/20/2007] [Accepted: 08/01/2007] [Indexed: 11/25/2022]
Abstract
Mechanical stimulation is considered to be one of the major epigenetic factors regulating the metabolism, proliferation, survival and differentiation of cells in the skeletal tissues. It is generally accepted that the cytoskeleton can undergo remodeling in response to mechanical stimuli such as tensile strain or fluid flow. Mechanically induced cell deformation is one of the possible mechanotransduction pathways by which chondrocytes sense and respond to changes in their mechanical environment. Mechanical strain has a variety of effects on the structure and function of their cells in the skeletal tissues, such as chondrocytes, osteoblasts and fibroblasts. However, little is known about the effect of the quality and quantity of mechanical strain and the timing of mechanical loading on the differentiation of these cells. The present study was designed to investigate the effect of the deformation of chondrogenic cells, and cyclic compression using a newly developed culture device, by analyzing mechanobiological response to the differentiating chondrocytes. Cyclic compression between 0 and 22% strains, at 23 microHz was loaded on chondrogenic cell line ATDC5 by seeding in a mass mode on PDMS membrane, assuming direct transfer of cyclic deformation from the membrane to the cells at the same frequency. The compressive strain, induced within the membrane, was characterized based on the analysis of the finite element modeling (FEM). The results showed that the tensile strain inhibits the chondrogenic differentiation of ATDC5 cells, whereas the compressive strain enhances the chondrogenic differentiation, suggesting that the differentiation of the chondrogenic cells could be controlled by the amount and the mode of strain. In conclusion, we have developed a unique strain loading culture system to analyze the effect of various types of mechanical stimulation on various cellular activities.
Collapse
Affiliation(s)
- Taisuke Masuda
- Division of Craniofacial Function Engineering (CFE), Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
76
|
Mio K, Kirkham J, Bonass WA. Possible Role of Extracellular Signal-Regulated Kinase Pathway in Regulation of Sox9 mRNA Expression in Chondrocytes under Hydrostatic Pressure. J Biosci Bioeng 2007; 104:506-9. [DOI: 10.1263/jbb.104.506] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 09/02/2007] [Indexed: 01/23/2023]
|
77
|
Sim WY, Park SW, Park SH, Min BH, Park SR, Yang SS. A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. LAB ON A CHIP 2007; 7:1775-1782. [PMID: 18030400 DOI: 10.1039/b712361m] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A new micro cell chip which can induce stem cells to differentiate into specific body cell types has been designed and fabricated for tissue engineering. This paper presents the test results of a micro cell stimulator which can provide a new miniaturized tool in cell stimulation, culture and analysis for stem cell research. The micro cell stimulator is designed to apply compressive pressure to the hMSCs (human mesenchymal stem cells) for inducing osteogenesis. The micro cell stimulator is based on the pneumatic actuator with a flexible diaphragm which consists of an air chamber and cell chambers. The hMSCs under cyclic compressive stimulation for one week were observed and assessed by monitoring CD90 (Thy-1), actin, alkaline phosphatase (ALP) and alizarin red expression. The results suggest that cyclic mechanical stimulation is attributed to the different phenomenon of cultured hMSCs in cell proliferation and differentiation. These results are important for the feasibility of the micro cell stimulator to provide the reduction of the necessary quantity of cells, process cost and the increase of the throughput.
Collapse
Affiliation(s)
- Woo Young Sim
- Department of Electrical and Computer Engineering, College of Information Technology, Ajou University, Suwon, 443-749, Korea
| | | | | | | | | | | |
Collapse
|
78
|
Muramatsu S, Wakabayashi M, Ohno T, Amano K, Ooishi R, Sugahara T, Shiojiri S, Tashiro K, Suzuki Y, Nishimura R, Kuhara S, Sugano S, Yoneda T, Matsuda A. Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J Biol Chem 2007; 282:32158-67. [PMID: 17804410 DOI: 10.1074/jbc.m706158200] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sox9 is a transcription factor that is essential for chondrocyte differentiation and chondrocyte-specific gene expression. However, the precise mechanism of Sox9 activation during chondrogenesis is not fully understood. To investigate this mechanism, we performed functional gene screening to identify genes that activate SOX9-dependent transcription, using full-length cDNA libraries generated from a murine chondrogenic cell line, ATDC5. Screening revealed that TRPV4 (transient receptor potential vanilloid 4), a cation channel molecule, significantly elevates SOX9-dependent reporter activity. Microarray and quantitative real time PCR analyses demonstrated that during chondrogenesis in ATDC5 and C3H10T1/2 (a murine mesenchymal stem cell line), the expression pattern of TRPV4 was similar to the expression patterns of chondrogenic marker genes, such as type II collagen and aggrecan. Activation of TRPV4 by a pharmacological activator induced SOX9-dependent reporter activity, and this effect was abolished by the addition of the TRPV antagonist ruthenium red or by using a small interfering RNA for TRPV4. The SOX9-dependent reporter activity due to TRPV4 activation was abrogated by both EGTA and a calmodulin inhibitor, suggesting that the Ca2+/calmodulin signal is essential in this process. Furthermore, activation of TRPV4 in concert with insulin activity in ATDC5 cells or in concert with bone morphogenetic protein-2 in C3H10T1/2 cells promoted synthesis of sulfated glycosaminoglycan, but activation of TRPV4 had no effect alone. We showed that activation of TRPV4 increased the steady-state levels of SOX9 mRNA and protein and SOX6 mRNA. Taken together, our results suggest that TRPV4 regulates the SOX9 pathway and contributes to the process of chondrogenesis.
