51
|
Zhang S, Hama Y, Mizushima N. The evolution of autophagy proteins - diversification in eukaryotes and potential ancestors in prokaryotes. J Cell Sci 2021; 134:270774. [PMID: 34228793 DOI: 10.1242/jcs.233742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a degradative pathway for cytoplasmic constituents, and is conserved across eukaryotes. Autophagy-related (ATG) genes have undergone extensive multiplications and losses in different eukaryotic lineages, resulting in functional diversification and specialization. Notably, even though bacteria and archaea do not possess an autophagy pathway, they do harbor some remote homologs of Atg proteins, suggesting that preexisting proteins were recruited when the autophagy pathway developed during eukaryogenesis. In this Review, we summarize our current knowledge on the distribution of Atg proteins within eukaryotes and outline the major multiplication and loss events within the eukaryotic tree. We also discuss the potential prokaryotic homologs of Atg proteins identified to date, emphasizing the evolutionary relationships and functional differences between prokaryotic and eukaryotic proteins.
Collapse
Affiliation(s)
- Sidi Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaro Hama
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
52
|
Barz S, Kriegenburg F, Sánchez-Martín P, Kraft C. Small but mighty: Atg8s and Rabs in membrane dynamics during autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119064. [PMID: 34048862 PMCID: PMC8261831 DOI: 10.1016/j.bbamcr.2021.119064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/04/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022]
Abstract
Autophagy is a degradative pathway during which autophagosomes are formed that enwrap cytosolic material destined for turnover within the lytic compartment. Autophagosome biogenesis requires controlled lipid and membrane rearrangements to allow the formation of an autophagosomal seed and its subsequent elongation into a fully closed and fusion-competent double membrane vesicle. Different membrane remodeling events are required, which are orchestrated by the distinct autophagy machinery. An important player among these autophagy proteins is the small lipid-modifier Atg8. Atg8 proteins facilitate various aspects of autophagosome formation and serve as a binding platform for autophagy factors. Also Rab GTPases have been implicated in autophagosome biogenesis. As Atg8 proteins interact with several Rab GTPase regulators, they provide a possible link between autophagy progression and Rab GTPase activity. Here, we review central aspects in membrane dynamics during autophagosome biogenesis with a focus on Atg8 proteins and selected Rab GTPases.
Collapse
Affiliation(s)
- Saskia Barz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Pablo Sánchez-Martín
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
53
|
Licheva M, Raman B, Kraft C, Reggiori F. Phosphoregulation of the autophagy machinery by kinases and phosphatases. Autophagy 2021; 18:104-123. [PMID: 33970777 PMCID: PMC8865292 DOI: 10.1080/15548627.2021.1909407] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells use post-translational modifications to diversify and dynamically coordinate the function and properties of protein networks within various cellular processes. For example, the process of autophagy strongly depends on the balanced action of kinases and phosphatases. Highly conserved from the budding yeast Saccharomyces cerevisiae to humans, autophagy is a tightly regulated self-degradation process that is crucial for survival, stress adaptation, maintenance of cellular and organismal homeostasis, and cell differentiation and development. Many studies have emphasized the importance of kinases and phosphatases in the regulation of autophagy and identified many of the core autophagy proteins as their direct targets. In this review, we summarize the current knowledge on kinases and phosphatases acting on the core autophagy machinery and discuss the relevance of phosphoregulation for the overall process of autophagy.
Collapse
Affiliation(s)
- Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Babu Raman
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| |
Collapse
|
54
|
Sheehan BK, Orefice NS, Peng Y, Shapiro SL, Puglielli L. ATG9A regulates proteostasis through reticulophagy receptors FAM134B and SEC62 and folding chaperones CALR and HSPB1. iScience 2021; 24:102315. [PMID: 33870132 PMCID: PMC8042170 DOI: 10.1016/j.isci.2021.102315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 12/01/2022] Open
Abstract
The acetylation of ATG9A within the endoplasmic reticulum (ER) lumen regulates the induction of reticulophagy. ER acetylation is ensured by AT-1/SLC33A1, a membrane transporter that maintains the cytosol-to-ER flux of acetyl-CoA. Defective AT-1 activity, as caused by heterozygous/homozygous mutations and gene duplication events, results in severe disease phenotypes. Here, we show that although the acetylation of ATG9A occurs in the ER lumen, the induction of reticulophagy requires ATG9A to engage FAM134B and SEC62 on the cytosolic side of the ER. To address this conundrum, we resolved the ATG9A interactome in two mouse models of AT-1 dysregulation: AT-1 sTg, a model of systemic AT-1 overexpression with hyperacetylation of ATG9A, and AT-1S113R/+, a model of AT-1 haploinsufficiency with hypoacetylation of ATG9A. We identified CALR and HSPB1 as two ATG9A partners that regulate the induction of reticulophagy as a function of ATG9A acetylation and discovered that ATG9A associates with several proteins that maintain ER proteostasis. The ATG9A-FAM134B and ATG9A-SEC62 interaction requires specific structural features Opposite Ca++-binding EF hands regulate ATG9A-FAM134B interaction HSBP1 and CALR regulate ATG9A-mediated induction of reticulophagy Many of the proteins that ensure ER proteostasis display spatial vicinity/cross talk
Collapse
Affiliation(s)
- Brendan K Sheehan
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nicola S Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yajing Peng
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Samantha L Shapiro
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI 53705, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
55
|
Hirata E, Shirai K, Kawaoka T, Sato K, Kodama F, Suzuki K. Atg15 in Saccharomyces cerevisiae consists of two functionally distinct domains. Mol Biol Cell 2021; 32:645-663. [PMID: 33625870 PMCID: PMC8108511 DOI: 10.1091/mbc.e20-07-0500] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Autophagy is a cellular degradation system widely conserved among eukaryotes. During autophagy, cytoplasmic materials fated for degradation are compartmentalized in double membrane-bound organelles called autophagosomes. After fusing with the vacuole, their inner membrane-bound structures are released into the vacuolar lumen to become autophagic bodies and eventually degraded by vacuolar hydrolases. Atg15 is a lipase that is essential for disintegration of autophagic body membranes and has a transmembrane domain at the N-terminus and a lipase domain at the C-terminus. However, the roles of the two domains in vivo are not well understood. In this study, we found that the N-terminal domain alone can travel to the vacuole via the multivesicular body pathway, and that targeting of the C-terminal lipase domain to the vacuole is required for degradation of autophagic bodies. Moreover, we found that the C-terminal domain could disintegrate autophagic bodies when it was transported to the vacuole via the Pho8 pathway instead of the multivesicular body pathway. Finally, we identified H435 as one of the residues composing the putative catalytic triad and W466 as an important residue for degradation of autophagic bodies. This study may provide a clue to how the C-terminal lipase domain recognizes autophagic bodies to degrade them.
Collapse
Affiliation(s)
- Eri Hirata
- Department of Integrated Biosciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kyo Shirai
- Department of Integrated Biosciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Tatsuya Kawaoka
- Department of Integrated Biosciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kosuke Sato
- Department of Integrated Biosciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Fumito Kodama
- Department of Integrated Biosciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kuninori Suzuki
- Department of Integrated Biosciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan.,Life Science Data Research Center, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan.,Collaborative Research Institute for Innovative Microbiology, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
56
|
Popelka H, Reinhart EF, Metur SP, Leary KA, Ragusa MJ, Klionsky DJ. Membrane Binding and Homodimerization of Atg16 Via Two Distinct Protein Regions is Essential for Autophagy in Yeast. J Mol Biol 2021; 433:166809. [PMID: 33484718 DOI: 10.1016/j.jmb.2021.166809] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 12/29/2022]
Abstract
Macroautophagy is a bulk degradation mechanism in eukaryotic cells. Efficiency of an essential step of this process in yeast, Atg8 lipidation, relies on the presence of Atg16, a subunit of the Atg12-Atg5-Atg16 complex acting as the E3-like enzyme in the ubiquitination-like reaction. A current view on the functional structure of Atg16 in the yeast S. cerevisiae comes from the two crystal structures that reveal the Atg5-interacting α-helix linked via a flexible linker to another α-helix of Atg16, which then assembles into a homodimer. This view does not explain the results of previous in vitro studies revealing Atg16-dependent deformations of membranes and liposome-binding of the Atg12-Atg5 conjugate upon addition of Atg16. Here we show that Atg16 acts as both a homodimerizing and peripheral membrane-binding polypeptide. These two characteristics are imposed by the two distinct regions that are disordered in the nascent protein. Atg16 binds to membranes in vivo via the amphipathic α-helix (amino acid residues 113-131) that has a coiled-coil-like propensity and a strong hydrophobic face for insertion into the membrane. The other protein region (residues 64-99) possesses a coiled-coil propensity, but not amphipathicity, and is dispensable for membrane anchoring of Atg16. This region acts as a Leu-zipper essential for formation of the Atg16 homodimer. Mutagenic disruption in either of these two distinct domains renders Atg16 proteins that, in contrast to wild type, completely fail to rescue the autophagy-defective phenotype of atg16Δ cells. Together, the results of this study yield a model for the molecular mechanism of Atg16 function in macroautophagy.
