51
|
Virome Analysis of Transfusion Recipients Reveals a Novel Human Virus That Shares Genomic Features with Hepaciviruses and Pegiviruses. mBio 2015; 6:e01466-15. [PMID: 26396247 PMCID: PMC4600124 DOI: 10.1128/mbio.01466-15] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To investigate the transmission of novel infectious agents by blood transfusion, we studied changes in the virome composition of blood transfusion recipients pre- and posttransfusion. Using this approach, we detected and genetically characterized a novel human virus, human hepegivirus 1 (HHpgV-1), that shares features with hepatitis C virus (HCV) and human pegivirus (HPgV; formerly called GB virus C or hepatitis G virus). HCV and HPgV belong to the genera Hepacivirus and Pegivirus of the family Flaviviridae. HHpgV-1 was found in serum samples from two blood transfusion recipients and two hemophilia patients who had received plasma-derived clotting factor concentrates. In the former, the virus was detected only in the posttransfusion samples, indicating blood-borne transmission. Both hemophiliacs were persistently viremic over periods of at least 201 and 1,981 days. The 5′ untranslated region (UTR) of HHpgV-1 contained a type IV internal ribosome entry site (IRES), structurally similar to although highly divergent in sequence from that of HCV and other hepaciviruses. However, phylogenetic analysis of nonstructural genes (NS3 and NS5B) showed that HHpgV-1 forms a branch within the pegivirus clade distinct from HPgV and homologs infecting other mammalian species. In common with some pegivirus variants infecting rodents and bats, the HHpgV-1 genome encodes a short, highly basic protein upstream of E1, potentially possessing a core-like function in packaging RNA during assembly. Identification of this new human virus, HHpgV-1, expands our knowledge of the range of genome configurations of these viruses and may lead to a reevaluation of the original criteria by which the genera Hepacivirus and Pegivirus are defined. More than 30 million blood components are transfused annually in the United States alone. Surveillance for infectious agents in the blood supply is key to ensuring the safety of this critical resource for medicine and public health. Here, we report the identification of a new and highly diverse HCV/GB virus (GBV)-like virus from human serum samples. This new virus, human hepegivirus 1 (HHpgV-1), was found in serum samples from blood transfusion recipients, indicating its potential for transmission via transfusion products. We also found persistent long-term HHpgV-1 viremia in two hemophilia patients. HHpgV-1 is unique because it shares genetic similarity with both highly pathogenic HCV and the apparently nonpathogenic HPgV (GBV-C). Our results add to the list of human viruses and provide data to develop reagents to study virus transmission and disease association and for interrupting virus transmission and new human infections.
Collapse
|
52
|
Tubiana L, Božič AL, Micheletti C, Podgornik R. Synonymous mutations reduce genome compactness in icosahedral ssRNA viruses. Biophys J 2015; 108:194-202. [PMID: 25564866 DOI: 10.1016/j.bpj.2014.10.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/08/2014] [Indexed: 12/15/2022] Open
Abstract
Recent studies have shown that single-stranded (ss) viral RNAs fold into more compact structures than random RNA sequences with similar chemical composition and identical length. Based on this comparison, it has been suggested that wild-type viral RNA may have evolved to be atypically compact so as to aid its encapsidation and assist the viral assembly process. To further explore the compactness selection hypothesis, we systematically compare the predicted sizes of >100 wild-type viral sequences with those of their mutants, which are evolved in silico and subject to a number of known evolutionary constraints. In particular, we enforce mutation synonynimity, preserve the codon-bias, and leave untranslated regions intact. It is found that progressive accumulation of these restricted mutations still suffices to completely erase the characteristic compactness imprint of the viral RNA genomes, making them in this respect physically indistinguishable from randomly shuffled RNAs. This shows that maintaining the physical compactness of the genome is indeed a primary factor among ssRNA viruses' evolutionary constraints, contributing also to the evidence that synonymous mutations in viral ssRNA genomes are not strictly neutral.
Collapse
Affiliation(s)
- Luca Tubiana
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia.
| | - Anže Lošdorfer Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Rudolf Podgornik
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Department of Physics, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
53
|
Sachdeva M, Chawla YK, Arora SK. Dendritic cells: The warriors upfront-turned defunct in chronic hepatitis C infection. World J Hepatol 2015; 7:2202-2208. [PMID: 26380045 PMCID: PMC4561774 DOI: 10.4254/wjh.v7.i19.2202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) infection causes tremendous morbidity and mortality with over 170 million people infected worldwide. HCV gives rise to a sustained, chronic disease in the majority of infected individuals owing to a failure of the host immune system to clear the virus. In general, an adequate immune response is elicited by an efficient antigen presentation by dendritic cells (DCs), the cells that connect innate and adaptive immune system to generate a specific immune response against a pathogen. However, HCV seems to dysregulate the activity of DCs, making them less proficient antigen presenting cells for the optimal stimulation of virus-specific T cells, hence interfering with an optimal anti-viral immune response. There are discordant reports on the functional status of DCs in chronic HCV infection (CHC), from no phenotypic or functional defects to abnormal functions of DCs. Furthermore, the molecular mechanisms behind the impairment of DC function are even so not completely elucidated during CHC. Understanding the mechanisms of immune dysfunction would help in devising strategies for better management of the disease at the immunological level and help to predict the prognosis of the disease in the patients receiving antiviral therapy. In this review, we have discussed the outcomes of the interaction of DCs with HCV and the mechanisms of DC impairment during HCV infection with its adverse effects on the immune response in the infected host.
Collapse
|
54
|
Characterization of Hepatitis C Virus Recombination in Cameroon by Use of Nonspecific Next-Generation Sequencing. J Clin Microbiol 2015. [PMID: 26202126 PMCID: PMC4572555 DOI: 10.1128/jcm.00483-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The importance of recombination in the evolution and genetic diversity of the hepatitis C virus (HCV) is currently uncertain. Only a small number of intergenotypic recombinants have been identified so far, and each has core and envelope genes classified as belonging to genotype 2. Here, we investigated two putative genotype 4/1 recombinants from southern Cameroon using a number of approaches, including standard Sanger sequencing, genotype-specific PCR amplification, and non-HCV-specific Illumina RNA sequencing (RNA-seq). Recombination between genotypes 1 and 4 was confirmed in both samples, and the parental lineages of each recombinant belong to HCV subtypes that are cocirculating at a high prevalence in Cameroon. Using the RNA-seq approach, we obtained a complete genome for one sample, which contained a recombination breakpoint at the E2/P7 gene junction. We developed and applied a new method, called Deep SimPlot, which can be used to visualize and identify viral recombination directly from the short sequence reads created by next-generation sequencing in conjunction with a consensus sequence.
Collapse
|
55
|
Moss WN, Steitz JA. In silico discovery and modeling of non-coding RNA structure in viruses. Methods 2015; 91:48-56. [PMID: 26116541 DOI: 10.1016/j.ymeth.2015.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/17/2015] [Accepted: 06/22/2015] [Indexed: 11/30/2022] Open
Abstract
This review covers several computational methods for discovering structured non-coding RNAs in viruses and modeling their putative secondary structures. Here we will use examples from two target viruses to highlight these approaches: influenza A virus-a relatively small, segmented RNA virus; and Epstein-Barr virus-a relatively large DNA virus with a complex transcriptome. Each system has unique challenges to overcome and unique characteristics to exploit. From these particular cases, generically useful approaches can be derived for the study of additional viral targets.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
56
|
Mutso M, Nikonov A, Pihlak A, Žusinaite E, Viru L, Selyutina A, Reintamm T, Kelve M, Saarma M, Karelson M, Merits A. RNA Interference-Guided Targeting of Hepatitis C Virus Replication with Antisense Locked Nucleic Acid-Based Oligonucleotides Containing 8-oxo-dG Modifications. PLoS One 2015; 10:e0128686. [PMID: 26039055 PMCID: PMC4454572 DOI: 10.1371/journal.pone.0128686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/29/2015] [Indexed: 12/23/2022] Open
Abstract
The inhibitory potency of an antisense oligonucleotide depends critically on its design and the accessibility of its target site. Here, we used an RNA interference-guided approach to select antisense oligonucleotide target sites in the coding region of the highly structured hepatitis C virus (HCV) RNA genome. We modified the conventional design of an antisense oligonucleotide containing locked nucleic acid (LNA) residues at its termini (LNA/DNA gapmer) by inserting 8-oxo-2'-deoxyguanosine (8-oxo-dG) residues into the central DNA region. Obtained compounds, designed with the aim to analyze the effects of 8-oxo-dG modifications on the antisense oligonucleotides, displayed a unique set of properties. Compared to conventional LNA/DNA gapmers, the melting temperatures of the duplexes formed by modified LNA/DNA gapmers and DNA or RNA targets were reduced by approximately 1.6-3.3°C per modification. Comparative transfection studies showed that small interfering RNA was the most potent HCV RNA replication inhibitor (effective concentration 50 (EC50): 0.13 nM), whereas isosequential standard and modified LNA/DNA gapmers were approximately 50-fold less efficient (EC50: 5.5 and 7.1 nM, respectively). However, the presence of 8-oxo-dG residues led to a more complete suppression of HCV replication in transfected cells. These modifications did not affect the efficiency of RNase H cleavage of antisense oligonucleotide:RNA duplexes but did alter specificity, triggering the appearance of multiple cleavage products. Moreover, the incorporation of 8-oxo-dG residues increased the stability of antisense oligonucleotides of different configurations in human serum.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Base Pairing
- Cell Line, Tumor
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/chemistry
- Genome, Viral
- Hepacivirus/genetics
- Hepacivirus/growth & development
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Molecular Targeted Therapy
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- RNA Cleavage
- RNA Interference
- RNA Stability
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Structure-Activity Relationship
- Virus Replication
Collapse
Affiliation(s)
- Margit Mutso
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | - Andrei Nikonov
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | | | - Eva Žusinaite
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | - Liane Viru
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | | | - Tõnu Reintamm
- GeneCode, Ltd., Tallinn, Estonia
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Merike Kelve
- GeneCode, Ltd., Tallinn, Estonia
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mati Karelson
- GeneCode, Ltd., Tallinn, Estonia
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
57
|
Rima BK. Nucleotide sequence conservation in paramyxoviruses; the concept of codon constellation. J Gen Virol 2015; 96:939-955. [DOI: 10.1099/vir.0.070789-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bert K. Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
58
|
Garmann RF, Gopal A, Athavale SS, Knobler CM, Gelbart WM, Harvey SC. Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy. RNA (NEW YORK, N.Y.) 2015; 21:877-886. [PMID: 25752599 PMCID: PMC4408795 DOI: 10.1261/rna.047506.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/30/2014] [Indexed: 05/29/2023]
Abstract
The lifecycle, and therefore the virulence, of single-stranded (ss)-RNA viruses is regulated not only by their particular protein gene products, but also by the secondary and tertiary structure of their genomes. The secondary structure of the entire genomic RNA of satellite tobacco mosaic virus (STMV) was recently determined by selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE). The SHAPE analysis suggested a single highly extended secondary structure with much less branching than occurs in the ensemble of structures predicted by purely thermodynamic algorithms. Here we examine the solution-equilibrated STMV genome by direct visualization with cryo-electron microscopy (cryo-EM), using an RNA of similar length transcribed from the yeast genome as a control. The cryo-EM data reveal an ensemble of branching patterns that are collectively consistent with the SHAPE-derived secondary structure model. Thus, our results both elucidate the statistical nature of the secondary structure of large ss-RNAs and give visual support for modern RNA structure determination methods. Additionally, this work introduces cryo-EM as a means to distinguish between competing secondary structure models if the models differ significantly in terms of the number and/or length of branches. Furthermore, with the latest advances in cryo-EM technology, we suggest the possibility of developing methods that incorporate restraints from cryo-EM into the next generation of algorithms for the determination of RNA secondary and tertiary structures.