Collapse
Affiliation(s)
- Shuji Muramatsu
- Laboratory for Drug Discovery, Research Center, Asahi Kasei Pharma Corp., 2-1 Samejima, Fuji, Shizuoka 416-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Lee YH, Nahm DS, Jung YK, Choi JY, Kim SG, Cho M, Kim MH, Chae CH, Kim SG. Differential Gene Expression of Periodontal Ligament Cells After Loading of Static Compressive Force. J Periodontol 2007; 78:446-52. [PMID: 17335367 DOI: 10.1902/jop.2007.060240] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Compressive force is an important mechanical stimulus on the periodontal ligament (PDL) and is closely related to therapeutic tooth movement. In this study, early or late response genes related to the compressive stress in PDL cells were evaluated. Particularly, the expression of interleukin (IL)-6, IL-8, and alkaline phosphatase (ALP) was studied. METHODS The primary cultured cells from PDL were grown in a three-dimensional collagen gel, and received a continuous static compressive force (1.76 g/cm(2)). The expressed genes were screened by cDNA microarray assays for 2 or 12 hours after the initiation of the mechanical force application. The genes of interest that showed significant changes in expression in the cDNA microarray assay were analyzed further by quantitative reverse transcriptase polymerase chain reaction (RT-PCR), enzyme-linked immunoabsorbent assays (ELISA), and ALP assays. RESULTS ALP, IL-6, and IL-8 were selected among the genes that significantly changed expression (/M/ >0.7) and subsequently were confirmed by quantitative RT-PCR. The secreted protein concentrations for IL-6, IL-8, and ALP activity were measured at 72 hours after application of continuous static compressive force. The protein level of IL-6 was significantly increased at 72 hours (P <0.001), but there was no significant change in IL-8 (P >0.05). ALP activity was decreased approximately 41.5% compared to the control (P = 0.015). CONCLUSIONS Considering that IL-6 is a potent osteoclast activator and the compressive side of PDL during orthodontic tooth movement shows the resorption of calcified tissue, the changed expression of IL-6 and ALP in response to the static compressive force in PDL cells may contribute to the orthodontic tooth movement or alveolar bone remodeling.
Collapse
Affiliation(s)
- Yeon-Hee Lee
- Department of Orthodontics, College of Dentistry, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:539-68. [PMID: 17318529 DOI: 10.1007/s00249-007-0139-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 01/23/2007] [Accepted: 01/29/2007] [Indexed: 12/14/2022]
Abstract
Damage to and degeneration of articular cartilage is a major health issue in industrialized nations. Articular cartilage has a particularly limited capacity for auto regeneration. At present, there is no established therapy for a sufficiently reliable and durable replacement of damaged articular cartilage. In this, as well as in other areas of regenerative medicine, tissue engineering methods are considered to be a promising therapeutic component. Nevertheless, there remain obstacles to the establishment of tissue-engineered cartilage as a part of the routine therapy for cartilage defects. One necessary aspect of potential tissue engineering-based therapies for cartilage damage that requires both elucidation and progress toward practical solutions is the reliable, cost effective cultivation of suitable tissue. Bioreactors and associated methods and equipment are the tools with which it is hoped that such a supply of tissue-engineered cartilage can be provided. The fact that in vivo adaptive physical stimulation influences chondrocyte function by affecting mechanotransduction leads to the development of specifically designed bioreactor devices that transmit forces like shear, hydrostatic pressure, compression, and combinations thereof to articular and artificial cartilage in vitro. This review summarizes the basic knowledge of chondrocyte biology and cartilage dynamics together with the exploration of the various biophysical principles of cause and effect that have been integrated into bioreactor systems for the cultivation and stimulation of chondrocytes.
Collapse
Affiliation(s)
- Ronny Maik Schulz
- Department of Cell Techniques and Applied Stem Cell Biology, Center of Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
81
|
Takeuchi R, Saito T, Ishikawa H, Takigami H, Dezawa M, Ide C, Itokazu Y, Ikeda M, Shiraishi T, Morishita S. Effects of vibration and hyaluronic acid on activation of three-dimensional cultured chondrocytes. ACTA ACUST UNITED AC 2006; 54:1897-905. [PMID: 16736525 DOI: 10.1002/art.21895] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To investigate the effects of vibration (Vib) and hyaluronic acid (HA) on 3-dimensional cultured cartilage. METHODS Chondrocytes were obtained from metatarsophalangeal joints of freshly killed 6-month-old pigs. Twenty-four-well plates containing type I collagen sponge disks were used to culture samples. The frequency and the amplitude of the vibration of the well plate were 100 Hz and 0.5 nm, respectively. We produced 3-dimensional cartilage tissue using HA and vibration with collagen sponge as a carrier. Four different culture conditions were examined: a control HA-Vib- group, an HA-Vib+ group, an HA+Vib- group, and an HA+Vib+ group. Each group was cultured for 2 weeks. After culture days 3, 7, 10, and 14 (every 3.5 days), the levels of chondroitin 4-sulfate (C4S) and chondroitin 6-sulfate (C6S) isomers synthesized in each culture medium were measured. Histologic analysis, immunohistochemical analysis, and electron microscopic examination were performed. RESULTS Mean C4S and C6S synthesis had increased rapidly after 7 days of culture and continued to increase thereafter. There were significant differences among the 4 groups (P < 0.01). Synthesis of both C4S and C6S was most abundant in the HA+Vib+ group and the lowest in the HA-Vib- group. After 1 and 2 weeks of culture, the chondrocytes had formed stratified structures on the collagen sponges in all groups, although the thickest structure was observed in the HA+Vib+ group and the thinnest in the HA-Vib- group. Under immunofluorescence, the HA+Vib+ group exhibited the strongest chromatic features. Under electron microscopy, the chondrocytes in the HA+Vib+ group exhibited many long and slender prominences on their surface, and extracellular substance could be observed associated with the cells. CONCLUSION Our results indicate that the combination of vibration and HA activates the production of proteoglycan in 3-dimensional cultured chondrocytes and stimulates MAPK and beta-catenin. This suggests that some mechanoreceptors for vibration exist on the plasma membrane of chondrocytes and activate the intracellular signal transduction system.
