51
|
MacPherson RA, Shankar V, Sunkara LT, Hannah RC, Campbell MR, Anholt RRH, Mackay TFC. Pleiotropic fitness effects of the lncRNA Uhg4 in Drosophila melanogaster. BMC Genomics 2022; 23:781. [PMID: 36451091 PMCID: PMC9710044 DOI: 10.1186/s12864-022-08972-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) are a diverse class of RNAs that are critical for gene regulation, DNA repair, and splicing, and have been implicated in development, stress response, and cancer. However, the functions of many lncRNAs remain unknown. In Drosophila melanogaster, U snoRNA host gene 4 (Uhg4) encodes an antisense long noncoding RNA that is host to seven small nucleolar RNAs (snoRNAs). Uhg4 is expressed ubiquitously during development and in all adult tissues, with maximal expression in ovaries; however, it has no annotated function(s). RESULTS We used CRISPR-Cas9 germline gene editing to generate multiple deletions spanning the promoter region and first exon of Uhg4. Females showed arrested egg development and both males and females were sterile. In addition, Uhg4 deletion mutants showed delayed development and decreased viability, and changes in sleep and responses to stress. Whole-genome RNA sequencing of Uhg4 deletion flies and their controls identified co-regulated genes and genetic interaction networks associated with Uhg4. Gene ontology analyses highlighted a broad spectrum of biological processes, including regulation of transcription and translation, morphogenesis, and stress response. CONCLUSION Uhg4 is a lncRNA essential for reproduction with pleiotropic effects on multiple fitness traits.
Collapse
Affiliation(s)
- Rebecca A MacPherson
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Vijay Shankar
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Lakshmi T Sunkara
- Present adress: Clemson Veterinary Diagnostic Center, Livestock Poultry Health, Clemson University, 500 Clemson Road, Columbia, SC, 29229, USA
| | - Rachel C Hannah
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Marion R Campbell
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA
| | - Robert R H Anholt
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| | - Trudy F C Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, 114 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| |
Collapse
|
52
|
Yuan Y, Padilla MA, Clark D, Yadlapalli S. Streamlined single-molecule RNA-FISH of core clock mRNAs in clock neurons in whole mount Drosophila brains. Front Physiol 2022; 13:1051544. [PMID: 36439243 PMCID: PMC9682093 DOI: 10.3389/fphys.2022.1051544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
Circadian clocks are ∼24-h timekeepers that control rhythms in almost all aspects of our behavior and physiology. While it is well known that subcellular localization of core clock proteins plays a critical role in circadian regulation, very little is known about the spatiotemporal organization of core clock mRNAs and its role in generating ∼24-h circadian rhythms. Here we describe a streamlined single molecule Fluorescence In Situ Hybridization (smFISH) protocol and a fully automated analysis pipeline to precisely quantify the number and subcellular location of mRNAs of Clock, a core circadian transcription factor, in individual clock neurons in whole mount Drosophila adult brains. Specifically, we used ∼48 fluorescent oligonucleotide probes that can bind to an individual Clock mRNA molecule, which can then be detected as a diffraction-limited spot. Further, we developed a machine learning-based approach for 3-D cell segmentation, based on a pretrained encoder-decoder convolutional neural network, to automatically identify the cytoplasm and nuclei of clock neurons. We combined our segmentation model with a spot counting algorithm to detect Clock mRNA spots in individual clock neurons. Our results demonstrate that the number of Clock mRNA molecules cycle in large ventral lateral clock neurons (lLNvs) with peak levels at ZT4 (4 h after lights are turned on) with ∼80 molecules/neuron and trough levels at ZT16 with ∼30 molecules/neuron. Our streamlined smFISH protocol and deep learning-based analysis pipeline can be employed to quantify the number and subcellular location of any mRNA in individual clock neurons in Drosophila brains. Further, this method can open mechanistic and functional studies into how spatiotemporal localization of clock mRNAs affect circadian rhythms.
Collapse
Affiliation(s)
- Ye Yuan
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Ye Yuan, ; Swathi Yadlapalli,
| | - Marc-Antonio Padilla
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Dunham Clark
- Cell and Developmental Biology Department, University of Michigan, Ann Arbor, MI, United States
| | - Swathi Yadlapalli
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
- Cell and Developmental Biology Department, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Ye Yuan, ; Swathi Yadlapalli,
| |
Collapse
|
53
|
Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov 2022; 21:841-862. [PMID: 35974095 PMCID: PMC9380678 DOI: 10.1038/s41573-022-00505-4] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
In the past decade, membraneless assemblies known as biomolecular condensates have been reported to play key roles in many cellular functions by compartmentalizing specific proteins and nucleic acids in subcellular environments with distinct properties. Furthermore, growing evidence supports the view that biomolecular condensates often form by phase separation, in which a single-phase system demixes into a two-phase system consisting of a condensed phase and a dilute phase of particular biomolecules. Emerging understanding of condensate function in normal and aberrant cellular states, and of the mechanisms of condensate formation, is providing new insights into human disease and revealing novel therapeutic opportunities. In this Perspective, we propose that such insights could enable a previously unexplored drug discovery approach based on identifying condensate-modifying therapeutics (c-mods), and we discuss the strategies, techniques and challenges involved.
Collapse
|
54
|
Ren J, Zhang Z, Zong Z, Zhang L, Zhou F. Emerging Implications of Phase Separation in Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202855. [PMID: 36117111 PMCID: PMC9631093 DOI: 10.1002/advs.202202855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/26/2022] [Indexed: 05/19/2023]
Abstract
In eukaryotic cells, biological activities are executed in distinct cellular compartments or organelles. Canonical organelles with membrane-bound structures are well understood. Cells also inherently contain versatile membrane-less organelles (MLOs) that feature liquid or gel-like bodies. A biophysical process termed liquid-liquid phase separation (LLPS) elucidates how MLOs form through dynamic biomolecule assembly. LLPS-related molecules often have multivalency, which is essential for low-affinity inter- or intra-molecule interactions to trigger phase separation. Accumulating evidence shows that LLPS concentrates and organizes desired molecules or segregates unneeded molecules in cells. Thus, MLOs have tunable functional specificity in response to environmental stimuli and metabolic processes. Aberrant LLPS is widely associated with several hallmarks of cancer, including sustained proliferative signaling, growth suppressor evasion, cell death resistance, telomere maintenance, DNA damage repair, etc. Insights into the molecular mechanisms of LLPS provide new insights into cancer therapeutics. Here, the current understanding of the emerging concepts of LLPS and its involvement in cancer are comprehensively reviewed.
Collapse
Affiliation(s)
- Jiang Ren
- School of MedicineZhejiang University City CollegeHangzhou215123China
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003China
| | - Zhi Zong
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
- International Biomed‐X Research Center, Second Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouChina
- Cancer CenterZhejiang UniversityHangzhou215123China
| | - Fangfang Zhou
- School of MedicineZhejiang University City CollegeHangzhou215123China
- Institutes of Biology and Medical SciencesSoochow UniversitySuzhou215123China
| |
Collapse
|
55
|
Lacroix E, Audas TE. Keeping up with the condensates: The retention, gain, and loss of nuclear membrane-less organelles. Front Mol Biosci 2022; 9:998363. [PMID: 36203874 PMCID: PMC9530788 DOI: 10.3389/fmolb.2022.998363] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 12/04/2022] Open
Abstract
In recent decades, a growing number of biomolecular condensates have been identified in eukaryotic cells. These structures form through phase separation and have been linked to a diverse array of cellular processes. While a checklist of established membrane-bound organelles is present across the eukaryotic domain, less is known about the conservation of membrane-less subcellular structures. Many of these structures can be seen throughout eukaryotes, while others are only thought to be present in metazoans or a limited subset of species. In particular, the nucleus is a hub of biomolecular condensates. Some of these subnuclear domains have been found in a broad range of organisms, which is a characteristic often attributed to essential functionality. However, this does not always appear to be the case. For example, the nucleolus is critical for ribosomal biogenesis and is present throughout the eukaryotic domain, while the Cajal bodies are believed to be similarly conserved, yet these structures are dispensable for organismal survival. Likewise, depletion of the Drosophila melanogaster omega speckles reduces viability, despite the apparent absence of this domain in higher eukaryotes. By reviewing primary research that has analyzed the presence of specific condensates (nucleoli, Cajal bodies, amyloid bodies, nucleolar aggresomes, nuclear speckles, nuclear paraspeckles, nuclear stress bodies, PML bodies, omega speckles, NUN bodies, mei2 dots) in a cross-section of organisms (e.g., human, mouse, D. melanogaster, Caenorhabditis elegans, yeast), we adopt a human-centric view to explore the emergence, retention, and absence of a subset of nuclear biomolecular condensates. This overview is particularly important as numerous biomolecular condensates have been linked to human disease, and their presence in additional species could unlock new and well characterized model systems for health research.