Collapse
Affiliation(s)
- Rees F Garmann
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Ajaykumar Gopal
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Shreyas S Athavale
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Charles M Knobler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - William M Gelbart
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
| | - Stephen C Harvey
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
59
|
Highly divergent hepaciviruses from African cattle. J Virol 2015; 89:5876-82. [PMID: 25787289 DOI: 10.1128/jvi.00393-15] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/13/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The hepatitis C virus (HCV; genus Hepacivirus) is a highly relevant human pathogen. Unique hepaciviruses (HV) were discovered recently in animal hosts. The direct ancestor of HCV has not been found, but the genetically most closely related animal HVs exist in horses. To investigate whether other peridomestic animals also carry HVs, we analyzed sera from Ghanaian cattle for HVs by reverse transcription-PCR (RT-PCR). Nine of 106 specimens from different sampling sites contained HV RNA (8.5%) at median viral loads of 1.6 × 10(5) copies/ml. Infection seemed unrelated to cattle age and gender. Near-full-genome sequencing of five representative viruses confirmed taxonomic classifications. Cattle HVs formed two distinct phylogenetic lineages that differed by up to 17.7% on the nucleotide level in the polyprotein-encoding region, suggesting cocirculation of different virus subtypes. A conserved microRNA122-binding site in the 5' internal ribosomal entry site suggested liver tropism of cattle HVs. Phylogenetic analyses suggested the circulation of HVs in cattle for several centuries. Cattle HVs were genetically highly divergent from all other HVs, including HCV. HVs from genetically related equine and bovine hosts were not monophyletic, corroborating host shifts during the evolution of the genus Hepacivirus. Similar to equine HVs, the genetic diversity of cattle HVs was low compared to that of HCV genotypes. This suggests an influence of the human-modified ecology of peridomestic animals on virus diversity. Further studies should investigate the occurrence of cattle HVs in other geographic areas and breeds, virus pathogenicity in cattle, and the potential exposure of human risk groups, such as farmers, butchers, and abattoir workers. IMPORTANCE HCV (genus Hepacivirus) is a major human pathogen, causing liver failure and cancer. Unique hepaciviruses (HVs) were discovered over the last few years in animals, but the direct ancestor of HCV has not been found. The animal HV most closely related to HCV so far originated from horses, suggesting that other livestock animals also harbor HVs. Therefore, we investigated African cattle and discovered previously unknown HVs at high prevalence and viral loads. Because of the agricultural importance of cattle, it may be relevant to investigate HV pathogenicity. The frequent exposure of humans to cattle also may warrant investigations of the zoonotic potential of these viruses. Evolutionary analyses suggested that cattle HVs have existed for centuries. Despite the genetic relatedness of their animal hosts, HVs from cattle and horses were not phylogenetically related, corroborating frequent host shifts during the evolution of the genus Hepacivirus.
Collapse
|
60
|
Abstract
Hepatitis C virus (HCV) infects over 170 million people worldwide and is a leading cause of liver disease and cancer. The virus has a 9,650-nt, single-stranded, messenger-sense RNA genome that is infectious as an independent entity. The RNA genome has evolved in response to complex selection pressures, including the need to maintain structures that facilitate replication and to avoid clearance by cell-intrinsic immune processes. Here we used high-throughput, single-nucleotide resolution information to generate and functionally test data-driven structural models for three diverse HCV RNA genomes. We identified, de novo, multiple regions of conserved RNA structure, including all previously characterized cis-acting regulatory elements and also multiple novel structures required for optimal viral fitness. Well-defined RNA structures in the central regions of HCV genomes appear to facilitate persistent infection by masking the genome from RNase L and double-stranded RNA-induced innate immune sensors. This work shows how structure-first comparative analysis of entire genomes of a pathogenic RNA virus enables comprehensive and concise identification of regulatory elements and emphasizes the extensive interrelationships among RNA genome structure, viral biology, and innate immune responses.
Collapse
|
61
|
Tuplin A, Struthers M, Cook J, Bentley K, Evans DJ. Inhibition of HCV translation by disrupting the structure and interactions of the viral CRE and 3' X-tail. Nucleic Acids Res 2015; 43:2914-26. [PMID: 25712095 PMCID: PMC4357731 DOI: 10.1093/nar/gkv142] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A phylogenetically conserved RNA structure within the NS5B coding region of hepatitis C virus functions as a cis-replicating element (CRE). Integrity of this CRE, designated SL9266 (alternatively 5BSL3.2), is critical for genome replication. SL9266 forms the core of an extended pseudoknot, designated SL9266/PK, involving long distance RNA–RNA interactions between unpaired loops of SL9266 and distal regions of the genome. Previous studies demonstrated that SL9266/PK is dynamic, with ‘open’ and ‘closed’ conformations predicted to have distinct functions during virus replication. Using a combination of site-directed mutagenesis and locked nucleic acids (LNA) complementary to defined domains of SL9266 and its interacting regions, we have explored the influence of this structure on genome translation and replication. We demonstrate that LNAs which block formation of the closed conformation inhibit genome translation. Inhibition was at least partly independent of the initiation mechanism, whether driven by homologous or heterologous internal ribosome entry sites or from a capped message. Provision of SL9266/PK in trans relieved translational inhibition, and mutational analysis implied a mechanism in which the closed conformation recruits a cellular factor that would otherwise suppresses translation. We propose that SL9266/PK functions as a temporal switch, modulating the mutually incompatible processes of translation and replication.
Collapse
Affiliation(s)
- Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Madeleine Struthers
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Kirsten Bentley
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
62
|
Tuplin A. Diverse roles and interactions of RNA structures during the replication of positive-stranded RNA viruses of humans and animals. J Gen Virol 2015; 96:1497-503. [PMID: 25626680 DOI: 10.1099/vir.0.000066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Positive-stranded RNA viruses include important human, animal and plant pathogens. Their genomes are able to fold into complex structures stabilized by base pairing between individual nucleotides, many of which are highly conserved and have essential functions during virus replication. With new studies and technological advances the diversity of roles, mechanisms and interactions in which such structured viral RNA functions is becoming increasingly clear. It is also evident that many RNA structures do not function as discrete elements but through mechanisms involving multiple, long-range and often dynamic RNARNA interactions. Through a range of examples and recent advances, this review illustrates the diverse roles and mechanisms of structured viral RNA during the replication of positive-stranded RNA viruses infecting humans and animals.
Collapse
Affiliation(s)
- Andrew Tuplin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
63
|
New insights into the evolutionary rate of hepatitis B virus at different biological scales. J Virol 2015; 89:3512-22. [PMID: 25589664 DOI: 10.1128/jvi.03131-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The evolutionary rates of hepatitis B virus (HBV) estimated using contemporary sequences are 10(2) to 10(4) times higher than those derived from archaeological and genetic evidence. This discrepancy makes the origin of HBV and the time scale of its spread, both of which are critical for studying the burden of HBV pathogenicity, largely unresolved. To evaluate whether the dual demands (i.e., adaptation within hosts and colonization between hosts) of the viral life cycle affect this conundrum, the HBV quasispecies dynamics within and among hosts from a family consisting of a grandmother, her 5 children, and her 2 granddaughters, all of whom presumably acquired chronic HBV through mother-to-infant transmission, were examined by PCR cloning and next-generation sequencing methods. We found that the evolutionary rate of HBV between hosts was considerably lower than that within hosts. Moreover, the between-host substitution rates of HBV decreased as transmission numbers between individuals increased. Both observations were due primarily to changes at nonsynonymous rather than synonymous sites. There were significantly more multiple substitutions than expected for random mutation processes, and 97% of substitutions were changed from common to rare amino acid residues in the database. Continual switching between colonization and adaptation resulted in a rapid accumulation of mutations at a limited number of positions, which quickly became saturated, whereas substitutions at the remaining regions occurred at a much lower rate. Our study may help to explain the time-dependent HBV substitution rates reported in the literature and provide new insights into the origin of the virus. IMPORTANCE It is known that the estimated hepatitis B virus (HBV) substitution rate is time dependent, but the reason behind this observation is still elusive. We hypothesize that owing to the small genome size of HBV, transmission between hosts and adaptation within hosts must exhibit high levels of fitness trade-offs for the virus. By studying the HBV quasispecies dynamics for a chain of sequentially infected transmissions within a family, we found the HBV substitution rate between patients to be negatively correlated with the number of transmissions. Continual switching between hosts resulted in a rapid accumulation of mutations at a limited number of genomic sites, which quickly became saturated in the short term. Nevertheless, substitutions at the remaining regions occurred at a much lower rate. Therefore, the HBV substitution rate decreased as the divergence time increased.