Collapse
Affiliation(s)
- Ryohei Takeuchi
- Yokohama City University School of Medicine, Yokohama, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Mauck RL, Byers BA, Yuan X, Tuan RS. Regulation of Cartilaginous ECM Gene Transcription by Chondrocytes and MSCs in 3D Culture in Response to Dynamic Loading. Biomech Model Mechanobiol 2006; 6:113-25. [PMID: 16691412 DOI: 10.1007/s10237-006-0042-1] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 01/12/2006] [Indexed: 10/24/2022]
Abstract
This study explored the biologic response of chondrocytes and mesenchymal stem cells (MSCs) to a dynamic mechanical loading regime. We developed a time-efficient methodology for monitoring regional changes in extracellular matrix gene transcription using reporter promoter constructs. Specifically, transfected cells were homogenously distributed throughout agarose hydrogel constructs, and spatial and temporal gene expression and the ability to form functional ECM were analyzed in response to dynamic mechanical stimuli. Theoretical analyses were used to predict the physical signals generated within the gel in response to these loading regimes. Using a custom compression bioreactor system, changes in aggrecan and type II collagen promoter activity in transfected chondrocyte-laden cylindrical constructs were evaluated in response to a range of loading frequencies and durations. In general, aggrecan promoter activity increased with increasing duration of loading, particularly in the outer annulus region. Interestingly, type II collagen promoter activity decreased in this annular region under identical loading conditions. In addition, we explored the role of mechanical compression in directing chondrogenic differentiation of MSCs by monitoring short-term aggrecan promoter activity. As an example of long-term utility, a specific loading protocol was applied to MSC-laden constructs for 5 days, and the resultant changes in glycosaminoglycan (GAG) production were evaluated over a 4-week period. This dynamic loading regime increased not only short-term aggrecan transcriptional activity but also GAG deposition in long-term culture. These results demonstrate the utility of a new reporter promoter system for optimizing loading protocols to improve the outcome of engineered chondrocyte- and MSC-laden cartilaginous constructs.
Collapse
Affiliation(s)
- R L Mauck
- Department of Health and Human Services Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Drive, MSC 8022, Building 50, Bethesda, MD 20892-8022, USA
| | | | | | | |
Collapse
|
83
|
Henderson JH, de la Fuente L, Romero D, Colnot CI, Huang S, Carter DR, Helms JA. Rapid Growth of Cartilage Rudiments may Generate Perichondrial Structures by Mechanical Induction. Biomech Model Mechanobiol 2006; 6:127-37. [PMID: 16691413 DOI: 10.1007/s10237-006-0038-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2005] [Accepted: 01/19/2006] [Indexed: 01/16/2023]
Abstract
Experimental and theoretical research suggest that mechanical stimuli may play a role in morphogenesis. We investigated whether theoretically predicted patterns of stress and strain generated during the growth of a skeletal condensation are similar to in vivo expression patterns of chondrogenic and osteogenic genes. The analysis showed that predicted patterns of compressive hydrostatic stress (pressure) correspond to the expression patterns of chondrogenic genes, and predicted patterns of tensile strain correspond to the expression patterns of osteogenic genes. Furthermore, the results of iterative application of the analysis suggest that stresses and strains generated by the growing condensation could promote the formation and refinement of stiff tissue surrounding the condensation, a prediction that is in agreement with an observed increase in collagen bundling surrounding the cartilage condensation, as indicated by picro-sirius red staining. These results are consistent with mechanical stimuli playing an inductive or maintenance role in the developing cartilage and associated perichondrium and bone collar. This theoretical analysis provides insight into the potential importance of mechanical stimuli during the growth of skeletogenic condensations.
