51
|
Tanaka K. Regulatory mechanisms of kinetochore-microtubule interaction in mitosis. Cell Mol Life Sci 2013; 70:559-79. [PMID: 22752158 PMCID: PMC11113415 DOI: 10.1007/s00018-012-1057-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/29/2012] [Accepted: 06/11/2012] [Indexed: 12/17/2022]
Abstract
Interaction of microtubules with kinetochores is fundamental to chromosome segregation. Kinetochores initially associate with lateral surfaces of microtubules and subsequently become attached to microtubule ends. During these interactions, kinetochores can move by sliding along microtubules or by moving together with depolymerizing microtubule ends. The interplay between kinetochores and microtubules leads to the establishment of bi-orientation, which is the attachment of sister kinetochores to microtubules from opposite spindle poles, and subsequent chromosome segregation. Molecular mechanisms underlying these processes have been intensively studied over the past 10 years. Emerging evidence suggests that the KNL1-Mis12-Ndc80 (KMN) network plays a central role in connecting kinetochores to microtubules, which is under fine regulation by a mitotic kinase, Aurora B. However, a growing number of additional molecules are being shown to be involved in the kinetochore-microtubule interaction. Here I overview the current range of regulatory mechanisms of the kinetochore-microtubule interaction, and discuss how these multiple molecules contribute cooperatively to allow faithful chromosome segregation.
Collapse
Affiliation(s)
- Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Miyagi, Japan.
| |
Collapse
|
52
|
Ludueña RF. A Hypothesis on the Origin and Evolution of Tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:41-185. [DOI: 10.1016/b978-0-12-407699-0.00002-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
53
|
Abstract
Several membrane trafficking proteins have been shown to participate in spindle assembly and stability during mitosis. Despite the fact that the role of some of them has been clarified, the requirement for these molecules in mitosis is still poorly understood.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Department of Oncological Sciences, University of Turin, Candiolo, Turin, Italy.
| |
Collapse
|
54
|
Abstract
Many signaling proteins such as the members of the Ras superfamily of GTPases are posttranslationally modified by covalent attachment of lipid groups, which is crucial for the correct localization and function of these proteins. Numerous lipidated proteins are oncogens often found mutated in several human cancers. Therefore, several therapeutic strategies have been developed based on the inhibition of the enzymes involved in these lipidation steps. Here, we will summarize the results on protein lipidation inhibition, mainly focusing on the small molecules targeting the isoprenylation and acylation of proteins.
Collapse
Affiliation(s)
- Gemma Triola
- Abteilung
Chemische Biologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11,
44227 Dortmund, Germany, and Fakultät Chemie, Lehrbereich Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Abteilung
Chemische Biologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11,
44227 Dortmund, Germany, and Fakultät Chemie, Lehrbereich Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Christian Hedberg
- Abteilung
Chemische Biologie, Max-Planck-Institut für molekulare Physiologie, Otto-Hahn-Str. 11,
44227 Dortmund, Germany, and Fakultät Chemie, Lehrbereich Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|
55
|
Perez MAS, Sousa SF, Oliveira EFT, Fernandes PA, Ramos MJ. Detection of Farnesyltransferase Interface Hot Spots through Computational Alanine Scanning Mutagenesis. J Phys Chem B 2011; 115:15339-54. [DOI: 10.1021/jp205481y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marta A. S. Perez
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Sérgio F. Sousa
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Eduardo F. T. Oliveira
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
56
|
Westhorpe FG, Tighe A, Lara-Gonzalez P, Taylor SS. p31comet-mediated extraction of Mad2 from the MCC promotes efficient mitotic exit. J Cell Sci 2011; 124:3905-16. [PMID: 22100920 PMCID: PMC3225272 DOI: 10.1242/jcs.093286] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2011] [Indexed: 12/19/2022] Open
Abstract
Accurate chromosome segregation requires the spindle assembly checkpoint to be active at the onset of mitosis, before being silenced following chromosome alignment. p31(comet) is a checkpoint antagonist in that its inhibition delays mitotic exit, whereas its overexpression overrides the checkpoint. How exactly p31(comet) antagonises the checkpoint is unclear. A prevalent model is that p31(comet) acts as a 'cap' by inhibiting recruitment of the open conformation form of Mad2 (O-Mad2) to the kinetochore-bound complex of Mad1-C-Mad2 (closed conformation Mad2), an essential step that is required for checkpoint activation. Here, we show that although p31(comet) localises to kinetochores in mitosis, modulation of its activity has no effect on recruitment of O-Mad2 to kinetochores. Rather, our observations support a checkpoint-silencing role for p31(comet) downstream of kinetochores. We show that p31(comet) binds Mad2 when it is bound to the mitotic checkpoint complex (MCC) components BubR1 and Cdc20. Furthermore, RNAi-mediated inhibition of p31(comet) results in more Mad2 bound to BubR1-Cdc20, and conversely, overexpression of p31(comet) results in less Mad2 bound to BubR1-Cdc20. Addition of recombinant p31(comet) to checkpoint-arrested extracts removes Mad2 from the MCC, whereas a p31(comet) mutant that cannot bind Mad2 has no effect. Significantly, expression of a Mad2 mutant that cannot bind p31(comet) prolongs the metaphase to anaphase transition. Taken together, our data support the notion that p31(comet) negatively regulates the spindle assembly checkpoint by extracting Mad2 from the MCC.
Collapse
Affiliation(s)
- Frederick G. Westhorpe
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Anthony Tighe
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Pablo Lara-Gonzalez
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Stephen S. Taylor
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
57
|
Abstract
Protein farnesylation and geranylgeranylation, together referred to as prenylation, are lipid post-translational modifications that are required for the transforming activity of many oncogenic proteins, including some RAS family members. This observation prompted the development of inhibitors of farnesyltransferase (FT) and geranylgeranyl-transferase 1 (GGT1) as potential anticancer drugs. In this Review, we discuss the mechanisms by which FT and GGT1 inhibitors (FTIs and GGTIs, respectively) affect signal transduction pathways, cell cycle progression, proliferation and cell survival. In contrast to their preclinical efficacy, only a small subset of patients responds to FTIs. Identifying tumours that depend on farnesylation for survival remains a challenge, and strategies to overcome this are discussed. One GGTI has recently entered the clinic, and the safety and efficacy of GGTIs await results from clinical trials.
Collapse
Affiliation(s)
- Norbert Berndt
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA
| | - Andrew D. Hamilton
- University of Oxford, Vice-Chancellor’s Office, Wellington Square, Oxford OX1 2JD, UK
| | - Saïd M. Sebti
- Drug Discovery Department, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, Florida 33612, USA
- Departments of Oncologic Sciences and Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, Tampa, Florida 33612, USA
| |
Collapse
|
58
|
Small GTPase Rab5 participates in chromosome congression and regulates localization of the centromere-associated protein CENP-F to kinetochores. Proc Natl Acad Sci U S A 2011; 108:17337-42. [PMID: 21987812 DOI: 10.1073/pnas.1103516108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rab5 is a small GTPase known to regulate vesicular trafficking during interphase. Here, we show that Rab5 also plays an unexpected role during mitotic progression. RNAi-mediated silencing of Rab5 caused defects in chromosome congression and extensive prometaphase delay, and it correlated with a severe reduction in the localization of the centromere-associated protein CENP-F to kinetochores. CENP-F is a component of the nuclear matrix required for chromosome congression that, at mitotic entry, localizes to the nuclear envelope and assembles on kinetochores, contributing to the establishment of kinetochore microtubule interactions. We found that Rab5 forms a complex with a subset of CENP-F in mitotic cells and regulates the kinetics of release of CENP-F from the nuclear envelope and its accumulation on kinetochores. Simultaneous depletion of both Rab5 and CENP-F recapitulated the mitotic defects caused by silencing of either Rab5 or CENP-F alone, indicating epistatic roles for these two proteins in the pathway that orchestrates chromosome congression. These results reveal the involvement of Rab5 in the proper execution of mitotic programs whose deregulation can undermine chromosomal stability.
Collapse
|
59
|
Lu Y, Liu P, Van den Bergh F, Zellmer V, James M, Wen W, Grubbs CJ, Lubet RA, You M. Modulation of Gene Expression and Cell-Cycle Signaling Pathways by the EGFR Inhibitor Gefitinib (Iressa) in Rat Urinary Bladder Cancer. Cancer Prev Res (Phila) 2011; 5:248-59. [DOI: 10.1158/1940-6207.capr-10-0363] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
60
|
Kim JS, Park YY, Park SY, Cho H, Kang D, Cho H. The auto-ubiquitylation of E3 ubiquitin-protein ligase Chfr at G2 phase is required for accumulation of polo-like kinase 1 and mitotic entry in mammalian cells. J Biol Chem 2011; 286:30615-30623. [PMID: 21768102 PMCID: PMC3162422 DOI: 10.1074/jbc.m111.231803] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/29/2011] [Indexed: 01/03/2023] Open
Abstract
The E3 ubiquitin-protein ligase Chfr is a mitotic stress checkpoint protein that delays mitotic entry in response to microtubule damage; however, the molecular mechanism by which Chfr accomplishes this remains elusive. Here, we show that Chfr levels are elevated in response to microtubule-damaging stress. Moreover, G(2)/M transition is associated with cell cycle-dependent turnover of Chfr accompanied by high autoubiquitylation activity, suggesting that regulation of Chfr levels and auto-ubiquitylation activity are functionally significant. To test this, we generated Chfr mutants Chfr-K2A and Chfr-K5A in which putative lysine target sites of auto-ubiquitylation were replaced with alanine. Chfr-K2A did not undergo cell cycle-dependent degradation, and its levels remained high during G(2)/M phase. The elevated levels of Chfr-K2A caused a significant reduction in phosphohistone H3 levels and cyclinB1/Cdk1 kinase activities, leading to mitotic entry delay. Notably, polo-like kinase 1 levels at G(2) phase, but not at S phase, were ∼2-3-fold lower in cells expressing Chfr-K2A than in wild-type Chfr-expressing cells. Consistent with this, ubiquitylation of Plk1 at G(2) phase was accelerated in Chfr-K2A-expressing cells. In contrast, Aurora A levels remained constant, indicating that Plk1 is a major target of Chfr in controlling the timing of mitotic entry. Indeed, overexpression of Plk1 in Chfr-K2A-expressing cells restored cyclin B1/Cdk1 kinase activity and promoted mitotic entry. Collectively, these data indicate that Chfr auto-ubiquitylation is required to allow Plk1 to accumulate to levels necessary for activation of cyclin B1/Cdk1 kinase and mitotic entry. Our results provide the first evidence that Chfr auto-ubiquitylation and degradation are important for the G(2)/M transition.
