51
|
Zhang ZR, Song B, McCarty NA. State-dependent chemical reactivity of an engineered cysteine reveals conformational changes in the outer vestibule of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 2005; 280:41997-2003. [PMID: 16227620 DOI: 10.1074/jbc.m510242200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels are gated by binding and hydrolysis of ATP at the nucleotide-binding domains (NBDs). We used covalent modification of CFTR channels bearing a cysteine engineered at position 334 to investigate changes in pore conformation that might accompany channel gating. In single R334C-CFTR channels studied in excised patches, modification by [2-(trimethylammonium)ethyl] methanethiosulfonate (MTSET+), which increases conductance, occurred only during channel closed states. This suggests that the rate of reaction of the cysteine was greater in closed channels than in open channels. R334C-CFTR channels in outside-out macropatches activated by ATP alone were modified with first order kinetics upon rapid exposure to MTSET+. Modification was much slower when channels were locked open by the addition of nonhydrolyzable nucleotide or when the R334C mutation was coupled to a second mutation, K1250A, which greatly decreases channel closing rate. In contrast, modification was faster in R334C/K464A-CFTR channels, which exhibit prolonged interburst closed states. These data indicate that the reactivity of the engineered cysteine in R334C-CFTR is state-dependent, providing evidence of changes in pore conformation coupled to ATP binding and hydrolysis at the NBDs. The data also show that maneuvers that lock open R334C-CFTR do so by locking channels into the prominent s2 subconductance state, suggesting that the most stable conducting state of the pore reflects the fully occupied, prehydrolytic state of the NBDs.
Collapse
Affiliation(s)
- Zhi-Ren Zhang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | | | |
Collapse
|
52
|
Zhang ZR, Zeltwanger S, McCarty NA. Steady-state interactions of glibenclamide with CFTR: evidence for multiple sites in the pore. J Membr Biol 2005; 199:15-28. [PMID: 15366420 DOI: 10.1007/s00232-004-0672-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The objective of the present study was to clarify the mechanism by which the sulfonylurea drug, glibenclamide, inhibits single CFTR channels in excised patches from Xenopus oocytes. Glibenclamide blocks the open pore of the channel via binding at multiple sites with varying kinetics. In the absence of glibenclamide, open-channel bursts exhibited a flickery intraburst closed state (C1); this is due to block of the pore by the pH buffer, TES. Application of 25 microM glibenclamide to the cytoplasmic solution resulted in the appearance of two drug-induced intraburst closed states (C2, C3) of widely different duration, which differed in pH-dependence. The kinetics of interaction with the C3 state, but not the C2 state, were strongly voltage-dependent. The durations of both the C2 and C3 states were concentration-dependent, indicating a non-linear reaction scheme. Application of drug also increased the burst duration, which is consistent with an open-channel blocking mechanism. A kinetic model is proposed. These results indicate that glibenclamide interacts with open CFTR channels in a complex manner, involving interactions with multiple binding sites in the channel pore.
Collapse
Affiliation(s)
- Z R Zhang
- School of Biology, Georgia Institute of Technology, and Department of Physiology, Emory University School of Medicine, Atlanta, GA 30332, USA
| | | | | |
Collapse
|
53
|
Abstract
The assembly of the cystic fibrosis transmembrane regulator (CFTR) chloride channel is of interest from the broad perspective of understanding how ion channels and ABC transporters are formed as well as dealing with the mis-assembly of CFTR in cystic fibrosis. CFTR is functionally distinct from other ABC transporters because it permits bidirectional permeation of anions rather than vectorial transport of solutes. This adaptation of the ABC transporter structure can be rationalized by considering CFTR as a hydrolyzable-ligand-gated channel with cytoplasmic ATP as ligand. Channel gating is initiated by ligand binding when the protein is also phosphorylated by protein kinase A and made reversible by ligand hydrolysis. The two nucleotide-binding sites play different roles in channel activation. CFTR self-associates, possibly as a function of its activation, but most evidence, including the low-resolution three-dimensional structure, indicates that the channel is monomeric. Domain assembly and interaction within the monomer is critical in maturation, stability, and function of the protein. Disease-associated mutations, including the most common, DeltaF508, interfere with domain folding and association, which occur both co- and post-translationally. Intermolecular interactions of mature CFTR have been detected primarily with the N- and C-terminal tails, and these interactions have some impact not only on channel function but also on localization and processing within the cell. The biosynthetic processing of the nascent polypeptide leading to channel assembly involves transient interactions with numerous chaperones and enzymes on both sides of the endoplasmic reticulum membrane.