Collapse
|
64
|
Sagan SM, Chahal J, Sarnow P. cis-Acting RNA elements in the hepatitis C virus RNA genome. Virus Res 2015; 206:90-8. [PMID: 25576644 DOI: 10.1016/j.virusres.2014.12.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/12/2014] [Accepted: 12/24/2014] [Indexed: 12/22/2022]
Abstract
Hepatitis C virus (HCV) infection is a rapidly increasing global health problem with an estimated 170 million people infected worldwide. HCV is a hepatotropic, positive-sense RNA virus of the family Flaviviridae. As a positive-sense RNA virus, the HCV genome itself must serve as a template for translation, replication and packaging. The viral RNA must therefore be a dynamic structure that is able to readily accommodate structural changes to expose different regions of the genome to viral and cellular proteins to carry out the HCV life cycle. The ∼ 9600 nucleotide viral genome contains a single long open reading frame flanked by 5' and 3' non-coding regions that contain cis-acting RNA elements important for viral translation, replication and stability. Additional cis-acting RNA elements have also been identified in the coding sequences as well as in the 3' end of the negative-strand replicative intermediate. Herein, we provide an overview of the importance of these cis-acting RNA elements in the HCV life cycle.
Collapse
Affiliation(s)
- Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Jasmin Chahal
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada
| | - Peter Sarnow
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
65
|
Firth AE. Mapping overlapping functional elements embedded within the protein-coding regions of RNA viruses. Nucleic Acids Res 2014; 42:12425-39. [PMID: 25326325 PMCID: PMC4227794 DOI: 10.1093/nar/gku981] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 09/20/2014] [Accepted: 10/04/2014] [Indexed: 12/29/2022] Open
Abstract
Identification of the full complement of genes and other functional elements in any virus is crucial to fully understand its molecular biology and guide the development of effective control strategies. RNA viruses have compact multifunctional genomes that frequently contain overlapping genes and non-coding functional elements embedded within protein-coding sequences. Overlapping features often escape detection because it can be difficult to disentangle the multiple roles of the constituent nucleotides via mutational analyses, while high-throughput experimental techniques are often unable to distinguish functional elements from incidental features. However, RNA viruses evolve very rapidly so that, even within a single species, substitutions rapidly accumulate at neutral or near-neutral sites providing great potential for comparative genomics to distinguish the signature of purifying selection. Computationally identified features can then be efficiently targeted for experimental analysis. Here we analyze alignments of protein-coding virus sequences to identify regions where there is a statistically significant reduction in the degree of variability at synonymous sites, a characteristic signature of overlapping functional elements. Having previously tested this technique by experimental verification of discoveries in selected viruses, we now analyze sequence alignments for ∼700 RNA virus species to identify hundreds of such regions, many of which have not been previously described.
Collapse
Affiliation(s)
- Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
66
|
Gould N, Hendy O, Papamichail D. Computational tools and algorithms for designing customized synthetic genes. Front Bioeng Biotechnol 2014; 2:41. [PMID: 25340050 PMCID: PMC4186344 DOI: 10.3389/fbioe.2014.00041] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/16/2014] [Indexed: 11/13/2022] Open
Abstract
Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein-coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review, we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations.
Collapse
Affiliation(s)
- Nathan Gould
- Department of Computer Science, The College of New Jersey , Ewing, NJ , USA
| | - Oliver Hendy
- Department of Biology, The College of New Jersey , Ewing, NJ , USA
| | | |
Collapse
|
67
|
Cloete LJ, Tanov EP, Muhire BM, Martin DP, Harkins GW. The influence of secondary structure, selection and recombination on rubella virus nucleotide substitution rate estimates. Virol J 2014; 11:166. [PMID: 25224517 PMCID: PMC4175276 DOI: 10.1186/1743-422x-11-166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/11/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Annually, rubella virus (RV) still causes severe congenital defects in around 100 000 children globally. An attempt to eradicate RV is currently underway and analytical tools to monitor the global decline of the last remaining RV lineages will be useful for assessing the effectiveness of this endeavour. RV evolves rapidly enough that much of this information might be inferable from RV genomic sequence data. METHODS Using BEASTv1.8.0, we analysed publically available RV sequence data to estimate genome-wide and gene-specific nucleotide substitution rates to test whether current estimates of RV substitution rates are representative of the entire RV genome. We specifically accounted for possible confounders of nucleotide substitution rate estimates, such as temporally biased sampling, sporadic recombination, and natural selection favouring either increased or decreased genetic diversity (estimated by the PARRIS and FUBAR methods), at nucleotide sites within the genomic secondary structures (predicted by the NASP method). RESULTS We determine that RV nucleotide substitution rates range from 1.19 × 10(-3) substitutions/site/year in the E1 region to 7.52 × 10(-4) substitutions/site/year in the P150 region. We find that differences between substitution rate estimates in different RV genome regions are largely attributable to temporal sampling biases such that datasets containing higher proportions of recently sampled sequences, will tend to have inflated estimates of mean substitution rates. Although there exists little evidence of positive selection or natural genetic recombination in RV, we show that RV genomes possess pervasive biologically functional nucleic acid secondary structure and that purifying selection acting to maintain this structure contributes substantially to variations in estimated nucleotide substitution rates across RV genomes. CONCLUSION Both temporal sampling biases and purifying selection favouring the conservation of RV nucleic acid secondary structures have an appreciable impact on substitution rate estimates but do not preclude the use of RV sequence data to date ancestral sequences. The combination of uniformly high substitution rates across the RV genome and strong temporal structure within the available sequence data, suggests that such data should be suitable for tracking the demographic, epidemiological and movement dynamics of this virus during eradication attempts.
Collapse
Affiliation(s)
- Leendert J Cloete
- />South African National Bioinformatics Institute, SA Medical Research Council Unit for Bioinformatics Capacity Development, University of the Western Cape, Cape Town, South Africa
| | - Emil P Tanov
- />South African National Bioinformatics Institute, SA Medical Research Council Unit for Bioinformatics Capacity Development, University of the Western Cape, Cape Town, South Africa
| | - Brejnev M Muhire
- />Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, Cape Town, South Africa
| | - Darren P Martin
- />Institute of Infectious Diseases and Molecular Medicine, Computational Biology Group, University of Cape Town, Cape Town, South Africa
| | - Gordon W Harkins
- />South African National Bioinformatics Institute, SA Medical Research Council Unit for Bioinformatics Capacity Development, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
68
|
Candresse T, Filloux D, Muhire B, Julian C, Galzi S, Fort G, Bernardo P, Daugrois JH, Fernandez E, Martin DP, Varsani A, Roumagnac P. Appearances can be deceptive: revealing a hidden viral infection with deep sequencing in a plant quarantine context. PLoS One 2014; 9:e102945. [PMID: 25061967 PMCID: PMC4111361 DOI: 10.1371/journal.pone.0102945] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022] Open
Abstract
Comprehensive inventories of plant viral diversity are essential for effective quarantine and sanitation efforts. The safety of regulated plant material exchanges presently relies heavily on techniques such as PCR or nucleic acid hybridisation, which are only suited to the detection and characterisation of specific, well characterised pathogens. Here, we demonstrate the utility of sequence-independent next generation sequencing (NGS) of both virus-derived small interfering RNAs (siRNAs) and virion-associated nucleic acids (VANA) for the detailed identification and characterisation of viruses infecting two quarantined sugarcane plants. Both plants originated from Egypt and were known to be infected with Sugarcane streak Egypt Virus (SSEV; Genus Mastrevirus, Family Geminiviridae), but were revealed by the NGS approaches to also be infected by a second highly divergent mastrevirus, here named Sugarcane white streak Virus (SWSV). This novel virus had escaped detection by all routine quarantine detection assays and was found to also be present in sugarcane plants originating from Sudan. Complete SWSV genomes were cloned and sequenced from six plants and all were found to share >91% genome-wide identity. With the exception of two SWSV variants, which potentially express unusually large RepA proteins, the SWSV isolates display genome characteristics very typical to those of all other previously described mastreviruses. An analysis of virus-derived siRNAs for SWSV and SSEV showed them to be strongly influenced by secondary structures within both genomic single stranded DNA and mRNA transcripts. In addition, the distribution of siRNA size frequencies indicates that these mastreviruses are likely subject to both transcriptional and post-transcriptional gene silencing. Our study stresses the potential advantages of NGS-based virus metagenomic screening in a plant quarantine setting and indicates that such techniques could dramatically reduce the numbers of non-intercepted virus pathogens passing through plant quarantine stations.
Collapse
Affiliation(s)
- Thierry Candresse
- INRA, UMR 1332 Biologie du Fruit et Pathologie, CS 20032, 33882 Villenave d'Ornon Cedex, France
- Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, CS 20032, 33882 Villenave d'Ornon Cedex, France
| | - Denis Filloux
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Brejnev Muhire
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlotte Julian
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Serge Galzi
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Guillaume Fort
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Pauline Bernardo
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Jean-Heindrich Daugrois
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Emmanuel Fernandez
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, South Africa
| | - Philippe Roumagnac
- CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| |
Collapse
|
69
|
Gultyaev AP, Tsyganov-Bodounov A, Spronken MIJ, van der Kooij S, Fouchier RAM, Olsthoorn RCL. RNA structural constraints in the evolution of the influenza A virus genome NP segment. RNA Biol 2014; 11:942-52. [PMID: 25180940 DOI: 10.4161/rna.29730] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Conserved RNA secondary structures were predicted in the nucleoprotein (NP) segment of the influenza A virus genome using comparative sequence and structure analysis. A number of structural elements exhibiting nucleotide covariations were identified over the whole segment length, including protein-coding regions. Calculations of mutual information values at the paired nucleotide positions demonstrate that these structures impose considerable constraints on the virus genome evolution. Functional importance of a pseudoknot structure, predicted in the NP packaging signal region, was confirmed by plaque assays of the mutant viruses with disrupted structure and those with restored folding using compensatory substitutions. Possible functions of the conserved RNA folding patterns in the influenza A virus genome are discussed.
