51
|
Gutierrez J, Osses N, Brandan E. Changes in secreted and cell associated proteoglycan synthesis during conversion of myoblasts to osteoblasts in response to bone morphogenetic protein-2: role of decorin in cell response to BMP-2. J Cell Physiol 2006; 206:58-67. [PMID: 15920756 DOI: 10.1002/jcp.20428] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteoglycans have been identified within the extracellular matrices (ECM) of bone and are known to play a role in ECM assembly, mineralization, and bone formation. Bone morphogenetic protein-2 (BMP-2) specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells. Microarray analyses of the mouse myoblast cell line C2C12 and its differentiation into osteoblastic cells in response to BMP-2 have suggested the up-regulation of several proteoglycan species, although there is a lack of biochemical evidence for this response. In this study we have biochemically analyzed and characterized the proteoglycan populations that are induced in C2C12 cells upon osteoblastic differentiation produced by BMP-2. An important and specific increase in the synthesis of secreted decorin was observed in BMP-2-treated cells, as compared to untreated myoblasts and myoblasts induced to differentiate into myotubes. Decorin was seen to contain larger glycosaminoglycan (GAG) chains in induced than in non-induced cells. BMP-2 also produced an augment in the synthesis of different heparan sulfate proteoglycans such syndecan-2, - 3, glypican, and perlecan in detergent-soluble and non-soluble cellular fractions. We also examined whether the evident changes induced by BMP-2 in secreted decorin could have a functional role. BMP-2 signaling dependent as well as induction of alkaline phosphatase (ALP) activity was diminished in decorin null myoblasts compared to wild type myoblats although cell surface level of BPM-2 receptors was unchanged. These results are the first biochemical evidence and analysis for the effect of BMP-2 on the synthesis of proteoglycan during osteogenic conversion of myoblasts and suggest a role for decorin in cell response to BMP-2.
Collapse
Affiliation(s)
- Jaime Gutierrez
- Centro de Regulación Celular y Patología, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, MIFAB, P. Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
52
|
Glass DA, Karsenty G. Molecular bases of the regulation of bone remodeling by the canonical Wnt signaling pathway. Curr Top Dev Biol 2006; 73:43-84. [PMID: 16782455 DOI: 10.1016/s0070-2153(05)73002-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Osteoporosis is a common, prevalent, and debilitating condition, particularly in postmenopausal women. Genetics play a major role in determining peak bone mass and fracture risk, but few genes have been demonstrated conclusively to be involved, much less the signaling pathways with which they are affiliated. The identification of mutations in the gene Lrp5, a Wnt coreceptor, as the cause for both osteoporotic and high-bone mass disorders implicated the canonical Wnt signaling pathway in bone mass regulation. Since Lrp5, other Wnt components have been identified as being regulators of bone mass, and Wnt target genes affecting bone homeostasis have begun to be elucidated. This chapter looks at the various components of the canonical Wnt signaling pathway and the data indicating that this pathway plays a major role in the control of both bone formation and bone resorption, the two key aspects of bone remodeling.
Collapse
Affiliation(s)
- Donald A Glass
- Department of Molecular and Human Genetics, Bone Disease Program of Texas, Baylor College of Medicine, Houston, 77030, USA
| | | |
Collapse
|
53
|
van Someren EP, Vaes BLT, Steegenga WT, Sijbers AM, Dechering KJ, Reinders MJT. Least absolute regression network analysis of the murine osteoblast differentiation network. ACTA ACUST UNITED AC 2005; 22:477-84. [PMID: 16332709 DOI: 10.1093/bioinformatics/bti816] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
MOTIVATION We propose a reverse engineering scheme to discover genetic regulation from genome-wide transcription data that monitors the dynamic transcriptional response after a change in cellular environment. The interaction network is estimated by solving a linear model using simultaneous shrinking of the least absolute weights and the prediction error. RESULTS The proposed scheme has been applied to the murine C2C12 cell-line stimulated to undergo osteoblast differentiation. Results show that our method discovers genetic interactions that display significant enrichment of co-citation in literature. More detailed study showed that the inferred network exhibits properties and hypotheses that are consistent with current biological knowledge.