Collapse
Affiliation(s)
- J H Henderson
- Biomechanical Engineering Division, Mechanical Engineering Department, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Stewart MC, Fosang AJ, Bai Y, Osborn B, Plaas A, Sandy JD. ADAMTS5-mediated aggrecanolysis in murine epiphyseal chondrocyte cultures. Osteoarthritis Cartilage 2006; 14:392-402. [PMID: 16406703 DOI: 10.1016/j.joca.2005.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Accepted: 11/19/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Aggrecan degradation by aggrecanases [a disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) 1, 4, 5, 8, 9, 15] is considered to initiate much of the cartilage pathology seen in human arthritis, however, the proteinase responsible and its mode of control is unclear. The present work was done to examine mechanisms of aggrecanase control in a novel murine epiphyseal cell system and to determine whether ADAMTS5 alone is responsible for aggrecanolysis by these cells. METHODS Epiphyseal cells from 4-day-old mice (wild type, TS-5 (-/-), CD44(-/-), syndecan-1(-/-), membrane type-4 matrix metalloproteinase [MT4MMP(-/-)]) were maintained in non-adherent aggregate cultures and aggrecanolysis studied by biochemical and histochemical methods. Confocal immunolocalization analyses were done with specific probes for ADAMTS5, hyaluronan (HA) and aggrecanase-generated fragments of aggrecan. RESULTS Aggrecanolysis by these cells was specifically aggrecanase-mediated and it occurred spontaneously without the need for addition of catabolic stimulators. Chondrocytes from ADAMTS5-null mice were aggrecanase-inactive whereas all other mutant cells behaved as wild type in this regard suggesting that ADAMTS5 activity is not controlled by CD44, syndecan-1 or MT4MMP in this system. Immunohistochemical analysis supported the central role for ADAMTS5 in the degradative pathway and indicated that aggrecanolysis occurs primarily in the HA-poor pericellular region in these cultures. CONCLUSION These findings are consistent with published in vivo studies showing that single-gene ADAMTS5 ablation confers significant protection on cartilage in murine arthritis. We propose that this culture system and the analytical approaches described provide a valuable framework to further delineate the expression, activity and control of ADAMTS-mediated aggrecanolysis in human arthritis.
Collapse
Affiliation(s)
- M C Stewart
- College of Veterinary Medicine, University of Illinois at Urbana-Champaign, USA
| | | | | | | | | | | |
Collapse
|
85
|
Morgan EF, Longaker MT, Carter DR. Relationships between tissue dilatation and differentiation in distraction osteogenesis. Matrix Biol 2006; 25:94-103. [PMID: 16330195 PMCID: PMC2040040 DOI: 10.1016/j.matbio.2005.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 10/20/2005] [Accepted: 10/21/2005] [Indexed: 11/18/2022]
Abstract
Mechanical factors modulate the morphogenesis and regeneration of mesenchymally derived tissues via processes mediated by the extracellular matrix (ECM). In distraction osteogenesis, large volumes of new bone are created through discrete applications of tensile displacement across an osteotomy gap. Although many studies have characterized the matrix, cellular and molecular biology of distraction osteogenesis, little is known about relationships between these biological phenomena and the local physical cues generated by distraction. Accordingly, the goal of this study was to characterize the local physical environment created within the osteotomy gap during long bone distraction osteogenesis. Using a computational approach, we quantified spatial and temporal profiles of three previously identified mechanical stimuli for tissue differentiation-pressure, tensile strain and fluid flow-as well as another candidate stimulus-tissue dilatation (volumetric strain). Whereas pressure and fluid velocity throughout the regenerate decayed to less than 31% of initial values within 20 min following distraction, tissue dilatation increased with time, reaching steady state values as high as 43% strain. This dilatation created large reductions and large gradients in cell and ECM densities. When combined with previous findings regarding the effects of strain and of cell and ECM densities on cell migration, proliferation and differentiation, these results indicate two mechanisms by which tissue dilatation may be a key stimulus for bone regeneration: (1) stretching of cells and (2) altering cell and ECM densities. These results are used to suggest experiments that can provide a more mechanistic understanding of the role of tissue dilatation in bone regeneration.
Collapse
Affiliation(s)
- Elise F Morgan
- Biomechanical Engineering Division, Mechanical Engineering Department, Durand Building, Room 215, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
86
|
Wang JHC, Thampatty BP. An introductory review of cell mechanobiology. Biomech Model Mechanobiol 2006; 5:1-16. [PMID: 16489478 DOI: 10.1007/s10237-005-0012-z] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 12/08/2005] [Indexed: 11/30/2022]
Abstract
Mechanical loads induce changes in the structure, composition, and function of living tissues. Cells in tissues are responsible for these changes, which cause physiological or pathological alterations in the extracellular matrix (ECM). This article provides an introductory review of the mechanobiology of load-sensitive cells in vivo, which include fibroblasts, chondrocytes, osteoblasts, endothelial cells, and smooth muscle cells. Many studies have shown that mechanical loads affect diverse cellular functions, such as cell proliferation, ECM gene and protein expression, and the production of soluble factors. Major cellular components involved in the mechanotransduction mechanisms include the cytoskeleton, integrins, G proteins, receptor tyrosine kinases, mitogen-activated protein kinases, and stretch-activated ion channels. Future research in the area of cell mechanobiology will require novel experimental and theoretical methodologies to determine the type and magnitude of the forces experienced at the cellular and sub-cellular levels and to identify the force sensors/receptors that initiate the cascade of cellular and molecular events.