Collapse
Affiliation(s)
- Emma Lacroix
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Timothy E. Audas
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Timothy E. Audas,
| |
Collapse
|
56
|
Lee B, Jaberi-Lashkari N, Calo E. A unified view of low complexity regions (LCRs) across species. eLife 2022; 11:e77058. [PMID: 36098382 PMCID: PMC9470157 DOI: 10.7554/elife.77058] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Low complexity regions (LCRs) play a role in a variety of important biological processes, yet we lack a unified view of their sequences, features, relationships, and functions. Here, we use dotplots and dimensionality reduction to systematically define LCR type/copy relationships and create a map of LCR sequence space capable of integrating LCR features and functions. By defining LCR relationships across the proteome, we provide insight into how LCR type and copy number contribute to higher order assemblies, such as the importance of K-rich LCR copy number for assembly of the nucleolar protein RPA43 in vivo and in vitro. With LCR maps, we reveal the underlying structure of LCR sequence space, and relate differential occupancy in this space to the conservation and emergence of higher order assemblies, including the metazoan extracellular matrix and plant cell wall. Together, LCR relationships and maps uncover and identify scaffold-client relationships among E-rich LCR-containing proteins in the nucleolus, and revealed previously undescribed regions of LCR sequence space with signatures of higher order assemblies, including a teleost-specific T/H-rich sequence space. Thus, this unified view of LCRs enables discovery of how LCRs encode higher order assemblies of organisms.
Collapse
Affiliation(s)
- Byron Lee
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Nima Jaberi-Lashkari
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Eliezer Calo
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
57
|
Zhu B. Logic of the Temporal Compartmentalization of the Hepatic Metabolic Cycle. Physiology (Bethesda) 2022; 37:0. [PMID: 35658626 PMCID: PMC9394779 DOI: 10.1152/physiol.00003.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/28/2022] [Indexed: 12/25/2022] Open
Abstract
The mammalian liver must cope with various metabolic and physiological changes that normally recur every day and result primarily from rest-activity and fasting-feeding cycles. In this article, I present evidence supporting a temporal compartmentalization of rhythmic hepatic metabolic processes into four main clusters: regulation of energy homeostasis, maintenance of information integrity, immune response, and genetic information flow. I further review literatures and discuss how both the circadian and the newly discovered 12-h ultradian clock work together to regulate these four temporally separated processes in mouse liver, which, interestingly, is largely uncoupled from the liver zonation regulation.
Collapse
Affiliation(s)
- Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
58
|
Gouveia B, Kim Y, Shaevitz JW, Petry S, Stone HA, Brangwynne CP. Capillary forces generated by biomolecular condensates. Nature 2022; 609:255-264. [PMID: 36071192 DOI: 10.1038/s41586-022-05138-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 07/25/2022] [Indexed: 12/21/2022]
Abstract
Liquid-liquid phase separation and related phase transitions have emerged as generic mechanisms in living cells for the formation of membraneless compartments or biomolecular condensates. The surface between two immiscible phases has an interfacial tension, generating capillary forces that can perform work on the surrounding environment. Here we present the physical principles of capillarity, including examples of how capillary forces structure multiphase condensates and remodel biological substrates. As with other mechanisms of intracellular force generation, for example, molecular motors, capillary forces can influence biological processes. Identifying the biomolecular determinants of condensate capillarity represents an exciting frontier, bridging soft matter physics and cell biology.
Collapse
Affiliation(s)
- Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Yoonji Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA. .,The Howard Hughes Medical Institute, Princeton, NJ, USA.
| |
Collapse
|
59
|
Bechara ST, Kabbani LES, Maurer-Alcalá XX, Nowacki M. Identification of novel, functional, long noncoding RNAs involved in programmed, large-scale genome rearrangements. RNA (NEW YORK, N.Y.) 2022; 28:1110-1127. [PMID: 35680167 PMCID: PMC9297840 DOI: 10.1261/rna.079134.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Noncoding RNAs (ncRNAs) make up to ∼98% percent of the transcriptome of a given organism. In recent years, one relatively new class of ncRNAs, long noncoding RNAs (lncRNAs), were shown to be more than mere by-products of gene expression and regulation. The unicellular eukaryote Paramecium tetraurelia is a member of the ciliate phylum, an extremely heterogeneous group of organisms found in most bodies of water across the globe. A hallmark of ciliate genetics is nuclear dimorphism and programmed elimination of transposons and transposon-derived DNA elements, the latter of which is essential for the maintenance of the somatic genome. Paramecium and ciliates in general harbor a plethora of different ncRNA species, some of which drive the process of large-scale genome rearrangements, including DNA elimination, during sexual development. Here, we identify and validate the first known functional lncRNAs in ciliates to date. Using deep-sequencing and subsequent bioinformatic processing and experimental validation, we show that Paramecium expresses at least 15 lncRNAs. These candidates were predicted by a highly conservative pipeline, and informatic analyses hint at differential expression during development. Depletion of two lncRNAs, lnc1 and lnc15, resulted in clear phenotypes, decreased survival, morphological impairment, and a global effect on DNA elimination.
Collapse
Affiliation(s)
- Sebastian T Bechara
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Lyna E S Kabbani
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Xyrus X Maurer-Alcalá
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Mariusz Nowacki
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
60
|
Xu Y, Zhu H, Denduluri A, Ou Y, Erkamp NA, Qi R, Shen Y, Knowles TPJ. Recent Advances in Microgels: From Biomolecules to Functionality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200180. [PMID: 35790106 DOI: 10.1002/smll.202200180] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Indexed: 06/15/2023]
Abstract
The emerging applications of hydrogel materials at different length scales, in areas ranging from sustainability to health, have driven the progress in the design and manufacturing of microgels. Microgels can provide miniaturized, monodisperse, and regulatable compartments, which can be spatially separated or interconnected. These microscopic materials provide novel opportunities for generating biomimetic cell culture environments and are thus key to the advances of modern biomedical research. The evolution of the physical and chemical properties has, furthermore, highlighted the potentials of microgels in the context of materials science and bioengineering. This review describes the recent research progress in the fabrication, characterization, and applications of microgels generated from biomolecular building blocks. A key enabling technology allowing the tailoring of the properties of microgels is their synthesis through microfluidic technologies, and this paper highlights recent advances in these areas and their impact on expanding the physicochemical parameter space accessible using microgels. This review finally discusses the emerging roles that microgels play in liquid-liquid phase separation, micromechanics, biosensors, and regenerative medicine.
Collapse
Affiliation(s)
- Yufan Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Hongjia Zhu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Akhila Denduluri
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yangteng Ou
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Nadia A Erkamp
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runzhang Qi
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Yi Shen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| |
Collapse
|
61
|
Zwicker D, Laan L. Evolved interactions stabilize many coexisting phases in multicomponent liquids. Proc Natl Acad Sci U S A 2022; 119:e2201250119. [PMID: 35867744 PMCID: PMC9282444 DOI: 10.1073/pnas.2201250119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Phase separation has emerged as an essential concept for the spatial organization inside biological cells. However, despite the clear relevance to virtually all physiological functions, we understand surprisingly little about what phases form in a system of many interacting components, like in cells. Here we introduce a numerical method based on physical relaxation dynamics to study the coexisting phases in such systems. We use our approach to optimize interactions between components, similar to how evolution might have optimized the interactions of proteins. These evolved interactions robustly lead to a defined number of phases, despite substantial uncertainties in the initial composition, while random or designed interactions perform much worse. Moreover, the optimized interactions are robust to perturbations, and they allow fast adaption to new target phase counts. We thus show that genetically encoded interactions of proteins provide versatile control of phase behavior. The phases forming in our system are also a concrete example of a robust emergent property that does not rely on fine-tuning the parameters of individual constituents.
Collapse
Affiliation(s)
- David Zwicker
- Max Planck Institute for Dynamics and Self-Organisation, 37077 Göttingen, Germany
| | - Liedewij Laan
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
62
|
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol 2022; 14:a041268. [PMID: 34400557 PMCID: PMC9248822 DOI: 10.1101/cshperspect.a041268] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
63
|
Hasenson SE, Alkalay E, Atrash MK, Boocholez A, Gershbaum J, Hochberg-Laufer H, Shav-Tal Y. The Association of MEG3 lncRNA with Nuclear Speckles in Living Cells. Cells 2022; 11:1942. [PMID: 35741072 PMCID: PMC9221825 DOI: 10.3390/cells11121942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear speckles are nuclear bodies containing RNA-binding proteins as well as RNAs including long non-coding RNAs (lncRNAs). Maternally expressed gene 3 (MEG3) is a nuclear retained lncRNA found to associate with nuclear speckles. To understand the association dynamics of MEG3 lncRNA with nuclear speckles in living cells, we generated a fluorescently tagged MEG3 transcript that could be detected in real time. Under regular conditions, transient association of MEG3 with nuclear speckles was observed, including a nucleoplasmic fraction. Transcription or splicing inactivation conditions, known to affect nuclear speckle structure, showed prominent and increased association of MEG3 lncRNA with the nuclear speckles, specifically forming a ring-like structure around the nuclear speckles. This contrasted with metastasis-associated lung adenocarcinoma (MALAT1) lncRNA that is normally highly associated with nuclear speckles, which was released and dispersed in the nucleoplasm. Under normal conditions, MEG3 dynamically associated with the periphery of the nuclear speckles, but under transcription or splicing inhibition, MEG3 could also enter the center of the nuclear speckle. Altogether, using live-cell imaging approaches, we find that MEG3 lncRNA is a transient resident of nuclear speckles and that its association with this nuclear body is modulated by the levels of transcription and splicing activities in the cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel; (S.E.H.); (E.A.); (M.K.A.); (A.B.); (J.G.); (H.H.-L.)
| |
Collapse
|
64
|
Lee DSW, Strom AR, Brangwynne CP. The mechanobiology of nuclear phase separation. APL Bioeng 2022; 6:021503. [PMID: 35540725 PMCID: PMC9054271 DOI: 10.1063/5.0083286] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
The cell nucleus can be thought of as a complex, dynamic, living material, which functions to organize and protect the genome and coordinate gene expression. These functions are achieved via intricate mechanical and biochemical interactions among its myriad components, including the nuclear lamina, nuclear bodies, and the chromatin itself. While the biophysical organization of the nuclear lamina and chromatin have been thoroughly studied, the concept that liquid-liquid phase separation and related phase transitions play a role in establishing nuclear structure has emerged only recently. Phase transitions are likely to be intimately coupled to the mechanobiology of structural elements in the nucleus, but their interplay with one another is still not understood. Here, we review recent developments on the role of phase separation and mechanics in nuclear organization and discuss the functional implications in cell physiology and disease states.