Collapse
Affiliation(s)
- John R Riordan
- Mayo Clinic College of Medicine, Scottsdale, Arizona, 85259, USA.
| |
Collapse
|
54
|
Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJV, Verkman AS. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. ACTA ACUST UNITED AC 2005; 124:125-37. [PMID: 15277574 PMCID: PMC2229623 DOI: 10.1085/jgp.200409059] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated epithelial Cl− channel that, when defective, causes cystic fibrosis. Screening of a collection of 100,000 diverse small molecules revealed four novel chemical classes of CFTR inhibitors with Ki < 10 μM, one of which (glycine hydrazides) had many active structural analogues. Analysis of a series of synthesized glycine hydrazide analogues revealed maximal inhibitory potency for N-(2-naphthalenyl) and 3,5-dibromo-2,4-dihydroxyphenyl substituents. The compound N-(2-naphthalenyl)-[(3,5-dibromo-2,4-dihydroxyphenyl)methylene]glycine hydrazide (GlyH-101) reversibly inhibited CFTR Cl− conductance in <1 min. Whole-cell current measurements revealed voltage-dependent CFTR block by GlyH-101 with strong inward rectification, producing an increase in apparent inhibitory constant Ki from 1.4 μM at +60 mV to 5.6 μM at −60 mV. Apparent potency was reduced by lowering extracellular Cl− concentration. Patch-clamp experiments indicated fast channel closures within bursts of channel openings, reducing mean channel open time from 264 to 13 ms (−60 mV holding potential, 5 μM GlyH-101). GlyH-101 inhibitory potency was independent of pH from 6.5–8.0, where it exists predominantly as a monovalent anion with solubility ∼1 mM in water. Topical GlyH-101 (10 μM) in mice rapidly and reversibly inhibited forskolin-induced hyperpolarization in nasal potential differences. In a closed-loop model of cholera, intraluminal GlyH-101 (2.5 μg) reduced by ∼80% cholera toxin–induced intestinal fluid secretion. Compared with the thiazolidinone CFTR inhibitor CFTRinh-172, GlyH-101 has substantially greater water solubility and rapidity of action, and a novel inhibition mechanism involving occlusion near the external pore entrance. Glycine hydrazides may be useful as probes of CFTR pore structure, in creating animal models of CF, and as antidiarrheals in enterotoxic-mediated secretory diarrheas.
Collapse
Affiliation(s)
- Chatchai Muanprasat
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0521, USA
| | | | | | | | | | | |
Collapse
|
55
|
Fuller MD, Zhang ZR, Cui G, Kubanek J, McCarty NA. Inhibition of CFTR channels by a peptide toxin of scorpion venom. Am J Physiol Cell Physiol 2004; 287:C1328-41. [PMID: 15240343 DOI: 10.1152/ajpcell.00162.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide toxins have been valuable probes in efforts to identify amino acid residues that line the permeation pathway of cation-selective channels. However, no peptide toxins have been identified that interact with known anion-selective channels such as the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR channels are expressed in epithelial cells and are associated with several genetic disorders, including cystic fibrosis and polycystic kidney disease. Several organic inhibitors have been used to investigate the structure of the Cl−permeation pathway in CFTR. However, investigations of the wider cytoplasmic vestibule have been hindered by the lack of a high-affinity blocker that interacts with residues in this area. In this study we show that venom of the scorpion Leiurus quinquestriatus hebraeus reversibly inhibits CFTR, in a voltage-independent manner, by decreasing single-channel mean burst duration and open probability only when applied to the cytoplasmic surface of phosphorylated channels. Venom was able to decrease burst duration and open probability even when CFTR channels were locked open by treatment with either vanadate or adenosine 5′-(β,γ-imido)triphosphate, and block was strengthened on reduction of extracellular Cl−concentration, suggesting inhibition by a pore-block mechanism. Venom had no effect on ATP-dependent macroscopic opening rate in channels studied by inside-out macropatches. Interestingly, the inhibitory activity was abolished by proteinase treatment. We conclude that a peptide toxin contained in the scorpion venom inhibits CFTR channels by a pore-block mechanism; these experiments provide the first step toward isolation of the active component, which would be highly valuable as a probe for CFTR structure and function.
Collapse
Affiliation(s)
- Matthew D Fuller
- Program in Molecular and Systems Pharacology, Emory University, Atlanta, Georgia 30322-3090, USA
| | | | | | | | | |
Collapse
|
56
|
Zhang ZR, Cui G, Zeltwanger S, McCarty NA. Time-dependent Interactions of Glibenclamide with CFTR: Kinetically Complex Block of Macroscopic Currents. J Membr Biol 2004; 201:139-55. [PMID: 15711774 DOI: 10.1007/s00232-004-0712-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 08/16/2004] [Indexed: 12/15/2022]
Abstract
Blockade of the CFTR chloride channel by glibenclamide was studied in Xenopus oocytes using two-electrode voltage-clamp recordings, macropatch recordings, and summations of single-channel currents, in order to test a kinetic model recently developed by us from single-channel experiments. Both the forward and reverse macroscopic reactions, at negative and positive membrane potential V(M), respectively, were slow in comparison to those reactions for other CFTR pore blockers such as DPC and NPPB, resulting in prominent relaxations on the order of tens of milliseconds. The rate of the reverse reaction was voltage-dependent, and dependent on the Cl(-) driving force, while that of the forward reaction was not. In inside-out macropatches, block and relief from block occurred in two distinct phases that differed in apparent affinity. The results are consistent with the presence of multiple glibenclamide binding sites in CFTR, with varying affinity and voltage dependence; they support the kinetic model and suggest experimental approaches for identification of those sites by mutagenesis.