Collapse
Affiliation(s)
- Jo-Sun Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-721 Korea; Graduate School of Molecular Science and Technology, Ajou University, Suwon 443-721 Korea
| | - Yong-Yea Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-721 Korea; Graduate School of Molecular Science and Technology, Ajou University, Suwon 443-721 Korea
| | - Sun-Yi Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-721 Korea; Graduate School of Molecular Science and Technology, Ajou University, Suwon 443-721 Korea
| | - Hyeseon Cho
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Health, Bethesda, Maryland 20892
| | - Dongmin Kang
- Department of Life Science, Division of Life and Pharmaceutical Sciences, and the Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul 120-750, Korea
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon 443-721 Korea; Graduate School of Molecular Science and Technology, Ajou University, Suwon 443-721 Korea.
| |
Collapse
|
61
|
Brown HK, Ottewell PD, Coleman RE, Holen I. The kinetochore protein Cenp-F is a potential novel target for zoledronic acid in breast cancer cells. J Cell Mol Med 2011; 15:501-13. [PMID: 20015195 PMCID: PMC3922372 DOI: 10.1111/j.1582-4934.2009.00995.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The anti-resorptive agent zoledronic acid inhibits key enzymes in the mevalonate pathway, disrupting post-translational modification and thereby correct protein localization and function. Inhibition of prenylation may also be responsible for the reported anti-tumour effects of zoledronic acid, but the specific molecular targets have not been identified. Cenp-F/mitosin, a kinetochore-associated protein involved in the correct separation of chromosomes during mitosis, has been shown to undergo post-translational prenylation and may therefore be a novel target contributing to the anti-tumour effects of zoledronic acid. We investigated whether zoledronic acid causes loss of Cenp-F from the kinetochore in breast cancer cells, to determine if the reported anti-tumour effects may be mediated by impairing correct chromosome separation. MDA-MB-436, MDA-MB-231 and MCF-7 breast cancer cells and MCF-10A non-malignant breast epithelial cells were treated with zoledronic acid in vitro, and the effect on Cenp-F localization was analysed by immunoflourescence microscopy. Zoledronic acid caused loss of Cenp-F from the kinetochore, accompanied by an increase in the number of cells in pro-, /prometa- and metaphase in all of the cancer cell lines. There was also a significant increase in the number of lagging chromosomes in mitotic cells. The effects of zoledronic acid could be reversed by inclusion of an intermediary of the mevalonate pathway, showing that the loss of Cenp-F from the kinetochore was caused by the inhibition of farnesylation. In contrast, no effect was seen on Cenp-F in non-malignant MCF-10A cells. This is the first report showing a specific effect of zoledronic acid on a protein involved in the regulation of chromosome segregation, identifying Cenp-F as a potential new molecular target for NBPs in tumour cells.
Collapse
Affiliation(s)
- Hannah K Brown
- Academic Unit of Clinical Oncology, Medical School, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
62
|
Bolhy S, Bouhlel I, Dultz E, Nayak T, Zuccolo M, Gatti X, Vallee R, Ellenberg J, Doye V. A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase. ACTA ACUST UNITED AC 2011; 192:855-71. [PMID: 21383080 PMCID: PMC3051818 DOI: 10.1083/jcb.201007118] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Centrosomes are closely associated with the nuclear envelope (NE) throughout the cell cycle and this association is maintained in prophase when they separate to establish the future mitotic spindle. At this stage, the kinetochore constituents CENP-F, NudE, NudEL, dynein, and dynactin accumulate at the NE. We demonstrate here that the N-terminal domain of the nuclear pore complex (NPC) protein Nup133, although largely dispensable for NPC assembly, is required for efficient anchoring of the dynein/dynactin complex to the NE in prophase. Nup133 exerts this function through an interaction network via CENP-F and NudE/EL. We show that this molecular chain is critical for maintaining centrosome association with the NE at mitotic entry and contributes to this process without interfering with the previously described RanBP2-BICD2-dependent pathway of centrosome anchoring. Finally, our study reveals that tethering of centrosomes to the nuclear surface at the G2/M transition contributes, along with other cellular mechanisms, to early stages of bipolar spindle assembly.
Collapse
Affiliation(s)
- Stéphanie Bolhy
- Cell Biology Program, Institut Jacques Monod, UMR 7592 Centre National de la Recherche Scientifique-Université Paris Diderot, 75205 Paris Cedex 13, France
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Verstraeten VLRM, Peckham LA, Olive M, Capell BC, Collins FS, Nabel EG, Young SG, Fong LG, Lammerding J. Protein farnesylation inhibitors cause donut-shaped cell nuclei attributable to a centrosome separation defect. Proc Natl Acad Sci U S A 2011; 108:4997-5002. [PMID: 21383178 PMCID: PMC3064351 DOI: 10.1073/pnas.1019532108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the success of protein farnesyltransferase inhibitors (FTIs) in the treatment of certain malignancies, their mode of action is incompletely understood. Dissecting the molecular pathways affected by FTIs is important, particularly because this group of drugs is now being tested for the treatment of Hutchinson-Gilford progeria syndrome. In the current study, we show that FTI treatment causes a centrosome separation defect, leading to the formation of donut-shaped nuclei in nontransformed cell lines, tumor cell lines, and tissues of FTI-treated mice. Donut-shaped nuclei arise during chromatin decondensation in late mitosis; subsequently, cells with donut-shaped nuclei exhibit defects in karyokinesis, develop aneuploidy, and are often binucleated. Binucleated cells proliferate slowly. We identified lamin B1 and proteasome-mediated degradation of pericentrin as critical components in FTI-induced "donut formation" and binucleation. Reducing pericentrin expression or ectopic expression of nonfarnesylated lamin B1 was sufficient to elicit donut formation and binucleated cells, whereas blocking proteasomal degradation eliminated FTI-induced donut formation. Our studies have uncovered an important role of FTIs on centrosome separation and define pericentrin as a (indirect) target of FTIs affecting centrosome position and bipolar spindle formation, likely explaining some of the anticancer effects of these drugs.
Collapse
Affiliation(s)
- Valerie L. R. M. Verstraeten
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139
- Department of Dermatology, Maastricht University Medical Center, 6202 AZ, Maastricht, The Netherlands
- GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6200 MD, Maastricht, The Netherlands
| | - Lana A. Peckham
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139
| | | | - Brian C. Capell
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Francis S. Collins
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Elizabeth G. Nabel
- National Heart, Lung, and Blood Institute and
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Stephen G. Young
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Loren G. Fong
- Department of Medicine, University of California, Los Angeles, CA 90095
| | - Jan Lammerding
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139
| |
Collapse
|
64
|
Wlodarczyk N, Le Broc-Ryckewaert D, Gilleron P, Lemoine A, Farce A, Chavatte P, Dubois J, Pommery N, Hénichart JP, Furman C, Millet R. Potent Farnesyltransferase Inhibitors with 1,4-Diazepane Scaffolds as Novel Destabilizing Microtubule Agents in Hormone-Resistant Prostate Cancer. J Med Chem 2011; 54:1178-90. [DOI: 10.1021/jm101067y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicolas Wlodarczyk
- Institut de Chimie Pharmaceutique Albert Lespagnol, Université Lille-Nord de France, EA4481, IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France
| | - Delphine Le Broc-Ryckewaert
- Faculté des Sciences Pharmaceutiques et Biologiques de Lille, Université Lille-Nord de France, EA4483, IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France
| | - Pauline Gilleron
- Institut de Chimie Pharmaceutique Albert Lespagnol, Université Lille-Nord de France, EA4481, IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France
| | - Amélie Lemoine
- Institut de Chimie Pharmaceutique Albert Lespagnol, Université Lille-Nord de France, EA4481, IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France
| | - Amaury Farce
- Institut de Chimie Pharmaceutique Albert Lespagnol, Université Lille-Nord de France, EA4481, IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France
| | - Philippe Chavatte
- Institut de Chimie Pharmaceutique Albert Lespagnol, Université Lille-Nord de France, EA4481, IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France
| | - Joëlle Dubois
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Centre de Recherche de Gif, Avenue de la Terrasse, F-91198 Gif-sur-Yvette Cedex, France
| | - Nicole Pommery
- Faculté des Sciences Pharmaceutiques et Biologiques de Lille, Université Lille-Nord de France, EA4483, IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France
| | - Jean-Pierre Hénichart
- Institut de Chimie Pharmaceutique Albert Lespagnol, Université Lille-Nord de France, EA4481, IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France
| | - Christophe Furman
- Faculté des Sciences Pharmaceutiques et Biologiques de Lille, Université Lille-Nord de France, EA4483, IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France
| | - Régis Millet
- Institut de Chimie Pharmaceutique Albert Lespagnol, Université Lille-Nord de France, EA4481, IFR114, 3 Rue du Pr Laguesse, B.P. 83, F-59006 Lille, France
| |
Collapse
|
65
|
Kim YM, Shin YK, Jun HJ, Rha SY, Pyo H. Systematic analyses of genes associated with radiosensitizing effect by celecoxib, a specific cyclooxygenase-2 inhibitor. JOURNAL OF RADIATION RESEARCH 2011; 52:752-765. [PMID: 22104269 DOI: 10.1269/jrr.10146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To investigate genes regulated by COX-2 or a COX-2 specific inhibitor, celecoxib, in irradiated cancer cells, we analyzed changes in gene expression using complementary DNA microarray following celecoxib or combined celecoxib and ionizing radiation (IR) treatment in a stable COX-2 knockdown A549 (AS) and a mock cell line (AN). Thirty-six genes were differentially expressed by COX-2 knockdown. Celecoxib changed the expressions of 40 and 69 genes in AN and AS cells, respectively. Twenty-seven genes were synchronously regulated by COX-2 and celecoxib. Among these, celecoxib regulated ras homolog gene family B and mitosin protein expression in a COX-2 dependent manner, especially in irradiated cells. In addition, we identified 11 genes that changed by more than 1.5 times the expected additive values after celecoxib and IR treatment. The current study may provide evidence that COX-2 or celecoxib regulates various intracellular functions in addition to their enzymatic activity regulation. We also identified candidate molecules that may be responsible for COX-2-dependent radiosensitization by celecoxib.