Collapse
Affiliation(s)
- Alexander P Gultyaev
- Department of Viroscience, Erasmus Medical Center, The Netherlands; Leiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, The Netherlands
| | - Anton Tsyganov-Bodounov
- Leiden Institute of Chemistry, Leiden University, P.O.Box 9502, 2300 RA Leiden, The Netherlands;; Current address: Illumina UK Ltd., Chesterford Research Park, Little Chesterford, Essex, UK
| | | | - Sander van der Kooij
- Department of Viroscience, Erasmus Medical Center, The Netherlands; Current address: BaseClear B.V., Einsteinweg, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Center, The Netherlands
| | - René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, P.O.Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
70
|
Lowry K, Woodman A, Cook J, Evans DJ. Recombination in enteroviruses is a biphasic replicative process involving the generation of greater-than genome length 'imprecise' intermediates. PLoS Pathog 2014; 10:e1004191. [PMID: 24945141 PMCID: PMC4055744 DOI: 10.1371/journal.ppat.1004191] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/02/2014] [Indexed: 01/29/2023] Open
Abstract
Recombination in enteroviruses provides an evolutionary mechanism for acquiring extensive regions of novel sequence, is suggested to have a role in genotype diversity and is known to have been key to the emergence of novel neuropathogenic variants of poliovirus. Despite the importance of this evolutionary mechanism, the recombination process remains relatively poorly understood. We investigated heterologous recombination using a novel reverse genetic approach that resulted in the isolation of intermediate chimeric intertypic polioviruses bearing genomes with extensive duplicated sequences at the recombination junction. Serial passage of viruses exhibiting such imprecise junctions yielded progeny with increased fitness which had lost the duplicated sequences. Mutations or inhibitors that changed polymerase fidelity or the coalescence of replication complexes markedly altered the yield of recombinants (but did not influence non-replicative recombination) indicating both that the process is replicative and that it may be possible to enhance or reduce recombination-mediated viral evolution if required. We propose that extant recombinants result from a biphasic process in which an initial recombination event is followed by a process of resolution, deleting extraneous sequences and optimizing viral fitness. This process has implications for our wider understanding of ‘evolution by duplication’ in the positive-strand RNA viruses. The rapid evolution of most positive-sense RNA viruses enables them to escape immune surveillance and adapt to new hosts. Genetic variation arises due to their error-prone RNA polymerases and by recombination of viral genomes in co-infected cells. We have developed a novel approach to analyse the poorly understood mechanism of recombination using a poliovirus model system. We characterised the initial viable recombinants and demonstrate the majority are longer than genome length due to an imprecise crossover event that duplicates part of the genome. These viruses are unfit, but rapidly lose the duplicated material and regain full fitness upon serial passage, a process we term resolution. We show this is a replicative recombination process by modifying the fidelity of the viral polymerase, or replication complex coalescence, using methods that have no influence on a previously reported, less efficient, non-replicative recombination mechanism. We conclude that recombination is a biphasic process involving separate generation and resolution events. These new insights into an important evolutionary mechanism have implications for our understanding of virus evolution through partial genome duplication, they suggest ways in which recombination might be modified and provides an approach that may be exploited to analyse recombination in other RNA viruses.
Collapse
Affiliation(s)
- Kym Lowry
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Andrew Woodman
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David J. Evans
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
71
|
Romero-López C, Berzal-Herranz A. Structure-function relationship in viral RNA genomes: The case of hepatitis C virus. World J Med Genet 2014; 4:6-18. [DOI: 10.5496/wjmg.v4.i2.6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/23/2014] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
The acquisition of a storage information system beyond the nucleotide sequence has been a crucial issue for the propagation and dispersion of RNA viruses. This system is composed by highly conserved, complex structural units in the genomic RNA, termed functional RNA domains. These elements interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. The genomic RNA of the hepatitis C virus (HCV) is a good model for investigating about conserved structural units. It contains functional domains, defined by highly conserved structural RNA motifs, mostly located in the 5’-untranslatable regions (5’UTRs) and 3’UTR, but also occupying long stretches of the coding sequence. Viral translation initiation is mediated by an internal ribosome entry site located at the 5’ terminus of the viral genome and regulated by distal functional RNA domains placed at the 3’ end. Subsequent RNA replication strongly depends on the 3’UTR folding and is also influenced by the 5’ end of the HCV RNA. Further increase in the genome copy number unleashes the formation of homodimers by direct interaction of two genomic RNA molecules, which are finally packed and released to the extracellular medium. All these processes, as well as transitions between them, are controlled by structural RNA elements that establish a complex, direct and long-distance RNA-RNA interaction network. This review summarizes current knowledge about functional RNA domains within the HCV RNA genome and provides an overview of the control exerted by direct, long-range RNA-RNA contacts for the execution of the viral cycle.
Collapse
|
72
|
Witteveldt J, Blundell R, Maarleveld JJ, McFadden N, Evans DJ, Simmonds P. The influence of viral RNA secondary structure on interactions with innate host cell defences. Nucleic Acids Res 2014; 42:3314-29. [PMID: 24335283 PMCID: PMC3950689 DOI: 10.1093/nar/gkt1291] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
RNA viruses infecting vertebrates differ fundamentally in their ability to establish persistent infections with markedly different patterns of transmission, disease mechanisms and evolutionary relationships with their hosts. Although interactions with host innate and adaptive responses are complex and persistence mechanisms likely multi-factorial, we previously observed associations between bioinformatically predicted RNA secondary formation in genomes of positive-stranded RNA viruses with their in vivo fitness and persistence. To analyse this interactions functionally, we transfected fibroblasts with non-replicating, non-translated RNA transcripts from RNA viral genomes with differing degrees of genome-scale ordered RNA structure (GORS). Single-stranded RNA transcripts induced interferon-β mediated though RIG-I and PKR activation, the latter associated with rapid induction of antiviral stress granules. A striking inverse correlation was observed between induction of both cellular responses with transcript RNA structure formation that was independent of both nucleotide composition and sequence length. The consistent inability of cells to recognize RNA transcripts possessing GORS extended to downstream differences from unstructured transcripts in expression of TNF-α, other interferon-stimulated genes and induction of apoptosis. This functional association provides novel insights into interactions between virus and host early after infection and provides evidence for a novel mechanism for evading intrinsic and innate immune responses.
Collapse
Affiliation(s)
- Jeroen Witteveldt
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard Blundell
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Joris J. Maarleveld
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nora McFadden
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David J. Evans
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter Simmonds
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
73
|
Atkinson NJ, Witteveldt J, Evans DJ, Simmonds P. The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication. Nucleic Acids Res 2014; 42:4527-45. [PMID: 24470146 PMCID: PMC3985648 DOI: 10.1093/nar/gku075] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most RNA viruses infecting mammals and other vertebrates show profound suppression of CpG and UpA dinucleotide frequencies. To investigate this functionally, mutants of the picornavirus, echovirus 7 (E7), were constructed with altered CpG and UpA compositions in two 1.1–1.3 Kbase regions. Those with increased frequencies of CpG and UpA showed impaired replication kinetics and higher RNA/infectivity ratios compared with wild-type virus. Remarkably, mutants with CpGs and UpAs removed showed enhanced replication, larger plaques and rapidly outcompeted wild-type virus on co-infections. Luciferase-expressing E7 sub-genomic replicons with CpGs and UpAs removed from the reporter gene showed 100-fold greater luminescence. E7 and mutants were equivalently sensitive to exogenously added interferon-β, showed no evidence for differential recognition by ADAR1 or pattern recognition receptors RIG-I, MDA5 or PKR. However, kinase inhibitors roscovitine and C16 partially or entirely reversed the attenuated phenotype of high CpG and UpA mutants, potentially through inhibition of currently uncharacterized pattern recognition receptors that respond to RNA composition. Generating viruses with enhanced replication kinetics has applications in vaccine production and reporter gene construction. More fundamentally, the findings introduce a new evolutionary paradigm where dinucleotide composition of viral genomes is subjected to selection pressures independently of coding capacity and profoundly influences host–pathogen interactions.
Collapse
Affiliation(s)
- Nicky J Atkinson
- Infection and Immunity Division, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
74
|
Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses. J Virol 2013; 88:1972-89. [PMID: 24284329 DOI: 10.1128/jvi.03031-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.
Collapse
|
75
|
Analysis of serine codon conservation reveals diverse phenotypic constraints on hepatitis C virus glycoprotein evolution. J Virol 2013; 88:667-78. [PMID: 24173227 DOI: 10.1128/jvi.01745-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Serine is encoded by two divergent codon types, UCN and AGY, which are not interchangeable by a single nucleotide substitution. Switching between codon types therefore occurs via intermediates (threonine or cysteine) or via simultaneous tandem substitutions. Hepatitis C virus (HCV) chronically infects 2 to 3% of the global population. The highly variable glycoproteins E1 and E2 decorate the surface of the viral envelope, facilitate cellular entry, and are targets for host immunity. Comparative sequence analysis of globally sampled E1E2 genes, coupled with phylogenetic analysis, reveals the signatures of multiple archaic codon-switching events at seven highly conserved serine residues. Limited detection of intermediate phenotypes indicates that associated fitness costs restrict their fixation in divergent HCV lineages. Mutational pathways underlying codon switching were probed via reverse genetics, assessing glycoprotein functionality using multiple in vitro systems. These data demonstrate selection against intermediate phenotypes can act at the structural/functional level, with some intermediates displaying impaired virion assembly and/or decreased capacity for target cell entry. These effects act in residue/isolate-specific manner. Selection against intermediates is also provided by humoral targeting, with some intermediates exhibiting increased epitope exposure and enhanced neutralization sensitivity, despite maintaining a capacity for target cell entry. Thus, purifying selection against intermediates limits their frequencies in globally sampled strains, with divergent functional constraints at the protein level restricting the fixation of deleterious mutations. Overall our study provides an experimental framework for identification of barriers limiting viral substitutional evolution and indicates that serine codon-switching represents a genomic "fossil record" of historical purifying selection against E1E2 intermediate phenotypes.
Collapse
|
76
|
Priore SF, Moss WN, Turner DH. Influenza B virus has global ordered RNA structure in (+) and (-) strands but relatively less stable predicted RNA folding free energy than allowed by the encoded protein sequence. BMC Res Notes 2013; 6:330. [PMID: 23958134 PMCID: PMC3765861 DOI: 10.1186/1756-0500-6-330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 07/03/2013] [Indexed: 12/03/2022] Open
Abstract
Background Influenza A virus contributes to seasonal epidemics and pandemics and contains Global Ordered RNA structure (GORS) in the nucleoprotein (NP), non-structural (NS), PB2, and M segments. A related virus, influenza B, is also a major annual public health threat, but unlike influenza A is very selective to human hosts. This study extends the search for GORS to influenza B. Findings A survey of all available influenza B sequences reveals GORS in the (+) and (−)RNAs of the NP, NS, PB2, and PB1 gene segments. The results are similar to influenza A, except GORS is observed for the M1 segment of influenza A but not for PB1. In general, the folding free energies of human-specific influenza B RNA segments are less stable than allowable by the encoded amino acid sequence. This is consistent with findings in influenza A, where human-specific influenza RNA folds are less stable than avian and swine strains. Conclusions These results reveal fundamental molecular similarities and differences between Influenza A and B and suggest a rational basis for choosing segments to target with therapeutics and for viral attenuation for live vaccines by altering RNA folding stability.