Collapse
Affiliation(s)
- Daniel S. W. Lee
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Amy R. Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
65
|
Mazarakos K, Zhou HX. Multiphase Organization Is a Second Phase Transition Within Multi-Component Biomolecular Condensates. J Chem Phys 2022; 156:191104. [DOI: 10.1063/5.0088004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a mean-field theoretical model, along with molecular dynamics simulations, to show that the multiphase organization of multi-component condensates is a second phase transition. Whereas the first phase transition that leads to the separation of condensates from the bulk phase is driven by overall attraction among the macromolecular components, the second phase transition can be driven by the disparity in strength between self and cross-species attraction. At a fixed level of disparity in interaction strengths, both of the phase transitions can be observed by decreasing temperature, leading first to the separation of condensates from the bulk phase and then to component demixing inside condensates. The existence of a critical temperature for demixing and predicted binodals are verified by molecular dynamics simulations of model mixtures.
Collapse
Affiliation(s)
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, United States of America
| |
Collapse
|
66
|
Bencivenga D, Stampone E, Vastante A, Barahmeh M, Della Ragione F, Borriello A. An Unanticipated Modulation of Cyclin-Dependent Kinase Inhibitors: The Role of Long Non-Coding RNAs. Cells 2022; 11:cells11081346. [PMID: 35456025 PMCID: PMC9028986 DOI: 10.3390/cells11081346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
It is now definitively established that a large part of the human genome is transcribed. However, only a scarce percentage of the transcriptome (about 1.2%) consists of RNAs that are translated into proteins, while the large majority of transcripts include a variety of RNA families with different dimensions and functions. Within this heterogeneous RNA world, a significant fraction consists of sequences with a length of more than 200 bases that form the so-called long non-coding RNA family. The functions of long non-coding RNAs range from the regulation of gene transcription to the changes in DNA topology and nucleosome modification and structural organization, to paraspeckle formation and cellular organelles maturation. This review is focused on the role of long non-coding RNAs as regulators of cyclin-dependent kinase inhibitors’ (CDKIs) levels and activities. Cyclin-dependent kinases are enzymes necessary for the tuned progression of the cell division cycle. The control of their activity takes place at various levels. Among these, interaction with CDKIs is a vital mechanism. Through CDKI modulation, long non-coding RNAs implement control over cellular physiology and are associated with numerous pathologies. However, although there are robust data in the literature, the role of long non-coding RNAs in the modulation of CDKIs appears to still be underestimated, as well as their importance in cell proliferation control.
Collapse
|
67
|
Decker CJ, Burke JM, Mulvaney PK, Parker R. RNA is required for the integrity of multiple nuclear and cytoplasmic membrane-less RNP granules. EMBO J 2022; 41:e110137. [PMID: 35355287 PMCID: PMC9058542 DOI: 10.15252/embj.2021110137] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 12/22/2022] Open
Abstract
Numerous membrane‐less organelles, composed of a combination of RNA and proteins, are observed in the nucleus and cytoplasm of eukaryotic cells. These RNP granules include stress granules (SGs), processing bodies (PBs), Cajal bodies, and nuclear speckles. An unresolved question is how frequently RNA molecules are required for the integrity of RNP granules in either the nucleus or cytosol. To address this issue, we degraded intracellular RNA in either the cytosol or the nucleus by the activation of RNase L and examined the impact of RNA loss on several RNP granules. We find the majority of RNP granules, including SGs, Cajal bodies, nuclear speckles, and the nucleolus, are altered by the degradation of their RNA components. In contrast, PBs and super‐enhancer complexes were largely not affected by RNA degradation in their respective compartments. RNA degradation overall led to the apparent dissolution of some membrane‐less organelles, whereas others reorganized into structures with altered morphology. These findings highlight a critical and widespread role of RNA in the organization of several RNP granules.
Collapse
Affiliation(s)
- Carolyn J Decker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA
| | - James M Burke
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Patrick K Mulvaney
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
68
|
Dion W, Ballance H, Lee J, Pan Y, Irfan S, Edwards C, Sun M, Zhang J, Zhang X, Liu S, Zhu B. Four-dimensional nuclear speckle phase separation dynamics regulate proteostasis. SCIENCE ADVANCES 2022; 8:eabl4150. [PMID: 34985945 PMCID: PMC8730402 DOI: 10.1126/sciadv.abl4150] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/15/2021] [Indexed: 05/15/2023]
Abstract
Phase separation and biorhythms control biological processes in the spatial and temporal dimensions, respectively, but mechanisms of four-dimensional integration remain elusive. Here, we identified an evolutionarily conserved XBP1s-SON axis that establishes a cell-autonomous mammalian 12-hour ultradian rhythm of nuclear speckle liquid-liquid phase separation (LLPS) dynamics, separate from both the 24-hour circadian clock and the cell cycle. Higher expression of nuclear speckle scaffolding protein SON, observed at early morning/early afternoon, generates diffuse and fluid nuclear speckles, increases their interactions with chromatin proactively, transcriptionally amplifies the unfolded protein response, and protects against proteome stress, whereas the opposites are observed following reduced SON level at early evening/late morning. Correlative Son and proteostasis gene expression dynamics are further observed across the entire mouse life span. Our results suggest that by modulating the temporal dynamics of proteostasis, the nuclear speckle LLPS may represent a previously unidentified (chrono)-therapeutic target for pathologies associated with dysregulated proteostasis.
Collapse
Affiliation(s)
- William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Heather Ballance
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jane Lee
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Saad Irfan
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Casey Edwards
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michelle Sun
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jing Zhang
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xin Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh
| |
Collapse
|
69
|
Zhao M, Xia T, Xing J, Yin L, Li X, Pan J, Liu J, Sun L, Wang M, Li T, Mao J, Han Q, Xue W, Cai H, Wang K, Xu X, Li T, He K, Wang N, Li A, Zhou T, Zhang X, Li W, Li T. The stress granule protein G3BP1 promotes pre-condensation of cGAS to allow rapid responses to DNA. EMBO Rep 2022; 23:e53166. [PMID: 34779554 PMCID: PMC8728604 DOI: 10.15252/embr.202153166] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) functions as a key sensor for microbial invasion and cellular damage by detecting emerging cytosolic DNA. Here, we report that GTPase-activating protein-(SH3 domain)-binding protein 1 (G3BP1) primes cGAS for its prompt activation by engaging cGAS in a primary liquid-phase condensation state. Using high-resolution microscopy, we show that in resting cells, cGAS exhibits particle-like morphological characteristics, which are markedly weakened when G3BP1 is deleted. Upon DNA challenge, the pre-condensed cGAS undergoes liquid-liquid phase separation (LLPS) more efficiently. Importantly, G3BP1 deficiency or its inhibition dramatically diminishes DNA-induced LLPS and the subsequent activation of cGAS. Interestingly, RNA, previously reported to form condensates with cGAS, does not activate cGAS. Accordingly, we find that DNA - but not RNA - treatment leads to the dissociation of G3BP1 from cGAS. Taken together, our study shows that the primary condensation state of cGAS is critical for its rapid response to DNA.
Collapse
Affiliation(s)
- Ming Zhao
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Tian Xia
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Jia‐Qing Xing
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Le‐Hua Yin
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Xiao‐Wei Li
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Jie Pan
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Jia‐Yu Liu
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Li‐Ming Sun
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Miao Wang
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Tingting Li
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
- Nanhu LaboratoryJiaxingChina
| | - Jie Mao
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Qiu‐Ying Han
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
- Nanhu LaboratoryJiaxingChina
| | - Wen Xue
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
- Nanhu LaboratoryJiaxingChina
| | - Hong Cai
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Kai Wang
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Xin Xu
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Teng Li
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Kun He
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Na Wang
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Ai‐Ling Li
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
- Nanhu LaboratoryJiaxingChina
| | - Tao Zhou
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
- Nanhu LaboratoryJiaxingChina
| | - Xue‐Min Zhang
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
- Nanhu LaboratoryJiaxingChina
- School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Wei‐Hua Li
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
| | - Tao Li
- State Key Laboratory of ProteomicsNational Center of Biomedical AnalysisBeijingChina
- Nanhu LaboratoryJiaxingChina
- School of Basic Medical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
70
|
Zhang D, Xue J, Peng F. The regulatory activities of MALAT1 in the development of bone and cartilage diseases. Front Endocrinol (Lausanne) 2022; 13:1054827. [PMID: 36452326 PMCID: PMC9701821 DOI: 10.3389/fendo.2022.1054827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/01/2022] [Indexed: 11/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been comprehensively implicated in various cellular functions by mediating transcriptional or post-transcriptional activities. MALAT1 is involved in the differentiation, proliferation, and apoptosis of multiple cell lines, including BMSCs, osteoblasts, osteoclasts, and chondrocytes. Interestingly, MALAT1 may interact with RNAs or proteins, regulating cellular processes. Recently, MALAT1 has been reported to be associated with the development of bone and cartilage diseases by orchestrating the signaling network. The involvement of MALAT1 in the pathological development of bone and cartilage diseases makes it available to be a potential biomarker for clinical diagnosis or prognosis. Although the potential mechanisms of MALAT1 in mediating the cellular processes of bone and cartilage diseases are still needed for further elucidation, MALAT1 shows great promise for drug development.