Collapse
Affiliation(s)
- Young-Mee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Gangnam-gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
66
|
Itoh G, Kanno SI, Uchida KSK, Chiba S, Sugino S, Watanabe K, Mizuno K, Yasui A, Hirota T, Tanaka K. CAMP (C13orf8, ZNF828) is a novel regulator of kinetochore-microtubule attachment. EMBO J 2010; 30:130-44. [PMID: 21063390 DOI: 10.1038/emboj.2010.276] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 10/19/2010] [Indexed: 11/09/2022] Open
Abstract
Proper attachment of microtubules to kinetochores is essential for accurate chromosome segregation. Here, we report a novel protein involved in kinetochore-microtubule attachment, chromosome alignment-maintaining phosphoprotein (CAMP) (C13orf8, ZNF828). CAMP is a zinc-finger protein containing three characteristic repeat motifs termed the WK, SPE, and FPE motifs. CAMP localizes to chromosomes and the spindle including kinetochores, and undergoes CDK1-dependent phosphorylation at multiple sites during mitosis. CAMP-depleted cells showed severe chromosome misalignment, which was associated with the poor resistance of K-fibres to the tension exerted upon establishment of sister kinetochore bi-orientation. We found that the FPE region, which is responsible for spindle and kinetochore localization, is essential for proper chromosome alignment. The C-terminal region containing the zinc-finger domains negatively regulates chromosome alignment, and phosphorylation in the FPE region counteracts this regulation. Kinetochore localization of CENP-E and CENP-F was affected by CAMP depletion, and by expressing CAMP mutants that cannot functionally rescue CAMP depletion, placing CENP-E and CENP-F as downstream effectors of CAMP. These data suggest that CAMP is required for maintaining kinetochore-microtubule attachment during bi-orientation.
Collapse
Affiliation(s)
- Go Itoh
- Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Inanç B, Dodson H, Morrison CG. A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage. Mol Biol Cell 2010; 21:3866-77. [PMID: 20861312 PMCID: PMC2982117 DOI: 10.1091/mbc.e10-02-0124] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA damage can induce centrosome overduplication in a manner that requires G2-to-M checkpoint function, suggesting that genotoxic stress can decouple the centrosome and chromosome cycles. How this happens is unclear. Using live-cell imaging of cells that express fluorescently tagged NEDD1/GCP-WD and proliferating cell nuclear antigen, we found that ionizing radiation (IR)-induced centrosome amplification can occur outside S phase. Analysis of synchronized populations showed that significantly more centrosome amplification occurred after irradiation of G2-enriched populations compared with G1-enriched or asynchronous cells, consistent with G2 phase centrosome amplification. Irradiated and control populations of G2 cells were then fused to test whether centrosome overduplication is allowed through a diffusible stimulatory signal, or the loss of a duplication-inhibiting signal. Irradiated G2/irradiated G2 cell fusions showed significantly higher centrosome amplification levels than irradiated G2/unirradiated G2 fusions. Chicken-human cell fusions demonstrated that centrosome amplification was limited to the irradiated partner. Our finding that only the irradiated centrosome can duplicate supports a model where a centrosome-autonomous inhibitory signal is lost upon irradiation of G2 cells. We observed centriole disengagement after irradiation. Although overexpression of dominant-negative securin did not affect IR-induced centrosome amplification, Plk1 inhibition reduced radiation-induced amplification. Together, our data support centriole disengagement as a licensing signal for DNA damage-induced centrosome amplification.
Collapse
Affiliation(s)
- Burcu Inanç
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | | | | |
Collapse
|
68
|
Cao JY, Liu L, Chen SP, Zhang X, Mi YJ, Liu ZG, Li MZ, Zhang H, Qian CN, Shao JY, Fu LW, Xia YF, Zeng MS. Prognostic significance and therapeutic implications of centromere protein F expression in human nasopharyngeal carcinoma. Mol Cancer 2010; 9:237. [PMID: 20828406 PMCID: PMC2944187 DOI: 10.1186/1476-4598-9-237] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 09/09/2010] [Indexed: 02/04/2023] Open
Abstract
Background Our recent cDNA microarray data showed that centromere protein F (CENP-F) is significantly upregulated in primary cultured nasopharyngeal carcinoma (NPC) tumor cells compared with normal nasopharyngeal epithelial cells. The goal of this study was to further investigate the levels of CENP-F expression in NPC cell lines and tissues to clarify the clinical significance of CENP-F expression in NPC as well as the potential therapeutic implications of CENP-F expression. Methods Real-time RT-PCR and western blotting were used to examine CENP-F expression levels in normal primary nasopharyngeal epithelial cells (NPEC), immortalized nasopharyngeal epithelial cells and NPC cell lines. Levels of CENP-F mRNA were determined by real-time RT-PCR in 23 freshly frozen nasopharyngeal biopsy tissues, and CENP-F protein levels were detected by immunohistochemistry in paraffin sections of 202 archival NPC tissues. Statistical analyses were applied to test for prognostic associations. The cytotoxicities of CENP-F potential target chemicals, zoledronic acid (ZOL) and FTI-277 alone, or in combination with cisplatin, in NPC cells were determined by the MTT assay. Results The levels of CENP-F mRNA and protein were higher in NPC cell lines than in normal and immortalized NPECs. CENP-F mRNA level was upregulated in nasopharyngeal carcinoma biopsy tissues compared with noncancerous tissues. By immunohistochemical analysis, CENP-F was highly expressed in 98 (48.5%) of 202 NPC tissues. Statistical analysis showed that high expression of CENP-F was positively correlated with T classification (P < 0.001), clinical stage (P < 0.001), skull-base invasion (P < 0.001) and distant metastasis (P = 0.012) inversely correlated with the overall survival time in NPC patients. Multivariate analysis showed that CENP-F expression was an independent prognostic indicator for the survival of the patient. Moreover, we found that ZOL or FTI-277 could significantly enhance the chemotherapeutic sensitivity of NPC cell lines (HONE1 and 6-10B) with high CENP-F expression to cisplatin, although ZOL or FTI-277 alone only exhibited a minor inhibitory effect to NPC cells. Conclusion Our data suggest that CENP-F protein is a valuable marker of NPC progression, and CENP-F expression is associated with poor overall survival of patients. In addition, our data indicate a potential benefit of combining ZOL or FTI-277 with cisplatin in NPC suggesting that CENP-F expression may have therapeutic implications.
Collapse
|
69
|
Lin YL, Chow KC. rTSβ as a Novel 5-fluorouracil Resistance Marker of Colorectal Cancer: A Preliminary Study. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2010. [DOI: 10.47102/annals-acadmedsg.v39n2p107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Introduction: Colorectal cancer is the most common form of malignancy in Taiwan and the third leading cause of death from cancer, preceded only by lung and hepatic cancers. Colorectal cancer is typically treated by surgical intervention and/or chemotherapy and radiotherapy, if necessary. To date, 5-fluorouracil (5-FU) is the most commonly used anti-cancer chemotherapy drug. However, patients commonly experience resistance to the drug therefore limiting its efficiency. In this study, we measured the expression of rTSβ in human colon cancer as a novel 5-FU resistance marker. Materials and Methods: We collected 172 colon cancer samples from 4 different hospitals (including 21 pairs of colon cancer biopsies and 151 pathologic slides of colon cancer). In vitro, we measured the cytotoxicity of 5-FU and 5-FU plus leucovorin in H630 and H630-1 colon cancer cell lines. Results: The results revealed that rTSβ was expressed in 115 (66.9 %) pathology samples and that tumour expression was higher than in corresponding normal tissue. Survival rates of up to 5 years following treatment was significantly higher for patients without rTSβ expression than for those with rTSβ expression (P = 0.0023). In vitro, H630-1 (with rTSβ overexpression) had significantly higher IC50 of 5-FU than did H630. IC50of 5-FU decreased when leucovorin was added. Conclusions: Results indicate a close relationship between rTSβ expression and resistance to the drug 5-FU in human colorectal cancer. These results provide further evidence for rTSβ expression as a novel 5-FU resistance marker of colorectal cancer.