Collapse
Affiliation(s)
- Hana Popelka
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Erin F Reinhart
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Shree Padma Metur
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Kelsie A Leary
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Michael J Ragusa
- Department of Chemistry, Dartmouth College, Hanover, NH 03755, United States
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
57
|
Fujioka Y, Noda NN. Biomolecular condensates in autophagy regulation. Curr Opin Cell Biol 2021; 69:23-29. [PMID: 33445149 DOI: 10.1016/j.ceb.2020.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
Autophagy is an intracellular degradation system that contributes to cellular homeostasis. Autophagosome formation is a landmark event in autophagy, which sequesters and delivers cytoplasmic components to the lysosome for degradation. Based on selectivity, autophagy can be classified into bulk and selective autophagy, which are mechanistically distinct from each other, especially in the requirement of cargos for autophagosome formation. Recent studies revealed that liquid-like biomolecular condensates, which are formed through liquid-liquid phase separation, regulate the autophagosome formation of both bulk and selective autophagy. Here, we focus on recent findings on the involvement of biomolecular condensates in autophagy regulation and discuss their significance.
Collapse
Affiliation(s)
- Yuko Fujioka
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan.
| |
Collapse
|
58
|
Cao W, Li J, Yang K, Cao D. An overview of autophagy: Mechanism, regulation and research progress. Bull Cancer 2021; 108:304-322. [PMID: 33423775 DOI: 10.1016/j.bulcan.2020.11.004] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/20/2022]
Abstract
Autophagy refers to the formation of autophagosomes by membrane wrapping part of the cytoplasm and the organelles and proteins that need to be degraded in the cells. Autophagosomes are fused with lysosomes to form autophagolysosome, which degrade the contents of the inclusions, to achieve cell homeostasis and organelle renewal. The regulatory mechanism of autophagy is complex, and its upstream signaling pathway mainly involves mTOR dependent pathway and mTOR independent pathway (AMPK, PI3K, Ras-MAPK, p53, PTEN, endoplasmic reticulum stress). Autophagy is a phenomenon of "self-eating" in cells. Apoptosis is a phenomenon of "self-killing". Both of them share the same stimulating factors and regulatory proteins, but the threshold of induction is different. How to transform and coordinate is not clear at present. This paper summarizes the history of autophagy discovery, the structure and function of related molecules, the biological function of autophagy, the regulatory mechanism and the research results of the relationship between autophagy and apoptosis.
Collapse
Affiliation(s)
- Weiya Cao
- Anhui University of Science & Technology, Medical school, Huainan 232001, China.
| | - Jinhong Li
- Juancheng Hospital of Shandong Provincial Hospital Group, Heze 274100, China
| | - Kepeng Yang
- Anhui University of Science & Technology, Medical school, Huainan 232001, China
| | - Dongli Cao
- Anhui University of Science & Technology, Medical school, Huainan 232001, China
| |
Collapse
|
59
|
Maeda S, Yamamoto H, Kinch LN, Garza CM, Takahashi S, Otomo C, Grishin NV, Forli S, Mizushima N, Otomo T. Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nat Struct Mol Biol 2020; 27:1194-1201. [PMID: 33106659 PMCID: PMC7718406 DOI: 10.1038/s41594-020-00520-2] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
De novo formation of the double-membrane compartment autophagosome is seeded by small vesicles carrying membrane protein autophagy-related 9 (ATG9), the function of which remains unknown. Here we find that ATG9A scrambles phospholipids of membranes in vitro. Cryo-EM structures of human ATG9A reveal a trimer with a solvated central pore, which is connected laterally to the cytosol through the cavity within each protomer. Similarities to ABC exporters suggest that ATG9A could be a transporter that uses the central pore to function. Moreover, molecular dynamics simulation suggests that the central pore opens laterally to accommodate lipid headgroups, thereby enabling lipids to flip. Mutations in the pore reduce scrambling activity and yield markedly smaller autophagosomes, indicating that lipid scrambling by ATG9A is essential for membrane expansion. We propose ATG9A acts as a membrane-embedded funnel to facilitate lipid flipping and to redistribute lipids added to the outer leaflet of ATG9 vesicles, thereby enabling growth into autophagosomes.
Collapse
Affiliation(s)
- Shintaro Maeda
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Hayashi Yamamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lisa N Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Christina M Garza
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Satoru Takahashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chinatsu Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nick V Grishin
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takanori Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
60
|
Matoba K, Kotani T, Tsutsumi A, Tsuji T, Mori T, Noshiro D, Sugita Y, Nomura N, Iwata S, Ohsumi Y, Fujimoto T, Nakatogawa H, Kikkawa M, Noda NN. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat Struct Mol Biol 2020; 27:1185-1193. [PMID: 33106658 DOI: 10.1038/s41594-020-00518-w] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
The molecular function of Atg9, the sole transmembrane protein in the autophagosome-forming machinery, remains unknown. Atg9 colocalizes with Atg2 at the expanding edge of the isolation membrane (IM), where Atg2 receives phospholipids from the endoplasmic reticulum (ER). Here we report that yeast and human Atg9 are lipid scramblases that translocate phospholipids between outer and inner leaflets of liposomes in vitro. Cryo-EM of fission yeast Atg9 reveals a homotrimer, with two connected pores forming a path between the two membrane leaflets: one pore, located at a protomer, opens laterally to the cytoplasmic leaflet; the other, at the trimer center, traverses the membrane vertically. Mutation of residues lining the pores impaired IM expansion and autophagy activity in yeast and abolished Atg9's ability to transport phospholipids between liposome leaflets. These results suggest that phospholipids delivered by Atg2 are translocated from the cytoplasmic to the luminal leaflet by Atg9, thereby driving autophagosomal membrane expansion.
Collapse
Affiliation(s)
- Kazuaki Matoba
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Tetsuya Kotani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akihisa Tsutsumi
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takuma Tsuji
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | | | - Yuji Sugita
- RIKEN Cluster for Pioneering Research, Wako, Japan
- RIKEN Center for Computational Science, Kobe, Japan
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Norimichi Nomura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- RIKEN SPring-8 Center, Hyogo, Japan
| | - Yoshinori Ohsumi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Toyoshi Fujimoto
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan.
| |
Collapse
|
61
|
Secret of Atg9: lipid scramblase activity drives de novo autophagosome biogenesis. Cell Death Differ 2020; 27:3386-3388. [PMID: 33177618 DOI: 10.1038/s41418-020-00663-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 02/01/2023] Open
|
62
|
In vitro reconstitution of autophagic processes. Biochem Soc Trans 2020; 48:2003-2014. [PMID: 32897375 DOI: 10.1042/bst20200130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022]
Abstract
Autophagy is a lysosomal degradation system that involves de novo autophagosome formation. A lot of factors are involved in autophagosome formation, including dozens of Atg proteins that form supramolecular complexes, membrane structures including vesicles and organelles, and even membraneless organelles. Because these diverse higher-order structural components cooperate to mediate de novo formation of autophagosomes, it is too complicated to be elaborated only by cell biological approaches. Recent trials to regenerate each step of this phenomenon in vitro have started to elaborate on the molecular mechanisms of such a complicated process by simplification. In this review article, we outline the in vitro reconstitution trials in autophagosome formation, mainly focusing on the reports in the past few years and discussing the molecular mechanisms of autophagosome formation by comparing in vitro and in vivo observations.
Collapse
|
63
|
Yamamoto YH, Noda T. Autophagosome formation in relation to the endoplasmic reticulum. J Biomed Sci 2020; 27:97. [PMID: 33087127 PMCID: PMC7579975 DOI: 10.1186/s12929-020-00691-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/02/2020] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a process in which a myriad membrane structures called autophagosomes are formed de novo in a single cell, which deliver the engulfed substrates into lysosomes for degradation. The size of the autophagosomes is relatively uniform in non-selective autophagy and variable in selective autophagy. It has been recently established that autophagosome formation occurs near the endoplasmic reticulum (ER). In this review, we have discussed recent advances in the relationship between autophagosome formation and endoplasmic reticulum. Autophagosome formation occurs near the ER subdomain enriched with phospholipid synthesizing enzymes like phosphatidylinositol synthase (PIS)/CDP-diacylglycerol-inositol 3-phosphatidyltransferase (CDIPT) and choline/ethanolamine phosphotransferase 1 (CEPT1). Autophagy-related protein 2 (Atg2), which is involved in autophagosome formation has a lipid transfer capacity and is proposed to directly transfer the lipid molecules from the ER to form autophagosomes. Vacuole membrane protein 1 (VMP1) and transmembrane protein 41b (TMEM41b) are ER membrane proteins that are associated with the formation of the subdomain. Recently, we have reported that an uncharacterized ER membrane protein possessing the DNAJ domain, called ERdj8/DNAJC16, is associated with the regulation of the size of autophagosomes. The localization of ERdj8/DNAJC16 partially overlaps with the PIS-enriched ER subdomain, thereby implying its association with autophagosome size determination.
