51
|
Martin M, Veloso A, Wu J, Katrukha EA, Akhmanova A. Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules. eLife 2018; 7:33864. [PMID: 29547120 PMCID: PMC5898915 DOI: 10.7554/elife.33864] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Microtubules control different aspects of cell polarization. In cells with a radial microtubule system, a pivotal role in setting up asymmetry is attributed to the relative positioning of the centrosome and the nucleus. Here, we show that centrosome loss had no effect on the ability of endothelial cells to polarize and move in 2D and 3D environments. In contrast, non-centrosomal microtubules stabilized by the microtubule minus-end-binding protein CAMSAP2 were required for directional migration on 2D substrates and for the establishment of polarized cell morphology in soft 3D matrices. CAMSAP2 was also important for persistent endothelial cell sprouting during in vivo zebrafish vessel development. In the absence of CAMSAP2, cell polarization in 3D could be partly rescued by centrosome depletion, indicating that in these conditions the centrosome inhibited cell polarity. We propose that CAMSAP2-protected non-centrosomal microtubules are needed for establishing cell asymmetry by enabling microtubule enrichment in a single-cell protrusion. Networks of blood vessels grow like trees. Sprouts appear on existing vessels, stretching out to form new branches in a process called angiogenesis. The cells responsible are the same cells that line the finished vessels. These “endothelial cells” start the process by reorganizing themselves to face the direction of the new sprout, changing shape to become asymmetrical, and then they begin to migrate. Beneath the surface, a network of protein scaffolding supports each migrating cell. The scaffolding includes tube-like fibers called microtubules that extend towards the cell membrane and organize the inside of the cell. Destroying microtubules damages blood vessel formation, but their exact role remains unclear. A structure called the centrosome can organize microtubules within cells. The centrosome was generally believed to act like a compass, pointing in the direction that the cell will move. Microtubules can anchor to the centrosome, and this structure is thought to play an important role in cell migration. Yet, many microtubules organize without it; these microtubules instead are organized by a compartment of the cell called the Golgi apparatus and are stabilized by a protein named CAMSAP2. Martin et al. now report that removing the cells’ centrosomes did not affect cell migration, but getting rid of CAMSAP2 did. Analysis of cell shape and movement in cells grown in the laboratory and in living animals revealed that cells cannot become asymmetrical, or “polarize”, and migrate without CAMSAP2. In a two-dimensional wound-healing assay, a sheet of cells originally grown from the vessels of a human umbilical cord was scratched, and a microscope was then used to record the cell’s movement as they repaired the injury. Normally, the cells on either side move in a straight line using their microtubules, and though the process was not affected in cells without centrosomes, it was in those without CAMSAP2. Even more striking results were seen in three-dimensional assays. When the same blood vessel cells from human umbilical cords are grown as spheres inside collagen gels, they form sprouts as they would in the body. Without CAMSAP2, the cells could not organize their microtubules and they were unable to elongate in one direction and form stable sprouts. Lastly, depleting CAMSAP2 also prevented the normal formation of blood vessels in zebrafish embryos. Taken together, these findings change our understanding of how microtubules affect cell movement and how important the centrosome is for this process. Further work could have an impact on human health, not least in cancer research. Tumors need a good blood supply to grow, so understanding how to block blood vessel formation could lead to new treatments. Microtubules are already a target for cancer therapy, so future work could help to optimize the use of existing drugs.