Key words: Chemotherapy, Immunohistochemistry, Prognosis
Collapse
Affiliation(s)
| | - Kuan-Chih Chow
- Institute of Biomedical Sciences, College of Life Science, National Chung Hsing University, Taichung, Taiwan, ROC
| |
Collapse
|
70
|
Perera D, Taylor SS. Sgo1 establishes the centromeric cohesion protection mechanism in G2 before subsequent Bub1-dependent recruitment in mitosis. J Cell Sci 2010; 123:653-9. [PMID: 20124418 DOI: 10.1242/jcs.059501] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Bub1 was one of the first protein kinases identified as a component of the spindle-assembly checkpoint, a surveillance mechanism that delays anaphase onset until all chromosomes are stably attached to spindle microtubules. Whereas the kinase activity of Bub1 is not required for checkpoint function in yeast, its requirement in mammalian cells is still unclear. Using a complementation assay with bona fide BUB1-null mouse embryonic fibroblasts, we show that the kinase activity of Bub1 is not required for checkpoint function or chromosome alignment. Its activity is, however, required for centromeric localisation of Sgo1, a known protector of centromeric cohesion. Despite the absence of Sgo1 from mitotic centromeres in cells devoid of Bub1 activity, centromeric cohesion is still maintained until anaphase. An explanation for this comes from observations showing that Sgo1 is first recruited to centromeric heterochromatin in G2, but then becomes diffusely localised throughout the nucleus in early prophase, before returning to centromeres later in prophase. Importantly, whereas centromeric localisation of Sgo1 in prophase is dependent on the kinase activity of Bub1, its recruitment to centromeric heterochromatin in G2 is not. Rather, the localisation of Sgo1 in G2 is abolished when heterochromatin protein 1 is not bound to centromeric heterochromatin. Thus, it seems that Sgo1 sets up the centromeric protection mechanism in G2, but that its Bub1-dependent localisation to centromeres during mitosis is not required to maintain cohesion.
Collapse
Affiliation(s)
- David Perera
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
71
|
Gurden MDJ, Holland AJ, van Zon W, Tighe A, Vergnolle MA, Andres DA, Spielmann HP, Malumbres M, Wolthuis RMF, Cleveland DW, Taylor SS. Cdc20 is required for the post-anaphase, KEN-dependent degradation of centromere protein F. J Cell Sci 2010; 123:321-30. [PMID: 20053638 DOI: 10.1242/jcs.062075] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Progression through mitosis and cytokinesis requires the sequential proteolysis of several cell-cycle regulators. This proteolysis is mediated by the ubiquitin-proteasome system, with the E3 ligase being the anaphase-promoting complex, also known as the cyclosome (APC/C). The APC/C is regulated by two activators, namely Cdc20 and Cdh1. The current view is that prior to anaphase, the APC/C is activated by Cdc20, but that following anaphase, APC/C switches to Cdh1-dependent activation. However, here we present an analysis of the kinetochore protein Cenp-F that is inconsistent with this notion. Although it has long been appreciated that Cenp-F is degraded sometime during or after mitosis, exactly when and how has not been clear. Here we show that degradation of Cenp-F initiates about six minutes after anaphase, and that this is dependent on a C-terminal KEN-box. Although these two observations are consistent with Cenp-F being a substrate of Cdh1-activated APC/C, Cenp-F is degraded normally in Cdh1-null cells. By contrast, RNAi-mediated repression of APC/C subunits or Cdc20 does inhibit Cenp-F degradation. These findings therefore suggest that the APC/C does not simply 'switch' upon anaphase onset; rather, our observations indicate that Cdc20 also contributes to post-anaphase activation of the APC/C. We also show that the post-anaphase, KEN-box-dependent degradation of Cenp-F requires it to be farnesylated, a post-translational modification usually linked to membrane association. Because so many of the behaviours of Cenp-F are farnesylation-dependent, we suggest that this modification plays a more global role in Cenp-F function.
Collapse
Affiliation(s)
- Mark D J Gurden
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Moynihan KL, Pooley R, Miller PM, Kaverina I, Bader DM. Murine CENP-F regulates centrosomal microtubule nucleation and interacts with Hook2 at the centrosome. Mol Biol Cell 2009; 20:4790-803. [PMID: 19793914 DOI: 10.1091/mbc.e09-07-0560] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule (MT) network is essential in a broad spectrum of cellular functions. Many studies have linked CENP-F to MT-based activities as disruption of this protein leads to major changes in MT structure and function. Still, the basis of CENP-F regulation of the MT network remains elusive. Here, our studies reveal a novel and critical localization and role for CENP-F at the centrosome, the major MT organizing center (MTOC) of the cell. Using a yeast two-hybrid screen, we identify Hook2, a linker protein that is essential for regulation of the MT network at the centrosome, as a binding partner of CENP-F. With recently developed immunochemical reagents, we confirm this interaction and reveal the novel localization of CENP-F at the centrosome. Importantly, in this first report of CENP-F(-/-) cells, we demonstrate that ablation of CENP-F protein function eliminates MT repolymerization after standard nocodazole treatment. This inhibition of MT regrowth is centrosome specific because MT repolymerization is readily observed from the Golgi in CENP-F(-/-) cells. The centrosome-specific function of CENP-F in the regulation of MT growth is confirmed by expression of truncated CENP-F containing only the Hook2-binding domain. Furthermore, analysis of partially reconstituted MTOC asters in cells that escape complete repolymerization block shows that disruption of CENP-F function impacts MT nucleation and anchoring rather than promoting catastrophe. Our study reveals a major new localization and function of CENP-F at the centrosome that is likely to impact a broad array of MT-based actions in the cell.
Collapse
Affiliation(s)
- Katherine L Moynihan
- Stahlman Cardiovascular Research Laboratories, Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | | | | | | | | |
Collapse
|
73
|
Toralová T, Susor A, Nemcová L, Kepková K, Kanka J. Silencing CENPF in bovine preimplantation embryo induces arrest at 8-cell stage. Reproduction 2009; 138:783-91. [PMID: 19651849 DOI: 10.1530/rep-09-0234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Identification of genes that are important for normal preimplantation development is essential for understanding the basics of early mammalian embryogenesis. In our previous study, we have shown that CENPF (mitosin) is differentially expressed during preimplantation development of bovine embryos. CENPF is a centromere-kinetochore complex protein that plays a crucial role in the cell division of somatic cells. To our best knowledge, no study has yet been done on either bovine model, or oocytes and preimplantation embryos. In this study, we focused on the fate of bovine embryos after injection of CENPF double-stranded RNA (dsRNA) into the zygotes. An average decrease of CENPF mRNA abundance by 94.9% or more and an extensive decline in immunofluorescence staining intensity was detected relative to controls. There was no disparity between individual groups in the developmental competence before the 8-cell stage. However, the developmental competence rapidly decreased then and only 28.1% of CENPF dsRNA injected 8-cell embryos were able to develop further (uninjected control: 71.8%; green fluorescent protein dsRNA injected control: 72.0%). In conclusion, these results show that depletion of CENPF mRNA in preimplantation bovine embryos leads to dramatic decrease of developmental competence after embryonic genome activation.
Collapse
Affiliation(s)
- Tereza Toralová
- Department of Reproductive and Developmental Biology, Institute of Animal Physiology and Genetics, vvi, Academy of Sciences of the Czech Republic, Libechov, Czech Republic.
| | | | | | | | | |
Collapse
|
74
|
Pooley RD, Moynihan KL, Soukoulis V, Reddy S, Francis R, Lo C, Ma LJ, Bader DM. Murine CENPF interacts with syntaxin 4 in the regulation of vesicular transport. J Cell Sci 2008; 121:3413-21. [PMID: 18827011 DOI: 10.1242/jcs.032847] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Syntaxin 4 is a component of the SNARE complex that regulates membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between syntaxin 4 and cytoplasmic murine CENPF, a protein previously demonstrated to associate with the microtubule network and SNAP-25. The binding domain for syntaxin 4 in CENPF was defined by yeast two-hybrid assay and co-immunoprecipitation. Confocal analyses in cell culture reveal a high degree of colocalization between endogenously expressed proteins in interphase cells. Additionally, the endogenous SNARE proteins can be isolated as a complex with CENPF in immunoprecipitation experiments. Further analyses demonstrate that murine CENPF and syntaxin 4 colocalize with components of plasma membrane recycling: SNAP-25 and VAMP2. Depletion of endogenous CENPF disrupts GLUT4 trafficking whereas expression of a dominant-negative form of CENPF inhibits cell coupling. Taken together, these studies demonstrate that CENPF provides a direct link between proteins of the SNARE system and the microtubule network and indicate a diverse role for murine CENPF in vesicular transport.
Collapse
Affiliation(s)
- Ryan D Pooley
- Stahlman Cardiovascular Research Laboratories, Program for Developmental Biology, and Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232-6300, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Farnesyltransferase inhibitors target multiple endothelial cell functions in angiogenesis. Angiogenesis 2008; 11:337-46. [DOI: 10.1007/s10456-008-9115-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 12/15/2022]
|
76
|
Gascoigne KE, Taylor SS. Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs. Cancer Cell 2008; 14:111-22. [PMID: 18656424 DOI: 10.1016/j.ccr.2008.07.002] [Citation(s) in RCA: 658] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/27/2008] [Accepted: 07/07/2008] [Indexed: 12/27/2022]
Abstract
Drugs targeting the mitotic spindle are used extensively during chemotherapy, but surprisingly, little is known about how they kill tumor cells. This is largely because many of the population-based approaches are indirect and lead to vague and confusing interpretations. Here, we use a high-throughput automated time-lapse light microscopy approach to systematically analyze over 10,000 single cells from 15 cell lines in response to three different classes of antimitotic drug. We show that the variation in cell behavior is far greater than previously recognized, with cells within any given line exhibiting multiple fates. We present data supporting a model wherein cell fate is dictated by two competing networks, one involving caspase activation, the other protecting cyclin B1 from degradation.