Collapse
Affiliation(s)
- Yo-Hei Yamamoto
- Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University Graduate School, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takeshi Noda
- Center for Frontier Oral Sciences, Graduate School of Dentistry, Osaka University Graduate School, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
64
|
Wipi3 is essential for alternative autophagy and its loss causes neurodegeneration. Nat Commun 2020; 11:5311. [PMID: 33082312 PMCID: PMC7576787 DOI: 10.1038/s41467-020-18892-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/18/2020] [Indexed: 12/19/2022] Open
Abstract
Alternative autophagy is an Atg5/Atg7-independent type of autophagy that contributes to various physiological events. We here identify Wipi3 as a molecule essential for alternative autophagy, but which plays minor roles in canonical autophagy. Wipi3 binds to Golgi membranes and is required for the generation of isolation membranes. We establish neuron-specific Wipi3-deficient mice, which show behavioral defects, mainly as a result of cerebellar neuronal loss. The accumulation of iron and ceruloplasmin is also found in the neuronal cells. These abnormalities are suppressed by the expression of Dram1, which is another crucial molecule for alternative autophagy. Although Atg7-deficient mice show similar phenotypes to Wipi3-deficient mice, electron microscopic analysis shows that they have completely different subcellular morphologies, including the morphology of organelles. Furthermore, most Atg7/Wipi3 double-deficient mice are embryonic lethal, indicating that Wipi3 functions to maintain neuronal cells via mechanisms different from those of canonical autophagy. Unlike canonical macroautophagy, alternative autophagy does not require the factors Atg5 and Atg7. Here, the authors show that Wipi3 is essential for alternative autophagy, but not for canonical autophagy, and that Wipi3 functions to maintain neuronal cells via mechanisms different from those of canonical autophagy.
Collapse
|
65
|
Fowler AJ, Hebron M, Balaraman K, Shi W, Missner AA, Greenzaid JD, Chiu TL, Ullman C, Weatherdon E, Duka V, Torres-Yaghi Y, Pagan FL, Liu X, Ressom H, Ahn J, Wolf C, Moussa C. Discoidin Domain Receptor 1 is a therapeutic target for neurodegenerative diseases. Hum Mol Genet 2020; 29:2882-2898. [PMID: 32776088 PMCID: PMC7566445 DOI: 10.1093/hmg/ddaa177] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
The role of Discoidin Domain Receptors (DDRs) is poorly understood in neurodegeneration. DDRs are upregulated in Alzheimer's and Parkinson's disease (PD), and DDRs knockdown reduces neurotoxic protein levels. Here we show that potent and preferential DDR1 inhibitors reduce neurotoxic protein levels in vitro and in vivo. Partial or complete deletion or inhibition of DDR1 in a mouse model challenged with α-synuclein increases autophagy and reduces inflammation and neurotoxic proteins. Significant changes of cerebrospinal fluid microRNAs that control inflammation, neuronal injury, autophagy and vesicular transport genes are observed in PD with and without dementia and Lewy body dementia, but these changes are attenuated or reversed after treatment with the DDR1 inhibitor, nilotinib. Collectively, these data demonstrate that DDR1 regulates autophagy and reduces neurotoxic proteins and inflammation and is a therapeutic target in neurodegeneration.
Collapse
Affiliation(s)
- Alan J Fowler
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
- Georgetown Howard Universities Center for Clinical and Translational Sciences, Translational Biomedical Sciences Program, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Michaeline Hebron
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kaluvu Balaraman
- Department of Chemistry, Georgetown University and Medicinal Chemistry Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Wangke Shi
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Alexander A Missner
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jonathan D Greenzaid
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Timothy L Chiu
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Clementina Ullman
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ethan Weatherdon
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Val Duka
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Yasar Torres-Yaghi
- MedStar Georgetown University Hospital, Movement Disorders Clinic, Department of Neurology, Washington, DC 20057, USA
| | - Fernando L Pagan
- MedStar Georgetown University Hospital, Movement Disorders Clinic, Department of Neurology, Washington, DC 20057, USA
| | - Xiaoguang Liu
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Habtom Ressom
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jaeil Ahn
- Department of Bioinformatics, Biostatistics, and Biomathematics, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Christian Wolf
- Department of Chemistry, Georgetown University and Medicinal Chemistry Shared Resource, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Charbel Moussa
- Department of Neurology, Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Lewy Body Dementia Association, Research Center of Excellence, Georgetown University Medical Center, Washington, DC 20057, USA
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
66
|
Gao J, Kurre R, Rose J, Walter S, Fröhlich F, Piehler J, Reggiori F, Ungermann C. Function of the SNARE Ykt6 on autophagosomes requires the Dsl1 complex and the Atg1 kinase complex. EMBO Rep 2020; 21:e50733. [PMID: 33025734 PMCID: PMC7726795 DOI: 10.15252/embr.202050733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/04/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanism and regulation of fusion between autophagosomes and lysosomes/vacuoles are still only partially understood in both yeast and mammals. In yeast, this fusion step requires SNARE proteins, the homotypic vacuole fusion and protein sorting (HOPS) tethering complex, the RAB7 GTPase Ypt7, and its guanine nucleotide exchange factor (GEF) Mon1‐Ccz1. We and others recently identified Ykt6 as the autophagosomal SNARE protein. However, it has not been resolved when and how lipid‐anchored Ykt6 is recruited onto autophagosomes. Here, we show that Ykt6 is recruited at an early stage of the formation of these carriers through a mechanism that depends on endoplasmic reticulum (ER)‐resident Dsl1 complex and COPII‐coated vesicles. Importantly, Ykt6 activity on autophagosomes is regulated by the Atg1 kinase complex, which inhibits Ykt6 through direct phosphorylation. Thus, our findings indicate that the Ykt6 pool on autophagosomal membranes is kept inactive by Atg1 phosphorylation, and once an autophagosome is ready to fuse with vacuole, Ykt6 dephosphorylation allows its engagement in the fusion event.
Collapse
Affiliation(s)
- Jieqiong Gao
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Rainer Kurre
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, Osnabrück, Germany
| | - Jaqueline Rose
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany
| | - Stefan Walter
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| | - Florian Fröhlich
- Department of Biology/Chemistry, Molecular Membrane Biology Group, University of Osnabrück, Osnabrück, Germany
| | - Jacob Piehler
- Center of Cellular Nanoanalytics Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics, Integrated Bioimaging Facility, University of Osnabrück, Osnabrück, Germany.,Department of Biology/Chemistry, Biophysics Section, University of Osnabrück, Osnabrück, Germany
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück (CellNanOs), University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
67
|
Sakai Y, Koyama-Honda I, Tachikawa M, Knorr RL, Mizushima N. Modeling Membrane Morphological Change during Autophagosome Formation. iScience 2020; 23:101466. [PMID: 32891055 PMCID: PMC7479497 DOI: 10.1016/j.isci.2020.101466] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 11/23/2022] Open
Abstract
Autophagy is an intracellular degradation process that is mediated by de novo formation of autophagosomes. Autophagosome formation involves dynamic morphological changes; a disk-shaped membrane cisterna grows, bends to become a cup-shaped structure, and finally develops into a spherical autophagosome. We have constructed a theoretical model that integrates the membrane morphological change and entropic partitioning of putative curvature generators, which we have used to investigate the autophagosome formation process quantitatively. We show that the membrane curvature and the distribution of the curvature generators stabilize disk- and cup-shaped intermediate structures during autophagosome formation, which is quantitatively consistent with in vivo observations. These results suggest that various autophagy proteins with membrane curvature-sensing properties control morphological change by stabilizing these intermediate structures. Our model provides a framework for understanding autophagosome formation.