Collapse
Affiliation(s)
- Z-R Zhang
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | | | |
Collapse
|
57
|
Ge N, Muise CN, Gong X, Linsdell P. Direct comparison of the functional roles played by different transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 2004; 279:55283-9. [PMID: 15504721 DOI: 10.1074/jbc.m411935200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel contains 12 transmembrane (TM) regions that are presumed to form the channel pore. However, little is known about the relative functional contribution of different TM regions to the pore. We have used patch clamp recording to investigate the functional consequences of point mutations throughout the six transmembrane regions in the N-terminal part of the CFTR protein (TM1-TM6). A range of specific functional assays compared the single channel conductance, anion binding, and anion selectivity properties of different channel variants. Overall, our results suggest that TM1 and -6 play dominant roles in forming the channel pore and determining its functional properties, with TM5 perhaps playing a lesser role. In contrast, TM2, -3, and -4 appear to play only minor supporting roles. These results define transmembrane regions 1 and 6 as major contributors to the CFTR channel pore and have strong implications for emerging structural models of CFTR and related ATP-binding cassette proteins.
Collapse
Affiliation(s)
- Ning Ge
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
58
|
Zhang ZR, Cui G, Liu X, Song B, Dawson DC, McCarty NA. Determination of the functional unit of the cystic fibrosis transmembrane conductance regulator chloride channel. One polypeptide forms one pore. J Biol Chem 2004; 280:458-68. [PMID: 15504728 DOI: 10.1074/jbc.m409626200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The magnitudes and distributions of subconductance states were studied in chloride channels formed by the wild-type cystic fibrosis transmembrane conductance regulator (CFTR) and in CFTRs bearing amino acid substitutions in transmembrane segment 6. Within an open burst, it was possible to distinguish three distinct conductance states referred to as the full conductance, subconductance 1, and subconductance 2 states. Amino acid substitutions in transmembrane segment 6 altered the duration and probability of occurrence of these subconductance states but did not greatly alter their relative amplitudes. Results from real time measurements indicated that covalent modification of single R334C-CFTR channels by [2-(trimethylammonium)ethyl]methanethiosulfonate resulted in the simultaneous modification of all three conductance levels in what appeared to be a single step, without changing the proportion of time spent in each state. This behavior suggests that at least a portion of the conduction path is common to all three conducting states. The time course for the modification of R334C-CFTR, measured in outside-out macropatches using a rapid perfusion system, was also consistent with a single modification step as if each pore contained only a single copy of the cysteine at position 334. These results are consistent with a model for the CFTR conduction pathway in which a single anion-conducting pore is formed by a single CFTR polypeptide.
Collapse
Affiliation(s)
- Zhi-Ren Zhang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | | | | | | | | | |
Collapse
|
59
|
Kidd JF, Kogan I, Bear CE. Molecular Basis for the Chloride Channel Activity of Cystic Fibrosis Transmembrane Conductance Regulator and the Consequences of Disease-Causing Mutations. Curr Top Dev Biol 2004; 60:215-49. [PMID: 15094300 DOI: 10.1016/s0070-2153(04)60007-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Jackie F Kidd
- Programme in Structural Biology and Biochemistry Research Institute, Hospital for Sick Children, Department of Physiology, University of Toronto, Toronto Canada M5G 1X8
| | | | | |
Collapse
|
60
|
Cai Z, Scott-Ward TS, Sheppard DN. Voltage-dependent gating of the cystic fibrosis transmembrane conductance regulator Cl- channel. J Gen Physiol 2003; 122:605-20. [PMID: 14581585 PMCID: PMC2229579 DOI: 10.1085/jgp.200308921] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Accepted: 10/02/2003] [Indexed: 11/30/2022] Open
Abstract
When excised inside-out membrane patches are bathed in symmetrical Cl--rich solutions, the current-voltage (I-V) relationship of macroscopic cystic fibrosis transmembrane conductance regulator (CFTR) Cl- currents inwardly rectifies at large positive voltages. To investigate the mechanism of inward rectification, we studied CFTR Cl- channels in excised inside-out membrane patches from cells expressing wild-type human and murine CFTR using voltage-ramp and -step protocols. Using a voltage-ramp protocol, the magnitude of human CFTR Cl- current at +100 mV was 74 +/- 2% (n = 10) of that at -100 mV. This rectification of macroscopic CFTR Cl- current was reproduced in full by ensemble currents generated by averaging single-channel currents elicited by an identical voltage-ramp protocol. However, using a voltage-step protocol the single-channel current amplitude (i) of human CFTR at +100 mV was 88 +/- 2% (n = 10) of that at -100 mV. Based on these data, we hypothesized that voltage might alter the gating behavior of human CFTR. Using linear three-state kinetic schemes, we demonstrated that voltage has marked effects on channel gating. Membrane depolarization decreased both the duration of bursts and the interburst interval, but increased the duration of gaps within bursts. However, because the voltage dependencies of the different rate constants were in opposite directions, voltage was without large effect on the open probability (Po) of human CFTR. In contrast, the Po of murine CFTR was decreased markedly at positive voltages, suggesting that the rectification of murine CFTR is stronger than that of human CFTR. We conclude that inward rectification of CFTR is caused by a reduction in i and changes in gating kinetics. We suggest that inward rectification is an intrinsic property of the CFTR Cl- channel and not the result of pore block.