Collapse
Affiliation(s)
- Karen E Gascoigne
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
77
|
Coats P, Kennedy S, Pyne S, Wainwright CL, Wadsworth RM. Inhibition of non-Ras protein farnesylation reduces in-stent restenosis. Atherosclerosis 2008; 197:515-23. [PMID: 17662987 DOI: 10.1016/j.atherosclerosis.2007.06.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/11/2007] [Accepted: 06/19/2007] [Indexed: 11/27/2022]
Abstract
Ras has a key role in relation to cell proliferation, survival and migration and requires farnesylation for full activity. The effects of a Ras farnesyl transferase inhibitor, FPT III on human atherosclerotic vascular smooth muscle (VSM) cells proliferation and p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) activity was measured. In addition the ability of FPT III to modify the development of neointimal growth was tested in cultured human arteries and in a rabbit model of in-stent restenosis. In human VSM cells FPT III (25 microM) inhibited FCS-stimulated cell proliferation through a ras-dependent mechanism (after 18 h exposure) and also a novel ras-independent mechanism (following 15 min exposure). FPT III incubation (18 h) inhibited platelet-derived growth factor (PDGF)-stimulated p42/p44 MAPK activation and p21 Ras membrane localization, whereas 15 min incubation had no effect on the activation of p42/p44 MAPK in response to PDGF (added at 18 h) or on membrane p21 Ras localization (measured at 18 h). In cultured human atherosclerotic arteries, the presence of 25 microM FPT III significantly reduced neointimal growth. In vivo, 15 min local infusion of 25 microM FPT III significantly reduced in-stent restenosis 28 days later without affecting vascular function in normal rabbit artery. This study demonstrates that brief administration of a farnesyl transferase inhibitor reduced in-stent restenosis in a rabbit model without deleterious effects on vascular function or endothelial regrowth. Acute application of FPT III was found to act through a novel mechanism to inhibit smooth muscle cell proliferation via a non-ras pathway, which may contribute to the prevention of in-stent restenosis.
Collapse
Affiliation(s)
- Paul Coats
- Division of Physiology and Pharmacology, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, UK
| | | | | | | | | |
Collapse
|
78
|
Cheeseman IM, Desai A. Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Biol 2008; 9:33-46. [PMID: 18097444 DOI: 10.1038/nrm2310] [Citation(s) in RCA: 720] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Segregation of the replicated genome during cell division in eukaryotes requires the kinetochore to link centromeric DNA to spindle microtubules. The kinetochore is composed of a number of conserved protein complexes that direct its specification and assembly, bind to spindle microtubules and regulate chromosome segregation. Recent studies have identified more than 80 kinetochore components, and are revealing how these proteins are organized into the higher order kinetochore structure, as well as how they function to achieve proper chromosome segregation.
Collapse
Affiliation(s)
- Iain M Cheeseman
- Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | |
Collapse
|
79
|
Vergnolle MAS, Taylor SS. Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes. Curr Biol 2008; 17:1173-9. [PMID: 17600710 DOI: 10.1016/j.cub.2007.05.077] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
Cenp-F is a nuclear matrix component that localizes to kinetochores during mitosis and is then rapidly degraded after mitosis [1]. Unusually, both the localization and degradation of Cenp-F require it to be farnesylated [2]. Five studies recently demonstrated that Cenp-F is required for kinetochore-microtubule interactions and spindle checkpoint function [3-7]; however, the underlying molecular mechanisms have yet to be defined. Here, we show that Cenp-F interacts with Ndel1 and Nde1, two human NudE-related proteins implicated in regulating Lis1/Dynein motor complexes (reviewed in [8]). We show that Ndel1, Nde1, and Lis1 localize to kinetochores in a Cenp-F-dependent manner. In addition, Nde1, but not Ndel1, is required for kinetochore localization of Dynein. Accordingly, suppression of Nde1 inhibits metaphase chromosome alignment and activates the spindle checkpoint. By contrast, inhibition of Ndel1 results in malorientations that are not detected by the spindle checkpoint; Ndel1-deficient cells consequently enter anaphase in a timely manner but lagging chromosomes then manifest. A major function of Cenp-F, therefore, is to link the Ndel1/Nde1/Lis1/Dynein pathway to kinetochores. Furthermore, our data demonstrate that Ndel1 and Nde1 play distinct roles to ensure chromosome alignment and segregation.
Collapse
Affiliation(s)
- Maïlys A S Vergnolle
- Faculty of Life Sciences, Michael Smith Building, Oxford Road, University of Manchester, Manchester, UK
| | | |
Collapse
|
80
|
Parent AS, Matagne V, Westphal M, Heger S, Ojeda S, Jung H. Gene expression profiling of hypothalamic hamartomas: a search for genes associated with central precocious puberty. HORMONE RESEARCH 2007; 69:114-23. [PMID: 18059092 DOI: 10.1159/000111815] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Accepted: 04/21/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypothalamic hamartomas (HHs) are congenital lesions composed of neurons and astroglia. Frequently, HHs cause central precocious puberty (CPP) and/or gelastic seizures. Because HHs might express genes similar to those required for the initiation of normal puberty, we used cDNA arrays to compare the gene expression profile of an HH associated with CPP with three HHs not accompanied by sexual precocity. METHODS Global changes in gene expression were detected using Affymetrix arrays. The results were confirmed by semiquantitative PCR, which also served to examine the expression of selected genes in the hypothalamus of female monkeys undergoing puberty. RESULTS All HHs were associated with seizures. Ten genes whose expression was increased in the HH with CPP were identified. They encode proteins involved in three key cellular processes: transcriptional regulation, cell-cell signaling, and cell adhesiveness. They include IA-1 and MEF2A, two transcription factors required for neuronal development; mGluR1 and VILIP-1, which encode proteins involved in neuronal communication, and TSG-6 that encodes a protein involved in cell adhesiveness. Of these, expression of mGluR1 also increases in the female monkey hypothalamus at puberty. CONCLUSIONS Increased expression of these genes in HHs may be relevant to the ability of some HHs to induce sexual precocity.
Collapse
Affiliation(s)
- Anne-Simone Parent
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | | | | | | | | | | |
Collapse
|
81
|
Perera D, Tilston V, Hopwood JA, Barchi M, Boot-Handford RP, Taylor S. Bub1 Maintains Centromeric Cohesion by Activation of the Spindle Checkpoint. Dev Cell 2007; 13:566-79. [DOI: 10.1016/j.devcel.2007.08.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/31/2007] [Accepted: 08/16/2007] [Indexed: 12/19/2022]
|
82
|
Abstract
Basic research that has focused on achieving a mechanistic understanding of mitosis has provided unprecedented molecular and biochemical insights into this highly complex phase of the cell cycle. The discovery process has uncovered an ever-expanding list of novel proteins that orchestrate and coordinate spindle formation and chromosome dynamics during mitosis. That many of these proteins appear to function solely in mitosis makes them ideal targets for the development of mitosis-specific cancer drugs. The clinical successes seen with anti-microtubule drugs such as taxanes and the vinca alkaloids have also encouraged the development of drugs that specifically target mitosis. Drugs that selectively inhibit mitotic kinesins involved in spindle and kinetochore functions, as well as kinases that regulate these activities, are currently in various stages of clinical trials. Our increased understanding of mitosis has also revealed that this process is targeted by inhibitors of farnesyl transferase, histone deacetylase, and Hsp90. Although these drugs were originally designed to block cell proliferation by inhibiting signaling pathways and altering gene expression, it is clear now that these drugs can also directly interfere with the mitotic process. The increased attention to mitosis as a chemotherapeutic target has also raised an important issue regarding the cellular determinants that specify drug sensitivity. One likely contribution is the mitotic checkpoint, a failsafe mechanism that delays mitotic exit so that cells whose chromosomes are not properly attached to the spindle have extra time to correct their errors. As the biochemical activity of the mitotic checkpoint is finite, cells cannot indefinitely sustain the delay, as in cases where cells are treated with anti-mitotic drugs. When the mitotic checkpoint activity is eventually lost, cells will exit mitosis and become aneuploid. While many of the aneuploid cells may die because of massive chromosome imbalance, survivors that continue to proliferate will no doubt be selected. This is clearly an undesirable outcome, thus efforts to obtain fundamental insights into why some cells that arrest in mitosis die without exiting mitosis will be exceedingly important in enhancing our understanding of the drug sensitivity of cancer cells.
Collapse
Affiliation(s)
- Valery Sudakin
- Department of Oncology Research, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | | |
Collapse
|
83
|
Schmidt M, Bastians H. Mitotic drug targets and the development of novel anti-mitotic anticancer drugs. Drug Resist Updat 2007; 10:162-81. [PMID: 17669681 DOI: 10.1016/j.drup.2007.06.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 06/18/2007] [Indexed: 12/22/2022]
Abstract
Drugs that interfere with the normal progression of mitosis belong to the most successful chemotherapeutic compounds currently used for anti-cancer treatment. Classically, these drugs are represented by microtubule binding drugs that inhibit the function of the mitotic spindle in order to halt the cell cycle in mitosis and to induce apoptosis in tumor cells. However, these compounds act not only on proliferating tumor cells, but exhibit significant side effects on non-proliferating cells including neurons that are highly dependent on intracellular transport processes mediated by microtubules. Therefore, there is a particular interest in developing novel anti-mitotic drugs that target non-microtubule structures. In fact, recently several novel drugs that target mitotic kinesins or the Aurora and polo-like kinases have been developed and are currently tested in clinical trials. In addition, approaches of cell cycle checkpoint abrogation during mitosis and at the G2/M transition inducing mitosis-associated tumor cell death are promising new strategies for anti-cancer therapy. It is expected that this "next generation" of anti-mitotic drugs will be as successful as the classical anti-microtubule drugs, while avoiding some of the adverse side effects.