Collapse
Affiliation(s)
- Yuji Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Program, RIKEN, Wako, Saitama 351-0198, Japan
| | - Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masashi Tachikawa
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Program, RIKEN, Wako, Saitama 351-0198, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507 Japan
| | - Roland L. Knorr
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Max Planck Institute of Colloids and Interfaces, Department of Theory & Bio-Systems, 14424 Potsdam, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology, 14424 Potsdam, Germany
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
68
|
TOM40 Targets Atg2 to Mitochondria-Associated ER Membranes for Phagophore Expansion. Cell Rep 2020; 28:1744-1757.e5. [PMID: 31412244 PMCID: PMC6701867 DOI: 10.1016/j.celrep.2019.07.036] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/03/2019] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
During autophagy, phagophores grow into doublemembrane vesicles called autophagosomes, but the underlying mechanism remains unclear. Here, we show a critical role of Atg2A in phagophore expansion. Atg2A translocates to the phagophore at the mitochondria-associated ER membrane (MAM) through a C-terminal 45-amino acid domain that we have termed the MAM localization domain (MLD). Proteomic analysis identifies the outer mitochondrial membrane protein TOM40 as a MLD-interacting partner. The Atg2A-TOM40 interaction is responsible for MAM localization of Atg2A and requires the TOM receptor protein TOM70. In addition, Atg2A interacts with Atg9A by a region within its N terminus. Inhibition of either Atg2A-TOM40 or Atg2A-Atg9A interactions impairs phagophore expansion and accumulates Atg9A-vesicles in the vicinity of autophagic structures. Collectively, we propose a model that the TOM70-TOM40 complex recruits Atg2A to the MAM for vesicular and/or nonvesicular lipid transport into the expanding phagophore to grow the size of autophagosomes for efficient autophagic flux. Tang et al. show that human Atg2 is a key regulator for phagophore expansion. TOM40/70 directs Atg2A to MAM to mediate phagophore expansion. On the MAM, Atg2A facilitates Atg9-vesicle delivery and retrograde trafficking to promote phagophore expansion and efficient autophagic flux.
Collapse
|
69
|
Li D, Yang SG, He CW, Zhang ZT, Liang Y, Li H, Zhu J, Su X, Gong Q, Xie Z. Excess diacylglycerol at the endoplasmic reticulum disrupts endomembrane homeostasis and autophagy. BMC Biol 2020; 18:107. [PMID: 32859196 PMCID: PMC7453538 DOI: 10.1186/s12915-020-00837-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/24/2020] [Indexed: 01/22/2023] Open
Abstract
Background When stressed, eukaryotic cells produce triacylglycerol (TAG) to store nutrients and mobilize autophagy to combat internal damage. We and others previously reported that in yeast, elimination of TAG synthesizing enzymes inhibits autophagy under nitrogen starvation, yet the underlying mechanism has remained elusive. Results Here, we show that disruption of TAG synthesis led to diacylglycerol (DAG) accumulation and its relocation from the vacuolar membrane to the endoplasmic reticulum (ER). We further show that, beyond autophagy, ER-accumulated DAG caused severe defects in the endomembrane system, including disturbing the balance of ER-Golgi protein trafficking, manifesting in bulging of ER and loss of the Golgi apparatus. Genetic or chemical manipulations that increase consumption or decrease supply of DAG reversed these defects. In contrast, increased amounts of precursors of glycerolipid synthesis, including phosphatidic acid and free fatty acids, did not replicate the effects of excess DAG. We also provide evidence that the observed endomembrane defects do not rely on Golgi-produced DAG, Pkc1 signaling, or the unfolded protein response. Conclusions This work identifies DAG as the critical lipid molecule responsible for autophagy inhibition under condition of defective TAG synthesis and demonstrates the disruption of ER and Golgi function by excess DAG as the potential cause of the autophagy defect.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China
| | - Shu-Gao Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Cheng-Wen He
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China
| | - Zheng-Tan Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China
| | - Yongheng Liang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China
| | - Jing Zhu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China
| | - Xiong Su
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China.
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China.
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, #800 Dong-Chuan Road, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
70
|
Shi X, Chang C, Yokom AL, Jensen LE, Hurley JH. The autophagy adaptor NDP52 and the FIP200 coiled-coil allosterically activate ULK1 complex membrane recruitment. eLife 2020; 9:59099. [PMID: 32773036 PMCID: PMC7447430 DOI: 10.7554/elife.59099] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/09/2020] [Indexed: 12/21/2022] Open
Abstract
The selective autophagy pathways of xenophagy and mitophagy are initiated when the adaptor NDP52 recruits the ULK1 complex to autophagic cargo. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) was used to map the membrane and NDP52 binding sites of the ULK1 complex to unique regions of the coiled coil of the FIP200 subunit. Electron microscopy of the full-length ULK1 complex shows that the FIP200 coiled coil projects away from the crescent-shaped FIP200 N-terminal domain dimer. NDP52 allosterically stimulates membrane-binding by FIP200 and the ULK1 complex by promoting a more dynamic conformation of the membrane-binding portion of the FIP200 coiled coil. Giant unilamellar vesicle (GUV) reconstitution confirmed that membrane recruitment by the ULK1 complex is triggered by NDP52 engagement. These data reveal how the allosteric linkage between NDP52 and the ULK1 complex could drive the first membrane recruitment event of phagophore biogenesis in xenophagy and mitophagy.
Collapse
Affiliation(s)
- Xiaoshan Shi
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Chunmei Chang
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Adam L Yokom
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Liv E Jensen
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| |
Collapse
|
71
|
Hollenstein DM, Kraft C. Autophagosomes are formed at a distinct cellular structure. Curr Opin Cell Biol 2020; 65:50-57. [PMID: 32203894 PMCID: PMC7588827 DOI: 10.1016/j.ceb.2020.02.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 11/09/2022]
Abstract
Autophagy is characterized by the formation of double-membrane vesicles called autophagosomes, which deliver bulk cytoplasmic material to the lytic compartment of the cell for degradation. Autophagosome formation is initiated by assembly and recruitment of the core autophagy machinery to distinct cellular sites, referred to as phagophore assembly sites (PAS) in yeast or autophagosome formation sites in other organisms. A large number of autophagy proteins involved in the formation of autophagosomes has been identified; however, how the individual components of the PAS are assembled and how they function to generate autophagosomes remains a fundamental question. Here, we highlight recent studies that provide molecular insights into PAS organization and the role of the endoplasmic reticulum and the vacuole in autophagosome formation.
Collapse
Affiliation(s)
- David M Hollenstein
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
72
|
Abstract
Autophagy is a conserved vacuole/lysosome-mediated degradation pathway for clearing and recycling cellular components including cytosol, macromolecules, and dysfunctional organelles. In recent years, autophagy has emerged to play important roles in plant-pathogen interactions. It acts as an antiviral defense mechanism in plants. Moreover, increasing evidence shows that plant viruses can manipulate, hijack, or even exploit the autophagy pathway to promote pathogenesis, demonstrating the pivotal role of autophagy in the evolutionary arms race between hosts and viruses. In this review, we discuss recent findings about the antiviral and proviral roles of autophagy in plant-virus interactions.
Collapse
Affiliation(s)
- Meng Yang
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Asigul Ismayil
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Yule Liu
- MOE Key Laboratory of Bioinformatics, Center for Plant Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
73
|
Munzel L, Neumann P, Otto FB, Krick R, Metje-Sprink J, Kroppen B, Karedla N, Enderlein J, Meinecke M, Ficner R, Thumm M. Atg21 organizes Atg8 lipidation at the contact of the vacuole with the phagophore. Autophagy 2020; 17:1458-1478. [PMID: 32515645 DOI: 10.1080/15548627.2020.1766332] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Coupling of Atg8 to phosphatidylethanolamine is crucial for the expansion of the crescent-shaped phagophore during cargo engulfment. Atg21, a PtdIns3P-binding beta-propeller protein, scaffolds Atg8 and its E3-like complex Atg12-Atg5-Atg16 during lipidation. The crystal structure of Atg21, in complex with the Atg16 coiled-coil domain, showed its binding at the bottom side of the Atg21 beta-propeller. Our structure allowed detailed analyses of the complex formation of Atg21 with Atg16 and uncovered the orientation of the Atg16 coiled-coil domain with respect to the membrane. We further found that Atg21 was restricted to the phagophore edge, near the vacuole, known as the vacuole isolation membrane contact site (VICS). We identified a specialized vacuolar subdomain at the VICS, typical of organellar contact sites, where the membrane protein Vph1 was excluded, while Vac8 was concentrated. Furthermore, Vac8 was required for VICS formation. Our results support a specialized organellar contact involved in controlling phagophore elongation. Abbreviations: FCCS: fluorescence cross correlation spectroscopy; NVJ: nucleus-vacuole junction; PAS: phagophore assembly site; PE: phosphatidylethanolamine; PROPPIN: beta-propeller that binds phosphoinositides; PtdIns3P: phosphatidylinositol- 3-phosphate; VICS: vacuole isolation membrane contact site.