Collapse
Affiliation(s)
- J H-C Wang
- MechanoBiology Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh, 210 Lothrop St. BST, E1640, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
87
|
Huang CYC, Hagar KL, Frost LE, Sun Y, Cheung HS. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 2005; 22:313-23. [PMID: 15153608 DOI: 10.1634/stemcells.22-3-313] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to examine the effects of cyclic compressive loading on chondrogenic differentiation of rabbit bone-marrow mesenchymal stem cells (BM-MSCs) in agarose cultures. Rabbit BM-MSCs were obtained from the tibias and femurs of New Zealand white rabbits. After the chondrogenic potential of BM-MSCs was verified by pellet cultures, cell-agarose constructs were made by suspending BM-MSCs in 2% agarose (10(7) cells/ml) for a cyclic, unconfined compression test performed in a custom-made bioreactor. Specimens were divided into four groups: control; transforming growth factor (TGF-beta) (with TGF-beta1 treatment); loading (with stimulation of cyclic, unconfined compressive loading); and TGF-beta loading (with TGF-beta1 treatment and loading stimulation) groups. In the loading experiment, specimens were subjected to sinusoidal loading with a 10% strain magnitude at a frequency of 1 Hz for 4 hours a day. Experiments were conducted for 3, 7, and 14 consecutive days. While the experimental groups (TGF-beta, loading, and TGF-beta loading) exhibited significantly higher levels of expressions of chondrogenic markers (collagen II and aggrecan) at three time periods, there were no differences among the experimental groups after an extra 5-day culture. This suggests that compressive loading alone induces chondrogenic differentiation of rabbit BM-MSCs as effectively as TGF-beta or TGF-beta plus loading treatment. Moreover, both the compressive loading and the TGF-beta1 treatment were found to promote the TGF-beta1 gene expression of rabbit BM-MSCs. These findings suggest that cyclic compressive loading can promote the chondrogenesis of rabbit BM-MSCs by inducing the synthesis of TGF-beta1, which can stimulate the BM-MSCs to differentiate into chondrocytes.
Collapse
Affiliation(s)
- C-Y Charles Huang
- Research Service and Geriatrics Research, Education, and Clinical Center, Veterans Affairs Medical Center, Miami, Florida 33125, USA
| | | | | | | | | |
Collapse
|
88
|
Tissue engineering von Knorpelzellen. ARTHROSKOPIE 2005. [DOI: 10.1007/s00142-005-0315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
89
|
Natsu-Ume T, Majima T, Reno C, Shrive NG, Frank CB, Hart DA. Menisci of the rabbit knee require mechanical loading to maintain homeostasis: cyclic hydrostatic compression in vitro prevents derepression of catabolic genes. J Orthop Sci 2005; 10:396-405. [PMID: 16075173 DOI: 10.1007/s00776-005-0912-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 03/31/2005] [Indexed: 02/09/2023]
Abstract
BACKGROUND The purpose of this study was to examine the influence of removing menisci from their in vivo loading environment on gene expression patterns and to determine whether in vitro loading can maintain the tissues in their in vivo phenotype. METHODS Lateral and medial rabbit meniscal explants from one leg were cultured in vitro and subjected to intermittent cyclic hydrostatic pressure (CHP) of 1 MPa at 0.5 Hz for 1 min and a rest period of 14 min (4 h of culture). The contralateral menisci were incubated at atmospheric pressure for 4 h. Menisci from both legs of another set of rabbits were frozen immediately to yield time zero values reflective of in vivo mRNA levels. Total RNA was isolated from all groups and processed for reverse transcription-polymerase chain reaction analysis for a subset of relevant genes (matrix molecules, cytokines, proteinases and inhibitors, enzymes). RESULTS It was found that mRNA levels for MMP-1, MMP-3, TIMPs, iNOS, COX-2, interleukin-1beta in both menisci, and interleukin-6 in medial menisci were significantly elevated in tissues cultured under nonloading conditions compared to the time zero controls. Subjecting menisci to CHP significantly prevented these increases in mRNA levels for nearly all of the indicated molecules. In contrast, there were no significant differences in mRNA levels for collagens, biglycan, MMP-13, or TIMP-4 between the time zero values and those cultured under either nonloading or loading conditions. CONCLUSIONS These studies demonstrate that removing rabbit menisci from their normal in vivo mechanical environment leads to an apparent up-regulation of a subset of potent effector molecules that could mediate catabolic activities, and that in vitro CHP can largely prevent this apparent up-regulation.
Collapse
|
90
|
Abstract
Compressive neuropathies are highly prevalent, debilitating conditions with variable functional recovery after surgical decompression. Chronic nerve compression injury induces concurrent Schwann cell proliferation and apoptosis in the early stages of the disorder, independent of axonal injury. These proliferating Schwann cells locally demyelinate and remyelinate in the region of injury. Furthermore, Schwann cells upregulate vascular endothelial growth factor secondary to chronic nerve compression injury and induce neovascularization to facilitate the recruitment of macrophages. In contrast to Wallerian degeneration, macrophage recruitment occurs gradually with chronic nerve compression injury and continues for a longer time. Schwann cells change their gene and protein expression in response to mechanical stimuli as shear stress decreases the expression of myelin associated glycoprotein and myelin basic protein mRNA and protein for in vitro promyelinating Schwann cells. The local down-regulation of myelin associated glycoprotein in the region of compression injury creates an environment allowing axonal sprouting that may be reversed with intraneural injections of purified myelin associated glycoprotein. These studies suggest that while the reciprocal relationship between neurons and glial cells is maintained, chronic nerve compression injury is a Schwann cell-mediated disease.