Collapse
Affiliation(s)
- Mathias Schmidt
- Altana Pharma AG, Therapeutic Area Oncology, Byk-Gulden Strasse 2, Konstanz, Germany
| | | |
Collapse
|
84
|
Campone M, Campion L, Roché H, Gouraud W, Charbonnel C, Magrangeas F, Minvielle S, Genève J, Martin AL, Bataille R, Jézéquel P. Prediction of metastatic relapse in node-positive breast cancer: establishment of a clinicogenomic model after FEC100 adjuvant regimen. Breast Cancer Res Treat 2007; 109:491-501. [PMID: 17659439 DOI: 10.1007/s10549-007-9673-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
Breast cancer is a very heterogeneous disease, and markers for disease subtypes and therapy response remain poorly defined. For that reason, we employed a retrospective study in node-positive breast cancer to identify molecular signatures of gene expression correlating with metastatic free survival. Patients were primarily included in FEC100 (5-fluorouracil 500 mg/m(2), epirubicin 100 mg/m(2) and cyclophosphamide 500 mg/m(2)) arms of two multicentric prospective adjuvant clinical trials (PACS01 and PEGASE01-FNCLCC cooperative group). Data from nylon microarrays containing 8,032 cDNA unique sequences, representing 5,776 distinct genes, have been used to develop a predictive model for treatment outcome. We obtained the gene expression profiles for 150 of these patients, and used stringent univariate selection techniques based on Cox regression combined with principal component analysis to identify a genomic signature of metastatic relapse after adjuvant FEC100 regimen. Most of the 14 selected genes have a clear role in breast cancer, carcinogenesis or chemotherapy resistance. Six genes have been previously described in other genomic studies (UBE2C, CENPF, C16orf61 [DC13], STMN1, CCT5 and BCL2A1). Furthermore, we showed the interest of combining transcriptomic data with clinical data into a clinicogenomic model for patients subtyping. The described model adds predictive accuracy to that provided by the well-established Nottingham prognostic index or by our genomic signature alone.
Collapse
Affiliation(s)
- Mario Campone
- Service d'Oncologie Médicale, Centre de Lutte Contre le Cancer René Gauducheau, Bd J. Monod, 44805, Nantes-Saint Herblain Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Rolland D, Camara-Clayette V, Barbarat A, Salles G, Coiffier B, Ribrag V, Thieblemont C. Farnesyltransferase inhibitor R115777 inhibits cell growth and induces apoptosis in mantle cell lymphoma. Cancer Chemother Pharmacol 2007; 61:855-63. [PMID: 17639395 PMCID: PMC2705670 DOI: 10.1007/s00280-007-0543-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 06/08/2007] [Indexed: 11/26/2022]
Abstract
INTRODUCTION The cytotoxic activity of the farnesyltranseferase inhibitor R115777 was evaluated in cell lines representative of mantle cell lymphoma (MCL). METHODS Cell growth, proliferation, and apoptosis were analyzed in four human MCL cell lines (Granta, NCEB, REC, and UPN1) in presence of R115777, alone or in combination with vincristin, doxorubicin, bortezomib, cisplatin and cytarabine. Inhibition of farnesylation was determined by the appearance of prelamin A. The antitumor activity of R115777, administered p.o. at 100, 250 and 500 mg/kg, was determined in vivo in nude mice xenografted with UPN1 cells. RESULTS R115777 inhibited the growth of MCL cell lines in vitro with inhibitory concentrations ranging between 2 and 15 nM. A fifty percent decrease of cell viability was observed at concentrations comprised between 0.08 and 17 microM. Apoptosis, evaluated by annexin V and activated caspase 3 staining, was induced in all cell lines, in 40 to 71% of the cells depending on the cell lines. In addition, R115777 significantly increased the cytotoxic effect of vincristine, doxorubicin, bortezomib, cisplatin and cytarabine (p=0.001, p=0.016, p=0.006, p=0.014 and p=0.007 respectively). Exposure of MCL cell lines to R115777 during 72 hours resulted in inhibition of protein farnesylation. R115777 administered p.o. twice daily for 8 consecutive days to mice bearing established s.c. UPN1 xenograft displayed cytostatic activity at the 500 mg/kg dosage. CONCLUSION We have demonstrated that inhibition of farnesyltransferase by R115777 was associated with growth inhibition and apoptosis of MCL cell lines in vitro and tumor xenograft stability in vivo.
Collapse
Affiliation(s)
- Delphine Rolland
- GIN, Grenoble Institut des Neurosciences
INSERM : U836CEAUniversité Joseph Fourier - Grenoble ICHU GrenobleUJF - Site Santé La Tronche BP 170 38042 Grenoble Cedex 9,FR
| | | | - Aurélie Barbarat
- Service d'Hématologie
Hospices civils de LyonCHU LyonUniversité Lyon 1Equipe d'Accueil 3737, Pierre Benite, 69495,FR
| | - Gilles Salles
- Service d'Hématologie
Hospices civils de LyonCHU LyonUniversité Lyon 1Equipe d'Accueil 3737, Pierre Benite, 69495,FR
| | - Bertrand Coiffier
- Service d'Hématologie
Hospices civils de LyonCHU LyonUniversité Lyon 1Equipe d'Accueil 3737, Pierre Benite, 69495,FR
| | - Vincent Ribrag
- Département de Médecine
Institut Gustave RoussyVillejuif,FR
| | - Catherine Thieblemont
- Service d'onco-hématologie
AP-HPHôpital Saint-Louis1, avenue Claude Vellefaux, 75010 Paris,FR
- * Correspondence should be adressed to: Catherine Thieblemont
| |
Collapse
|
86
|
Yap YL, Zhang XW, Smith D, Soong R, Hill J. Molecular gene expression signature patterns for gastric cancer diagnosis. Comput Biol Chem 2007; 31:275-87. [PMID: 17631416 DOI: 10.1016/j.compbiolchem.2007.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 06/05/2007] [Accepted: 06/05/2007] [Indexed: 12/24/2022]
Abstract
It is an accepted clinical practice to diagnose gastric cancer by using histological techniques on tissue obtained through endoscopic biopsy. However, the use of these techniques often results in difficulty distinguishing between benign and malignant growth due to the ambiguous nature of some of the morphological features observed. In order to improve this situation, public domain gene expression data has been analysed and a set of molecular gene expression signatures has been discovered that distinguishes between normal and malignant growth. In addition, a separate distinct gene expression signature has been identified that appears to aid in the prognosis and indicate survival rates of patients. It is proposed that the use of the molecular gene expression signatures described in this manuscript when used in conjunction with the traditional histological techniques already in clinical practice will enhance and improve the diagnosis of gastric cancer.
Collapse
Affiliation(s)
- Yee Leng Yap
- Bioinformatics Institute (BII), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore.
| | | | | | | | | |
Collapse
|
87
|
Schafer-Hales K, Iaconelli J, Snyder JP, Prussia A, Nettles JH, El-Naggar A, Khuri FR, Giannakakou P, Marcus AI. Farnesyl transferase inhibitors impair chromosomal maintenance in cell lines and human tumors by compromising CENP-E and CENP-F function. Mol Cancer Ther 2007; 6:1317-28. [PMID: 17431110 DOI: 10.1158/1535-7163.mct-06-0703] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Farnesyl transferase inhibitors (FTI) exhibit anticancer activity as a single agent in preclinical studies and show promise in combination with other therapeutics in clinical trials. Previous studies show that FTIs arrest cancer cells in mitosis; however, the mechanism by which this occurs is unclear. Here, we observed that treatment of various cancer cell lines with the FTI lonafarnib caused mitotic chromosomal alignment defects, leaving cells in a pseudometaphase state, whereby both aligned chromosomes and chromosomes juxtaposed to the spindle poles (termed "lagging chromosomes") were observed in the same cell. To determine how this occurs, we investigated the functionality of two farnesylated mitotic proteins, CENP-E and CENP-F, which mediate chromosomal capture and alignment. The data show that lonafarnib in proliferating cancer cells depletes CENP-E and CENP-F from metaphase but not prometaphase kinetochores. Loss of CENP-E and CENP-F metaphase localization triggered aberrant chromosomal maintenance, causing aligned chromosomes to be prematurely released from the spindle equator and become lagging chromosomes, resulting in a mitotic delay. Furthermore, lonafarnib treatment reduces sister kinetochore tension and activates the BubR1 spindle checkpoint, suggesting that farnesylation of CENP-E and CENP-F is critical for their functionality in maintaining kinetochore-microtubule interactions. Importantly, apparently similar chromosomal alignment defects were observed in head and neck tumors samples from a phase I trial with lonafarnib, providing support that lonafarnib disrupts chromosomal maintenance in human cancers. Lastly, to examine how farnesylation could regulate CENP-E in mediating kinetochore-microtubule attachments, we examined possible docking motifs of a farnesyl group on the outer surface of the microtubule. This analysis revealed three hydrophobic patches on the tubulin dimer for insertion of a farnesyl group, alluding to the possibility of an association between a farnesyl group and the microtubule.