Collapse
Affiliation(s)
- E P van Someren
- Department of Mediametics, Delft University of Technology, 2600 GA Delft, The Netherlands.
| | | | | | | | | | | |
Collapse
|
54
|
Logeart-Avramoglou D, Bourguignon M, Oudina K, Ten Dijke P, Petite H. An assay for the determination of biologically active bone morphogenetic proteins using cells transfected with an inhibitor of differentiation promoter-luciferase construct. Anal Biochem 2005; 349:78-86. [PMID: 16307714 DOI: 10.1016/j.ab.2005.10.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 10/14/2005] [Accepted: 10/16/2005] [Indexed: 10/25/2022]
Abstract
Bone morphogenetic proteins (BMPs) control cell fate by regulating gene expression, especially inhibitor of differentiation (Id) genes. This property has been exploited to create a highly sensitive assay for quantification of active BMP. Embryonic mouse cells (C3H10T1/2) were stably transfected with an expression construct (BRE-Luc) containing a BMP-responsive element fused to the firefly luciferase reporter gene. BRE results from a multimerization of distinct sequences elements from a mouse Id1 promoter [15]. The addition of BMP-2 (0.5-100ng/ml) to the transfectants resulted in a dose-dependent increase in luciferase activity in the cell lysates. This new assay was 100-fold more sensitive than the classical alkaline phosphatase (ALP) activity assay (0.5-1 vs. 50-100ng/ml, respectively) as well as much more rapid (24h vs. 3-6 days, respectively, of BMP treatment). This new assay is specific to BMPs (BMP-2, BMP-4, and BMP7) as evidenced by its relative insensitivity to TGFbeta1, bFGF, and VEGF. Because of its BMP specificity, this rapid, sensitive, nonradioactive, and easily performed assay could be used in monitoring the biological activity of BMP and, eventually, as a cell-based screening assay to identify and evaluate molecules that modulate BMP signaling in cells.
Collapse
Affiliation(s)
- D Logeart-Avramoglou
- Laboratoire de Recherches Orthopédiques, Faculté de Médecine Lariboisière-Saint-Louis, Université Paris 7, 75010 Paris, France.
| | | | | | | | | |
Collapse
|
55
|
van der Horst G, van der Werf SM, Farih-Sips H, van Bezooijen RL, Löwik CWGM, Karperien M. Downregulation of Wnt signaling by increased expression of Dickkopf-1 and -2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J Bone Miner Res 2005; 20:1867-77. [PMID: 16160745 DOI: 10.1359/jbmr.050614] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 05/11/2005] [Accepted: 06/24/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED We examined the role of Wnt/beta-catenin signaling in successive stages of osteoblast differentiation. It has been shown that Wnt signaling in mature osteoblasts needs to be downregulated to enable the formation of a mineralized matrix. Using RNA interference, we showed that this is, at least in part, accomplished by upregulation of the Wnt antagonists Dickkopf-1 and -2. INTRODUCTION The role of Wnt signaling in the initiation of osteoblast differentiation has been well studied. However, the role during late-stage differentiation is less clear. We have examined the role of Wnt/beta-catenin signaling in successive stages of osteoblast differentiation. MATERIALS AND METHODS We treated murine bone marrow and mesenchymal stem cell-like KS483 cells with either LiCl or Wnt3A during several stages of osteoblast differentiation. In addition, we generated stable KS483 cell lines silencing either the Wnt antagonist Dkk-1 or -2 RESULTS Activation of Wnt signaling by LiCl inhibits the formation of a mineralized bone matrix in both cell types. Whereas undifferentiated KS483 cells respond to Wnt3A by inducing nuclear beta-catenin translocation, differentiated cells do not. This is at least in part accomplished by upregulated expression of Dkk-1 and -2 during osteoblast differentiation. Using RNA interference, we showed that Dkk-1 plays a crucial role in blunting the BMP-induced alkaline phosphatase (ALP) response and in the transition of an ALP+ osteoblast in a mineralizing cell. In contrast, Dkk-2 plays a role in osteoblast proliferation and the initiation of osteoblast differentiation. CONCLUSIONS Our data suggest that Wnt signaling in maturing osteoblasts needs to be downregulated to enable the formation of a mineralized bone matrix. Furthermore, they suggest that Dkk-1 and Dkk-2 may have distinct functions in osteoblast differentiation.