Collapse
Affiliation(s)
- Di Zhang
- Department of Medical Imaging, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jinhua Xue
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Fang Peng
- Department of Pathology, Ganzhou People’s Hospital, Ganzhou, China
- *Correspondence: Fang Peng,
| |
Collapse
|
71
|
Measuring Cytological Proximity of Chromosomal Loci to Defined Nuclear Compartments with TSA-seq. Methods Mol Biol 2022; 2532:145-186. [PMID: 35867249 DOI: 10.1007/978-1-0716-2497-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Distinct nuclear structures and bodies are involved in genome intranuclear positioning. Measuring proximity and relative distances of genomic loci to these nuclear compartments, and correlating this chromosome intranuclear positioning with epigenetic marks and functional readouts genome-wide, will be required to appreciate the true extent to which this nuclear compartmentalization contributes to regulation of genome functions. Here we present detailed protocols for TSA-seq, the first sequencing-based method for estimation of cytological proximity of chromosomal loci to spatially discrete nuclear structures, such as nuclear bodies or the nuclear lamina. TSA-seq uses Tyramide Signal Amplification (TSA) of immunostained cells to create a concentration gradient of tyramide-biotin free radicals which decays exponentially as a function of distance from a point-source target. Reaction of these free radicals with DNA deposits tyramide-biotin onto DNA as a function of distance from the point source. The relative enrichment of this tyramide-labeled DNA versus input DNA, revealed by DNA sequencing, can then be used as a "cytological ruler" to infer relative, or even absolute, mean chromosomal distances from immunostained nuclear compartments. TSA-seq mapping is highly reproducible and largely independent of the target protein or antibody choice for labeling a particular nuclear compartment. Our protocols include variations in TSA labeling conditions to provide varying spatial resolution as well as enhanced sensitivity. Our most streamlined protocol produces TSA-seq spatial mapping over a distance range of ~1 micron from major nuclear compartments using ~10-20 million cells.
Collapse
|
72
|
Gao Y, Liu C, Wu T, Liu R, Mao W, Gan X, Lu X, Liu Y, Wan L, Xu B, Chen M. Current status and perspectives of non-coding RNA and phase separation interactions. Biosci Trends 2022; 16:330-345. [DOI: 10.5582/bst.2022.01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Tiange Wu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Ruiji Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Weipu Mao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xinqiang Gan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xun Lu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yifan Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Lilin Wan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
73
|
Kelley FM, Favetta B, Regy RM, Mittal J, Schuster BS. Amphiphilic proteins coassemble into multiphasic condensates and act as biomolecular surfactants. Proc Natl Acad Sci U S A 2021; 118:e2109967118. [PMID: 34916288 PMCID: PMC8713756 DOI: 10.1073/pnas.2109967118] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
Cells contain membraneless compartments that assemble due to liquid-liquid phase separation, including biomolecular condensates with complex morphologies. For instance, certain condensates are surrounded by a film of distinct composition, such as Ape1 condensates coated by a layer of Atg19, required for selective autophagy in yeast. Other condensates are multiphasic, with nested liquid phases of distinct compositions and functions, such as in the case of ribosome biogenesis in the nucleolus. The size and structure of such condensates must be regulated for proper biological function. We leveraged a bioinspired approach to discover how amphiphilic, surfactant-like proteins may contribute to the structure and size regulation of biomolecular condensates. We designed and examined families of amphiphilic proteins comprising one phase-separating domain and one non-phase-separating domain. In particular, these proteins contain the soluble structured domain glutathione S-transferase (GST) or maltose binding protein (MBP), fused to the intrinsically disordered RGG domain from P granule protein LAF-1. When one amphiphilic protein is mixed in vitro with RGG-RGG, the proteins assemble into enveloped condensates, with RGG-RGG at the core and the amphiphilic protein forming the surface film layer. Importantly, we found that MBP-based amphiphiles are surfactants and influence droplet size, with increasing surfactant concentration resulting in smaller droplet radii. In contrast, GST-based amphiphiles at increased concentrations coassemble with RGG-RGG into multiphasic structures. We propose a mechanism for these experimental observations, supported by molecular simulations of a minimalist model. We speculate that surfactant proteins may play a significant role in regulating the structure and function of biomolecular condensates.
Collapse
Affiliation(s)
- Fleurie M Kelley
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Bruna Favetta
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Roshan Mammen Regy
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854;
| |
Collapse
|
74
|
Naz F, Tariq I, Ali S, Somaida A, Preis E, Bakowsky U. The Role of Long Non-Coding RNAs (lncRNAs) in Female Oriented Cancers. Cancers (Basel) 2021; 13:6102. [PMID: 34885213 PMCID: PMC8656502 DOI: 10.3390/cancers13236102] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Recent advances in molecular biology have discovered the mysterious role of long non-coding RNAs (lncRNAs) as potential biomarkers for cancer diagnosis and targets for advanced cancer therapy. Studies have shown that lncRNAs take part in the incidence and development of cancers in humans. However, previously they were considered as mere RNA noise or transcription byproducts lacking any biological function. In this article, we present a summary of the progress on ascertaining the biological functions of five lncRNAs (HOTAIR, NEAT1, H19, MALAT1, and MEG3) in female-oriented cancers, including breast and gynecological cancers, with the perspective of carcinogenesis, cancer proliferation, and metastasis. We provide the current state of knowledge from the past five years of the literature to discuss the clinical importance of such lncRNAs as therapeutic targets or early diagnostic biomarkers. We reviewed the consequences, either oncogenic or tumor-suppressing features, of their aberrant expression in female-oriented cancers. We tried to explain the established mechanism by which they regulate cancer proliferation and metastasis by competing with miRNAs and other mechanisms involved via regulating genes and signaling pathways. In addition, we revealed the association between stated lncRNAs and chemo-resistance or radio-resistance and their potential clinical applications and future perspectives.
Collapse
Affiliation(s)
- Faiza Naz
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
| | - Imran Tariq
- Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore 54000, Pakistan;
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
- Angström Laboratory, Department of Chemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Ahmed Somaida
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany or (S.A.); (A.S.); (E.P.)
| |
Collapse
|
75
|
Silveira GO, Coelho HS, Amaral MS, Verjovski-Almeida S. Long non-coding RNAs as possible therapeutic targets in protozoa, and in Schistosoma and other helminths. Parasitol Res 2021; 121:1091-1115. [PMID: 34859292 DOI: 10.1007/s00436-021-07384-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/14/2021] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) emerged in the past 20 years due to massive amounts of scientific data regarding transcriptomic analyses. They have been implicated in a plethora of cellular processes in higher eukaryotes. However, little is known about lncRNA possible involvement in parasitic diseases, with most studies only detecting their presence in parasites of human medical importance. Here, we review the progress on lncRNA studies and their functions in protozoans and helminths. In addition, we show an example of knockdown of one lncRNA in Schistosoma mansoni, SmLINC156349, which led to in vitro parasite adhesion, motility, and pairing impairment, with a 20% decrease in parasite viability and 33% reduction in female oviposition. Other observed phenotypes were a decrease in the proliferation rate of both male and female worms and their gonads, and reduced female lipid and vitelline droplets that are markers for well-developed vitellaria. Impairment of female worms' vitellaria in SmLINC156349-silenced worms led to egg development deficiency. All those results demonstrate the great potential of the tools and methods to characterize lncRNAs as potential new therapeutic targets. Further, we discuss the challenges and limitations of current methods for studying lncRNAs in parasites and possible solutions to overcome them, and we highlight the future directions of this exciting field.