Collapse
|
88
|
Evans HJ, Edwards L, Goodwin RL. Conserved C-terminal domains of mCenp-F (LEK1) regulate subcellular localization and mitotic checkpoint delay. Exp Cell Res 2007; 313:2427-37. [PMID: 17498689 PMCID: PMC3991481 DOI: 10.1016/j.yexcr.2007.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 03/16/2007] [Accepted: 03/19/2007] [Indexed: 11/24/2022]
Abstract
Centromeric Protein-F (Cenp-F) family members have been identified in organisms from yeast to human. Cenp-F proteins are a component of kinetochores during mitosis, bind to the Rb family of tumor suppressors, and have regulatory effects on the cell cycle and differentiation; however, their role in these processes has not been resolved. Here, we provide evidence that the role of murine Cenp-F (mCenp-F, also known as LEK1) remains largely conserved and that the domains within the C-terminus collectively function to regulate the G2/M cell cycle checkpoint. Overexpression of the C-terminal domain of mCenp-F decreases DNA synthesis. Analyses of deletion mutants of mCenp-F reveal that the complete C-terminal domain is required to delay cell cycle progression at G2/M. Signal transduction pathway profiling experiments indicate that the mCenp-F-mediated cell cycle delay does not involve transcriptional activity of key cell cycle regulators such as Rb, E2F, p53, or Myc. However, endogenous mCenp-F colocalizes with pRb and p107, which demonstrates in vivo protein-protein interaction during cell division. These observations suggest that the domains of the C-terminus of mCenp-F have a conserved function in control of mitotic progression through protein-protein interaction with pocket proteins, thus providing a direct connection between cell cycle regulation and mitotic progression.
Collapse
Affiliation(s)
- Heather J Evans
- Department of Cell and Developmental Biology and Anatomy, University of South Carolina School of Medicine, SC, USA
| | | | | |
Collapse
|
89
|
O’Brien SL, Fagan A, Fox EJ, Millikan RC, Culhane AC, Brennan DJ, McCann AH, Hegarty S, Moyna S, Duffy MJ, Higgins DG, Jirström K, Landberg G, Gallagher WM. CENP-F expression is associated with poor prognosis and chromosomal instability in patients with primary breast cancer. Int J Cancer 2007; 120:1434-43. [PMID: 17205517 PMCID: PMC4972098 DOI: 10.1002/ijc.22413] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
DNA microarrays have the potential to classify tumors according to their transcriptome. Tissue microarrays (TMAs) facilitate the validation of biomarkers by offering a high-throughput approach to sample analysis. We reanalyzed a high profile breast cancer DNA microarray dataset containing 96 tumor samples using a powerful statistical approach, between group analyses. Among the genes we identified was centromere protein-F (CENP-F), a gene associated with poor prognosis. In a published follow-up breast cancer DNA microarray study, comprising 295 tumour samples, we found that CENP-F upregulation was significantly associated with worse overall survival (p<0.001) and reduced metastasis-free survival (p<0.001). To validate and expand upon these findings, we used 2 independent breast cancer patient cohorts represented on TMAs. CENP-F protein expression was evaluated by immunohistochemistry in 91 primary breast cancer samples from cohort I and 289 samples from cohort II. CENP-F correlated with markers of aggressive tumor behavior including ER negativity and high tumor grade. In cohort I, CENP-F was significantly associated with markers of CIN including cyclin E, increased telomerase activity, c-Myc amplification and aneuploidy. In cohort II, CENP-F correlated with VEGFR2, phosphorylated Ets-2 and Ki67, and in multivariate analysis, was an independent predictor of worse breast cancer-specific survival (p=0.036) and overall survival (p=0.040). In conclusion, we identified CENP-F as a biomarker associated with poor outcome in breast cancer and showed several novel associations of biological significance.
Collapse
Affiliation(s)
- Sallyann L. O’Brien
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Ailís Fagan
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Edward J.P. Fox
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Robert C. Millikan
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Aedín C. Culhane
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Donal J. Brennan
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Amanda H. McCann
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Shauna Hegarty
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Siobhan Moyna
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Michael J. Duffy
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Desmond G. Higgins
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Karin Jirström
- Division of Pathology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
| | - Göran Landberg
- Division of Pathology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, Malmö, Sweden
| | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
90
|
Affiliation(s)
- Kathryn Graham
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK
| | | |
Collapse
|
91
|
Feng J, Huang H, Yen TJ. CENP-F is a novel microtubule-binding protein that is essential for kinetochore attachments and affects the duration of the mitotic checkpoint delay. Chromosoma 2006; 115:320-9. [PMID: 16601978 DOI: 10.1007/s00412-006-0049-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 01/08/2006] [Accepted: 01/09/2006] [Indexed: 10/24/2022]
Abstract
Centromeric protein F (CENP-F) is a 367-kDa human kinetochore protein that was identified a decade ago, but its function was only recently revealed by studies that used small interfering RNA to deplete the protein from cells. All studies showed that CENP-F is important for chromosome alignment, but these studies differed as to whether CENP-F is important to the mitotic checkpoint. We report here that CENP-F is essential for cells to sustain a prolonged mitotic delay in response to unattached kinetochores. Cells depleted of CENP-F exit mitosis in the presence of defective kinetochore attachments resulting from treatment with nocodazole, or the depletion of kinetochore proteins CENP-E and hSgo1. Kinetochores depleted of CENP-F exhibited a reduction in the amounts of the mitotic checkpoint proteins Mad1, Mad2, hBUBR1, hBUB1, and hMps1. We postulate that CENP-F is not an essential component of the mitotic checkpoint but facilitates the duration of the mitotic delay. Separately, we show that CENP-F is a novel microtubule-binding protein that possesses two microtubule-binding domains at opposite ends of the molecule. The C-terminal microtubule-binding domain was found to stimulate microtubule polymerization in vitro. These activities provide a biochemical explanation for how CENP-F contributes to kinetochore attachments in vivo.
Collapse
Affiliation(s)
- J Feng
- Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
92
|
Varis A, Salmela AL, Kallio MJ. Cenp-F (mitosin) is more than a mitotic marker. Chromosoma 2006; 115:288-95. [PMID: 16565862 DOI: 10.1007/s00412-005-0046-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 12/02/2005] [Accepted: 12/15/2005] [Indexed: 12/18/2022]
Abstract
Cenp-F (mitosin) is a large coiled-coil protein whose function has remained obscure since its identification a decade ago. It has been suggested that the protein plays a role in the kinetochore-mediated mitotic functions but until recently there was little evidence to support this postulation. Recent results from five laboratories have given insights on how Cenp-F may participate in the regulation of cell division. In this mini-review, we will summarize the current data regarding the mitotic tasks of Cenp-F as well as discuss how it is used as a proliferation marker of malignant cell growth in the clinic. Also, the protein's post-translational modification by farnesylation and potential contribution to cell cycle effects of farnesyl transferase inhibitors will be addressed.
Collapse
Affiliation(s)
- Asta Varis
- Cancer Biology and Cell Screening Department, VTT Medical Biotechnology, Itäinen Pitkäkatu 4A, 20521, Turku, Finland
| | | | | |
Collapse
|
93
|
Furukawa T, Kanai N, Shiwaku HO, Soga N, Uehara A, Horii A. AURKA is one of the downstream targets of MAPK1/ERK2 in pancreatic cancer. Oncogene 2006; 25:4831-9. [PMID: 16532023 DOI: 10.1038/sj.onc.1209494] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DUSP6/MKP-3, a specific inhibitor of MAPK1/ERK2, frequently loses its expression in primary pancreatic cancer tissues. This evidence suggests that constitutive activation of MAPK1 synergistically induced by frequent mutation of KRAS2 and the loss of function of DUSP6 plays key roles in pancreatic carcinogenesis and progression. By profiling of gene expressions associated with downregulation of MAPK1 induced by exogenous overexpression of DUSP6 in pancreatic cancer cells, we found that AURKA/STK15, the gene encoding Aurora-A kinase, which plays key roles in cellular mitosis, was among the downregulated genes along with its related genes, which included AURKB, TPX2 and CENPA. An association of expression and promoter activity of AURKA with MAPK activity was verified. Knockdown of ETS2 resulted in a reduction of AURKA expression. These results indicate that AURKA is a direct target of the MAPK pathway and that its overexpression in pancreatic cancer is induced by hyperactivation of the pathway, at least via ETS2.
Collapse
Affiliation(s)
- T Furukawa
- International Research and Educational Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
94
|
Ma L, Zhao X, Zhu X. Mitosin/CENP-F in mitosis, transcriptional control, and differentiation. J Biomed Sci 2006; 13:205-13. [PMID: 16456711 DOI: 10.1007/s11373-005-9057-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 12/22/2005] [Indexed: 01/03/2023] Open
Abstract
Mitosin/CENP-F is a large nuclear/kinetochore protein containing multiple leucine zipper motifs potentially for protein interactions. Its expression levels and subcellular localization patterns are regulated in a cell cycle-dependent manner. Recently, accumulating lines of evidence have suggested it a multifunctional protein involved in mitotic control, microtubule dynamics, transcriptional regulation, and muscle cell differentiation. Consistently, it is shown to interact directly with a variety of proteins including CENP-E, NudE/Nudel, ATF4, and Rb. Here we review the current progress and discuss possible mechanisms through which mitosin may function.