Collapse
Affiliation(s)
- Maud Martin
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Alexandra Veloso
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium.,GIGA-Molecular Biology in Diseases, University of Liège, Liège, Belgium
| | - Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
52
|
Jiang K, Faltova L, Hua S, Capitani G, Prota AE, Landgraf C, Volkmer R, Kammerer RA, Steinmetz MO, Akhmanova A. Structural Basis of Formation of the Microtubule Minus-End-Regulating CAMSAP-Katanin Complex. Structure 2018; 26:375-382.e4. [DOI: 10.1016/j.str.2017.12.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/28/2017] [Accepted: 12/28/2017] [Indexed: 11/16/2022]
|
53
|
Schneeberger K, Roth S, Nieuwenhuis EES, Middendorp S. Intestinal epithelial cell polarity defects in disease: lessons from microvillus inclusion disease. Dis Model Mech 2018; 11:11/2/dmm031088. [PMID: 29590640 PMCID: PMC5894939 DOI: 10.1242/dmm.031088] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The intestinal epithelium is a highly organized tissue. The establishment of epithelial cell polarity, with distinct apical and basolateral plasma membrane domains, is pivotal for both barrier formation and for the uptake and vectorial transport of nutrients. The establishment of cell polarity requires a specialized subcellular machinery to transport and recycle proteins to their appropriate location. In order to understand and treat polarity-associated diseases, it is necessary to understand epithelial cell-specific trafficking mechanisms. In this Review, we focus on cell polarity in the adult mammalian intestine. We discuss how intestinal epithelial polarity is established and maintained, and how disturbances in the trafficking machinery can lead to a polarity-associated disorder, microvillus inclusion disease (MVID). Furthermore, we discuss the recent developments in studying MVID, including the creation of genetically manipulated cell lines, mouse models and intestinal organoids, and their uses in basic and applied research. Summary: Microvillus inclusion disease serves as a useful model to enhance our understanding of the intestinal trafficking and polarity machinery in health and disease.
Collapse
Affiliation(s)
- Kerstin Schneeberger
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabrina Roth
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Edward E S Nieuwenhuis
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands
| | - Sabine Middendorp
- Division of Paediatrics, Department of Paediatric Gastroenterology, Wilhelmina Children's Hospital, 3584 CT, Utrecht, The Netherlands .,Regenerative Medicine Center Utrecht, University Medical Centre (UMC) Utrecht, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
54
|
Goldspink DA, Rookyard C, Tyrrell BJ, Gadsby J, Perkins J, Lund EK, Galjart N, Thomas P, Wileman T, Mogensen MM. Ninein is essential for apico-basal microtubule formation and CLIP-170 facilitates its redeployment to non-centrosomal microtubule organizing centres. Open Biol 2017; 7:rsob.160274. [PMID: 28179500 PMCID: PMC5356440 DOI: 10.1098/rsob.160274] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Differentiation of columnar epithelial cells involves a dramatic reorganization of the microtubules (MTs) and centrosomal components into an apico-basal array no longer anchored at the centrosome. Instead, the minus-ends of the MTs become anchored at apical non-centrosomal microtubule organizing centres (n-MTOCs). Formation of n-MTOCs is critical as they determine the spatial organization of MTs, which in turn influences cell shape and function. However, how they are formed is poorly understood. We have previously shown that the centrosomal anchoring protein ninein is released from the centrosome, moves in a microtubule-dependent manner and accumulates at n-MTOCs during epithelial differentiation. Here, we report using depletion and knockout (KO) approaches that ninein expression is essential for apico-basal array formation and epithelial elongation and that CLIP-170 is required for its redeployment to n-MTOCs. Functional inhibition also revealed that IQGAP1 and active Rac1 coordinate with CLIP-170 to facilitate microtubule plus-end cortical targeting and ninein redeployment. Intestinal tissue and in vitro organoids from the Clip1/Clip2 double KO mouse with deletions in the genes encoding CLIP-170 and CLIP-115, respectively, confirmed requirement of CLIP-170 for ninein recruitment to n-MTOCs, with possible compensation by other anchoring factors such as p150Glued and CAMSAP2 ensuring apico-basal microtubule formation despite loss of ninein at n-MTOCs.