Collapse
Affiliation(s)
- Zhiwei Cai
- Department of Physiology, School of Medical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK.
| | | | | |
Collapse
|
61
|
Assef YA, Damiano AE, Zotta E, Ibarra C, Kotsias BA. CFTR in K562 human leukemic cells. Am J Physiol Cell Physiol 2003; 285:C480-8. [PMID: 12842835 DOI: 10.1152/ajpcell.00320.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, the expression and functional characterization of CFTR (cystic fibrosis transmembrane regulator) was determined in K562 chronic human leukemia cells. Expression of the CFTR gene product was determined by RT-PCR and confirmed by immunohistochemistry and Western blot analysis. Functional characterization of CFTR Cl- channel activity was conducted with patch-clamp techniques. Forskolin, an adenylyl cyclase activator, induced an anion-selective channel with a linear current-voltage relationship and a single-channel conductance of 11 pS. This cAMP-activated channel had a Pgluconate/PCl or PF/PCl perm-selectivity ratio of 0.35 and 0.30, respectively, and was inhibited by the CFTR blocker glibenclamide and the anti-CFTR antibody MAb 13-1, when added to the cytoplasmatic side of the patch. Glibenclamide decreased the open probability increasing the frequency of open-to-closed transitions. Addition of 200 microM DIDS caused an irreversible block of the channels when added to the cytosolic side of inside-out patches. These and other observations indicate a widespread distribution of CFTR gene expression and suggest that this channel protein may function in most human cells to help maintain cellular homeostasis.
Collapse
MESH Headings
- 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology
- Antibodies/pharmacology
- Cell Membrane/genetics
- Cell Membrane/metabolism
- Colforsin/pharmacology
- Cyclic AMP/metabolism
- Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors
- Cystic Fibrosis Transmembrane Conductance Regulator/genetics
- Cystic Fibrosis Transmembrane Conductance Regulator/metabolism
- Glyburide/pharmacology
- Hematopoietic Stem Cells/metabolism
- Homeostasis/drug effects
- Homeostasis/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Membrane Potentials/drug effects
- Membrane Potentials/genetics
- RNA, Messenger/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Yanina A Assef
- Instituto de Investigaciones Médicas Alfredo Lanari, Universidad de Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
62
|
Gong X, Linsdell P. Molecular determinants and role of an anion binding site in the external mouth of the CFTR chloride channel pore. J Physiol 2003; 549:387-97. [PMID: 12679372 PMCID: PMC2342941 DOI: 10.1113/jphysiol.2002.038232] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chloride permeation through the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is blocked by highly lyotropic permeant anions which bind tightly within the pore. Here we show that several different substitutions of a positively charged amino acid residue, arginine R334, in the putative outer mouth of the CFTR pore, greatly reduce the block caused by lyotropic Au(CN)2- ions applied to the intracellular side of the channel. Fixed positive charge at this site appears to play a role in Au(CN)2- binding, as judged by multiple substitutions of differently charged amino acid side chains and also by the pH dependence of block conferred by the R334H mutant. However, non-charge-dependent effects also appear to contribute to Au(CN)2- binding. Mutation of R334 also disrupts the apparent electrostatic interaction between intracellular Au(CN)2- ions and extracellular permeant anions, an interaction which normally acts to relieve channel block. All six mutations studied at R334 significantly weakened this interaction, suggesting that arginine possesses a unique ability to coordinate ion-ion interactions at this site in the pore. Our results suggest that lyotropic anions bind tightly to a site in the outer mouth of the CFTR pore that involves interaction with a fixed positive charge. Binding to this site is also involved in coordination of multiple permeant anions within the pore, suggesting that anion binding in the outer mouth of the pore is an important aspect in the normal anion permeation mechanism.
Collapse
Affiliation(s)
- Xiandi Gong
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
63
|
Abstract
AIM This review describes molecular and functional properties of the following Cl- channels: the ClC family of voltage-dependent Cl- channels, the cAMP-activated transmembrane conductance regulator (CFTR), Ca2+ activated Cl- channels (CaCC) and volume-regulated anion channels (VRAC). If structural data are available, their relationship with the function of Cl- channels will be discussed. We also describe shortly some recently discovered channels, including high conductance Cl- channels and the family of bestrophins. We illustrate the growing physiological importance of these channels in the plasma membrane and in intracellular membranes, including their involvement in transepithelial transport, pH regulation of intracellular organelles, regulation of excitability and volume regulation. Finally, we discuss the role of Cl- channels in various diseases and describe the pathological phenotypes observed in knockout mice models.