Collapse
Affiliation(s)
- Gilbert O Silveira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Helena S Coelho
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Murilo S Amaral
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil. .,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
76
|
Rivera C, Verbel-Vergara D, Arancibia D, Lappala A, González M, Guzmán F, Merello G, Lee JT, Andrés ME. Revealing RCOR2 as a regulatory component of nuclear speckles. Epigenetics Chromatin 2021; 14:51. [PMID: 34819154 PMCID: PMC8611983 DOI: 10.1186/s13072-021-00425-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 12/26/2022] Open
Abstract
Background Nuclear processes such as transcription and RNA maturation can be impacted by subnuclear compartmentalization in condensates and nuclear bodies. Here, we characterize the nature of nuclear granules formed by REST corepressor 2 (RCOR2), a nuclear protein essential for pluripotency maintenance and central nervous system development. Results Using biochemical approaches and high-resolution microscopy, we reveal that RCOR2 is localized in nuclear speckles across multiple cell types, including neurons in the brain. RCOR2 forms complexes with nuclear speckle components such as SON, SRSF7, and SRRM2. When cells are exposed to chemical stress, RCOR2 behaves as a core component of the nuclear speckle and is stabilized by RNA. In turn, nuclear speckle morphology appears to depend on RCOR2. Specifically, RCOR2 knockdown results larger nuclear speckles, whereas overexpressing RCOR2 leads to smaller and rounder nuclear speckles. Conclusion Our study suggests that RCOR2 is a regulatory component of the nuclear speckle bodies, setting this co-repressor protein as a factor that controls nuclear speckles behavior. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00425-4.
Collapse
Affiliation(s)
- Carlos Rivera
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile.,Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6624, Boston, MA, 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel Verbel-Vergara
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Duxan Arancibia
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Anna Lappala
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6624, Boston, MA, 02114, USA.,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA
| | - Marcela González
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Fabián Guzmán
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Gianluca Merello
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 6624, Boston, MA, 02114, USA. .,Department of Genetics, The Blavatnik Institute, Harvard Medical School, Boston, MA, 02114, USA.
| | - María Estela Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Avenida Del Libertador Bernardo O'Higgins 340, 8320000, Santiago, Chile.
| |
Collapse
|
77
|
Abstract
Nuclear bodies are membraneless condensates that may form via liquid-liquid phase separation. The viscoelastic chromatin network could impact their stability and may hold the key for understanding experimental observations that defy predictions of classical theories. However, quantitative studies on the role of the chromatin network in phase separation have remained challenging. Using a diploid human genome model parameterized with chromosome conformation capture (Hi-C) data, we study the thermodynamics and kinetics of nucleoli formation. Dynamical simulations predict the formation of multiple droplets for nucleolar particles that experience specific interactions with nucleolus-associated domains (NADs). Coarsening dynamics, surface tension, and coalescence kinetics of the simulated droplets are all in quantitative agreement with experimental measurements for nucleoli. Free energy calculations further support that a two-droplet state, often observed for nucleoli in somatic cells, is metastable and separated from the single-droplet state with an entropic barrier. Our study suggests that nucleoli-chromatin interactions facilitate droplets' nucleation but hinder their coarsening due to the coupled motion between droplets and the chromatin network: as droplets coalesce, the chromatin network becomes increasingly constrained. Therefore, the chromatin network supports a nucleation and arrest mechanism to stabilize the multi-droplet state for nucleoli and possibly for other nuclear bodies.
Collapse
|
78
|
Shrinivas K, Brenner MP. Phase separation in fluids with many interacting components. Proc Natl Acad Sci U S A 2021; 118:e2108551118. [PMID: 34725154 PMCID: PMC8609339 DOI: 10.1073/pnas.2108551118] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2021] [Indexed: 01/23/2023] Open
Abstract
Fluids in natural systems, like the cytoplasm of a cell, often contain thousands of molecular species that are organized into multiple coexisting phases that enable diverse and specific functions. How interactions between numerous molecular species encode for various emergent phases is not well understood. Here, we leverage approaches from random-matrix theory and statistical physics to describe the emergent phase behavior of fluid mixtures with many species whose interactions are drawn randomly from an underlying distribution. Through numerical simulation and stability analyses, we show that these mixtures exhibit staged phase-separation kinetics and are characterized by multiple coexisting phases at steady state with distinct compositions. Random-matrix theory predicts the number of coexisting phases, validated by simulations with diverse component numbers and interaction parameters. Surprisingly, this model predicts an upper bound on the number of phases, derived from dynamical considerations, that is much lower than the limit from the Gibbs phase rule, which is obtained from equilibrium thermodynamic constraints. We design ensembles that encode either linear or nonmonotonic scaling relationships between the number of components and coexisting phases, which we validate through simulation and theory. Finally, inspired by parallels in biological systems, we show that including nonequilibrium turnover of components through chemical reactions can tunably modulate the number of coexisting phases at steady state without changing overall fluid composition. Together, our study provides a model framework that describes the emergent dynamical and steady-state phase behavior of liquid-like mixtures with many interacting constituents.
Collapse
Affiliation(s)
- Krishna Shrinivas
- NSF-Simons Center for Mathematical & Statistical Analysis of Biology, Harvard University, Cambridge, MA 02138;
| | - Michael P Brenner
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
- Physics Department, Harvard University, Cambridge, MA 02138
| |
Collapse
|
79
|
Geiger F, Acker J, Papa G, Wang X, Arter WE, Saar KL, Erkamp NA, Qi R, Bravo JPK, Strauss S, Krainer G, Burrone OR, Jungmann R, Knowles TPJ, Engelke H, Borodavka A. Liquid-liquid phase separation underpins the formation of replication factories in rotaviruses. EMBO J 2021; 40:e107711. [PMID: 34524703 PMCID: PMC8561643 DOI: 10.15252/embj.2021107711] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
RNA viruses induce the formation of subcellular organelles that provide microenvironments conducive to their replication. Here we show that replication factories of rotaviruses represent protein-RNA condensates that are formed via liquid-liquid phase separation of the viroplasm-forming proteins NSP5 and rotavirus RNA chaperone NSP2. Upon mixing, these proteins readily form condensates at physiologically relevant low micromolar concentrations achieved in the cytoplasm of virus-infected cells. Early infection stage condensates could be reversibly dissolved by 1,6-hexanediol, as well as propylene glycol that released rotavirus transcripts from these condensates. During the early stages of infection, propylene glycol treatments reduced viral replication and phosphorylation of the condensate-forming protein NSP5. During late infection, these condensates exhibited altered material properties and became resistant to propylene glycol, coinciding with hyperphosphorylation of NSP5. Some aspects of the assembly of cytoplasmic rotavirus replication factories mirror the formation of other ribonucleoprotein granules. Such viral RNA-rich condensates that support replication of multi-segmented genomes represent an attractive target for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Florian Geiger
- Department of ChemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Julia Acker
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Guido Papa
- International Center for Genetic Engineering and BiotechnologyTriesteItaly
- Present address:
Medical Research Council Laboratory of Molecular Biology (MRC LMB)CambridgeUK
| | - Xinyu Wang
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | | - Kadi L Saar
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Nadia A Erkamp
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Runzhang Qi
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Jack PK Bravo
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Present address:
Department of Molecular BiosciencesUniversity of Texas at AustinAustinTXUSA
| | - Sebastian Strauss
- Department of Physics and Center for NanoscienceMax Planck Institute of BiochemistryMunichGermany
| | - Georg Krainer
- Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Oscar R Burrone
- International Center for Genetic Engineering and BiotechnologyTriesteItaly
| | - Ralf Jungmann
- Department of Physics and Center for NanoscienceMax Planck Institute of BiochemistryMunichGermany
| | | | - Hanna Engelke
- Department of ChemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Institute of Pharmaceutical SciencesKarl‐Franzens‐Universität GrazGrazAustria
| | - Alexander Borodavka
- Department of ChemistryLudwig‐Maximilians‐Universität MünchenMunichGermany
- Department of BiochemistryUniversity of CambridgeCambridgeUK
- Department of Physics and Center for NanoscienceMax Planck Institute of BiochemistryMunichGermany
| |
Collapse
|
80
|
Sankaranarayanan M, Emenecker RJ, Wilby EL, Jahnel M, Trussina IREA, Wayland M, Alberti S, Holehouse AS, Weil TT. Adaptable P body physical states differentially regulate bicoid mRNA storage during early Drosophila development. Dev Cell 2021; 56:2886-2901.e6. [PMID: 34655524 PMCID: PMC8555633 DOI: 10.1016/j.devcel.2021.09.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 01/01/2023]
Abstract
Ribonucleoprotein condensates can exhibit diverse physical states in vitro and in vivo. Despite considerable progress, the relevance of condensate physical states for in vivo biological function remains limited. Here, we investigated the physical properties of processing bodies (P bodies) and their impact on mRNA storage in mature Drosophila oocytes. We show that the conserved DEAD-box RNA helicase Me31B forms viscous P body condensates, which adopt an arrested physical state. We demonstrate that structurally distinct proteins and protein-protein interactions, together with RNA, regulate the physical properties of P bodies. Using live imaging and in situ hybridization, we show that the arrested state and integrity of P bodies support the storage of bicoid (bcd) mRNA and that egg activation modulates P body properties, leading to the release of bcd for translation in the early embryo. Together, this work provides an example of how physical states of condensates regulate cellular function in development.