Collapse
Affiliation(s)
- Salvatore F Priore
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, NY 14627-0216, USA.
| | | | | |
Collapse
|
77
|
Moss WN, Steitz JA. Genome-wide analyses of Epstein-Barr virus reveal conserved RNA structures and a novel stable intronic sequence RNA. BMC Genomics 2013; 14:543. [PMID: 23937650 PMCID: PMC3751371 DOI: 10.1186/1471-2164-14-543] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/07/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is a human herpesvirus implicated in cancer and autoimmune disorders. Little is known concerning the roles of RNA structure in this important human pathogen. This study provides the first comprehensive genome-wide survey of RNA and RNA structure in EBV. RESULTS Novel EBV RNAs and RNA structures were identified by computational modeling and RNA-Seq analyses of EBV. Scans of the genomic sequences of four EBV strains (EBV-1, EBV-2, GD1, and GD2) and of the closely related Macacine herpesvirus 4 using the RNAz program discovered 265 regions with high probability of forming conserved RNA structures. Secondary structure models are proposed for these regions based on a combination of free energy minimization and comparative sequence analysis. The analysis of RNA-Seq data uncovered the first observation of a stable intronic sequence RNA (sisRNA) in EBV. The abundance of this sisRNA rivals that of the well-known and highly expressed EBV-encoded non-coding RNAs (EBERs). CONCLUSION This work identifies regions of the EBV genome likely to generate functional RNAs and RNA structures, provides structural models for these regions, and discusses potential functions suggested by the modeled structures. Enhanced understanding of the EBV transcriptome will guide future experimental analyses of the discovered RNAs and RNA structures.
Collapse
Affiliation(s)
- Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
78
|
González-Candelas F, Bracho MA, Wróbel B, Moya A. Molecular evolution in court: analysis of a large hepatitis C virus outbreak from an evolving source. BMC Biol 2013; 11:76. [PMID: 23870105 PMCID: PMC3717074 DOI: 10.1186/1741-7007-11-76] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 05/24/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Molecular phylogenetic analyses are used increasingly in the epidemiological investigation of outbreaks and transmission cases involving rapidly evolving RNA viruses. Here, we present the results of such an analysis that contributed to the conviction of an anesthetist as being responsible for the infection of 275 of his patients with hepatitis C virus. RESULTS We obtained sequences of the NS5B and E1-E2 regions in the viral genome for 322 patients suspected to have been infected by the doctor, and for 44 local, unrelated controls. The analysis of 4,184 cloned sequences of the E1-E2 region allowed us to exclude 47 patients from the outbreak. A subset of patients had known dates of infection. We used these data to calibrate a relaxed molecular clock and to determine a rough estimate of the time of infection for each patient. A similar analysis led to an estimate for the time of infection of the source. The date turned out to be 10 years before the detection of the outbreak. The number of patients infected was small at first, but it increased substantially in the months before the detection of the outbreak. CONCLUSIONS We have developed a procedure to integrate molecular phylogenetic reconstructions of rapidly evolving viral populations into a forensic setting adequate for molecular epidemiological analysis of outbreaks and transmission events. We applied this procedure to a large outbreak of hepatitis C virus caused by a single source and the results obtained played a key role in the trial that led to the conviction of the suspected source.
Collapse
Affiliation(s)
- Fernando González-Candelas
- Joint Research Unit ‘Genómica y Salud’ CSISP (FISABIO), Instituto Cavanilles/Universidad de Valencia, c/ Catedrático José Beltrán, 2 46980-Paterna, Valencia, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Valencia, Spain
| | - María Alma Bracho
- Joint Research Unit ‘Genómica y Salud’ CSISP (FISABIO), Instituto Cavanilles/Universidad de Valencia, c/ Catedrático José Beltrán, 2 46980-Paterna, Valencia, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Valencia, Spain
| | - Borys Wróbel
- Joint Research Unit ‘Genómica y Salud’ CSISP (FISABIO), Instituto Cavanilles/Universidad de Valencia, c/ Catedrático José Beltrán, 2 46980-Paterna, Valencia, Spain
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614 Poznań, Poland
| | - Andrés Moya
- Joint Research Unit ‘Genómica y Salud’ CSISP (FISABIO), Instituto Cavanilles/Universidad de Valencia, c/ Catedrático José Beltrán, 2 46980-Paterna, Valencia, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBERESP), Valencia, Spain
| |
Collapse
|
79
|
McFadden N, Arias A, Dry I, Bailey D, Witteveldt J, Evans DJ, Goodfellow I, Simmonds P. Influence of genome-scale RNA structure disruption on the replication of murine norovirus--similar replication kinetics in cell culture but attenuation of viral fitness in vivo. Nucleic Acids Res 2013; 41:6316-31. [PMID: 23630317 PMCID: PMC3695492 DOI: 10.1093/nar/gkt334] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 01/08/2023] Open
Abstract
Mechanisms by which certain RNA viruses, such as hepatitis C virus, establish persistent infections and cause chronic disease are of fundamental importance in viral pathogenesis. Mammalian positive-stranded RNA viruses establishing persistence typically possess genome-scale ordered RNA secondary structure (GORS) in their genomes. Murine norovirus (MNV) persists in immunocompetent mice and provides an experimental model to functionally characterize GORS. Substitution mutants were constructed with coding sequences in NS3/4- and NS6/7-coding regions replaced with sequences with identical coding and (di-)nucleotide composition but disrupted RNA secondary structure (F1, F2, F1/F2 mutants). Mutants replicated with similar kinetics to wild-type (WT) MNV3 in RAW264.7 cells and primary macrophages, exhibited similar (highly restricted) induction and susceptibility to interferon-coupled cellular responses and equal replication fitness by serial passaging of co-cultures. In vivo, both WT and F1/F2 mutant viruses persistently infected mice, although F1, F2 and F1/F2 mutant viruses were rapidly eliminated 1-7 days post-inoculation in competition experiments with WT. F1/F2 mutants recovered from tissues at 9 months showed higher synonymous substitution rates than WT and nucleotide substitutions that potentially restored of RNA secondary structure. GORS plays no role in basic replication of MNV but potentially contributes to viral fitness and persistence in vivo.
Collapse
Affiliation(s)
- Nora McFadden
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Armando Arias
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Inga Dry
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Dalan Bailey
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Jeroen Witteveldt
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - David J. Evans
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Ian Goodfellow
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Peter Simmonds
- Division of Infection and Immunity, Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh EH25 9RG, UK Calicivirus Research Group, Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK, Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK and School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
80
|
Simon-Loriere E, Holmes EC, Pagán I. The effect of gene overlapping on the rate of RNA virus evolution. Mol Biol Evol 2013; 30:1916-28. [PMID: 23686658 DOI: 10.1093/molbev/mst094] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gene overlapping is widely employed by RNA viruses to generate genetic novelty while retaining a small genome size. However, gene overlapping also increases the deleterious effect of mutations as they affect more than one gene, thereby reducing the evolutionary rate of RNA viruses and hence their adaptive capacity. Although there is general agreement on the benefits of gene overlapping as a mechanism of genomic compression for rapidly evolving organisms, its effect on the pace of RNA virus evolution remains a source of debate. To address this issue, we collected sequence data from 117 instances of gene overlapping across 19 families, 30 genera, and 55 species of RNA viruses. On these data, we analyzed how genetic distances, selective pressures, and the distribution of RNA secondary structures and conserved protein functional domains vary between overlapping (OV) and nonoverlapping (NOV) regions. We show that gene overlapping generally results in a decrease in the rate of RNA virus evolution through a reduction in the frequency of synonymous mutations. However, this effect is less pronounced in genes with a terminal rather than an internal gene overlap, which might result from a greater proportion of protein functional conserved domains in NOV than in OV regions, in turn reducing the number of nonsynonymous mutations in the former. Overall, our analyses clarify the role of gene overlapping as a modulator of the evolutionary rates exhibited by RNA viruses and shed light on the factors that shape the genetic diversity of this important group of pathogens.
Collapse
Affiliation(s)
- Etienne Simon-Loriere
- Institut Pasteur, Unité de Génétique Fonctionnelle des Maladies Infectieuses, Paris, France
| | | | | |
Collapse
|
81
|
Archer EJ, Simpson MA, Watts NJ, O'Kane R, Wang B, Erie DA, McPherson A, Weeks KM. Long-range architecture in a viral RNA genome. Biochemistry 2013; 52:3182-90. [PMID: 23614526 DOI: 10.1021/bi4001535] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed a model for the secondary structure of the 1058-nucleotide plus-strand RNA genome of the icosahedral satellite tobacco mosaic virus (STMV) using nucleotide-resolution SHAPE chemical probing of the viral RNA isolated from virions and within the virion, perturbation of interactions distant in the primary sequence, and atomic force microscopy. These data are consistent with long-range base pairing interactions and a three-domain genome architecture. The compact domains of the STMV RNA have dimensions of 10-45 nm. Each of the three domains corresponds to a specific functional component of the virus: The central domain corresponds to the coding sequence of the single (capsid) protein encoded by the virus, whereas the 5' and 3' untranslated domains span signals essential for translation and replication, respectively. This three-domain architecture is compatible with interactions between the capsid protein and short RNA helices previously visualized by crystallography. STMV is among the simplest of the icosahedral viruses but, nonetheless, has an RNA genome with a complex higher-order structure that likely reflects high information content and an evolutionary relationship between RNA domain structure and essential replicative functions.