Collapse
Affiliation(s)
- Geertje van der Horst
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
56
|
Peiffer DA, Von Bubnoff A, Shin Y, Kitayama A, Mochii M, Ueno N, Cho KWY. A Xenopus DNA microarray approach to identify novel direct BMP target genes involved in early embryonic development. Dev Dyn 2005; 232:445-56. [PMID: 15614776 DOI: 10.1002/dvdy.20230] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Bone morphogenetic proteins (BMPs), a subgroup of the transforming growth factor-beta (TGF-beta) superfamily, were originally isolated from bone on the basis of their ability to induce ectopic bone development. Although BMPs are involved in a wide range of developmental and physiological functions, very few vertebrate target genes in this pathway have been identified. To identify target genes regulated by the BMP growth factor family in Xenopus, large-scale microarray analyses were conducted to discover genes directly activated by this factor in dissociated animal cap tissues treated with a combination of the protein synthesis inhibitor cycloheximide and BMP2. Consequent expression patterns and behaviors of the most highly induced genes were analyzed by in situ and reverse transcriptase-polymerase chain reaction analyses. Here, we describe two sets of the most highly induced direct BMP target genes identified using microarrays prepared from two different stages of early Xenopus development. A wide variety of genes are induced by BMP2, ranging from cell cycle controllers, enzymes, signal transduction cascade components, and components of the blood and vascular system. The finding reinforces the notion that BMP signals play important roles in a variety of biological processes.
Collapse
Affiliation(s)
- Daniel A Peiffer
- Department of Developmental and Cell Biology, University of California, Irvine, California, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
Microarray studies are widely employed in the exploratory phase of the drug discovery process. Expectations raised by the genomics revolution led to the belief that they would rapidly lead to the identification of novel drug targets. However, a few basic questions were often overlooked. Are members of drugable gene families properly represented in the transcriptome? Or are they poorly expressed and below the detection limit of the microarray technology? This review explores the representation of drug targets and components of downstream cellular signaling pathways in the transcriptome. It appears that members of drugable gene families are underrepresented in the transcriptomes of non-pathological human tissues. But, they are represented at or above the expected frequency in the differential transcriptome (i.e. the set of genes that changes expression upon a change in cellular environment). Analysis of differential gene expression on a genome-wide scale will therefore give a comprehensive overview of cellular pathways and possible drug targets.
Collapse
Affiliation(s)
- Koen J Dechering
- N.V. Organon, Department of Target Discovery, Room RE2106, PO Box 20, 5340 BH Oss, The Netherlands.