Collapse
Affiliation(s)
- M Sankaranarayanan
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Elise L Wilby
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marcus Jahnel
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Irmela R E A Trussina
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Matt Wayland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Timothy T Weil
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
81
|
Guedán A, Donaldson CD, Caroe ER, Cosnefroy O, Taylor IA, Bishop KN. HIV-1 requires capsid remodelling at the nuclear pore for nuclear entry and integration. PLoS Pathog 2021; 17:e1009484. [PMID: 34543344 PMCID: PMC8483370 DOI: 10.1371/journal.ppat.1009484] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/30/2021] [Accepted: 09/04/2021] [Indexed: 11/18/2022] Open
Abstract
The capsid (CA) lattice of the HIV-1 core plays a key role during infection. From the moment the core is released into the cytoplasm, it interacts with a range of cellular factors that, ultimately, direct the pre-integration complex to the integration site. For integration to occur, the CA lattice must disassemble. Early uncoating or a failure to do so has detrimental effects on virus infectivity, indicating that an optimal stability of the viral core is crucial for infection. Here, we introduced cysteine residues into HIV-1 CA in order to induce disulphide bond formation and engineer hyper-stable mutants that are slower or unable to uncoat, and then followed their replication. From a panel of mutants, we identified three with increased capsid stability in cells and found that, whilst the M68C/E212C mutant had a 5-fold reduction in reverse transcription, two mutants, A14C/E45C and E180C, were able to reverse transcribe to approximately WT levels in cycling cells. Moreover, these mutants only had a 5-fold reduction in 2-LTR circle production, suggesting that not only could reverse transcription complete in hyper-stable cores, but that the nascent viral cDNA could enter the nuclear compartment. Furthermore, we observed A14C/E45C mutant capsid in nuclear and chromatin-associated fractions implying that the hyper-stable cores themselves entered the nucleus. Immunofluorescence studies revealed that although the A14C/E45C mutant capsid reached the nuclear pore with the same kinetics as wild type capsid, it was then retained at the pore in association with Nup153. Crucially, infection with the hyper-stable mutants did not promote CPSF6 re-localisation to nuclear speckles, despite the mutant capsids being competent for CPSF6 binding. These observations suggest that hyper-stable cores are not able to uncoat, or remodel, enough to pass through or dissociate from the nuclear pore and integrate successfully. This, is turn, highlights the importance of capsid lattice flexibility for nuclear entry. In conclusion, we hypothesise that during a productive infection, a capsid remodelling step takes place at the nuclear pore that releases the core complex from Nup153, and relays it to CPSF6, which then localises it to chromatin ready for integration.
Collapse
Affiliation(s)
- Anabel Guedán
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Callum D. Donaldson
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eve R. Caroe
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ophélie Cosnefroy
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Kate N. Bishop
- Retroviral Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
82
|
Coordination of transcription, processing, and export of highly expressed RNAs by distinct biomolecular condensates. Emerg Top Life Sci 2021; 4:281-291. [PMID: 32338276 PMCID: PMC7733674 DOI: 10.1042/etls20190160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/30/2022]
Abstract
Genes under control of super-enhancers are expressed at extremely high levels and are frequently associated with nuclear speckles. Recent data suggest that the high concentration of unphosphorylated RNA polymerase II (Pol II) and Mediator recruited to super-enhancers create phase-separated condensates. Transcription initiates within or at the surface of these phase-separated droplets and the phosphorylation of Pol II, associated with transcription initiation and elongation, dissociates Pol II from these domains leading to engagement with nuclear speckles, which are enriched with RNA processing factors. The transitioning of Pol II from transcription initiation domains to RNA processing domains effectively co-ordinates transcription and processing of highly expressed RNAs which are then rapidly exported into the cytoplasm.
Collapse
|
83
|
Dissecting the complexity of biomolecular condensates. Biochem Soc Trans 2021; 48:2591-2602. [PMID: 33300985 DOI: 10.1042/bst20200351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 11/17/2022]
Abstract
Biomolecular condensates comprise a diverse and ubiquitous class of membraneless organelles. Condensate assembly is often described by liquid-liquid phase separation. While this process explains many key features, it cannot account for the compositional or architectural complexity that condensates display in cells. Recent work has begun to dissect the rich network of intermolecular interactions that give rise to biomolecular condensates. Here, we review the latest results from theory, simulations and experiments, and discuss what they reveal about the structure-function relationship of condensates.
Collapse
|
84
|
Scoca V, Di Nunzio F. Membraneless organelles restructured and built by pandemic viruses: HIV-1 and SARS-CoV-2. J Mol Cell Biol 2021; 13:259-268. [PMID: 33760045 PMCID: PMC8083626 DOI: 10.1093/jmcb/mjab020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses hijack host functions to invade their target cells and spread to new cells. Specifically, viruses learned to usurp liquid‒liquid phase separation (LLPS), a newly exploited mechanism, used by the cell to concentrate enzymes to accelerate and confine a wide variety of cellular processes. LLPS gives rise to actual membraneless organelles (MLOs), which do not only increase reaction rates but also act as a filter to select molecules to be retained or to be excluded from the liquid droplet. This is exactly what seems to happen with the condensation of SARS-CoV-2 nucleocapsid protein to favor the packaging of intact viral genomes, excluding viral subgenomic or host cellular RNAs. Another older pandemic virus, HIV-1, also takes advantage of LLPS in the host cell during the viral cycle. Recent discoveries highlighted that HIV-1 RNA genome condensates in nuclear MLOs accompanied by specific host and viral proteins, breaking the dogma of retroviruses that limited viral synthesis exclusively to the cytoplasmic compartment. Intriguing fundamental properties of viral/host LLPS remain still unclear. Future studies will contribute to deeply understanding the role of pathogen-induced MLOs in the epidemic invasion of pandemic viruses.
Collapse
Affiliation(s)
- Viviana Scoca
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology, Pasteur Institute, Paris, France
- BioSPC Doctoral School, Universitè de Paris, Paris, France
| | - Francesca Di Nunzio
- Advanced Molecular Virology and Retroviral Dynamics Group, Department of Virology, Pasteur Institute, Paris, France
| |
Collapse
|
85
|
Liu S, Wang T, Shi Y, Bai L, Wang S, Guo D, Zhang Y, Qi Y, Chen C, Zhang J, Zhang Y, Liu Q, Yang Q, Wang Y, Liu H. USP42 drives nuclear speckle mRNA splicing via directing dynamic phase separation to promote tumorigenesis. Cell Death Differ 2021; 28:2482-2498. [PMID: 33731873 PMCID: PMC8329168 DOI: 10.1038/s41418-021-00763-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 01/31/2023] Open
Abstract
Liquid-liquid phase separation is considered a generic approach to organize membrane-less compartments, enabling the dynamic regulation of phase-separated assemblies to be investigated and pivotal roles of protein posttranslational modifications to be demonstrated. By surveying the subcellular localizations of human deubiquitylases, USP42 was identified to form nuclear punctate structures that are associated with phase separation properties. Bioinformatic analysis demonstrated that the USP42 C-terminal sequence was intrinsically disordered, which was further experimentally confirmed to confer phase separation features. USP42 is distributed to SC35-positive nuclear speckles in a positively charged C-terminal residue- and enzymatic activity-dependent manner. Notably, USP42 directs the integration of the spliceosome component PLRG1 into nuclear speckles, and its depletion interferes with the conformation of SC35 foci. Functionally, USP42 downregulation deregulates multiple mRNA splicing events and leads to deterred cancer cell growth, which is consistent with the impact of PLRG1 repression. Finally, USP42 expression is strongly correlated with that of PLRG1 in non-small-cell lung cancer samples and predicts adverse prognosis in overall survival. As a deubiquitylase capable of dynamically guiding nuclear speckle phase separation and mRNA splicing, USP42 inhibition presents a novel anticancer strategy by targeting phase separation.
Collapse
Affiliation(s)
- Shuyan Liu
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Taishu Wang
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Yulin Shi
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Lu Bai
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Shanshan Wang
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Dong Guo
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Yang Zhang
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Yangfan Qi
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Chaoqun Chen
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Jinrui Zhang
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Yingqiu Zhang
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Quentin Liu
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Qingkai Yang
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Yang Wang
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| | - Han Liu
- grid.411971.b0000 0000 9558 1426The Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province China
| |
Collapse
|
86
|
Sanchez-Burgos I, Joseph JA, Collepardo-Guevara R, Espinosa JR. Size conservation emerges spontaneously in biomolecular condensates formed by scaffolds and surfactant clients. Sci Rep 2021; 11:15241. [PMID: 34315935 PMCID: PMC8316449 DOI: 10.1038/s41598-021-94309-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023] Open
Abstract
Biomolecular condensates are liquid-like membraneless compartments that contribute to the spatiotemporal organization of proteins, RNA, and other biomolecules inside cells. Some membraneless compartments, such as nucleoli, are dispersed as different condensates that do not grow beyond a certain size, or do not present coalescence over time. In this work, using a minimal protein model, we show that phase separation of binary mixtures of scaffolds and low-valency clients that can act as surfactants-i.e., that significantly reduce the droplet surface tension-can yield either a single drop or multiple droplets that conserve their sizes on long timescales (herein 'multidroplet size-conserved' scenario'), depending on the scaffold to client ratio. Our simulations demonstrate that protein connectivity and condensate surface tension regulate the balance between these two scenarios. The multidroplet size-conserved scenario spontaneously arises at increasing surfactant-to-scaffold concentrations, when the interfacial penalty for creating small liquid droplets is sufficiently reduced by the surfactant proteins that are preferentially located at the interface. In contrast, low surfactant-to-scaffold concentrations enable continuous growth and fusion of droplets without restrictions. Overall, our work proposes one thermodynamic mechanism to help rationalize how size-conserved coexisting condensates can persist inside cells-shedding light on the roles of protein connectivity, binding affinity, and droplet composition in this process.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
87
|
Yildirim A, Mozaffari-Jovin S, Wallisch AK, Schäfer J, Ludwig SEJ, Urlaub H, Lührmann R, Wolfrum U. SANS (USH1G) regulates pre-mRNA splicing by mediating the intra-nuclear transfer of tri-snRNP complexes. Nucleic Acids Res 2021; 49:5845-5866. [PMID: 34023904 PMCID: PMC8191790 DOI: 10.1093/nar/gkab386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Splicing is catalyzed by the spliceosome, a compositionally dynamic complex assembled stepwise on pre-mRNA. We reveal links between splicing machinery components and the intrinsically disordered ciliopathy protein SANS. Pathogenic mutations in SANS/USH1G lead to Usher syndrome—the most common cause of deaf-blindness. Previously, SANS was shown to function only in the cytosol and primary cilia. Here, we have uncovered molecular links between SANS and pre-mRNA splicing catalyzed by the spliceosome in the nucleus. We show that SANS is found in Cajal bodies and nuclear speckles, where it interacts with components of spliceosomal sub-complexes such as SF3B1 and the large splicing cofactor SON but also with PRPFs and snRNAs related to the tri-snRNP complex. SANS is required for the transfer of tri-snRNPs between Cajal bodies and nuclear speckles for spliceosome assembly and may also participate in snRNP recycling back to Cajal bodies. SANS depletion alters the kinetics of spliceosome assembly, leading to accumulation of complex A. SANS deficiency and USH1G pathogenic mutations affects splicing of genes related to cell proliferation and human Usher syndrome. Thus, we provide the first evidence that splicing dysregulation may participate in the pathophysiology of Usher syndrome.