Collapse
Affiliation(s)
- B Nilius
- KU Leuven, Laboratorium voor Fysiologie, Campus Gasthuisberg, Leuven, Belgium
| | | |
Collapse
|
64
|
Wood CM, Matsuo AYO, Gonzalez RJ, Wilson RW, Patrick ML, Val AL. Mechanisms of ion transport inPotamotrygon, a stenohaline freshwater elasmobranch native to the ion-poor blackwaters of the Rio Negro. J Exp Biol 2002; 205:3039-54. [PMID: 12200407 DOI: 10.1242/jeb.205.19.3039] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYStingrays of the family Potamotrygonidae are the only stenohaline freshwater elasmobranchs. Potomotrygon sp. collected from the ion-poor blackwaters ([Na+], [Cl-] and[Ca2+]=10-30 μmol l-1, pH 6.1) of the Rio Negro,Amazonas, Brazil, were ammoniotelic (91% ammonia-N, 9% urea-N excretion) and exhibited blood chemistry (Na+, Cl-, urea, ammonia and glucose levels and osmolality) typical of freshwater teleosts. Unidirectional Na+ and Cl- influx rates, measured with radiotracers,displayed saturation kinetics. The relationships for Cl- and Na+ had similar Km values (300-500 μmol l-1), but Jmax values for Cl-(approximately 950 μmol kg-1 h-1) were almost twice those for Na+ (approximately 500 μmol kg-1h-1). Cl- efflux rates varied with external concentration, but Na+ efflux rates did not. There were no differences in the kinetic variables (Km, Jmax) for influx between animals acclimated to their native ion-poor blackwater or to ion-rich hard water, but efflux rates for both Na+ and Cl- were lower in the former, yielding much lower balance points (external Na+ or Cl- levels at which influx and efflux were equal). Na+, Cl- and Ca2+ uptake were all strongly inhibited by acute exposure to pH 4.0, but efflux rates and Ca2+ binding to the body surface did not change. Na+ influx was inhibited by amiloride (10-4 mol l-1) and by two of its analogs, phenamil (4×10-5mol l-1) and HMA (4×10-5 mol l-1), with the latter being slightly more potent, while Cl- fluxes were unaffected. Cl- fluxes were insensitive to DIDS(2×10-5 mol l-1 or 10-4 mol l-1) and SITS (10-4 mol l-1), but both influx and efflux rates were strongly inhibited by DPC (10-4 mol l-1) and thiocyanate (10-4 mol l-1). Ammonia excretion was unresponsive to large changes in water Na+concentration, but was elevated by 70% during acute exposure to pH 4.0 and transiently inhibited by approximately 50% by amiloride and its analogues. The strategy of adaptation to ion-poor blackwater appears similar to that of some Rio Negro teleosts (Cichlidae) in which low-affinity transport systems are relatively sensitive to inhibition by low pH but are complemented by low diffusive loss rates. Ionic transport systems in these freshwater elasmobranchs, although superficially similar to those in some freshwater teleosts, may bear more resemblance to their presumed evolutionary precursors in marine elasmobranchs.
Collapse
Affiliation(s)
- Chris M Wood
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazon Research (INPA), Alameda Cosme Ferreira, 1756-Aleixo, 69083-000 Manaus, Amazonas, Brazil.
| | | | | | | | | | | |
Collapse
|
65
|
Landmesser H, Stein A, Blüschke B, Brinkmann M, Hunke S, Schneider E. Large-scale purification, dissociation and functional reassembly of the maltose ATP-binding cassette transporter (MalFGK(2)) of Salmonella typhimurium. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:64-72. [PMID: 12225853 DOI: 10.1016/s0005-2736(02)00506-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The maltose ATP-binding cassette (ABC) transporter of Salmonella typhimurium is composed of a membrane-associated complex (MalFGK(2)) and a periplasmic substrate binding protein. To further elucidate protein-protein interactions between the subunits, we have studied the dissociation and reassembly of the MalFGK(2) complex at the level of purified components in proteoliposomes. First, we optimized the yield in purified complex protein by taking advantage of a newly constructed expression plasmid that carries the malK, malF and malG genes in tandem orientation. Incorporated in proteoliposomes, the complex exhibited maltose binding protein/maltose-dependent ATPase activity with a V(max) of 1.25 micromol P(i)/min/mg and a K(m) of 0.1 mM. ATPase activity was sensitive to vanadate and enzyme IIA(Glc), a component of the enterobacterial glucose transport system. The proteoliposomes displayed maltose transport activity with an initial rate of 61 nmol/min/mg. Treatment of proteoliposomes with 6.6 M urea resulted in the release of medium-exposed MalK subunits concomitant with the complete loss of ATPase activity. By adding increasing amounts of purified MalK to urea-treated proteoliposomes, about 50% of vanadate-sensitive ATPase activity relative to the control could be recovered. Furthermore, the phenotype of MalKQ140K that exhibits ATPase activity in solution but not when associated with MalFG was confirmed by reassembly with MalK-depleted proteoliposomes.
Collapse
Affiliation(s)
- Heidi Landmesser
- Humboldt Universität zu Berlin, Institut für Biologie, Bakterienphysiologie, Chausseestr. 117, D-10115, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
66
|
Lemonnier L, Vitko Y, Shuba YM, Vanden Abeele F, Prevarskaya N, Skryma R. Direct modulation of volume-regulated anion channels by Ca(2+) chelating agents. FEBS Lett 2002; 521:152-6. [PMID: 12067708 DOI: 10.1016/s0014-5793(02)02863-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) chelating agents are widely used in biological research for Ca(2+) buffering. Here we report that BAPTA, EDTA and HEDTA produce fast, reversible, voltage-dependent inhibition of swelling-activated Cl(-) current (I(Cl,swell)) in LNCaP prostate cancer epithelial cells that is unrelated to their Ca(2+) binding. BAPTA was the most effective (maximal blockade 67%, IC(50)=70 microM, at +100 mV) followed by EDTA and HEDTA. I(Cl,swell) blockade by EDTA was pH-dependent. BAPTA blocked I(Cl,swell) also in other cell types. We conclude that Ca(2+) chelating agents block I(Cl,swell) by acting directly on the underlying channel, and that the negative charge of the free chelator form is critical for the blockade.