Collapse
Affiliation(s)
- Ranjan Gupta
- Department of Orthopaedic Surgery, Center for Biomedical Engineering in the Henry Samueli School of Engineering, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
91
|
Huang CYC, Reuben PM, Cheung HS. Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 2005; 23:1113-21. [PMID: 15955834 DOI: 10.1634/stemcells.2004-0202] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Our recent study suggested that cyclic compressive loading may promote chondrogenesis of rabbit bone-marrow mesenchymal stem cells (BM-MSCs) in agarose cultures through the transforming growth factor (TGF)-beta signaling pathway. It has been shown that the activating protein 1 (AP-1) (Jun-Fos) complex mediated autoinduction of TGF-beta1 and its binding activity was essential for promoting chondrogenesis of mesenchymal cells, whereas Sox9 was identified as an essential transcription factor for chondrogenesis of embryonic mesenchymal cells. The objective of this study was to examine temporal expression patterns of early responsive genes (Sox9, c-Fos, c-Jun, and TGF-beta type I and II receptors) and induction of their corresponding proteins in agarose culture of rabbit BM-MSCs subjected to cyclic compressive loading. The rabbit BM-MSCs were obtained from the tibias and femurs of New Zealand White rabbits. Cell-agarose constructs were made by suspending BM-MSCs in 2% agarose gel (10(7) cells/ml) for cyclic, unconfined compression tests performed in a custom-made bioreactor. In the loading experiment, specimens were subjected to sinusoidal loading with a magnitude of 15% strain at a frequency of 1 hertz for 4 hours per day. Experiments were conducted for 2 consecutive days. This study showed that cyclic compressive loading promoted gene expressions of Sox9, c-Jun, and both TGF-beta receptors and productions of their corresponding proteins, whereas those gene expressions exhibited different temporal expression patterns among genes and between 2 days of testing. The gene expression of c-Fos was detected only in the samples subjected to1-hour dynamic compressive loading. These findings suggest that the TGF-beta signal transduction and activities of AP-1 and Sox9 are involved in the early stage of BM-MSC chondrogenesis promoted by dynamic compressive loading.
Collapse
Affiliation(s)
- C-Y Charles Huang
- Research Service, Miami VA Medical Center, 1201 NW 16th Street, Miami, Florida 33125, USA
| | | | | |
Collapse
|
92
|
Elder SH, Fulzele KS, McCulley WR. Cyclic hydrostatic compression stimulates chondroinduction of C3H/10T1/2 cells. Biomech Model Mechanobiol 2005; 3:141-6. [PMID: 15668766 DOI: 10.1007/s10237-004-0058-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Accepted: 11/01/2004] [Indexed: 11/30/2022]
Abstract
While the potential for intermittent hydrostatic pressure to promote cartilaginous matrix synthesis is well established, its potential to influence chondroinduction remains poorly understood. This study examined the effects of relatively short- and long-duration cyclic hydrostatic compression on the chondroinduction of C3H/10T1/2 murine embryonic fibroblasts by recombinant human bone morphogenetic protein-2 (rhBMP-2). Cells were seeded at high density into round bottom wells of a 96-well plate and supplemented with 25 ng/ml rhBMP-2. Experimental cultures were subjected to either 1,800 cycles/day or 7,200 cycles/day of 1 Hz sinusoidal hydrostatic compression to 5 MPa (applied 10 min on/10 min off) for 3 days. Non-pressurized control and experimental cultures were maintained in static culture for an additional 5 days. Cultures were then analyzed for alcian blue staining intensity, DNA and sulfated glycosaminoglycan (sGAG) content, and for the rate of collagen synthesis. Whereas cultures subjected to 1,800 pressure cycles exhibited no significant differences (statistical or qualitative) compared to controls, those subjected to 7,200 cycles stained more intensely with alcian blue, contained nearly twice as much sGAG, and displayed twice the rate of collagen synthesis as non-pressurized controls. This study demonstrates the potential for cyclic hydrostatic compression to stimulate chondrogenic differentiation of the C3H/10T1/2 cell line in a duration-dependent manner.
Collapse
Affiliation(s)
- S H Elder
- Graduate Biomedical Engineering Program, Agricultural & Biological Engineering Department, Mississippi State University, Starkville, MS 39762, USA.
| | | | | |
Collapse
|
93
|
Abstract
The human fossil record is one of the most complete for any mammal. A basal ancestral species, Australopithecus afarensis, exhibits a well-preserved postcranium that permits reconstruction of important events in the evolution of our locomotor skeleton. When compared to those of living apes and humans, it provides insights into the origin and design of the modern human frame. Evolutionary aspects of the human hip and thigh are reviewed, including the unusual corticotrabecular structure of the human proximal femur, and our markedly elongated lower limb. It is postulated that the latter may be more related to birthing capacity than to locomotion.