Collapse
Affiliation(s)
- Lena Munzel
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Florian B Otto
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Roswitha Krick
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Janina Metje-Sprink
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Benjamin Kroppen
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Narain Karedla
- Physics Department III, University of Goettingen, Goettingen, Germany
| | - Jörg Enderlein
- Physics Department III, University of Goettingen, Goettingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Michael Thumm
- Department of Cellular Biochemistry, University Medicine, Goettingen, Germany
| |
Collapse
|
74
|
Melia TJ, Lystad AH, Simonsen A. Autophagosome biogenesis: From membrane growth to closure. J Cell Biol 2020; 219:e202002085. [PMID: 32357219 PMCID: PMC7265318 DOI: 10.1083/jcb.202002085] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagosome biogenesis involves de novo formation of a membrane that elongates to sequester cytoplasmic cargo and closes to form a double-membrane vesicle (an autophagosome). This process has remained enigmatic since its initial discovery >50 yr ago, but our understanding of the mechanisms involved in autophagosome biogenesis has increased substantially during the last 20 yr. Several key questions do remain open, however, including, What determines the site of autophagosome nucleation? What is the origin and lipid composition of the autophagosome membrane? How is cargo sequestration regulated under nonselective and selective types of autophagy? This review provides key insight into the core molecular mechanisms underlying autophagosome biogenesis, with a specific emphasis on membrane modeling events, and highlights recent conceptual advances in the field.
Collapse
Affiliation(s)
- Thomas J. Melia
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Alf H. Lystad
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Anne Simonsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences and Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
75
|
Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov 2020; 6:32. [PMID: 32509328 PMCID: PMC7248066 DOI: 10.1038/s41421-020-0161-3] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/21/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagosome biogenesis is a dynamic membrane event, which is executed by the sequential function of autophagy-related (ATG) proteins. Upon autophagy induction, a cup-shaped membrane structure appears in the cytoplasm, then elongates sequestering cytoplasmic materials, and finally forms a closed double membrane autophagosome. However, how this complex vesicle formation event is strictly controlled and achieved is still enigmatic. Recently, there is accumulating evidence showing that some ATG proteins have the ability to directly interact with membranes, transfer lipids between membranes and regulate lipid metabolism. A novel role for various membrane lipids in autophagosome formation is also emerging. Here, we highlight past and recent key findings on the function of ATG proteins related to autophagosome biogenesis and consider how ATG proteins control this dynamic membrane formation event to organize the autophagosome by collaborating with membrane lipids.
Collapse
|
76
|
Molecular Chaperones and Proteolytic Machineries Regulate Protein Homeostasis In Aging Cells. Cells 2020; 9:cells9051308. [PMID: 32456366 PMCID: PMC7291254 DOI: 10.3390/cells9051308] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Throughout their life cycles, cells are subject to a variety of stresses that lead to a compromise between cell death and survival. Survival is partially provided by the cell proteostasis network, which consists of molecular chaperones, a ubiquitin-proteasome system of degradation and autophagy. The cooperation of these systems impacts the correct function of protein synthesis/modification/transport machinery starting from the adaption of nascent polypeptides to cellular overcrowding until the utilization of damaged or needless proteins. Eventually, aging cells, in parallel to the accumulation of flawed proteins, gradually lose their proteostasis mechanisms, and this loss leads to the degeneration of large cellular masses and to number of age-associated pathologies and ultimately death. In this review, we describe the function of proteostasis mechanisms with an emphasis on the possible associations between them.
Collapse
|
77
|
Kolakowski D, Kaminska J, Zoladek T. The binding of the APT1 domains to phosphoinositides is regulated by metal ions in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183349. [PMID: 32407779 DOI: 10.1016/j.bbamem.2020.183349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/27/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Chorein is a protein of the Vps13 family, and defects in this protein cause the rare neurodegenerative disorder chorea-acanthocytosis (ChAc). Chorein is involved in the actin cytoskeleton organization, calcium ion flux, neuronal cell excitability, exocytosis and autophagy. The function of this protein is poorly understood, and obtaining this knowledge is a key to finding a cure for ChAc. Chorein, as well as the Vps13 protein from yeast, contains the APT1 domain. Our previous research has shown that the APT1 domain from yeast Vps13 (yAPT1v) binds phosphatidylinositol 3-phosphate (PI3P) in vitro. In this study, we showed that although the APT1 domain from chorein (hAPT1) binds to PI3P it could not functionally replace yAPT1v. The hAPT1 domain binds, in addition to PI3P, to phosphatidylinositol 5-phosphate (PI5P). The binding of hAPT1 to PI3P, unlike the binding of yAPT1v to PI3P, is regulated by the bivalent ions, calcium and magnesium. Regulation of PI3P binding via calcium is also observed for the APT1 domain of yeast autophagy protein Atg2. The substitution I2771R, found in chorein of patient suffering from ChAc, reduces the binding of the hAPT1 domain to PI3P and PI5P. These results suggest that the ability of APT1 domains to bind phosphoinositides is regulated differently in yeast and human protein and that this regulation is important for chorein function.
Collapse
Affiliation(s)
- Damian Kolakowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| | - Teresa Zoladek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
78
|
Kohler V, Aufschnaiter A, Büttner S. Closing the Gap: Membrane Contact Sites in the Regulation of Autophagy. Cells 2020; 9:E1184. [PMID: 32397538 PMCID: PMC7290522 DOI: 10.3390/cells9051184] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
In all eukaryotic cells, intracellular organization and spatial separation of incompatible biochemical processes is established by individual cellular subcompartments in form of membrane-bound organelles. Virtually all of these organelles are physically connected via membrane contact sites (MCS), allowing interorganellar communication and a functional integration of cellular processes. These MCS coordinate the exchange of diverse metabolites and serve as hubs for lipid synthesis and trafficking. While this of course indirectly impacts on a plethora of biological functions, including autophagy, accumulating evidence shows that MCS can also directly regulate autophagic processes. Here, we focus on the nexus between interorganellar contacts and autophagy in yeast and mammalian cells, highlighting similarities and differences. We discuss MCS connecting the ER to mitochondria or the plasma membrane, crucial for early steps of both selective and non-selective autophagy, the yeast-specific nuclear-vacuolar tethering system and its role in microautophagy, the emerging function of distinct autophagy-related proteins in organellar tethering as well as novel MCS transiently emanating from the growing phagophore and mature autophagosome.
Collapse
Affiliation(s)
- Verena Kohler
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden;
| | - Andreas Aufschnaiter
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden;
| | - Sabrina Büttner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden;
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| |
Collapse
|
79
|
Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev Mol Cell Biol 2020; 21:439-458. [PMID: 32372019 DOI: 10.1038/s41580-020-0241-0] [Citation(s) in RCA: 546] [Impact Index Per Article: 109.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
Autophagosomes are double-membrane vesicles newly formed during autophagy to engulf a wide range of intracellular material and transport this autophagic cargo to lysosomes (or vacuoles in yeasts and plants) for subsequent degradation. Autophagosome biogenesis responds to a plethora of signals and involves unique and dynamic membrane processes. Autophagy is an important cellular mechanism allowing the cell to meet various demands, and its disruption compromises homeostasis and leads to various diseases, including metabolic disorders, neurodegeneration and cancer. Thus, not surprisingly, the elucidation of the molecular mechanisms governing autophagosome biogenesis has attracted considerable interest. Key molecules and organelles involved in autophagosome biogenesis, including autophagy-related (ATG) proteins and the endoplasmic reticulum, have been discovered, and their roles and relationships have been investigated intensely. However, several fundamental questions, such as what supplies membranes/lipids to build the autophagosome and how the membrane nucleates, expands, bends into a spherical shape and finally closes, have proven difficult to address. Nonetheless, owing to recent studies with new approaches and technologies, we have begun to unveil the mechanisms underlying these processes on a molecular level. We now know that autophagosome biogenesis is a highly complex process, in which multiple proteins and lipids from various membrane sources, supported by the formation of membrane contact sites, cooperate with biophysical phenomena, including membrane shaping and liquid-liquid phase separation, to ensure seamless segregation of the autophagic cargo. Together, these studies pave the way to obtaining a holistic view of autophagosome biogenesis.
Collapse
Affiliation(s)
- Hitoshi Nakatogawa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
80
|
Ye H, Ji C, Guo R, Jiang L. Membrane Contact Sites and Organelles Interaction in Plant Autophagy. FRONTIERS IN PLANT SCIENCE 2020; 11:477. [PMID: 32391037 PMCID: PMC7193052 DOI: 10.3389/fpls.2020.00477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 05/24/2023]
Abstract
Autophagy is an intracellular trafficking and degradation system for recycling of damaged organelles, mis-folded proteins and cytoplasmic constituents. Autophagy can be divided into non-selective autophagy and selective autophagy according to the cargo specification. Key to the process is the timely formation of the autophagosome, a double-membrane structure which is responsible for the delivery of damaged organelles and proteins to lysosomes or vacuoles for their turnover. Autophagosomes are formed by the closure of cup-shaped phagophore which depends on the proper communication with membrane contributors. The endoplasmic reticulum (ER) is a major membrane source for autophagosome biogenesis whereby the ER connects with phagophore through membrane contact sites (MCSs). MCSs are closely apposed domains between organelle membranes where lipids and signals are exchanged. Lipid transfer proteins (LTPs) are a large family of proteins including Oxysterol-binding protein related proteins (ORP) which can be found at MCSs and mediate lipid transfer in mammals and yeast. In addition, interaction between autophagosomes and other organelles can also be detected in selective autophagy for selection and degradation of various damaged organelles. Selective autophagy is mediated by the binding of a receptor or an adaptor between a cargo and an autophagosome. Here we summarize what we know about the MCS between autophagosomes and other organelles in eukaryotes. We then discuss progress in our understanding about ORPs at MCSs in plants and the underlying mechanisms of selective autophagy in plants with a focus on receptors/adaptors that are involved in the interaction of the autophagosome with other cytoplasmic constituents, including the Neighbor of BRCA1 gene 1 (NBR1), ATG8-interacting protein 1 (ATI1), Regulatory Particle Non-ATPase 10 (RPN10), and Dominant Suppressor of KAR2 (DSK2).