Collapse
Affiliation(s)
- L Lemonnier
- Laboratoire de Physiologie Cellulaire, INSERM EPI 9938, Bât. SN3, USTL, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | |
Collapse
|
67
|
Gong X, Burbridge SM, Cowley EA, Linsdell P. Molecular determinants of Au(CN)(2)(-) binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl(-) channel pore. J Physiol 2002; 540:39-47. [PMID: 11927667 PMCID: PMC2290216 DOI: 10.1113/jphysiol.2001.013235] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Lyotropic anions with low free energy of hydration show both high permeability and tight binding in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel pore. However, the molecular bases of anion selectivity and anion binding within the CFTR pore are not well defined and the relationship between binding and selectivity is unclear. We have studied the effects of point mutations throughout the sixth transmembrane (TM6) region of CFTR on channel block by, and permeability of, the highly lyotropic Au(CN)(2)(-) anion, using patch clamp recording from transiently transfected baby hamster kidney cells. Channel block by 100 microM Au(CN)(2)(-), a measure of intrapore anion binding affinity, was significantly weakened in the CFTR mutants K335A, F337S, T338A and I344A, significantly strengthened in S341A and R352Q and unaltered in K329A. Relative Au(CN)(2)(-) permeability was significantly increased in T338A and S341A, significantly decreased in F337S and unaffected in all other mutants studied. These results are used to define a model of the pore containing multiple anion binding sites but a more localised anion selectivity region. The central part of TM6 (F337-S341) appears to be the main determinant of both anion binding and anion selectivity. However, comparison of the effects of individual mutations on binding and selectivity suggest that these two aspects of the permeation mechanism are not strongly interdependent.
Collapse
Affiliation(s)
- Xiandi Gong
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | |
Collapse
|
68
|
Zhang ZR, Zeltwanger S, Smith SS, Dawson DC, McCarty NA. Voltage-sensitive gating induced by a mutation in the fifth transmembrane domain of CFTR. Am J Physiol Lung Cell Mol Physiol 2002; 282:L135-45. [PMID: 11741825 DOI: 10.1152/ajplung.2002.282.1.l135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A mutation in the fifth transmembrane domain of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel (V317E) resulted in whole cell currents that exhibited marked outward rectification on expression in Xenopus oocytes. However, the single-channel unitary current (i)-voltage (V) relationship failed to account for the rectification of whole cell currents. In excised patches containing one to a few channels, the time-averaged single-channel current (I)-V relationship (I = N x P(o) x i, where N is the number of active channels and P(o) is open probability) of V317E CFTR displayed outward rectification, whereas that of wild-type CFTR was linear, indicating that the P(o) of V317E CFTR is voltage dependent. The decrease in P(o) at negative potentials was due to both a decreased burst duration and a decreased opening rate that could not be ameliorated by a 10-fold increase in ATP concentration. This behavior appears to reflect a true voltage dependence of the gating process because the P(o)-V relationship did not depend on the direction of Cl(-) movement. The results are consistent with the introduction, by a point mutation, of a novel voltage-dependent gating mode that may provide a useful tool for probing the portions of the protein that move in response to ATP-dependent gating.
Collapse
Affiliation(s)
- Zhi-Ren Zhang
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
69
|
The endogenous calcium-activated Cl channel in Xenopus oocytes: A physiologically and biophysically rich model system. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)53026-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
70
|
Smith SS, Liu X, Zhang ZR, Sun F, Kriewall TE, McCarty NA, Dawson DC. CFTR: covalent and noncovalent modification suggests a role for fixed charges in anion conduction. J Gen Physiol 2001; 118:407-31. [PMID: 11585852 PMCID: PMC2233702 DOI: 10.1085/jgp.118.4.407] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The goal of the experiments described here was to explore the possible role of fixed charges in determining the conduction properties of CFTR. We focused on transmembrane segment 6 (TM6) which contains four basic residues (R334, K335, R347, and R352) that would be predicted, on the basis of their positions in the primary structure, to span TM6 from near the extracellular (R334, K335) to near the intracellular (R347, R352) end. Cysteines substituted at positions 334 and 335 were readily accessible to thiol reagents, whereas those at positions 347 and 352 were either not accessible or lacked significant functional consequences when modified. The charge at positions 334 and 335 was an important determinant of CFTR channel function. Charge changes at position 334--brought about by covalent modification of engineered cysteine residues, pH titration of cysteine and histidine residues, and amino acid substitution--produced similar effects on macroscopic conductance and the shape of the I-V plot. The effect of charge changes at position 334 on conduction properties could be described by electrodiffusion or rate-theory models in which the charge on this residue lies in an external vestibule of the pore where it functions to increase the concentration of Cl adjacent to the rate-limiting portion of the conduction path. Covalent modification of R334C CFTR increased single-channel conductance determined in detached patches, but did not alter open probability. The results are consistent with the hypothesis that in wild-type CFTR, R334 occupies a position where its charge can influence the distribution of anions near the mouth of the pore.