Collapse
Affiliation(s)
- C Owen Lovejoy
- Matthew Ferrini Institute of Human Evolutionary Research, Division of Biomedical Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
94
|
Newman SA, Müller GB. Origination and innovation in the vertebrate limb skeleton: an epigenetic perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2005; 304:593-609. [PMID: 16161064 DOI: 10.1002/jez.b.21066] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The vertebrate limb has provided evolutionary and developmental biologists with grist for theory and experiment for at least a century. Its most salient features are its pattern of discrete skeletal elements, the general proximodistal increase in element number as development proceeds, and the individualization of size and shape of the elements in line with functional requirements. Despite increased knowledge of molecular changes during limb development, however, the mechanisms for origination and innovation of the vertebrate limb pattern are still uncertain. We suggest that the bauplan of the limb is based on an interplay of genetic and epigenetic processes; in particular, the self-organizing properties of precartilage mesenchymal tissue are proposed to provide the basis for its ability to generate regularly spaced nodules and rods of cartilage. We provide an experimentally based "core" set of cellular and molecular processes in limb mesenchyme that, under realistic conditions, exhibit the requisite self-organizing behavior for pattern origination. We describe simulations that show that under limb bud-like geometries the core mechanism gives rise to skeletons with authentic proximodistal spatiotemporal organization. Finally, we propose that evolution refines skeletal templates generated by this process by mobilizing accessory molecular and biomechanical regulatory processes to shape the developing limb and its individual elements. Morphological innovation may take place when such modulatory processes exceed a threshold defined by the dynamics of the skeletogenic system and elements are added or lost.
Collapse
|
95
|
Ohashi M, Sawaguchi A, Ide S, Kimitsuki T, Komune S, Suganuma T. Histochemical Characterization of the Rat Ossicular Joint Cartilage with a Special Reference to Stapediovestibular Joint. Acta Histochem Cytochem 2005. [DOI: 10.1267/ahc.38.387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mitsuru Ohashi
- Department of Anatomy, Ultrastructural Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Akira Sawaguchi
- Department of Anatomy, Ultrastructural Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Soyuki Ide
- Department of Anatomy, Ultrastructural Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Takashi Kimitsuki
- Department of Otolaryngology, Faculty of Medicine, Kyushu University
| | - Shizuo Komune
- Department of Otolaryngology, Faculty of Medicine, Kyushu University
| | - Tatsuo Suganuma
- Department of Anatomy, Ultrastructural Cell Biology, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
96
|
Kang JS, Oohashi T, Kawakami Y, Bekku Y, Izpisúa Belmonte JC, Ninomiya Y. Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones. Mech Dev 2004; 121:301-12. [PMID: 15003632 DOI: 10.1016/j.mod.2004.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2003] [Revised: 12/19/2003] [Accepted: 12/24/2003] [Indexed: 10/26/2022]
Abstract
We report here the isolation and characterization of a cDNA encoding zebrafish dermacan, a novel member of hyaluronan (HA)-binding proteoglycans, which was termed after its characteristic expression in the zebrafish dermal bones. The deduced protein sequence shares the typical modular elements of lecticans. Sequence comparison covering the C-terminal globular domain demonstrated that dermacan shows high homology with zebrafish versican but is distinct from any other identified lecticans. Genomic DNA analysis demonstrated that dermacan and versican were encoded by distinct genes in the zebrafish genome. The expression of dermacan is initiated in the sclerotome and cephalic paraxial mesoderm at 16 h postfertilization. During the pharyngular period, dermacan transcripts were detected in the sclerotome, tail fin bud, pharyngular arch primordial region, and otic vesicle. In the development of craniofacial bones, dermacan expression was detected typically in the opercle and dentary. These regions belong to the craniofacial dermal bones. aggrecan expression, in contrast, was observed in the elements of craniofacial cartilage bones. In the dermacan-morpholino-injected embryos, dermal bones, e.g. opercle, dentary, and branchiostegal rays, as well as axial skeleton in the trunk, showed decreased ossification. We conclude that dermacan is a novel lectican gene, and that zebrafish lectican genes have genetically diverged. In addition, our data suggest the involvement of dermacan in zebrafish dermal bone development.
Collapse
Affiliation(s)
- Jeong Suk Kang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine and Dentistry, Okayama 700-8558, Japan
| | | | | | | | | | | |
Collapse
|
97
|
Abstract
In recent years, stem cells have shown significant promise for their potential to provide a source of undifferentiated progenitor cells for therapeutic applications in tissue or organ repair. Significant questions still remain, however, as to the genetic and epigenetic signals that regulate the fate of stem cells. It is now well accepted that the micro-environment of the stem cell can have a significant influence on its differentiation and phenotypic expression. Although emphasis has been placed in previous work on the role of soluble mediators such as growth factors and cytokines on stem cell differentiation, there is now significant evidence, both direct and indirect, that mechanical signals may also regulate stem cell fate. We review a number of in vivo and in vitro studies that have provided evidence that mechanical factors have the ability to influence the differentiation of a number of cells that have been classified as either precursor, progenitor, or stem cells. Taken together, these studies show that specific mechanical signals may promote cell differentiation into a particular phenotype, potentially having an effect on embryonic development. The use of such mechanical signals in vitro in specially designed "bioreactors" may provide important adjuncts to standard biochemical signaling pathways for promoting engineered tissue growth. A further understanding of the biomechanical and biochemical pathways involved in mechanical signal transduction by stem cells will hopefully provide new insight for the improvement of stem-cell based therapies.