Collapse
Affiliation(s)
- Eva J Archer
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Hepatitis C virus (HCV) and human pegivirus (HPgV or GB virus C) are globally distributed and infect 2 to 5% of the human population. The lack of tractable-animal models for these viruses, in particular for HCV, has hampered the study of infection, transmission, virulence, immunity, and pathogenesis. To address this challenge, we searched for homologous viruses in small mammals, including wild rodents. Here we report the discovery of several new hepaciviruses (HCV-like viruses) and pegiviruses (GB virus-like viruses) that infect wild rodents. Complete genome sequences were acquired for a rodent hepacivirus (RHV) found in Peromyscus maniculatus and a rodent pegivirus (RPgV) found in Neotoma albigula. Unique genomic features and phylogenetic analyses confirmed that these RHV and RPgV variants represent several novel virus species in the Hepacivirus and Pegivirus genera within the family Flaviviridae. The genetic diversity of the rodent hepaciviruses exceeded that observed for hepaciviruses infecting either humans or non-primates, leading to new insights into the origin, evolution, and host range of hepaciviruses. The presence of genes, encoded proteins, and translation elements homologous to those found in human hepaciviruses and pegiviruses suggests the potential for the development of new animal systems with which to model HCV pathogenesis, vaccine design, and treatment. The genetic and biological characterization of animal homologs of human viruses provides insights into the origins of human infections and enhances our ability to study their pathogenesis and explore preventive and therapeutic interventions. Horses are the only reported host of nonprimate homologs of hepatitis C virus (HCV). Here, we report the discovery of HCV-like viruses in wild rodents. The majority of HCV-like viruses were found in deer mice (Peromyscus maniculatus), a small rodent used in laboratories to study viruses, including hantaviruses. We also identified pegiviruses in rodents that are distinct from the pegiviruses found in primates, bats, and horses. These novel viruses may enable the development of small-animal models for HCV, the most common infectious cause of liver failure and hepatocellular carcinoma after hepatitis B virus, and help to explore the health relevance of the highly prevalent human pegiviruses.
Collapse
|
83
|
Abstract
An RNA secondary structure model for the complete HIV-1 genome has recently been published based on SHAPE technology. Several well-known RNA motifs such as TAR and RRE were confirmed and numerous new structured motifs were described that may play important roles in virus replication. The 9 kb viral RNA genome is densely packed with many RNA hairpin motifs and the collective fold may play an important role in HIV-1 biology. We initially focused on 16 RNA hairpin motifs scattered along the viral genome. We considered conservation of these structures, despite sequence variation among virus isolates, as a first indication for a significant function. Four relatively small hairpins exhibited considerable structural conservation and were selected for experimental validation in virus replication assays. Mutations were introduced into the HIV-1 RNA genome to destabilize individual RNA structures without affecting the protein-coding properties (silent codon changes). No major virus replication defects were scored, suggesting that these four hairpin structures do not play essential roles in HIV-1 replication.
Collapse
Affiliation(s)
- Stefanie A Knoepfel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center; University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
84
|
Monk SL, Simmonds P, Matthews KR. A short bifunctional element operates to positively or negatively regulate ESAG9 expression in different developmental forms of Trypanosoma brucei. J Cell Sci 2013; 126:2294-304. [PMID: 23524999 DOI: 10.1242/jcs.126011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In their mammalian host trypanosomes generate 'stumpy' forms from proliferative 'slender' forms as an adaptation for transmission to their tsetse fly vector. This transition is characterised by the repression of many genes while quiescent stumpy forms accumulate during each wave of parasitaemia. However, a subset of genes are upregulated either as an adaptation for transmission or to sustain infection chronicity. Among this group are ESAG9 proteins, whose genes were originally identified as a component of some telomeric variant surface glycoprotein gene expression sites, although many members of this diverse family are also transcribed elsewhere in the genome. ESAG9 genes are among the most highly regulated genes in transmissible stumpy forms, encoding a group of secreted proteins of cryptic function. To understand their developmental silencing in slender forms and activation in stumpy forms, the post-transcriptional control signals for a well conserved ESAG9 gene have been mapped. This identified a precise RNA sequence element of 34 nucleotides that contributes to gene expression silencing in slender forms but also acts positively, activating gene expression in stumpy forms. We predict that this bifunctional RNA sequence element is targeted by competing negative and positive regulatory factors in distinct developmental forms of the parasite. Analysis of the 3'UTR regulatory regions flanking the highly diverse ESAG9 family reveals that the linear regulatory sequence is not highly conserved, suggesting that RNA structure is important for interactions with regulatory proteins.
Collapse
Affiliation(s)
- Stephanie L Monk
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JT, UK
| | | | | |
Collapse
|
85
|
Systematic analysis of enhancer and critical cis-acting RNA elements in the protein-encoding region of the hepatitis C virus genome. J Virol 2013; 87:5678-96. [PMID: 23487449 DOI: 10.1128/jvi.00840-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes chronic hepatitis, cirrhosis, and liver cancer. cis-acting RNA elements of the HCV genome are critical for translation initiation and replication of the viral genome. We hypothesized that the coding regions of nonstructural proteins harbor enhancer and essential cis-acting replication elements (CRE). In order to experimentally identify new cis RNA elements, we utilized an unbiased approach to introduce synonymous substitutions. The HCV genome coding for nonstructural proteins (nucleotide positions 3872 to 9097) was divided into 17 contiguous segments. The wobble nucleotide positions of each codon were replaced, resulting in 33% to 41% nucleotide changes. The HCV genome containing one of each of 17 mutant segments (S1 to S17) was tested for genome replication and infectivity. We observed that silent mutations in segment 13 (S13) (nucleotides [nt] 7457 to 7786), S14 (nt 7787 to 8113), S15 (nt 8114 to 8440), S16 (nt 8441 to 8767), and S17 (nt 8768 to 9097) resulted in impaired genome replication, suggesting CRE structures are enriched in the NS5B region. Subsequent high-resolution mutational analysis of NS5B (nt 7787 to 9289) using approximately 51-nucleotide contiguous subsegment mutant viruses having synonymous mutations revealed that subsegments SS8195-8245, SS8654-8704, and SS9011-9061 were required for efficient viral growth, suggesting that these regions act as enhancer elements. Covariant nucleotide substitution analysis of a stem-loop, JFH-SL9098, revealed the formation of an extended stem structure, which we designated JFH-SL9074. We have identified new enhancer RNA elements and an extended stem-loop in the NS5B coding region. Genetic modification of enhancer RNA elements can be utilized for designing attenuated HCV vaccine candidates.
Collapse
|
86
|
Belalov IS, Lukashev AN. Causes and implications of codon usage bias in RNA viruses. PLoS One 2013; 8:e56642. [PMID: 23451064 PMCID: PMC3581513 DOI: 10.1371/journal.pone.0056642] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/15/2013] [Indexed: 12/03/2022] Open
Abstract
Choice of synonymous codons depends on nucleotide/dinucleotide composition of the genome (termed mutational pressure) and relative abundance of tRNAs in a cell (translational pressure). Mutational pressure is commonly simplified to genomic GC content; however mononucleotide and dinucleotide frequencies in different genomes or mRNAs may vary significantly, especially in RNA viruses. A series of in silico shuffling algorithms were developed to account for these features and analyze the relative impact of mutational pressure components on codon usage bias in RNA viruses. Total GC content was a poor descriptor of viral genome composition and causes of codon usage bias. Genomic nucleotide content was the single most important factor of synonymous codon usage. Moreover, the choice between compatible amino acids (e.g., leucine and isoleucine) was strongly affected by genomic nucleotide composition. Dinucleotide composition at codon positions 2-3 had additional effect on codon usage. Together with mononucleotide composition bias, it could explain almost the entire codon usage bias in RNA viruses. On the other hand, strong dinucleotide content bias at codon position 3-1 found in some viruses had very little effect on codon usage. A hypothetical innate immunity sensor for CpG in RNA could partially explain the codon usage bias, but due to dependence of virus translation upon biased host translation machinery, experimental studies are required to further explore the source of dinucleotide bias in RNA viruses.
Collapse
Affiliation(s)
- Ilya S. Belalov
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow, Russia
| | - Alexander N. Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow, Russia
- Institute for Virology, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
87
|
Lisowski L, Elazar M, Chu K, Glenn JS, Kay MA. The anti-genomic (negative) strand of Hepatitis C Virus is not targetable by shRNA. Nucleic Acids Res 2013; 41:3688-98. [PMID: 23396439 PMCID: PMC3616702 DOI: 10.1093/nar/gkt068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C Virus (HCV) and other plus-strand RNA viruses typically require the generation of a small number of negative genomes (20–100× lower than the positive genomes) for replication, making the less-abundant antigenome an attractive target for RNA interference(RNAi)-based therapy. Because of the complementarity of duplex short hairpin RNA/small interfering RNA (shRNA/siRNAs) with both genomic and anti-genomic viral RNA strands, and the potential of both shRNA strands to become part of the targeting complexes, preclinical RNAi studies cannot distinguish which viral strand is actually targeted in infected cells. Here, we addressed the question whether the negative HCV genome was bioaccessible to RNAi. We first screened for the most active shRNA molecules against the most conserved regions in the HCV genome, which were then used to generate asymmetric anti-HCV shRNAs that produce biologically active RNAi specifically directed against the genomic or antigenomic HCV sequences. Using this simple but powerful and effective method to screen for shRNA strand selectivity, we demonstrate that the antigenomic strand of HCV is not a viable RNAi target during HCV replication. These findings provide new insights into HCV biology and have important implications for the design of more effective and safer antiviral RNAi strategies seeking to target HCV and other viruses with similar replicative strategies.
Collapse
Affiliation(s)
- Leszek Lisowski
- Department of Pediatrics, School of Medicine, Stanford University, 269 Pasteur Drive, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
88
|
Marton S, Romero-López C, Berzal-Herranz A. RNA aptamer-mediated interference of HCV replication by targeting the CRE-5BSL3.2 domain. J Viral Hepat 2013; 20:103-112. [PMID: 23301545 DOI: 10.1111/j.1365-2893.2012.01629.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The RNA genome of hepatitis C virus (HCV) contains multiple conserved structural RNA domains that play key roles in essential viral processes. A conserved structural component within the 3' end of the region coding for viral RNA-dependent RNA polymerase (NS5B) has been characterized as a functional cis-acting replication element (CRE). This study reports the ability of two RNA aptamers, P-58 and P-78, to interfere with HCV replication by targeting the essential 5BSL3.2 domain within this CRE. Structure-probing assays showed the binding of the aptamers to the CRE results in a structural reorganization of the apical portion of the 5BSL3.2 stem-loop domain. This interfered with the binding of the NS5B protein to the CRE and induced a significant reduction in HCV replication (≈50%) in an autonomous subgenomic HCV replication system. These results highlight the potential of this CRE as a target for the development of anti-HCV therapies and underscore the potential of antiviral agents based on RNA aptamer molecules.