Collapse
Affiliation(s)
- Stephen S. Smith
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, OR 97201
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Xuehong Liu
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, OR 97201
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109
| | - Zhi-Ren Zhang
- Department of Physiology, Emory University, Atlanta, GA 30322
- Center for Cell and Molecular Signaling, Emory University, Atlanta, GA 30322
| | - Fang Sun
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109
| | | | - Nael A. McCarty
- Department of Physiology, Emory University, Atlanta, GA 30322
- Center for Cell and Molecular Signaling, Emory University, Atlanta, GA 30322
| | - David C. Dawson
- Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland, OR 97201
- Department of Physiology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
71
|
McCarty NA, Zhang ZR. Identification of a region of strong discrimination in the pore of CFTR. Am J Physiol Lung Cell Mol Physiol 2001; 281:L852-67. [PMID: 11557589 DOI: 10.1152/ajplung.2001.281.4.l852] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The variety of methods used to identify the structural determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator Cl(-) channel has made it difficult to assemble the data into a coherent framework that describes the three-dimensional structure of the pore. Here, we compare the relative importance of sites previously studied and identify new sites that contribute strongly to anion selectivity. We studied Cl(-) and substitute anions in oocytes expressing wild-type cystic fibrosis transmembrane conductance regulator or 12-pore-domain mutants to determine relative permeability and relative conductance for 9 monovalent anions and 1 divalent anion. The data indicate that the region of strong discrimination resides between T338 and S341 in transmembrane 6, where mutations affected selectivity between Cl(-) and both large and small anions. Mutations further toward the extracellular end of the pore only strongly affected selectivity between Cl(-) and larger anions. Only mutations at S341 affected selectivity between monovalent and divalent anions. The data are consistent with a narrowing of the pore between the extracellular end and a constriction near the middle of the pore.
Collapse
Affiliation(s)
- N A McCarty
- Department of Physiology and Pediatrics, Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
72
|
Fu J, Kirk KL. Cysteine substitutions reveal dual functions of the amino-terminal tail in cystic fibrosis transmembrane conductance regulator channel gating. J Biol Chem 2001; 276:35660-8. [PMID: 11468285 DOI: 10.1074/jbc.m105079200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we observed that the cystic fibrosis transmembrane conductance regulator (CFTR) channel openings are destabilized by replacing several acidic residues in the amino-terminal tail with alanines (Naren, A. P., Cormet-Boyaka, E., Fu, J., Villain, M., Blalock, J. E., Quick, M. W., and Kirk, K. L. (1999) Science 286, 544-548). Here we determined whether this effect is due to the loss of negative charge at these sites and whether the amino-terminal tail also modulates other aspects of channel gating. We introduced cysteines at two of these positions (E54C/D58C) and tested a series of methanethiosulfonate (MTS) reagents for their effects on the gating properties of these cysteine mutants in intact Xenopus oocytes and excised membrane patches. Covalent modification of these sites with either neutral (MMTS) or charged (2-carboxyethylmethanethiosulfonate (MTSCE) and 2-(trimethylammonium)ethylmethanethiosulfonate (MTSET)) reagents markedly inhibited channel open probability primarily by reducing the rate of channel opening. The MTS reagents had negligible effects on the gating of the wild type channel or a corresponding double alanine mutant (E54A/D58A) under the same conditions. The inhibition of the opening rate of the E54C/D58C mutant channel by MMTS could be reversed by the reducing agent dithiothreitol (200 microm) or by elevating the bath ATP concentration above that required to activate maximally the wild type channel (>1 mm). Interestingly, the three MTS reagents had qualitatively different effects on the duration of channel openings (i.e. channel closing rate), namely the duration of openings was negligibly changed by the neutral MMTS, decreased by the positively charged MTSET, and increased by the negatively charged MTSCE. Our results indicate that the CFTR amino tail modulates both the rates of channel opening and channel closing and that the negative charges at residues 54 and 58 are important for controlling the duration of channel openings.
Collapse
Affiliation(s)
- J Fu
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
73
|
Colomar A, Amédée T. ATP stimulation of P2X(7) receptors activates three different ionic conductances on cultured mouse Schwann cells. Eur J Neurosci 2001; 14:927-36. [PMID: 11595031 DOI: 10.1046/j.0953-816x.2001.01714.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extracellular ATP, by acting on P2 purinergic receptors, is a potent mediator of cell-to-cell communication both within and between the nervous and the immune systems. We show here by patch-clamp recording, fluorescent dye uptake and immunocytochemistry that, in cultured mouse Schwann cells, ATP activates a P2X(7) receptor associated with three different ionic conductances. In control conditions, ATP activated an inward current (I(ATP)) with a low potency (EC(50), 7.2 mM). Replacing ATP either by the ATP analogue 2',3'-O-(4-benzoyl-4-benzoyl)-ATP (BzATP) or by the tetraacidic form ATP(4-) potentiated the inward current (ATP(4-) EC(50), 375 microM). ATP and BzATP currents were strongly reduced by periodate oxidized ATP (oATP), an antagonist of P2X(7) receptors. IATP was a mixed current composed of a nonselective cationic conductance, a cationic conductance selective for K(+) and an anionic conductance selective for Cl(-). The activation of the K(+) conductance was dependent on an influx of Ca(2+), and was blocked by charybdotoxin (ChTX) and tetraethylammonium (TEA), two potent antagonists of large conductance Ca(2+)-activated K(+) channels (BK channels). The activation of the Cl(-) conductance was insensitive to Ca(2+) but required the presence of K(+). Total removal of K(+) blocked both the Ca(2+)-activated K(+) conductance and the Cl(-) conductance, unveiling the P2X(7) nonselective cationic conductance. The P2X(7) receptor was localized by immunocytochemistry using a polyclonal antibody, anti-P2X(7), whilst its expression and functionality were both detected by the uptake of Lucifer Yellow. This receptor could regulate the synthesis and the release of cytokines by Schwann cells during pathophysiological events.