| |
Collapse
|
58
|
Mansukhani A, Ambrosetti D, Holmes G, Cornivelli L, Basilico C. Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. ACTA ACUST UNITED AC 2005; 168:1065-76. [PMID: 15781477 PMCID: PMC2171836 DOI: 10.1083/jcb.200409182] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Activating mutations in fibroblast growth factor receptor 2 (FGFR2) cause several craniosynostosis syndromes by affecting the proliferation and differentiation of osteoblasts, which form the calvarial bones. Osteoblasts respond to FGF with increased proliferation and inhibition of differentiation. We analyzed the gene expression profiles of osteoblasts expressing FGFR2 activating mutations (C342Y or S252W) and found a striking down-regulation of the expression of many Wnt target genes and a concomitant induction of the transcription factor Sox2. Most of these changes could be reproduced by treatment of osteoblasts with exogenous FGF. Wnt signals promote osteoblast function and regulate bone mass. Sox2 is expressed in calvarial osteoblasts in vivo and we show that constitutive expression of Sox2 inhibits osteoblast differentiation and causes down-regulation of the expression of numerous Wnt target genes. Sox2 associates with β-catenin in osteoblasts and can inhibit the activity of a Wnt responsive reporter plasmid through its COOH-terminal domain. Our results indicate that FGF signaling could control many aspects of osteoblast differentiation through induction of Sox2 and regulation of the Wnt–β-catenin pathway.
Collapse
Affiliation(s)
- Alka Mansukhani
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | |
Collapse
|
59
|
Wu X, Walker J, Zhang J, Ding S, Schultz PG. Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway. ACTA ACUST UNITED AC 2005; 11:1229-38. [PMID: 15380183 DOI: 10.1016/j.chembiol.2004.06.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/11/2004] [Accepted: 06/21/2004] [Indexed: 11/18/2022]
Abstract
Previously, a small molecule, purmorphamine, was identified that selectively induces osteogenesis in multipotent mesenchymal progenitor cells. In order to gain insights into the mechanism of action of purmorphamine, high-density oligonucleotide microarrays were used to profile gene expression in multipotent mesenchymal progenitor cells treated with either purmorphamine or bone morphogenetic protein-4 (BMP-4). In contrast to BMP-4 treatment, purmorphamine activates the Hedgehog (Hh) signaling pathway, resulting in the up- and downregulation of its downstream target genes, including Gli1 and Patched. Moreover, the known Hh signaling antagonists, cyclopamine and forskolin, completely block the osteogenesis and Glimediated transcription induced by purmorphamine. These results demonstrate that purmorphamine is a small molecule agonist of Hedgehog signaling, and it may ultimately be useful in the treatment of bone-related disease and neurodegenerative disease.
Collapse
Affiliation(s)
- Xu Wu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
60
|
De Boer J, Wang HJ, Van Blitterswijk C. Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. ACTA ACUST UNITED AC 2005; 10:393-401. [PMID: 15165456 DOI: 10.1089/107632704323061753] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mesenchymal stem cells are pluripotent cells from bone marrow, which can be differentiated into the osteogenic, chondrogenic, and adipogenic lineages in vitro and are a source of cells in bone and cartilage tissue engineering. An improvement in current tissue-engineering protocols requires more detailed insight into the molecular cues that regulate the distinct steps of osteochondral differentiation. Because Wnt signaling has been widely implicated in mesenchymal differentiation, we analyzed the role of Wnt signaling in human mesenchymal stem cell (hMSC) biology by stimulation of the pathway with lithium chloride and Wnt3A-conditioned medium. We demonstrate a role for low levels of Wnt signaling in proliferation of uncommitted hMSCs and confirm that Wnt signaling controls osteoprogenitor proliferation. On the other hand, at high Wnt levels we observed a block in adipogenic differentiation and an increase in the expression of alkaline phosphatase, suggesting a role in the initiation of osteogenesis. The results of this study suggest that bone tissue engineering could benefit from the activation of critical levels of Wnt signaling at defined stages of differentiation. Moreover, our data suggest that hMSCs provide a valid in vitro model to study the role of Wnt signaling in mesenchymal biology.