Collapse
Affiliation(s)
- S Marton
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Granada, Spain
| | | | | |
Collapse
|
89
|
Palmer BA, Moreau I, Levis J, Harty C, Crosbie O, Kenny-Walsh E, Fanning LJ. Insertion and recombination events at hypervariable region 1 over 9.6 years of hepatitis C virus chronic infection. J Gen Virol 2012; 93:2614-2624. [PMID: 22971825 DOI: 10.1099/vir.0.045344-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) exists as a quasispecies within an infected individual. We have previously reported an in-frame 3 bp insertion event at the N-terminal region of the E2 glycoprotein from a genotype 4a HCV isolate giving rise to an atypical 28 aa hypervariable region (HVR) 1. To further explore quasispecies evolution at the HVR1, serum samples collected over 9.6 years from the same chronically infected, treatment naïve individual were subjected to retrospective clonal analysis. Uniquely, we observed that isolates containing this atypical HVR1 not only persisted for 7.6 years, but dominated the quasispecies swarm. Just as striking was the collapse of this population of variants towards the end of the sampling period in synchrony with variants containing a classical HVR1 from the same lineage. The replication space was subsequently occupied by a second minor lineage, which itself was only intermittently detectable at earlier sampling points. In conjunction with the observed genetic shift, the coexistence of two distinct HVR1 populations facilitated the detection of putative intra-subtype recombinants, which included the identification of the likely ancestral parental donors. Juxtaposed to the considerable plasticity of the HVR1, we also document a degree of mutational inflexibility as each of the HVR1 subpopulations within our dataset exhibited overall genetic conservation and convergence. Finally, we raise the issue of genetic analysis in the context of mixed lineage infections.
Collapse
Affiliation(s)
- Brendan A Palmer
- Molecular Virology Diagnostic and Research Laboratory, Department of Medicine, Clinical Sciences Building, University College Cork, Cork, Ireland
| | - Isabelle Moreau
- Molecular Virology Diagnostic and Research Laboratory, Department of Medicine, Clinical Sciences Building, University College Cork, Cork, Ireland
| | - John Levis
- Molecular Virology Diagnostic and Research Laboratory, Department of Medicine, Clinical Sciences Building, University College Cork, Cork, Ireland
| | - Ciara Harty
- Molecular Virology Diagnostic and Research Laboratory, Department of Medicine, Clinical Sciences Building, University College Cork, Cork, Ireland
| | - Orla Crosbie
- Department of Gastroenterology, Cork University Hospital, Cork, Ireland
| | | | - Liam J Fanning
- Molecular Virology Diagnostic and Research Laboratory, Department of Medicine, Clinical Sciences Building, University College Cork, Cork, Ireland
| |
Collapse
|
90
|
Ng TFF, Marine R, Wang C, Simmonds P, Kapusinszky B, Bodhidatta L, Oderinde BS, Wommack KE, Delwart E. High variety of known and new RNA and DNA viruses of diverse origins in untreated sewage. J Virol 2012; 86:12161-75. [PMID: 22933275 PMCID: PMC3486453 DOI: 10.1128/jvi.00869-12] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022] Open
Abstract
Deep sequencing of untreated sewage provides an opportunity to monitor enteric infections in large populations and for high-throughput viral discovery. A metagenomics analysis of purified viral particles in untreated sewage from the United States (San Francisco, CA), Nigeria (Maiduguri), Thailand (Bangkok), and Nepal (Kathmandu) revealed sequences related to 29 eukaryotic viral families infecting vertebrates, invertebrates, and plants (BLASTx E score, <10(-4)), including known pathogens (>90% protein identities) in numerous viral families infecting humans (Adenoviridae, Astroviridae, Caliciviridae, Hepeviridae, Parvoviridae, Picornaviridae, Picobirnaviridae, and Reoviridae), plants (Alphaflexiviridae, Betaflexiviridae, Partitiviridae, Sobemovirus, Secoviridae, Tombusviridae, Tymoviridae, Virgaviridae), and insects (Dicistroviridae, Nodaviridae, and Parvoviridae). The full and partial genomes of a novel kobuvirus, salivirus, and sapovirus are described. A novel astrovirus (casa astrovirus) basal to those infecting mammals and birds, potentially representing a third astrovirus genus, was partially characterized. Potential new genera and families of viruses distantly related to members of the single-stranded RNA picorna-like virus superfamily were genetically characterized and named Picalivirus, Secalivirus, Hepelivirus, Nedicistrovirus, Cadicistrovirus, and Niflavirus. Phylogenetic analysis placed these highly divergent genomes near the root of the picorna-like virus superfamily, with possible vertebrate, plant, or arthropod hosts inferred from nucleotide composition analysis. Circular DNA genomes distantly related to the plant-infecting Geminiviridae family were named Baminivirus, Nimivirus, and Niminivirus. These results highlight the utility of analyzing sewage to monitor shedding of viral pathogens and the high viral diversity found in this common pollutant and provide genetic information to facilitate future studies of these newly characterized viruses.
Collapse
Affiliation(s)
- Terry Fei Fan Ng
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Rachel Marine
- Departments of Biological Sciences and Plant & Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford University, Stanford, California, USA
| | - Peter Simmonds
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Beatrix Kapusinszky
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| | - Ladaporn Bodhidatta
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bamidele Soji Oderinde
- WHO National Polio Laboratory, University of Maiduguri Teaching Hospital, Borno State, Nigeria
| | - K. Eric Wommack
- Departments of Biological Sciences and Plant & Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California, USA
- Department of Laboratory Medicine, University of California, San Francisco, California, USA
| |
Collapse
|
91
|
Lukashev AN, Drexler JF, Belalov IS, Eschbach-Bludau M, Baumgarte S, Drosten C. Genetic variation and recombination in Aichi virus. J Gen Virol 2012; 93:1226-1235. [DOI: 10.1099/vir.0.040311-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Aichi virus (AiV), a member of the genus Kobuvirus in the family Picornaviridae, causes gastroenteritis in humans. It was noted that AiV differs from other picornaviruses in its unusually high C content and a very high degree of genome-ordered RNA secondary structures. However, the genetic variability and mutational restrictions on a full-genome scale have not been studied. In addition to the available five complete AiV genomes, we determined here another five complete coding sequences of AiV sampled in Germany, 2004. Distinctive AiV genetic features included a low incidence of recombination along the genome without obvious hotspots or spared regions and very low rates of synonymous and non-synonymous variation, supporting an absence of AiV serotypes. In addition, the absence of recombination between AiV genotypes A and B suggested the existence of reproductive isolation between taxonomic units below the species level. In contrast to most other picornaviruses, AiV genomes strongly avoided the UpA dinucleotide, while there was no obvious selection against the CpG dinucleotide. AiV genomes also appeared to contain a codon usage bias (CUB) apparent as an effective number of codons of 39.5, which was amongst the most extreme among RNA viruses. A set of sequence scrambling algorithms was developed to determine the origin of CUB in AiV. While in most picornaviruses the genomic dinucleotide content contributed significantly to CUB, in AiV its extreme nucleotide content, i.e. 57 % third codon position C, was the main driving force behind the apparent CUB.
Collapse
Affiliation(s)
- Alexander N. Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Ilya S. Belalov
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | | | | | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
92
|
Tuplin A, Struthers M, Simmonds P, Evans DJ. A twist in the tail: SHAPE mapping of long-range interactions and structural rearrangements of RNA elements involved in HCV replication. Nucleic Acids Res 2012; 40:6908-21. [PMID: 22561372 PMCID: PMC3413155 DOI: 10.1093/nar/gks370] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The RNA structure and long-range interactions of the SL9266 cis-acting replication element located within the NS5B coding region of hepatitis C virus (HCV) were determined using selective 2′-hydroxyl acylation analysed by primer extension. Marked differences were found in the long-range interactions of SL9266 when the two widely used genotype 2a JFH-1 (HCVcc) and genotype 1b Con1b sub-genomic replicon systems were compared. In both genomes, there was evidence for interaction of the sub-terminal bulge loop of SL9266 and sequences around nucleotide 9110, though the replication phenotype of genomes bearing mutations that disrupted this interaction was fundamentally different. In contrast, a ‘kissing loop’ interaction between the terminal loop of SL9266 and sequences in the 3′-untranslated X-tail was only detectable in JFH-1-based genomes. In the latter, where both long-range interactions are present, they were independent, implying that SL9266 forms the core of an extended pseudoknot. The presence of the ‘kissing loop’ interaction inhibited the formation of SL9571 in the 3′-X-tail, an RNA structure implicated in genome replication. We propose that, SL9266 may contribute a switch function that modulates the mutually incompatible translation and replication events that must occur for replication of the positive-strand RNA genome of HCV.
Collapse
Affiliation(s)
- Andrew Tuplin
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
93
|
Priore SF, Moss WN, Turner DH. Influenza A virus coding regions exhibit host-specific global ordered RNA structure. PLoS One 2012; 7:e35989. [PMID: 22558296 PMCID: PMC3338493 DOI: 10.1371/journal.pone.0035989] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/25/2012] [Indexed: 12/26/2022] Open
Abstract
Influenza A is a significant public health threat, partially because of its capacity to readily exchange gene segments between different host species to form novel pandemic strains. An understanding of the fundamental factors providing species barriers between different influenza hosts would facilitate identification of strains capable of leading to pandemic outbreaks and could also inform vaccine development. Here, we describe the difference in predicted RNA secondary structure stability that exists between avian, swine and human coding regions. The results predict that global ordered RNA structure exists in influenza A segments 1, 5, 7 and 8, and that ranges of free energies for secondary structure formation differ between host strains. The predicted free energy distributions for strains from avian, swine, and human species suggest criteria for segment reassortment and strains that might be ideal candidates for viral attenuation and vaccine development.