Collapse
Affiliation(s)
- A Colomar
- Institut National de la Santé et de la Recherche Médicale U394, Neurobiologie Intégrative, Institut François Magendie, Rue Camille Saint-Saëns, 33077 Bordeaux Cedex, France
| | | |
Collapse
|
74
|
Tsai CS, Cheng TH, Lin CI, Chen JJ, Lee FY, Li CY, Hong HJ, Loh SH. Inhibitory effect of endothelin-1 on the isoproterenol-induced chloride current in human cardiac myocytes. Eur J Pharmacol 2001; 424:97-105. [PMID: 11476755 DOI: 10.1016/s0014-2999(01)01145-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is still controversial whether the cAMP-activated Cl(-) current (I(Cl,cAMP)) is expressed in human cardiomyocytes. The whole-cell configuration of the voltage-clamp technique was used to examine in detail the I(Cl,cAMP) in single human atrial and ventricular myocytes. Human cardiomyocytes were enzymatically isolated from atrial or ventricular specimens obtained from open-heart surgery or cardiac transplantation, respectively. Isoproterenol (1 microM) or forskolin (10 microM) was used to activate the cAMP second-messenger system. The isoproterenol- or forskolin-induced Cl(-) current was elicited in 12 of 54 atrial myocytes but was completely absent from ventricular myocytes. The isoproterenol-induced Cl(-) current in atrial myocytes was time-independent and had a reversal potential close to zero. Endothelin-1 (30 nM) inhibited the isoproterenol-induced Cl(-) current by 75+/-6% (n=4). This inhibitory effect of endothelin-1 was attenuated by pretreating atrial myocytes with the endothelin ET(A) receptor antagonist, BQ485, but not with the ET(B) receptor antagonist, BQ-788. The results provide evidence that the I(Cl,cAMP) exists in human atria, but not ventricle, and is inhibited by endothelin-1.
Collapse
Affiliation(s)
- C S Tsai
- Department of Surgery, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Gupta J, Evagelidis A, Hanrahan JW, Linsdell P. Asymmetric structure of the cystic fibrosis transmembrane conductance regulator chloride channel pore suggested by mutagenesis of the twelfth transmembrane region. Biochemistry 2001; 40:6620-7. [PMID: 11380256 DOI: 10.1021/bi002819v] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel contains 12 membrane-spanning regions which are presumed to form the transmembrane pore. Although a number of findings have suggested that the sixth transmembrane region plays a key role in forming the pore and determining its functional properties, the role of other transmembrane regions is currently not well established. Here we assess the functional importance of the twelfth transmembrane region, which occupies a homologous position in the carboxy terminal half of the CFTR molecule to that of the sixth transmembrane region in the amino terminal half. Five residues in potentially important regions of the twelfth transmembrane region were mutated individually to alanines, and the function of the mutant channels was examined using patch clamp recording following expression in mammalian cell lines. Three of the five mutations significantly weakened block of unitary Cl(-) currents by SCN(-), implying a partial disruption of anion binding within the pore. Two of these mutations also caused a large reduction in the steady-state channel mean open probability, suggesting a role for the twelfth transmembrane region in channel gating. However, in direct contrast to analogous mutations in the sixth transmembrane region, all mutants studied here had negligible effects on the anion selectivity and unitary Cl(-) conductance of the channel. The relatively minor effects of these five mutations on channel permeation properties suggests that, despite their symmetrical positions within the CFTR protein, the sixth and twelfth transmembrane regions make highly asymmetric contributions to the functional properties of the pore.
Collapse
Affiliation(s)
- J Gupta
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada
| | | | | | | |
Collapse
|
76
|
Linsdell P. Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol 2001; 531:51-66. [PMID: 11179391 PMCID: PMC2278455 DOI: 10.1111/j.1469-7793.2001.0051j.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. Anion binding within the pores of wild-type and mutant cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels, expressed in two different mammalian cell lines, was assayed using patch clamp recording. Specifically, experiments measured both the conductance of different anions and the ability of other permeant anions to block Cl- permeation through the pore. 2. Under symmetrical ionic conditions, wild-type CFTR channels showed the conductance sequence Cl- > NO3- > Br- > or = formate > F- > SCN- congruent to ClO4-. 3. High SCN- conductance was not observed, nor was there an anomalous mole fraction effect of SCN- on conductance under the conditions used. Iodide currents could not be measured under symmetrical ionic conditions, but under bi-ionic conditions I- conductance appeared low. 4. Chloride currents through CFTR channels were blocked by low concentrations (10 mM) of SCN-, I- and ClO4-, implying relatively tight binding of these anions within the pore. 5. Two mutations in CFTR which alter the anion permeability sequence, F337S and T338A, also altered the anion conductance sequence. Furthermore, block by SCN-, I- and ClO4- were weakened in both mutants. Both these effects are consistent with altered anion binding within the pore. 6. The effects of mutations on anion permeability and relative anion conductance suggested that, for most anions, increased permeability was associated with increased conductance. This indicates that the CFTR channel pore does not achieve its anion selectivity by selective anion binding within the mutated region. Instead, it is suggested that entry of anions into the region around F337 and T338 facilitates their passage through the pore. In wild-type CFTR channels, anion entry into this crucial pore region is probably dominated by anion hydration energies.
Collapse
Affiliation(s)
- P Linsdell
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|