Collapse
Affiliation(s)
- Li Ma
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | | |
Collapse
|
95
|
Holt SV, Vergnolle MAS, Hussein D, Wozniak MJ, Allan VJ, Taylor SS. Silencing Cenp-F weakens centromeric cohesion, prevents chromosome alignment and activates the spindle checkpoint. J Cell Sci 2006; 118:4889-900. [PMID: 16219694 DOI: 10.1242/jcs.02614] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cenp-F is an unusual kinetochore protein in that it localizes to the nuclear matrix in interphase and the nuclear envelope at the G2/M transition; it is farnesylated and rapidly degraded after mitosis. We have recently shown that farnesylation of Cenp-F is required for G2/M progression, its localization to kinetochores, and its degradation. However, the role Cenp-F plays in mitosis has remained enigmatic. Here we show that, following repression of Cenp-F by RNA interference (RNAi), the processes of metaphase chromosome alignment, anaphase chromosome segregation and cytokinesis all fail. Although kinetochores attach to microtubules in Cenp-F-deficient cells, the oscillatory movements that normally occur following K-fibre formation are severely dampened. Consistently, inter-kinetochore distances are reduced. In addition, merotelic associations are observed, suggesting that whereas kinetochores can attach microtubules in the absence of Cenp-F, resolving inappropriate interactions is inhibited. Repression of Cenp-F does not appear to compromise the spindle checkpoint. Rather, the chromosome alignment defect induced by Cenp-F RNA interference is accompanied by a prolonged mitosis, indicating checkpoint activation. Indeed, the prolonged mitosis induced by Cenp-F RNAi is dependent on the spindle checkpoint kinase BubR1. Surprisingly, chromosomes in Cenp-F-deficient cells frequently show a premature loss of chromatid cohesion. Thus, in addition to regulating kinetochore-microtubule interactions, Cenp-F might be required to protect centromeric cohesion prior to anaphase commitment. Intriguingly, whereas most of the sister-less kinetochores cluster near the spindle poles, some align at the spindle equator, possibly through merotelic or lateral orientations.
Collapse
Affiliation(s)
- Sarah V Holt
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
96
|
Basso AD, Kirschmeier P, Bishop WR. Thematic review series: Lipid Posttranslational Modifications. Farnesyl transferase inhibitors. J Lipid Res 2006; 47:15-31. [PMID: 16278491 DOI: 10.1194/jlr.r500012-jlr200] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Some proteins undergo posttranslational modification by the addition of an isoprenyl lipid (farnesyl- or geranylgeranyl-isoprenoid) to a cysteine residue proximal to the C terminus. Protein isoprenylation promotes membrane association and contributes to protein-protein interactions. Farnesylated proteins include small GTPases, tyrosine phosphatases, nuclear lamina, cochaperones, and centromere-associated proteins. Prenylation is required for the transforming activity of Ras. Because of the high frequency of Ras mutations in cancer, farnesyl transferase inhibitors (FTIs) were investigated as a means to antagonize Ras function. Evaluation of FTIs led to the finding that both K- and N-Ras are alternatively modified by geranylgeranyl prenyltransferase-1 in FTI-treated cells. Geranylgeranylated forms of Ras retain the ability to associate with the plasma membrane and activate substrates. Despite this, FTIs are effective at inhibiting the growth of human tumor cells in vitro, suggesting that activity is dependent on blocking the farnesylation of other proteins. FTIs also inhibit the in vivo growth of human tumor xenografts and sensitize these models to chemotherapeutics, most notably taxanes. Several FTIs have entered clinical trials for various cancer indications. In some clinical settings, primarily hematologic malignancies, FTIs have displayed evidence of single-agent activity. Clinical studies in progress are exploring the antitumor activity of FTIs as single agents and in combination. This review will summarize the basic biology of FTIs, their antitumor activity in preclinical models, and the current status of clinical studies with these agents.
Collapse
Affiliation(s)
- Andrea D Basso
- Schering-Plough Research Institute, Kenilworth, NJ 07033, USA.
| | | | | |
Collapse
|
97
|
Brunner TB, Cengel KA, Hahn SM, Wu J, Fraker DL, McKenna WG, Bernhard EJ. Pancreatic cancer cell radiation survival and prenyltransferase inhibition: the role of K-Ras. Cancer Res 2005; 65:8433-41. [PMID: 16166322 DOI: 10.1158/0008-5472.can-05-0158] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activating K-ras mutations are found in approximately 90% of pancreatic carcinomas and may contribute to the poor prognosis of these tumors. Because radiotherapy is frequently used in pancreatic cancer treatment, we assessed the contribution of oncogenic K-ras signaling to pancreatic cancer radiosensitivity. Seven human pancreatic carcinoma lines with activated K-ras and two cell lines with wild-type ras were used to examine clonogenic cell survival after Ras inhibition. Ras inhibition was accomplished by small interfering RNA (siRNA) knockdown of K-ras expression and by blocking Ras processing using a panel of prenyltransferase inhibitors of differing specificity for the two prenyltransferases that modify K-Ras. K-ras knockdown by siRNA or inhibition of prenyltransferase activity resulted in radiation sensitization in vitro and in vivo in tumors with oncogenic K-ras mutations. Inhibition of farnesyltransferase alone was sufficient to radiosensitize most K-ras mutant tumors, although K-Ras prenylation was not blocked. These results show that inhibition of activated K-Ras can promote radiation killing of pancreatic carcinoma in a superadditive manner. The finding that farnesyltransferase inhibition alone radiosensitizes tumors with K-ras mutations implies that a farnesyltransferase inhibitor-sensitive protein other than K-Ras may contribute to survival in the context of mutant K-ras. Farnesyltransferase inhibitors could therefore be of use as sensitizers for pancreatic carcinoma radiotherapy.
Collapse
Affiliation(s)
- Thomas B Brunner
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6072, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Bomont P, Maddox P, Shah JV, Desai AB, Cleveland DW. Unstable microtubule capture at kinetochores depleted of the centromere-associated protein CENP-F. EMBO J 2005; 24:3927-39. [PMID: 16252009 PMCID: PMC1283947 DOI: 10.1038/sj.emboj.7600848] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 09/30/2005] [Indexed: 11/08/2022] Open
Abstract
Centromere protein F (CENP-F) (or mitosin) accumulates to become an abundant nuclear protein in G2, assembles at kinetochores in late G2, remains kinetochore-bound until anaphase, and is degraded at the end of mitosis. Here we show that the absence of nuclear CENP-F does not affect cell cycle progression in S and G2. In a subset of CENP-F depleted cells, kinetochore assembly fails completely, thereby provoking massive chromosome mis-segregation. In contrast, the majority of CENP-F depleted cells exhibit a strong mitotic delay with reduced tension between kinetochores of aligned, bi-oriented sister chromatids and decreased stability of kinetochore microtubules. These latter kinetochores generate mitotic checkpoint signaling when unattached, recruiting maximum levels of Mad2. Use of YFP-marked Mad1 reveals that throughout the mitotic delay some aligned, CENP-F depleted kinetochores continuously recruit Mad1. Others rebind YFP-Mad1 intermittently so as to produce 'twinkling', demonstrating cycles of mitotic checkpoint reactivation and silencing and a crucial role for CENP-F in efficient assembly of a stable microtubule-kinetochore interface.
Collapse
Affiliation(s)
- Pascale Bomont
- Department of Cellular and Molecular Medicine and Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Paul Maddox
- Department of Cellular and Molecular Medicine and Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Jagesh V Shah
- Department of Cellular and Molecular Medicine and Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Arshad B Desai
- Department of Cellular and Molecular Medicine and Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine and Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, 3080 CMM-East, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. Tel.: +1 858 534 7811; Fax: +1 858 534 7659; E-mail:
| |
Collapse
|
99
|
Yang Z, Guo J, Chen Q, Ding C, Du J, Zhu X. Silencing mitosin induces misaligned chromosomes, premature chromosome decondensation before anaphase onset, and mitotic cell death. Mol Cell Biol 2005; 25:4062-74. [PMID: 15870278 PMCID: PMC1087709 DOI: 10.1128/mcb.25.10.4062-4074.2005] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mitosin (also named CENP-F) is a large human nuclear protein transiently associated with the outer kinetochore plate in M phase. Using RNA interference and fluorescence microscopy, we showed that mitosin depletion attenuated chromosome congression and led to metaphase arrest with misaligned polar chromosomes whose kinetochores showed few cold-stable microtubules. Kinetochores of fully aligned chromosomes often failed to show orientation in the direction of the spindle long axis. Moreover, tension across their sister kinetochores was decreased by 53% on average. These phenotypes collectively imply defects in motor functions in mitosin-depleted cells and are similar to those of CENP-E depletion. Consistently, the intensities of CENP-E and cytoplasmic dynein and dynactin, which are motors controlling microtubule attachment and chromosome movement, were reduced at the kinetochore in a microtubule-dependent manner. In addition, after being arrested in pseudometaphase for approximately 2 h, mitosin-depleted cells died before anaphase initiation through apoptosis. The dying cells exhibited progressive chromosome arm decondensation, while the centromeres were still associated with spindles. Mitosin is therefore essential for full chromosome alignment, possibly by promoting proper kinetochore attachments through modulating CENP-E and dynein functions. Its depletion also prematurely triggers chromosome decondensation, a process that normally occurs from telophase for the nucleus reassembly, thus resulting in apoptosis.
Collapse
Affiliation(s)
- Zhenye Yang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
100
|
Laconde G, Depreux P, Berthelot P, Pommery N, Hénichart JP. New antiproliferative benzoindolinothiazepines derivatives. Eur J Med Chem 2005; 40:167-72. [PMID: 15694651 DOI: 10.1016/j.ejmech.2004.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Revised: 10/11/2004] [Accepted: 10/11/2004] [Indexed: 12/01/2022]
Abstract
New benzoindolinothiazepines containing a piperazine moiety are described as potent antiproliferative agents against PC3 human prostatic cell lines. This activity could be explained by an accumulation of cells in G1 phase.
Collapse
Affiliation(s)
- Guillaume Laconde
- Institut de chimie pharmaceutique Albert Lespagnol, universite de Lille 2, EA 2692, 3, rue du Professeur Laguesse, B.P. 83, 59006 Lille cedex, France
| | | | | | | | | |
Collapse
|