Collapse
Affiliation(s)
- Adem Yildirim
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Germany
| | - Sina Mozaffari-Jovin
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Ann-Kathrin Wallisch
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Germany
| | - Jessica Schäfer
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Germany
| | - Sebastian E J Ludwig
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany.,Bioanalytics, Department of Clinical Chemistry, University Medical Center Goettingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, Goettingen, Germany
| | - Uwe Wolfrum
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Germany
| |
Collapse
|
88
|
Fare CM, Villani A, Drake LE, Shorter J. Higher-order organization of biomolecular condensates. Open Biol 2021; 11:210137. [PMID: 34129784 PMCID: PMC8205532 DOI: 10.1098/rsob.210137] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A guiding principle of biology is that biochemical reactions must be organized in space and time. One way this spatio-temporal organization is achieved is through liquid–liquid phase separation (LLPS), which generates biomolecular condensates. These condensates are dynamic and reactive, and often contain a complex mixture of proteins and nucleic acids. In this review, we discuss how underlying physical and chemical processes generate internal condensate architectures. We then outline the diverse condensate architectures that are observed in biological systems. Finally, we discuss how specific condensate organization is critical for specific biological functions.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Biochemistry and Biophysics, and.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - James Shorter
- Department of Biochemistry and Biophysics, and.,Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
89
|
Yamazaki T, Yamamoto T, Yoshino H, Souquere S, Nakagawa S, Pierron G, Hirose T. Paraspeckles are constructed as block copolymer micelles. EMBO J 2021; 40:e107270. [PMID: 33885174 PMCID: PMC8204865 DOI: 10.15252/embj.2020107270] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 01/20/2023] Open
Abstract
Paraspeckles are constructed by NEAT1_2 architectural long noncoding RNAs. Their characteristic cylindrical shapes, with highly ordered internal organization, distinguish them from typical liquid-liquid phase-separated condensates. We experimentally and theoretically investigated how the shape and organization of paraspeckles are determined. We identified the NEAT1_2 RNA domains responsible for shell localization of the NEAT1_2 ends, which determine the characteristic internal organization. Using the soft matter physics, we then applied a theoretical framework to understand the principles that determine NEAT1_2 organization as well as shape, number, and size of paraspeckles. By treating paraspeckles as amphipathic block copolymer micelles, we could explain and predict the experimentally observed behaviors of paraspeckles upon NEAT1_2 domain deletions or transcriptional modulation. Thus, we propose that paraspeckles are block copolymer micelles assembled through a type of microphase separation, micellization. This work provides an experiment-based theoretical framework for the concept that ribonucleoprotein complexes (RNPs) can act as block copolymers to form RNA-scaffolding biomolecular condensates with optimal sizes and structures in cells.
Collapse
Affiliation(s)
| | - Tetsuya Yamamoto
- Institute for Chemical Reaction Design and DiscoveryHokkaido UniversitySapporoJapan
| | - Hyura Yoshino
- Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| | | | | | - Gerard Pierron
- Centre National de la Recherche ScientifiqueUMR‐9196Gustave RoussyVillejuifFrance
| | - Tetsuro Hirose
- Graduate School of Frontier BiosciencesOsaka UniversitySuitaJapan
- Institute for Genetic MedicineHokkaido UniversitySapporoJapan
| |
Collapse
|
90
|
ArcRNAs and the formation of nuclear bodies. Mamm Genome 2021; 33:382-401. [PMID: 34085114 DOI: 10.1007/s00335-021-09881-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) have long been collectively and passively defined as transcripts that do not encode proteins. However, extensive functional studies performed over the last decade have enabled the classification of lncRNAs into multiple categories according to their functions and/or molecular properties. Architectual RNAs (arcRNAs) are a group of lncRNAs that serve as architectural components of submicron-scale cellular bodies or nonmembranous organelles, which are composed of specific sets of proteins and nucleic acids involved in particular molecular processes. In this review, we focus on arcRNAs that function in the nucleus, which provide a structural basis for the formation of nuclear bodies, nonmembranous organelles in the cell nucleus. We will summarize the current list of arcRNAs and proteins associated with classic and more recently discovered nuclear bodies and discuss general rules that govern the formation of nuclear bodies, emphasizing weak multivalent interactions mediated by innately flexible biomolecules.
Collapse
|
91
|
Yao RW, Luan PF, Chen LL. An optimized fixation method containing glyoxal and paraformaldehyde for imaging nuclear bodies. RNA (NEW YORK, N.Y.) 2021; 27:725-733. [PMID: 33846273 PMCID: PMC8127994 DOI: 10.1261/rna.078671.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/08/2021] [Indexed: 05/26/2023]
Abstract
The mammalian cell nucleus contains different types of membrane-less nuclear bodies (NBs) consisting of proteins and RNAs. Microscopic imaging has been widely applied to study the organization and structure of NBs. However, current fixation methods are not optimized for such imaging: When a fixation method is chosen to maximize the quality of the RNA fluorescence in situ hybridization (FISH), it often limits the labeling efficiency of proteins or affects the ultrastructure of NBs. Here, we report that addition of glyoxal (GO) into the classical paraformaldehyde (PFA) fixation step not only improves FISH signals for RNAs in NBs via augmented permeability of the fixed nucleus and enhanced accessibility of probes, but also largely preserves protein fluorescent signals during fixation and immunostaining. We also show that GO/PFA fixation enables the covisualization of different types of nuclear bodies with minimal impact on their ultrastructures under super-resolution microscopy.
Collapse
Affiliation(s)
- Run-Wen Yao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng-Fei Luan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 330106, China
| |
Collapse
|
92
|
Onoguchi-Mizutani R, Kirikae Y, Ogura Y, Gutschner T, Diederichs S, Akimitsu N. Identification of a heat-inducible novel nuclear body containing the long noncoding RNA MALAT1. J Cell Sci 2021; 134:268337. [PMID: 34028540 DOI: 10.1242/jcs.253559] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/29/2021] [Indexed: 11/20/2022] Open
Abstract
The heat-shock response is critical for the survival of all organisms. Metastasis-associated long adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA localized in nuclear speckles, but its physiological role remains elusive. Here, we show that heat shock induces translocation of MALAT1 to a distinct nuclear body named the heat shock-inducible noncoding RNA-containing nuclear (HiNoCo) body in mammalian cells. MALAT1-knockout A549 cells showed reduced proliferation after heat shock. The HiNoCo body, which is formed adjacent to nuclear speckles, is distinct from any other known nuclear bodies, including the nuclear stress body, Cajal body, germs, paraspeckles, nucleoli and promyelocytic leukemia body. The formation of HiNoCo body is reversible and independent of heat shock factor 1, the master transcription regulator of the heat-shock response. Our results suggest the HiNoCo body participates in heat shock factor 1-independent heat-shock responses in mammalian cells.