Collapse
Affiliation(s)
- Bradley T Estes
- Department of Surgery, Division of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
98
|
Hatakeyama Y, Tuan RS, Shum L. Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis. J Cell Biochem 2004; 91:1204-17. [PMID: 15048875 DOI: 10.1002/jcb.20019] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bone morphogenetic protein 4 (BMP4) and growth/differentiation factor 5 (GDF5) are closely related protein family members and regulate early cartilage patterning and differentiation. In this study, we compared the functional outcome of their actions systematically at various stages of chondrogenesis in mouse embryonic limb bud mesenchyme grown in micromass cultures. Overall, both growth factors enhanced cartilage growth and differentiation in these cultures. Uniquely, BMP4 not only accelerated the formation and maturation of cartilaginous nodules, but also induced internodular mesenchymal cells to express cartilage differentiation markers. On the other hand, GDF5 increased the number of prechondrogenic mesenchymal cell condensation and cartilaginous nodules, without altering the overall pattern of differentiation. In addition, GDF5 caused a more sustained elevated expression level of Sox9 relative to that associated with BMP4. BMP4 accelerated chondrocyte maturation throughout the cultures and sustained an elevated level of Col10 expression, whereas GDF5 caused a transient increase in Col10 expression. Taken together, we conclude that BMP4 is instructive to chondrogenesis and induces mesenchymal cells toward the chondrogenic lineage. Furthermore, BMP4 accelerates the progression of cartilage differentiation to maturation. GDF5 enhances cartilage formation by promoting chondroprogenitor cell aggregation, and amplifying the responses of cartilage differentiation markers. These differences may serve to fine-tune the normal cartilage differentiation program, and can be exploited for the molecular manipulation in biomimetics.
Collapse
Affiliation(s)
- Yuji Hatakeyama
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland 20892-6402, USA
| | | | | |
Collapse
|
99
|
Davis MC, Shubin NH, Force A. Pectoral fin and girdle development in the basal actinopterygiansPolyodon spathula andAcipenser transmontanus. J Morphol 2004; 262:608-28. [PMID: 15376275 DOI: 10.1002/jmor.10264] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pectoral fins of Acipenseriformes possess endoskeletons with elements homologous to both the fin radials of teleosts and the limb bones of tetrapods. Here we present a study of pectoral fin development in the North American paddlefish, Polyodon spathula, and the white sturgeon, Acipenser transmontanus, which reveals that aspects of both teleost and tetrapod endoskeletal patterning mechanisms are present in Acipenseriformes. Those elements considered homologous to teleost radials, the propterygium and the mesopterygial radials, form via subdivision of an initially chondrogenic plate of mesenchymal cells called the endoskeletal disc. In Acipenseriformes, elements homologous to the sarcopterygian metapterygium develop separately from the endoskeletal disc as an outgrowth of the endoskeletal shoulder girdle that extends into the posterior margin of the finbud. As in tetrapods, the elongating metapterygium and the metapterygial radials form in a proximal to distal order as discrete condensations from initially nonchondrogenic mesenchyme. Patterns of variation seen in the Acipenseriform fin also correlate with putative homology: all variants from the "normal" fin bauplan involved the metapterygium and the metapterygial radials alone. The primary factor distinguishing Polyodon and Acipenser fin development from each other is the composition of the endoskeletal extracellular matrix. Proteoglycans (visualized with Alcian Blue) and Type II collagen (visualized by immunohistochemistry) are secreted in different places within the mesenchymal anlage of the fin elements and girdle and at different developmental times. Acipenseriform pectoral fins differ from the fins of teleosts in the relative contribution of the endoskeleton and dermal rays. The fins of Polyodon and Acipenser possess elaborate endoskeletons overlapped along their distal margins by dermal lepidotrichia. In contrast, teleost fins generally possess relatively small endoskeletal radials that articulate with the dermal fin skeleton terminally, with little or no proximodistal overlap.
Collapse
Affiliation(s)
- Marcus C Davis
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
100
|
Yang BL, Yang BB, Erwin M, Ang LC, Finkelstein J, Yee AJM. Versican G3 domain enhances cellular adhesion and proliferation of bovine intervertebral disc cells cultured in vitro. Life Sci 2003; 73:3399-413. [PMID: 14572881 DOI: 10.1016/j.lfs.2003.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The functional role of versican in influencing intervertebral disc cell adhesion and proliferation was analyzed in bovine intervertebral disc. We have previously demonstrated the C-terminal globular G3 (or selectin-like) domain of versican to influence mesenchymal chondrogenesis and fibroblast proliferation in vitro. For this study, a versican G3 expression construct was generated to examine the role of the G3 domain of versican. Nucleus pulposus and annulus fibrosus cells were isolated from adult bovine caudal discs using sequential enzymatic digestion and versican expression characterized by RT-PCR. In cell proliferation assays, we observed that there was greater cellular proliferation in the presence of versican G3 for both disc cell types. The higher proliferation rate of annulus fibrosus cells when compared to nucleus pulposus cells seeded in monolayer supports heterogeneity of intervertebral disc cell populations. The presence of versican G3 construct enhanced the adhesion of isolated nucleus pulposus and annulus fibrosus cells approximately 4 to 6 fold, respectively. Cellular adhesion was greater in the presence of versican G3 in a dose dependent manner. G3 product was purified using affinity columns, and the purified G3 also enhanced cell adhesion.
Collapse
Affiliation(s)
- Bing L Yang
- Sunnybrook and Women's College Health Sciences Centre, and University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|