Collapse
Affiliation(s)
- Salvatore F. Priore
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Walter N. Moss
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
| | - Douglas H. Turner
- Department of Chemistry and Center for RNA Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
94
|
Abstract
Genetic and biological characterization of new hepaciviruses infecting animals contributes to our understanding of the ultimate origins of hepatitis C virus (HCV) infection in humans and dramatically enhances our ability to study its pathogenesis using tractable animal models. Animal homologs of HCV include a recently discovered canine hepacivirus (CHV) and GB virus B (GBV-B), both viruses with largely undetermined natural host ranges. Here we used a versatile serology-based approach to determine the natural host of the only known nonprimate hepacivirus (NPHV), CHV, which is also the closest phylogenetic relative of HCV. Recombinant protein expressed from the helicase domain of CHV NS3 was used as antigen in the luciferase immunoprecipitation system (LIPS) assay to screen several nonprimate animal species. Thirty-six samples from 103 horses were immunoreactive, and viral genomic RNA was present in 8 of the 36 seropositive animals and none of the seronegative animals. Complete genome sequences of these 8 genetically diverse NPHVs showed 14% (range, 6.4% to 17.2%) nucleotide sequence divergence, with most changes occurring at synonymous sites. RNA secondary structure prediction of the 383-base 5' untranslated region of NPHV was refined and extended through mapping of polymorphic sites to unpaired regions or (semi)covariant pairings. Similar approaches were adopted to delineate extensive RNA secondary structures in the coding region of the genome, predicted to form 27 regularly spaced, thermodynamically stable stem-loops. Together, these findings suggest a promising new nonprimate animal model and provide a database that will aid creation of functional NPHV cDNA clones and other novel tools for hepacivirus studies.
Collapse
|
95
|
Sharp PM, Simmonds P. Evaluating the evidence for virus/host co-evolution. Curr Opin Virol 2011; 1:436-41. [DOI: 10.1016/j.coviro.2011.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 01/04/2023]
|
96
|
Pang PS, Elazar M, Pham EA, Glenn JS. Simplified RNA secondary structure mapping by automation of SHAPE data analysis. Nucleic Acids Res 2011; 39:e151. [PMID: 21965531 PMCID: PMC3239176 DOI: 10.1093/nar/gkr773] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SHAPE (Selective 2′-hydroxyl acylation analysed by primer extension) technology has emerged as one of the leading methods of determining RNA secondary structure at the nucleotide level. A significant bottleneck in using SHAPE is the complex and time-consuming data processing that is required. We present here a modified data collection method and a series of algorithms, embodied in a program entitled Fast Analysis of SHAPE traces (FAST), which significantly reduces processing time. We have used this method to resolve the secondary structure of the first ∼900 nt of the hepatitis C virus (HCV) genome, including the entire core gene. We have also demonstrated the ability of SHAPE/FAST to detect the binding of a small molecule inhibitor to the HCV internal ribosomal entry site (IRES). In conclusion, FAST allows for high-throughput data processing to match the current high-throughput generation of data possible with SHAPE, reducing the barrier to determining the structure of RNAs of interest.
Collapse
Affiliation(s)
- Phillip S Pang
- Department of Medicine, Stanford University Medical Center, Palo Alto, CA, USA
| | | | | | | |
Collapse
|
97
|
Belshaw R, Sanjuán R, Pybus OG. Viral mutation and substitution: units and levels. Curr Opin Virol 2011; 1:430-5. [PMID: 22440847 DOI: 10.1016/j.coviro.2011.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/11/2011] [Indexed: 01/11/2023]
Abstract
Viruses evolve within a hierarchy of organisational levels, from cells to host species. We discuss how these nested population structures complicate the meaning and interpretation of two apparently simple evolutionary concepts: mutation rate and substitution rate. We discuss the units in which these fundamental processes should be measured, and explore why, even for the same virus, mutation and substitution can occur at very different tempos at different biological levels. In addition, we explore the ability of whole genome evolutionary analyses to distinguish between natural selection and other population genetic processes. A better understanding of the complexities underlying the molecular evolution of viruses in natural populations is needed before accurate predictions of viral evolution can be made.
Collapse
Affiliation(s)
- Robert Belshaw
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
98
|
Martin DP, Lefeuvre P, Varsani A, Hoareau M, Semegni JY, Dijoux B, Vincent C, Reynaud B, Lett JM. Complex recombination patterns arising during geminivirus coinfections preserve and demarcate biologically important intra-genome interaction networks. PLoS Pathog 2011; 7:e1002203. [PMID: 21949649 PMCID: PMC3174254 DOI: 10.1371/journal.ppat.1002203] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/24/2011] [Indexed: 02/05/2023] Open
Abstract
Genetic recombination is an important process during the evolution of many virus species and occurs particularly frequently amongst begomoviruses in the single stranded DNA virus family, Geminiviridae. As in many other recombining viruses it is apparent that non-random recombination breakpoint distributions observable within begomovirus genomes sampled from nature are the product of variations both in basal recombination rates across genomes and in the over-all viability of different recombinant genomes. Whereas factors influencing basal recombination rates might include local degrees of sequence similarity between recombining genomes, nucleic acid secondary structures and genomic sensitivity to nuclease attack or breakage, the viability of recombinant genomes could be influenced by the degree to which their co-evolved protein-protein and protein-nucleotide and nucleotide-nucleotide interactions are disreputable by recombination. Here we investigate patterns of recombination that occur over 120 day long experimental infections of tomato plants with the begomoviruses Tomato yellow leaf curl virus and Tomato leaf curl Comoros virus. We show that patterns of sequence exchange between these viruses can be extraordinarily complex and present clear evidence that factors such as local degrees of sequence similarity but not genomic secondary structure strongly influence where recombination breakpoints occur. It is also apparent from our experiment that over-all patterns of recombination are strongly influenced by selection against individual recombinants displaying disrupted intra-genomic interactions such as those required for proper protein and nucleic acid folding. Crucially, we find that selection favoring the preservation of co-evolved longer-range protein-protein and protein DNA interactions is so strong that its imprint can even be used to identify the exact sequence tracts involved in these interactions. Genetic recombination between viruses is a form of parasexual reproduction during which two parental viruses each contribute genetic information to an offspring, or recombinant, virus. Unlike with sexual reproduction, however, recombination in viruses can even involve the transfer of sequences between the members of distantly related species. When parental genomes are very distantly related, it is anticipated that recombination between them runs the risk of producing defective offspring. The reason for this is that the interactions between different parts of genomes and the proteins they encode (such as between different viral proteins or between viral proteins and the virus genomic DNA or RNA) often depend on particular co-evolved binding sites that recognize one another. When in a recombinant genome the partners in a binding site pair are each inherited from different parents there is a possibility that they will not interact with one another properly. Here we examine recombinant genomes arising during experimental mixed infections of two distantly related viruses to detect evidence that intra-genome interaction networks are broadly preserved in these genomes. We show this preservation is so strict that patterns of recombination in these viruses can even be used to identify the interacting regions within their genomes.
Collapse
MESH Headings
- Base Sequence
- Begomovirus/genetics
- Begomovirus/pathogenicity
- Coinfection
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/metabolism
- DNA, Viral/chemistry
- DNA, Viral/genetics
- DNA, Viral/metabolism
- Genome, Viral
- Solanum lycopersicum/virology
- Nucleic Acid Conformation
- Phylogeny
- Plant Diseases/virology
- Polymorphism, Genetic
- Protein Folding
- Recombination, Genetic
- Selection, Genetic
- Viral Proteins/chemistry
Collapse
Affiliation(s)
- Darren P Martin
- Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, South Africa.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Semegni JY, Wamalwa M, Gaujoux R, Harkins GW, Gray A, Martin DP. NASP: a parallel program for identifying evolutionarily conserved nucleic acid secondary structures from nucleotide sequence alignments. ACTA ACUST UNITED AC 2011; 27:2443-5. [PMID: 21757466 DOI: 10.1093/bioinformatics/btr417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
SUMMARY Many natural nucleic acid sequences have evolutionarily conserved secondary structures with diverse biological functions. A reliable computational tool for identifying such structures would be very useful in guiding experimental analyses of their biological functions. NASP (Nucleic Acid Structure Predictor) is a program that takes into account thermodynamic stability, Boltzmann base pair probabilities, alignment uncertainty, covarying sites and evolutionary conservation to identify biologically relevant secondary structures within multiple sequence alignments. Unique to NASP is the consideration of all this information together with a recursive permutation-based approach to progressively identify and list the most conserved probable secondary structures that are likely to have the greatest biological relevance. By focusing on identifying only evolutionarily conserved structures, NASP forgoes the prediction of complete nucleotide folds but outperforms various other secondary structure prediction methods in its ability to selectively identify actual base pairings. AVAILABILITY Downloable and web-based versions of NASP are freely available at http://web.cbio.uct.ac.za/~yves/nasp_portal.php CONTACT yves@cbio.uct.ac.za SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- J Y Semegni
- Computational Biology Group, Department of Clinical Laboratory Sciences, IIDMM, University of Cape Town, Observatory, Cape Town, South Africa.
| | | | | | | | | | | |
Collapse
|
100
|
Tuplin A, Evans DJ, Buckley A, Jones IM, Gould EA, Gritsun TS. Replication enhancer elements within the open reading frame of tick-borne encephalitis virus and their evolution within the Flavivirus genus. Nucleic Acids Res 2011; 39:7034-48. [PMID: 21622960 PMCID: PMC3303483 DOI: 10.1093/nar/gkr237] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We provide experimental evidence of a replication enhancer element (REE) within the capsid gene of tick-borne encephalitis virus (TBEV, genus Flavivirus). Thermodynamic and phylogenetic analyses predicted that the REE folds as a long stable stem–loop (designated SL6), conserved among all tick-borne flaviviruses (TBFV). Homologous sequences and potential base pairing were found in the corresponding regions of mosquito-borne flaviviruses, but not in more genetically distant flaviviruses. To investigate the role of SL6, nucleotide substitutions were introduced which changed a conserved hexanucleotide motif, the conformation of the terminal loop and the base-paired dsRNA stacking. Substitutions were made within a TBEV reverse genetic system and recovered mutants were compared for plaque morphology, single-step replication kinetics and cytopathic effect. The greatest phenotypic changes were observed in mutants with a destabilized stem. Point mutations in the conserved hexanucleotide motif of the terminal loop caused moderate virus attenuation. However, all mutants eventually reached the titre of wild-type virus late post-infection. Thus, although not essential for growth in tissue culture, the SL6 REE acts to up-regulate virus replication. We hypothesize that this modulatory role may be important for TBEV survival in nature, where the virus circulates by non-viraemic transmission between infected and non-infected ticks, during co-feeding on local rodents.
Collapse
Affiliation(s)
- A Tuplin
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, Cranfield Health, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | | | | | | | | | | |
Collapse
|