Collapse
Affiliation(s)
| | - Chris Rookyard
- School of Computing Science, University of East Anglia, Norwich, UK
| | | | - Jonathan Gadsby
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - James Perkins
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Elizabeth K Lund
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Niels Galjart
- Department of Cell Biology and Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Paul Thomas
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Tom Wileman
- Medical School, University of East Anglia, Norwich, UK
| | - Mette M Mogensen
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
55
|
Takeda M, Sami MM, Wang YC. A homeostatic apical microtubule network shortens cells for epithelial folding via a basal polarity shift. Nat Cell Biol 2017; 20:36-45. [PMID: 29203884 DOI: 10.1038/s41556-017-0001-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
Epithelial folding is typically driven by localized actomyosin contractility. However, it remains unclear how epithelia deform when myosin levels are low and uniform. In the Drosophila gastrula, dorsal fold formation occurs despite a lack of localized myosin changes, while the fold-initiating cells reduce cell height following basal shifts of polarity via an unknown mechanism. We show that cell shortening depends on an apical microtubule network organized by the CAMSAP protein Patronin. Prior to gastrulation, microtubule forces generated by the minus-end motor dynein scaffold the apical cell cortex into a dome-like shape, while the severing enzyme Katanin facilitates network remodelling to ensure tissue-wide cell size homeostasis. During fold initiation, Patronin redistributes following basal polarity shifts in the initiating cells, apparently weakening the scaffolding forces to allow dome descent. The homeostatic network that ensures size/shape homogeneity is thus repurposed for cell shortening, linking epithelial polarity to folding via a microtubule-based mechanical mechanism.
Collapse
Affiliation(s)
- Michiko Takeda
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Mustafa M Sami
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Yu-Chiun Wang
- Laboratory for Epithelial Morphogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.
| |
Collapse
|
56
|
Microtubule-Organizing Centers: Towards a Minimal Parts List. Trends Cell Biol 2017; 28:176-187. [PMID: 29173799 DOI: 10.1016/j.tcb.2017.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Despite decades of molecular analysis of the centrosome, an important microtubule-organizing center (MTOC) of animal cells, the molecular basis of microtubule organization remains obscure. A major challenge is the sheer complexity of the interplay of the hundreds of proteins that constitute the centrosome. However, this complexity owes not only to the centrosome's role as a MTOC but also to the requirements of its duplication cycle and to various other functions such as the formation of cilia, the integration of various signaling pathways, and the organization of actin filaments. Thus, rather than using the parts lists to reconstruct the centrosome, we propose to identify the subset of proteins minimally needed to assemble a MTOC and to study this process at non-centrosomal sites.
Collapse
|
57
|
Muroyama A, Lechler T. Microtubule organization, dynamics and functions in differentiated cells. Development 2017; 144:3012-3021. [PMID: 28851722 DOI: 10.1242/dev.153171] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past several decades, numerous studies have greatly expanded our knowledge about how microtubule organization and dynamics are controlled in cultured cells in vitro However, our understanding of microtubule dynamics and functions in vivo, in differentiated cells and tissues, remains under-explored. Recent advances in generating genetic tools and imaging technologies to probe microtubules in situ, coupled with an increased interest in the functions of this cytoskeletal network in differentiated cells, are resulting in a renaissance. Here, we discuss the lessons learned from such approaches, which have revealed that, although some differentiated cells utilize conserved strategies to remodel microtubules, there is considerable diversity in the underlying molecular mechanisms of microtubule reorganization. This highlights a continued need to explore how differentiated cells regulate microtubule geometry in vivo.
Collapse
Affiliation(s)
- Andrew Muroyama
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Terry Lechler
- Departments of Dermatology and Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
58
|
Voelzmann A, Liew YT, Qu Y, Hahn I, Melero C, Sánchez-Soriano N, Prokop A. Drosophila Short stop as a paradigm for the role and regulation of spectraplakins. Semin Cell Dev Biol 2017; 69:40-57. [DOI: 10.1016/j.semcdb.2017.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
|
59
|
Zhang J, Yue J, Wu X. Spectraplakin family proteins - cytoskeletal crosslinkers with versatile roles. J Cell Sci 2017; 130:2447-2457. [PMID: 28679697 PMCID: PMC5558266 DOI: 10.1242/jcs.196154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The different cytoskeletal networks in a cell are responsible for many fundamental cellular processes. Current studies have shown that spectraplakins, cytoskeletal crosslinkers that combine features of both the spectrin and plakin families of crosslinkers, have a critical role in integrating these different cytoskeletal networks. Spectraplakin genes give rise to a variety of isoforms that have distinct functions. Importantly, all spectraplakin isoforms are uniquely able to associate with all three elements of the cytoskeleton, namely, F-actin, microtubules and intermediate filaments. In this Review, we will highlight recent studies that have unraveled their function in a wide range of different processes, from regulating cell adhesion in skin keratinocytes to neuronal cell migration. Taken together, this work has revealed a diverse and indispensable role for orchestrating the function of different cytoskeletal elements in vivo.