Collapse
Affiliation(s)
- Jan De Boer
- Institute for Biomedical Technology, University of Twente, Twente, The Netherlands.
| | | | | |
Collapse
|
61
|
Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene 2005; 341:19-39. [PMID: 15474285 DOI: 10.1016/j.gene.2004.06.044] [Citation(s) in RCA: 590] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 06/04/2004] [Accepted: 06/21/2004] [Indexed: 12/18/2022]
Abstract
Recent revelations that the canonical Wnt signaling pathway promotes postnatal bone accrual are major advances in our understanding of skeletal biology and bring tremendous promise for new therapeutic treatments for osteoporosis and other diseases of altered bone mass. Wnts are soluble glycoproteins that engage receptor complexes composed of Lrp5/6 and Frizzled proteins. A subgroup of Wnts induces a cascade of intracellular events that stabilize beta-catenin, facilitating its transport to nuclei where it binds Lef1/Tcf transcription factors and alters gene expression to promote osteoblast expansion and function. Natural extracellular Wnt antagonists, Dickkopfs and secreted frizzled-related proteins, impair osteoblast function and block bone formation. In several genetic disorders of altered skeletal mass, mutations in LRP5 create gain-of-function or loss-of-function receptors that are resistant to normal regulatory mechanisms and cause higher or lower bone density, respectively. In this review, we summarize the available molecular, cellular, and genetic data that demonstrate how Lrp5 and other components of the Wnt signaling pathway influence osteoblast proliferation, function, and survival. We also discuss regulatory mechanisms discovered in developmental and tumor models that may provide insights into novel therapies for bone diseases.
Collapse
Affiliation(s)
- Jennifer J Westendorf
- The Cancer Center and Department of Orthopaedic Surgery, University of Minnesota, MMC 806, 420 Delaware St. SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
62
|
Peng Y, Kang Q, Cheng H, Li X, Sun MH, Jiang W, Luu HH, Park JY, Haydon RC, He TC. Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling. J Cell Biochem 2004; 90:1149-65. [PMID: 14635189 DOI: 10.1002/jcb.10744] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bone formation is presumably a complex and well-orchestrated process of osteoblast lineage-specific differentiation. As members of the TGFbeta superfamily, bone morphogenetic proteins (BMPs) play an important role in regulating osteoblast differentiation and subsequent bone formation. Several BMPs are able to induce de novo bone formation. Although significant progress has recently been made about the transcriptional control of osteoblast differentiation, detailed molecular events underlying the osteogenic process remain to be elucidated. In order to identify potentially important signaling mediators activated by osteogenic BMPs but not by non-osteogenic BMPs, we sought to determine the transcriptional differences between three osteogenic BMPs (i.e., BMP-2, BMP-6, and BMP-9) and two inhibitory/non-osteogenic BMPs (i.e., BMP-3 and BMP-12). Through the microarray analysis of approximately 12,000 genes in pre-osteoblast progenitor cells, we found that expression level of 203 genes (105 up-regulated and 98 down-regulated) was altered >2-fold upon osteogenic BMP stimulation. Gene ontology analysis revealed that osteogenic BMPs, but not inhibitory/non-osteogenic BMPs, activate genes involved in the proliferation of pre-osteoblast progenitor cells towards osteoblastic differentiation, and simultaneously inhibit myoblast-specific gene expression. BMP-regulated expression of the selected target genes was confirmed by RT-PCR, as well as by the CodeLink Bioarray analysis. Our findings are consistent with the notion that osteogenesis and myogenesis are two divergent processes. Further functional characterization of these downstream target genes should provide important insights into the molecular mechanisms behind BMP-mediated bone formation.