Collapse
Affiliation(s)
- Hao Ye
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Changyang Ji
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Rongfang Guo
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
81
|
Wang S, Li Y, Ma C. Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement. Protein Sci 2020; 29:1511-1523. [PMID: 32277540 DOI: 10.1002/pro.3866] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/20/2022]
Abstract
Atg3-catalyzed transferring of Atg8 to phosphatidylethanolamine (PE) in the phagophore membrane is essential for autophagy. Previous studies have demonstrated that this process requires Atg3 to interact with the phagophore membrane via its N-terminal amphipathic helix. In this study, by using combined biochemical and biophysical approaches, our data showed that in addition to binding to the membranes, Atg3 attenuates lipid diffusion and enriches lipid molecules with smaller headgroup. Our data suggest that Atg3 promotes Atg8 lipidation via altering lipid diffusion and rearrangement.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Li
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
82
|
Porras-Agüera JA, Moreno-García J, González-Jiménez MDC, Mauricio JC, Moreno J, García-Martínez T. Autophagic Proteome in Two Saccharomyces cerevisiae Strains During Second Fermentation for Sparkling Wine Elaboration. Microorganisms 2020; 8:microorganisms8040523. [PMID: 32268562 PMCID: PMC7232233 DOI: 10.3390/microorganisms8040523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
A correlation between autophagy and autolysis has been proposed in order to acceleratethe acquisition of wine organoleptic properties during sparkling wine elaboration. In this context, aproteomic analysis was carried out in two industrial Saccharomyces cerevisiae strains (P29,conventional sparkling wine strain and G1, implicated in sherry wine elaboration) with the aim ofstudying the autophagy-related proteome and comparing the effect of CO2 overpressure duringsparkling wine elaboration. In general, a detrimental effect of pressure and second fermentationdevelopment on autophagy-related proteome was observed in both strains, although it was morepronounced in flor yeast strain G1. Proteins mainly involved in autophagy regulation andautophagosome formation in flor yeast G1, and those required for vesicle nucleation and expansionin P29 strain, highlighted in sealed bottle. Proteins Sec2 and Sec18 were detected 3-fold underpressure conditions in P29 and G1 strains, respectively. Moreover, 'fingerprinting' obtained frommultivariate data analysis established differences in autophagy-related proteome between strainsand conditions. Further research is needed to achieve more solid conclusions and design strategiesto promote autophagy for an accelerated autolysis, thus reducing cost and time production, as wellas acquisition of good organoleptic properties.
Collapse
Affiliation(s)
- Juan Antonio Porras-Agüera
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (M.d.C.G.-J.); (T.G.-M.)
| | - Jaime Moreno-García
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (M.d.C.G.-J.); (T.G.-M.)
| | - María del Carmen González-Jiménez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (M.d.C.G.-J.); (T.G.-M.)
| | - Juan Carlos Mauricio
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (M.d.C.G.-J.); (T.G.-M.)
- Correspondence: ; Tel.: +34-(957)-218640; Fax: +34-(957)-218650
| | - Juan Moreno
- Department of Agricultural Chemistry, Agrifood Campus of International Excellence ceiA3, C3 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain;
| | - Teresa García-Martínez
- Department of Microbiology, Agrifood Campus of International Excellence ceiA3, C6 building, Campus de Rabanales, University of Córdoba, E-14014 Córdoba, Spain; (J.A.P.-A.); (J.M.-G.); (M.d.C.G.-J.); (T.G.-M.)
| |
Collapse
|
83
|
Li Z, Huang W, Wang W. Multifaceted roles of COPII subunits in autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118627. [DOI: 10.1016/j.bbamcr.2019.118627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 01/06/2023]
|
84
|
Abstract
Autophagy is a conserved catabolic process critical for cell homeostasis with broad implications for aging and age-associated diseases. A defining feature of autophagy is the
de novo formation of a specialized transient organelle, the double-membrane autophagosome. Autophagosomes originate from small vesicular precursors after rapid membrane expansion resulting in the engulfment of a broad spectrum of cytoplasmic cargoes within a few minutes for vacuolar or lysosomal degradation. Recent advances have provided exciting new insights into the molecular mechanisms underlying the assembly of autophagic membranes during autophagosome biogenesis. Specifically, the phospholipid biosynthesis activity of the endoplasmic reticulum and a dedicated membrane-tethering complex between nascent autophagosomes and the endoplasmic reticulum have emerged as key factors in autophagosome formation.
Collapse
Affiliation(s)
- Martin Graef
- Max Planck Institute for Biology of Ageing, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany
| |
Collapse
|
85
|
Multifarious roles of lipid droplets in autophagy - Target, product, and what else? Semin Cell Dev Biol 2020; 108:47-54. [PMID: 32169402 DOI: 10.1016/j.semcdb.2020.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/12/2020] [Accepted: 02/29/2020] [Indexed: 01/09/2023]
Abstract
Lipid droplets (LDs) are not an inert storage of excessive lipids, but play various roles in cellular lipid metabolism. Autophagy involves several mechanisms for the degradation of cellular components, and is related to many aspects of lipid metabolism. LD and autophagic membranes often distribute in proximity, but their relationship is complex. LDs can be degraded by autophagy, but LDs are also generated as a result of autophagy or support the execution of autophagy. Moreover, several proteins crucial for autophagy were shown to affect different aspects of LD formation. This article aims to categorize this multifaceted and seemingly entangled LD-autophagy relationship and to discuss unresolved issues.
Collapse
|
86
|
Abstract
Nucleophagy, the mechanism for autophagic degradation of nuclear material, occurs in both a macro- and micronucleophagic manner. Upon nitrogen deprivation, we observed, in an in-depth fluorescence microscopy study, the formation of micronuclei: small parts of superfluous nuclear components surrounded by perinuclear ER. We identified two types of micronuclei associated with a corresponding autophagic mode. Our results showed that macronucleophagy degraded these smaller micronuclei. Engulfed in Atg8-positive phagophores and containing cargo receptor Atg39, macronucleophagic structures revealed finger-like extensions when observed in 3-dimensional reconstitutions of fluorescence microscopy images, suggesting directional growth. Interestingly, in the late stages of phagophore elongation, the adjacent vacuolar membrane showed a reduction of integral membrane protein Pho8. This change in membrane composition could indicate the formation of a specialized vacuolar domain, required for autophagosomal fusion. Significantly larger micronuclei formed at nucleus vacuole junctions and were identified as a substrate of piecemeal microautophagy of the nucleus (PMN), by the presence of the integral membrane protein Nvj1. Micronuclei sequestered by vacuolar invaginations also contained Atg39. A detailed investigation revealed that both Atg39 and Atg8 accumulated between the vacuolar tips. These findings suggest a role for Atg39 in micronucleophagy. Indeed, following the degradation of Nvj1, an exclusive substrate of PMN, in immunoblots, we could confirm the essential role of Atg39 for PMN. Our study thus details the involvement of Atg8 in both macronucleophagy and PMN and identifies Atg39 as the general cargo receptor for nucleophagic processes.Abbreviations: DIC: Differential interference contrast, FWHM: Full width at half maximum, IQR: Interquartile range, MIPA: Micropexophagy-specific membrane apparatus, NLS: Nuclear localization signal, NVJ: Nucleus vacuole junction, PMN: Piecemeal microautophagy of the nucleus, pnER: Perinuclear ER.