Collapse
Affiliation(s)
- Jamie Zhang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jiping Yue
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
60
|
Abstract
The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.
Collapse
Affiliation(s)
- Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| |
Collapse
|
61
|
Hu L, Xiao Y, Xiong Z, Zhao F, Yin C, Zhang Y, Su P, Li D, Chen Z, Ma X, Zhang G, Qian A. MACF1, versatility in tissue-specific function and in human disease. Semin Cell Dev Biol 2017; 69:3-8. [PMID: 28577926 DOI: 10.1016/j.semcdb.2017.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 01/24/2023]
Abstract
Spectraplakins are a family of evolutionarily conserved gigantic proteins and play critical roles in many cytoskeleton-related processes. Microtubule actin crosslinking factor 1 (MACF1) is one of the most versatile spectraplakin with multiple isoforms. As a broadly expressed mammalian spectraplakin, MACF1 is important in maintaining normal functions of many tissues. The loss-of-function studies using knockout mouse models reveal the pivotal roles of MACF1 in embryo development, skin integrity maintenance, neural development, bone formation, and colonic paracellular permeability. Mutation in the human MACF1 gene causes a novel myopathy genetic disease. In addition, abnormal expression of MACF1 is associated with schizophrenia, Parkinson's disease, cancer and osteoporosis. This demonstrates the crucial roles of MACF1 in physiology and pathology. Here, we review the research advances of MACF1's roles in specific tissue and in human diseases, providing the perspectives of MACF1 for future studies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yunyun Xiao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhipeng Xiong
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peihong Su
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhihao Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaoli Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ge Zhang
- NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China; Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
62
|
Abstract
Exocytosis is a fundamental cellular process whereby secreted molecules are packaged into vesicles that move along cytoskeletal filaments and fuse with the plasma membrane. To function optimally, cells are strongly dependent on precisely controlled delivery of exocytotic cargo. In mammalian cells, microtubules serve as major tracks for vesicle transport by motor proteins, and thus microtubule organization is important for targeted delivery of secretory carriers. Over the years, multiple microtubule-associated and cortical proteins have been discovered that facilitate the interaction between the microtubule plus ends and the cell cortex. In this review, we focus on mammalian protein complexes that have been shown to participate in both cortical microtubule capture and exocytosis, thereby regulating the spatial organization of secretion. These complexes include microtubule plus-end tracking proteins, scaffolding factors, actin-binding proteins, and components of vesicle docking machinery, which together allow efficient coordination of cargo transport and release.
Collapse
Affiliation(s)
- Ivar Noordstra
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
63
|
Nishita M, Satake T, Minami Y, Suzuki A. Regulatory mechanisms and cellular functions of non-centrosomal microtubules. J Biochem 2017; 162:1-10. [DOI: 10.1093/jb/mvx018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
|
64
|
Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S. The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Biol Cell 2017; 109:139-161. [PMID: 28220498 DOI: 10.1111/boc.201600075] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/13/2023]
Abstract
Tissues of multicellular organisms are characterised by several types of specialised cell-cell junctions. In vertebrate epithelia and endothelia, tight and adherens junctions (AJ) play critical roles in barrier and adhesion functions, and are connected to the actin and microtubule cytoskeletons. The interaction between junctions and the cytoskeleton is crucial for tissue development and physiology, and is involved in the molecular mechanisms governing cell shape, motility, growth and signalling. The machineries which functionally connect tight and AJ to the cytoskeleton comprise proteins which either bind directly to cytoskeletal filaments, or function as adaptors for regulators of the assembly and function of the cytoskeleton. In the last two decades, specific cytoskeleton-associated junctional molecules have been implicated in mechanotransduction, revealing the existence of multimolecular complexes that can sense mechanical cues and translate them into adaptation to tensile forces and biochemical signals. Here, we summarise the current knowledge about the machineries that link tight and AJ to actin filaments and microtubules, and the molecular basis for mechanotransduction at epithelial and endothelial AJ.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Ekaterina Vasileva
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Domenica Spadaro
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Jimit Shah
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Florian Rouaud
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Sandra Citi
- Department of Cell Biology, Institute of Genomics and Genetics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|