Collapse
Affiliation(s)
| | - Yoshitaka Kirikae
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yoko Ogura
- Isotope Science Center, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Tony Gutschner
- Junior Research Group 'RNA Biology and Pathogenesis', Medical Faculty, Martin-Luther University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, 79106 Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | |
Collapse
|
93
|
Mazarakos K, Zhou HX. Macromolecular regulators have matching effects on the phase equilibrium and interfacial tension of biomolecular condensates. Protein Sci 2021; 30:1360-1370. [PMID: 33864415 DOI: 10.1002/pro.4084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/01/2023]
Abstract
The interfacial tension of phase-separated biomolecular condensates affects their fusion and multiphase organization, and yet how this important property depends on the composition and interactions of the constituent macromolecules is poorly understood. Here we use molecular dynamics simulations to determine the interfacial tension and phase equilibrium of model condensate-forming systems. The model systems consist of binary mixtures of Lennard-Jones particles or chains of such particles. We refer to the two components as drivers and regulators; the former has stronger self-interactions and hence a higher critical temperature (Tc ) for phase separation. In previous work, we have shown that, depending on the relative strengths of driver-regulator and driver-driver interactions, regulators can either promote or suppress phase separation (i.e., increase or decrease Tc ). Here we find that the effects of regulators on Tc quantitatively match the effects on interfacial tension (γ). This important finding means that, when a condensate-forming system experiences a change in macromolecular composition or a change in intermolecular interactions (e.g., by mutation or posttranslational modification, or by variation in solvent conditions such as temperature, pH, or salt), the resulting change in Tc can be used to predict the change in γ and vice versa. We also report initial results showing that disparity in intermolecular interactions drives multiphase coexistence. These findings provide much needed guidance for understanding how biomolecular condensates mediate cellular functions.
Collapse
Affiliation(s)
| | - Huan-Xiang Zhou
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
94
|
Yeom KH, Pan Z, Lin CH, Lim HY, Xiao W, Xing Y, Black DL. Tracking pre-mRNA maturation across subcellular compartments identifies developmental gene regulation through intron retention and nuclear anchoring. Genome Res 2021; 31:1106-1119. [PMID: 33832989 PMCID: PMC8168582 DOI: 10.1101/gr.273904.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/01/2021] [Indexed: 12/24/2022]
Abstract
Steps of mRNA maturation are important gene regulatory events that occur in distinct cellular locations. However, transcriptomic analyses often lose information on the subcellular distribution of processed and unprocessed transcripts. We generated extensive RNA-seq data sets to track mRNA maturation across subcellular locations in mouse embryonic stem cells, neuronal progenitor cells, and postmitotic neurons. We find disparate patterns of RNA enrichment between the cytoplasmic, nucleoplasmic, and chromatin fractions, with some genes maintaining more polyadenylated RNA in chromatin than in the cytoplasm. We bioinformatically defined four regulatory groups for intron retention, including complete cotranscriptional splicing, complete intron retention in the cytoplasmic RNA, and two intron groups present in nuclear and chromatin transcripts but fully excised in cytoplasm. We found that introns switch their regulatory group between cell types, including neuronally excised introns repressed by polypyrimidine track binding protein 1 (PTBP1). Transcripts for the neuronal gamma-aminobutyric acid (GABA) B receptor, 1 (Gabbr1) are highly expressed in mESCs but are absent from the cytoplasm. Instead, incompletely spliced Gabbr1 RNA remains sequestered on chromatin, where it is bound by PTBP1, similar to certain long noncoding RNAs. Upon neuronal differentiation, Gabbr1 RNA becomes fully processed and exported for translation. Thus, splicing repression and chromatin anchoring of RNA combine to allow posttranscriptional regulation of Gabbr1 over development. For this and other genes, polyadenylated RNA abundance does not indicate functional gene expression. Our data sets provide a rich resource for analyzing many other aspects of mRNA maturation in subcellular locations and across development.
Collapse
Affiliation(s)
- Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Zhicheng Pan
- Bioinformatics Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, California 90095, USA.,Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Han Young Lim
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
95
|
p53 mediates target gene association with nuclear speckles for amplified RNA expression. Mol Cell 2021; 81:1666-1681.e6. [PMID: 33823140 DOI: 10.1016/j.molcel.2021.03.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/05/2021] [Accepted: 03/03/2021] [Indexed: 01/01/2023]
Abstract
Nuclear speckles are prominent nuclear bodies that contain proteins and RNA involved in gene expression. Although links between nuclear speckles and gene activation are emerging, the mechanisms regulating association of genes with speckles are unclear. We find that speckle association of p53 target genes is driven by the p53 transcription factor. Focusing on p21, a key p53 target, we demonstrate that speckle association boosts expression by elevating nascent RNA amounts. p53-regulated speckle association did not depend on p53 transactivation functions but required an intact proline-rich domain and direct DNA binding, providing mechanisms within p53 for regulating gene-speckle association. Beyond p21, a substantial subset of p53 targets have p53-regulated speckle association. Strikingly, speckle-associating p53 targets are more robustly activated and occupy a distinct niche of p53 biology compared with non-speckle-associating p53 targets. Together, our findings illuminate regulated speckle association as a mechanism used by a transcription factor to boost gene expression.
Collapse
|
96
|
Gordon JM, Phizicky DV, Neugebauer KM. Nuclear mechanisms of gene expression control: pre-mRNA splicing as a life or death decision. Curr Opin Genet Dev 2021; 67:67-76. [PMID: 33291060 PMCID: PMC8084925 DOI: 10.1016/j.gde.2020.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Thousands of genes produce polyadenylated mRNAs that still contain one or more introns. These transcripts are known as retained intron RNAs (RI-RNAs). In the past 10 years, RI-RNAs have been linked to post-transcriptional alternative splicing in a variety of developmental contexts, but they can also be dead-end products fated for RNA decay. Here we discuss the role of intron retention in shaping gene expression programs, as well as recent evidence suggesting that the biogenesis and fate of RI-RNAs is regulated by nuclear organization. We discuss the possibility that proximity of RNA to nuclear speckles - biomolecular condensates that are highly enriched in splicing factors and other RNA binding proteins - is associated with choices ranging from efficient co-transcriptional splicing, export and stability to regulated post-transcriptional splicing and possible vulnerability to decay.
Collapse
Affiliation(s)
- Jackson M Gordon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - David V Phizicky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
97
|
Wang X, Zhang P, Tian L. Spatiotemporal organization of coacervate microdroplets. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
98
|
Goyal B, Yadav SRM, Awasthee N, Gupta S, Kunnumakkara AB, Gupta SC. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188502. [PMID: 33428963 DOI: 10.1016/j.bbcan.2021.188502] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 12/20/2022]
Abstract
Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) is a widely studied lncRNA in cancer. Although dispensable for normal physiology, MALAT1 is important for cancer-related pathways regulation. It is localized in the nuclear speckles periphery along with centrally located pre-RNA splicing factors. MALAT1 associated cancer signaling pathways include MAPK/ERK, PI3K/AKT, β-catenin/Wnt, Hippo, VEGF, YAP, etc. Molecular tools such as immunoprecipitation, RNA pull-down, reporter assay, Northern blotting, microarray, and q-RT-PCR has been used to elucidate MALAT1's function in cancer pathogenesis. MALAT1 can regulate multiple steps in the development of tumours. The diagnostic and prognostic significance of MALAT1 has been demonstrated in cancers of the breast, cervix, colorectum, gallbladder, lung, ovary, pancreas, prostate, glioma, hepatocellular carcinoma, and multiple myeloma. MALAT1 has also emerged as a novel therapeutic target for solid as well as hematological malignancies. In experimental models, siRNA and antisense oligonucleotide (ASO) based strategy has been used for targeting MALAT1. The lncRNA has also been targeted for the chemosensitization and radiosensitization of cancer cells. However, most studies have been performed in preclinical models. How the cross-talk of MALAT1 with other signaling pathways affect cancer pathogenesis is the focus of this article. The diagnostic, prognostic, and therapeutic significance of MALAT1 in multiple cancer types are discussed.
Collapse
Affiliation(s)
- Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Shashi Ranjan Mani Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Nikee Awasthee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sweety Gupta
- Department of Radiation Oncology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Ajaikumar B Kunnumakkara
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, India
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
99
|
Sas-Nowosielska H, Magalska A. Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus. Int J Mol Sci 2021; 22:ijms22073478. [PMID: 33801737 PMCID: PMC8037058 DOI: 10.3390/ijms22073478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to regulate chromatin organization is particularly important in neurons, which dynamically respond to external stimuli. Accumulating evidence shows that lncRNAs play important architectural roles in organizing different nuclear domains like inactive chromosome X, splicing speckles, paraspeckles, and Gomafu nuclear bodies. LncRNAs are abundantly expressed in the nervous system where they may play important roles in compartmentalization of the cell nucleus. In this review we will describe the architectural role of lncRNAs in the nuclei of neuronal cells.
Collapse
|
100
|
Chin MY, Espinosa JA, Pohan G, Markossian S, Arkin MR. Reimagining dots and dashes: Visualizing structure and function of organelles for high-content imaging analysis. Cell Chem Biol 2021; 28:320-337. [PMID: 33600764 PMCID: PMC7995685 DOI: 10.1016/j.chembiol.2021.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Organelles are responsible for biochemical and cellular processes that sustain life and their dysfunction causes diseases from cancer to neurodegeneration. While researchers are continuing to appreciate new roles of organelles in disease, the rapid development of specifically targeted fluorescent probes that report on the structure and function of organelles will be critical to accelerate drug discovery. Here, we highlight four organelles that collectively exemplify the progression of phenotypic discovery, starting with mitochondria, where many functional probes have been described, then continuing with lysosomes and Golgi and concluding with nascently described membraneless organelles. We introduce emerging probe designs to explore organelle-specific morphology and dynamics and highlight recent case studies using high-content analysis to stimulate further development of probes and approaches for organellar high-throughput screening.
Collapse
Affiliation(s)
- Marcus Y Chin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Jether Amos Espinosa
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Grace Pohan
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|