Collapse
Affiliation(s)
- Florian B Otto
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Thumm
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
87
|
Li X, He S, Ma B. Autophagy and autophagy-related proteins in cancer. Mol Cancer 2020; 19:12. [PMID: 31969156 PMCID: PMC6975070 DOI: 10.1186/s12943-020-1138-4] [Citation(s) in RCA: 1047] [Impact Index Per Article: 209.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy, as a type II programmed cell death, plays crucial roles with autophagy-related (ATG) proteins in cancer. Up to now, the dual role of autophagy both in cancer progression and inhibition remains controversial, in which the numerous ATG proteins and their core complexes including ULK1/2 kinase core complex, autophagy-specific class III PI3K complex, ATG9A trafficking system, ATG12 and LC3 ubiquitin-like conjugation systems, give multiple activities of autophagy pathway and are involved in autophagy initiation, nucleation, elongation, maturation, fusion and degradation. Autophagy plays a dynamic tumor-suppressive or tumor-promoting role in different contexts and stages of cancer development. In the early tumorigenesis, autophagy, as a survival pathway and quality-control mechanism, prevents tumor initiation and suppresses cancer progression. Once the tumors progress to late stage and are established and subjected to the environmental stresses, autophagy, as a dynamic degradation and recycling system, contributes to the survival and growth of the established tumors and promotes aggressiveness of the cancers by facilitating metastasis. This indicates that regulation of autophagy can be used as effective interventional strategies for cancer therapy.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People's Hospital, Zhengzhou, 450003, China.,Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003, China.,People's Hospital of Zhengzhou University, Zhengzhou, 450003, China.,People's Hospital of Henan University, Zhengzhou, 450003, China
| | - Shikun He
- Ophthalmology Optometry Centre, Peking University People's Hospital, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, 100044, China.,Department of Pathology and Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA
| | - Binyun Ma
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA. .,Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
88
|
Mechanisms of Autophagy in Metabolic Stress Response. J Mol Biol 2020; 432:28-52. [DOI: 10.1016/j.jmb.2019.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/17/2023]
|
89
|
Prinz WA, Toulmay A, Balla T. The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 2020; 21:7-24. [PMID: 31732717 PMCID: PMC10619483 DOI: 10.1038/s41580-019-0180-9] [Citation(s) in RCA: 425] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Organelles compartmentalize eukaryotic cells, enhancing their ability to respond to environmental and developmental changes. One way in which organelles communicate and integrate their activities is by forming close contacts, often called 'membrane contact sites' (MCSs). Interest in MCSs has grown dramatically in the past decade as it is has become clear that they are ubiquitous and have a much broader range of critical roles in cells than was initially thought. Indeed, functions for MCSs in intracellular signalling (particularly calcium signalling, reactive oxygen species signalling and lipid signalling), autophagy, lipid metabolism, membrane dynamics, cellular stress responses and organelle trafficking and biogenesis have now been reported.
Collapse
Affiliation(s)
- William A Prinz
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Alexandre Toulmay
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
90
|
Local Fatty Acid Channeling into Phospholipid Synthesis Drives Phagophore Expansion during Autophagy. Cell 2019; 180:135-149.e14. [PMID: 31883797 DOI: 10.1016/j.cell.2019.12.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/29/2019] [Accepted: 12/04/2019] [Indexed: 12/21/2022]
Abstract
Autophagy is a conserved catabolic homeostasis process central for cellular and organismal health. During autophagy, small single-membrane phagophores rapidly expand into large double-membrane autophagosomes to encapsulate diverse cargoes for degradation. It is thought that autophagic membranes are mainly derived from preformed organelle membranes. Instead, here we delineate a pathway that expands the phagophore membrane by localized phospholipid synthesis. Specifically, we find that the conserved acyl-CoA synthetase Faa1 accumulates on nucleated phagophores and locally activates fatty acids (FAs) required for phagophore elongation and autophagy. Strikingly, using isotopic FA tracing, we directly show that Faa1 channels activated FAs into the synthesis of phospholipids and promotes their assembly into autophagic membranes. Indeed, the first committed steps of de novo phospholipid synthesis at the ER, which forms stable contacts with nascent autophagosomes, are essential for autophagy. Together, our work illuminates how cells spatially tune synthesis and flux of phospholipids for autophagosome biogenesis during autophagy.
Collapse
|
91
|
Yorimitsu T, Sato K. Sec16 function in ER export and autophagy is independent of its phosphorylation in Saccharomyces cerevisiae. Mol Biol Cell 2019; 31:149-156. [PMID: 31851588 PMCID: PMC7001475 DOI: 10.1091/mbc.e19-08-0477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Coat protein complex II (COPII) protein assembles at the endoplasmic reticulum exit site (ERES) to form vesicle carrier for transport from the ER to the Golgi apparatus. Sec16 has a critical role in COPII assembly to form ERES. Sec16∆565N mutant, which lacks the N-terminal 565 amino acids, is defective in ERES formation and ER export. Several phosphoproteomic studies have identified 108 phosphorylated Ser/Thr/Tyr residues in Sec16 of Saccharomyces cerevisiae, of which 30 residues are located in the truncated part of Sec16∆565N. The exact role of the phosphorylation in Sec16 function remains to be determined. Therefore, we analyzed nonphosphorylatable Sec16 mutants, in which all identified phosphorylation sites are substituted with Ala. These mutants show ERES and ER export comparable to those of wild-type Sec16, although the nonphosphorylatable mutant binds the COPII subunit Sec23 more efficiently than the wild-type protein. Because nutrient starvation–induced autophagy depends on Sec16, Sec16∆565N impairs autophagy, whereas the nonphosphorylatable mutants do not affect autophagy. We conclude that Sec16 phosphorylation is not essential for its function.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | - Ken Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
92
|
Lai LTF, Ye H, Zhang W, Jiang L, Lau WCY. Structural Biology and Electron Microscopy of the Autophagy Molecular Machinery. Cells 2019; 8:E1627. [PMID: 31842460 PMCID: PMC6952983 DOI: 10.3390/cells8121627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a highly regulated bulk degradation process that plays a key role in the maintenance of cellular homeostasis. During autophagy, a double membrane-bound compartment termed the autophagosome is formed through de novo nucleation and assembly of membrane sources to engulf unwanted cytoplasmic components and targets them to the lysosome or vacuole for degradation. Central to this process are the autophagy-related (ATG) proteins, which play a critical role in plant fitness, immunity, and environmental stress response. Over the past few years, cryo-electron microscopy (cryo-EM) and single-particle analysis has matured into a powerful and versatile technique for the structural determination of protein complexes at high resolution and has contributed greatly to our current understanding of the molecular mechanisms underlying autophagosome biogenesis. Here we describe the plant-specific ATG proteins and summarize recent structural and mechanistic studies on the protein machinery involved in autophagy initiation with an emphasis on those by single-particle analysis.
Collapse
Affiliation(s)
- Louis Tung Faat Lai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hao Ye
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenxin Zhang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Wilson Chun Yu Lau
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
93
|
Osawa T, Ishii Y, Noda NN. Human ATG2B possesses a lipid transfer activity which is accelerated by negatively charged lipids and WIPI4. Genes Cells 2019; 25:65-70. [PMID: 31721365 DOI: 10.1111/gtc.12733] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 11/30/2022]
Abstract
Atg2 is one of the essential factors for autophagy. Recent advance of structural and biochemical study on yeast Atg2 proposed that Atg2 tethers the edge of the isolation membrane (IM) to the endoplasmic reticulum and mediates direct lipid transfer (LT) from ER to IM for IM expansion. In mammals, two Atg2 orthologs, ATG2A and ATG2B, participate in autophagic process. Here we showed that human ATG2B possesses the membrane tethering (MT) and LT activity that was promoted by negatively charged membranes and an Atg18 ortholog WIPI4. By contrast, negatively charged membranes reduced the yeast Atg2 activities in the absence of Atg18. These results suggest that the MT/LT activity of Atg2 is evolutionally conserved although their regulation differs among species.
Collapse
Affiliation(s)
- Takuo Osawa
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Yuki Ishii
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
| |
Collapse
|
94
|
Hollenstein DM, Gómez-Sánchez R, Ciftci A, Kriegenburg F, Mari M, Torggler R, Licheva M, Reggiori F, Kraft C. Vac8 spatially confines autophagosome formation at the vacuole in S. cerevisiae. J Cell Sci 2019; 132:jcs235002. [PMID: 31649143 PMCID: PMC6899017 DOI: 10.1242/jcs.235002] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023] Open
Abstract
Autophagy is initiated by the formation of a phagophore assembly site (PAS), the precursor of autophagosomes. In mammals, autophagosome formation sites form throughout the cytosol in specialized subdomains of the endoplasmic reticulum (ER). In yeast, the PAS is also generated close to the ER, but always in the vicinity of the vacuole. How the PAS is anchored to the vacuole and the functional significance of this localization are unknown. Here, we investigated the role of the PAS-vacuole connection for bulk autophagy in the yeast Saccharomyces cerevisiae We show that Vac8 constitutes a vacuolar tether that stably anchors the PAS to the vacuole throughout autophagosome biogenesis via the PAS component Atg13. S. cerevisiae lacking Vac8 show inefficient autophagosome-vacuole fusion, and form fewer and smaller autophagosomes that often localize away from the vacuole. Thus, the stable PAS-vacuole connection established by Vac8 creates a confined space for autophagosome biogenesis between the ER and the vacuole, and allows spatial coordination of autophagosome formation and autophagosome-vacuole fusion. These findings reveal that the spatial regulation of autophagosome formation at the vacuole is required for efficient bulk autophagy.
Collapse
Affiliation(s)
- David M Hollenstein
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Rubén Gómez-Sánchez
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Akif Ciftci
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Franziska Kriegenburg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Muriel Mari
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Raffaela Torggler
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg
| |
Collapse
|
95
|
Staiano L, Zappa F. Hijacking intracellular membranes to feed autophagosomal growth. FEBS Lett 2019; 593:3120-3134. [PMID: 31603532 DOI: 10.1002/1873-3468.13637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/21/2022]
Abstract
Autophagy is widely considered as a housekeeping mechanism that enables cells to survive stress conditions and, in particular, nutrient deprivation. Autophagy begins with the formation of the phagophore that expands and closes around cytosolic material and damaged organelles destined for degradation. The execution of this complex machinery is guaranteed by the coordinated action of more than 40 ATG (autophagy-related) proteins that control the entire process at different stages from the biogenesis of the autophagosome to cargo sequestration and fusion with lysosomes. Autophagosome biogenesis occurs at multiple intracellular sites, such as the endoplasmic reticulum (ER) and the plasma membrane. Soon after the formation of the phagophore, the nascent autophagosome progressively grows in size and ultimately closes by recruiting intracellular membranes. In this review, we focus on the contribution of three membrane sources - the ER, the ER-Golgi intermediate compartment, and the Golgi complex - to autophagosome biogenesis and expansion. We also highlight the interplay between the secretory pathway and autophagy in cells when nutrients are scarce.
Collapse
Affiliation(s)
- Leopoldo Staiano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Francesca Zappa
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
96
|
Guo J, Ma Y, Peng X, Jin H, Liu J. LncRNA CCAT1 promotes autophagy via regulating ATG7 by sponging miR-181 in hepatocellular carcinoma. J Cell Biochem 2019; 120:17975-17983. [PMID: 31218739 DOI: 10.1002/jcb.29064] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/21/2019] [Accepted: 04/29/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a significant clinical challenge, and the mechanisms underlying HCC pathogenesis remain incompletely understood. Colon cancer associated transcript 1 (CCAT1), is one novel long noncoding RNA (lncRNA) which is upregulated in HCC. Autophagy is a vital process in HCC progression, and it is unknown whether CCAT1 regulates autophagy in HCC. MATERIALS AND METHODS Immunofluorescence staining and transmission electron microscopy were used to analyze autophagy activity. Luciferase assay was performed to confirm miRNA-181a-5p (miR-181a-5p) bind CCAT1 and ATG7. RESULTS CCAT1 levels were higher in tissue and cell lines of HCC. In function research, we found that CCAT1 facilitates HCC cell autophagy and cell proliferation. Our results show that, mechanistically, CCAT1 promotes autophagy through functioning as a sponge for miR-181a-5p, and then regulating ATG7 expression. CONCLUSION Our findings indicate CCAT1 may play a role in regulating autophagy by sponging miR-181a-5p in HCC.
Collapse
Affiliation(s)
- Jianbo Guo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yingbo Ma
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
97
|
Maeda S, Otomo C, Otomo T. The autophagic membrane tether ATG2A transfers lipids between membranes. eLife 2019; 8:45777. [PMID: 31271352 PMCID: PMC6625793 DOI: 10.7554/elife.45777] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
An enigmatic step in de novo formation of the autophagosome membrane compartment is the expansion of the precursor membrane phagophore, which requires the acquisition of lipids to serve as building blocks. Autophagy-related 2 (ATG2), the rod-shaped protein that tethers phosphatidylinositol 3-phosphate (PI3P)-enriched phagophores to the endoplasmic reticulum (ER), is suggested to be essential for phagophore expansion, but the underlying mechanism remains unclear. Here, we demonstrate that human ATG2A is a lipid transfer protein. ATG2A can extract lipids from membrane vesicles and unload them to other vesicles. Lipid transfer by ATG2A is more efficient between tethered vesicles than between untethered vesicles. The PI3P effectors WIPI4 and WIPI1 associate ATG2A stably to PI3P-containing vesicles, thereby facilitating ATG2A-mediated tethering and lipid transfer between PI3P-containing vesicles and PI3P-free vesicles. Based on these results, we propose that ATG2-mediated transfer of lipids from the ER to the phagophore enables phagophore expansion.
Collapse
Affiliation(s)
- Shintaro Maeda
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Chinatsu Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Takanori Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
98
|
Osawa T, Noda NN. Atg2: A novel phospholipid transfer protein that mediates de novo autophagosome biogenesis. Protein Sci 2019; 28:1005-1012. [PMID: 30993752 PMCID: PMC6511744 DOI: 10.1002/pro.3623] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/26/2022]
Abstract
The degradation of cytoplasmic components via autophagy is crucial for intracellular homeostasis. In the process of autophagy, a newly synthesized isolation membrane (IM) is developed to sequester degradation targets and eventually the IM seals, forming an autophagosome. One of the most poorly understood autophagy-related proteins is Atg2, which is known to localize to a contact site between the edge of the expanding IM and the exit site of the endoplasmic reticulum (ERES). Recent advances in structural and biochemical analyses have been applied to Atg2 and have revealed it to be a novel multifunctional protein that tethers membranes and transfers phospholipids between them. Considering that Atg2 is essential for the expansion of the IM that requires phospholipids as building blocks, it is suggested that Atg2 transfers phospholipids from the ERES to the IM during the process of autophagosome formation, suggesting that lipid transfer proteins can mediate de novo organelle biogenesis.
Collapse
Affiliation(s)
- Takuo Osawa
- Institute of Microbial Chemistry (BIKAKEN)Tokyo 141‐0021Japan
| | - Nobuo N. Noda
- Institute of Microbial Chemistry (BIKAKEN)Tokyo 141‐0021Japan
| |
Collapse
|
99
|
Singh S, Kumari R, Chinchwadkar S, Aher A, Matheshwaran S, Manjithaya R. Exocyst Subcomplex Functions in Autophagosome Biogenesis by Regulating Atg9 Trafficking. J Mol Biol 2019; 431:2821-2834. [PMID: 31103773 PMCID: PMC6698439 DOI: 10.1016/j.jmb.2019.04.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 04/24/2019] [Accepted: 04/29/2019] [Indexed: 01/16/2023]
Abstract
During autophagy, double-membrane vesicles called autophagosomes capture and degrade the intracellular cargo. The de novo formation of autophagosomes requires several vesicle transport and membrane fusion events which are not completely understood. We studied the involvement of exocyst, an octameric tethering complex, which has a primary function in tethering post-Golgi secretory vesicles to plasma membrane, in autophagy. Our findings indicate that not all subunits of exocyst are involved in selective and general autophagy. We show that in the absence of autophagy specific subunits, autophagy arrest is accompanied by accumulation of incomplete autophagosome-like structures. In these mutants, impaired Atg9 trafficking leads to decreased delivery of membrane to the site of autophagosome biogenesis thereby impeding the elongation and completion of the autophagosomes. The subunits of exocyst, which are dispensable for autophagic function, do not associate with the autophagy specific subcomplex of exocyst.
Collapse
Affiliation(s)
- Sunaina Singh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Ruchika Kumari
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Sarika Chinchwadkar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Amol Aher
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India
| | - Saravanan Matheshwaran
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, Karnataka, India.
| |
Collapse
|
100
|
Hatakeyama R, De Virgilio C. TORC1 specifically inhibits microautophagy through ESCRT-0. Curr Genet 2019; 65:1243-1249. [PMID: 31041524 PMCID: PMC6744375 DOI: 10.1007/s00294-019-00982-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022]
Abstract
Nutrient starvation induces the degradation of specific plasma membrane proteins through the multivesicular body (MVB) sorting pathway and of vacuolar membrane proteins through microautophagy. Both of these processes require the gateway protein Vps27, which recognizes ubiquitinated cargo proteins at phosphatidylinositol 3-phosphate-rich membranes as part of a heterodimeric complex coined endosomal sorting complex required for transport 0. The target of rapamycin complex 1 (TORC1), a nutrient-activated central regulator of cell growth, directly phosphorylates Vps27 to antagonize its function in microautophagy, but whether this also serves to restrain MVB sorting at endosomes is still an open question. Here, we show that TORC1 inhibits both the MVB pathway-driven turnover of the plasma membrane-resident high-affinity methionine permease Mup1 and the inositol transporter Itr1 and the microautophagy-dependent degradation of the vacuolar membrane-associated v-ATPase subunit Vph1. Using a Vps277D variant that mimics the TORC1-phosphorylated state of Vps27, we further show that cargo sorting of Vph1 at the vacuolar membrane, but not of Mup1 and Itr1 at endosomes, is sensitive to the TORC1-controlled modifications of Vps27. Thus, TORC1 specifically modulates microautophagy through phosphorylation of Vps27, but controls MVB sorting through alternative mechanisms.
Collapse
Affiliation(s)
- Riko Hatakeyama
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | | |
Collapse
|