Collapse
Affiliation(s)
- Ying Peng
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 2004; 23:4315-29. [PMID: 15156188 DOI: 10.1038/sj.onc.1207676] [Citation(s) in RCA: 415] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of Runx involvement in regulatory mechanisms that are requisite for fidelity of bone cell growth and differentiation, as well as for skeletal homeostasis and the structural and functional integrity of skeletal tissue. Runx-mediated control is addressed from the perspective of support for biological parameters of skeletal gene expression. We review recent findings that are consistent with an active role for Runx proteins as scaffolds for integration, organization and combinatorial assembly of nucleic acids and regulatory factors within the three-dimensional context of nuclear architecture.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center University of Massachusetts Medical School, Worcester, M 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
de Jong DS, Vaes BLT, Dechering KJ, Feijen A, Hendriks JMA, Wehrens R, Mummery CL, van Zoelen EJJ, Olijve W, Steegenga WT. Identification of novel regulators associated with early-phase osteoblast differentiation. J Bone Miner Res 2004; 19:947-58. [PMID: 15125793 DOI: 10.1359/jbmr.040216] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Revised: 11/27/2003] [Accepted: 01/20/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED Key regulatory components of the BMP-induced osteoblast differentiation cascade remain to be established. Microarray and subsequent expression analyses in mice identified two transcription factors, Hey1 and Tcf7, with in vitro and in vivo expression characteristics very similar to Cbfa1. Transfection studies suggest that Tcf7 modulates BMP2-induced osteoblast differentiation. This study contributes to a better definition of the onset of BMP-induced osteoblast differentiation. INTRODUCTION Elucidation of the genetic cascade guiding mesenchymal stem cells to become osteoblasts is of extreme importance for improving the treatment of bone-related diseases such as osteoporosis. The aim of this study was to identify regulators of the early phases of bone morphogenetic protein (BMP)2-induced osteoblast differentiation. MATERIALS AND METHODS Osteoblast differentiation of mouse C2C12 cells was induced by treatment with BMP2, and regulation of gene expression was studied during the subsequent 24 h using high-density microarrays. The regulated genes were grouped by means of model-based clustering, and protein functions were assigned. Real-time quantitative RT-PCR analysis was used to validate BMP2-induced gene expression patterns in C2C12 cells. Osteoblast specificity was studied by comparing these expression patterns with those in C3H10T1/2 and NIH3T3 cells under similar conditions. In situ hybridization of mRNA in embryos at embryonic day (E)14.5 and E16.5 of gestation and on newborn mouse tails were used to study in vivo expression patterns. Cells constitutively expressing the regulated gene Tcf7 were used to investigate its influence on BMP-induced osteoblast differentiation. RESULTS AND CONCLUSIONS A total of 184 genes and expressed sequence tags (ESTs) were differentially expressed in the first 24 h after BMP2 treatment and grouped in subsets of immediate early, intermediate early, and late early response genes. Signal transduction regulatory factors mainly represented the subset of immediate early genes. Regulation of expression of these genes was direct, independent of de novo protein synthesis and independent of the cell type studied. The intermediate early and late early genes consisted primarily of genes related to processes that modulate morphology, basement membrane formation, and synthesis of extracellular calcified matrix. The late early genes require de novo protein synthesis and show osteoblast specificity. In vivo and in vitro experiments showed that the transcription factors Hey1 and Tcf7 exhibited expression characteristics and cell type specificity very similar to those of the osteoblast specific transcription factor Cbfa1, and constitutive expression of Tcf7 in C2C12 cells differentially regulated osteoblast differentiation marker genes.
Collapse
Affiliation(s)
- Diana S de Jong
- Department of Applied Biology, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Doi M, Nagano A, Nakamura Y. Molecular cloning and characterization of a novel gene, EMILIN-5, and its possible involvement in skeletal development. Biochem Biophys Res Commun 2004; 313:888-93. [PMID: 14706625 DOI: 10.1016/j.bbrc.2003.11.181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
By analyzing expression profiles of human mesenchymal stem cells incubated in osteogenic supplements, we identified and characterized a novel human cDNA, elastin microfibril interface located protein-5 (EMILIN-5), that is likely to play a significant role in the process of osteogenesis. The deduced EMILIN-5 product consists of 766 amino acids with a cysteine-rich EMI domain at the NH(2) terminus. Western blotting detected EMILIN-5 expression in a variety of osteoblastic cell lines. Immunohistochemistry of mouse embryos 13.5 days post-coitus revealed relatively high levels of EMILIN-5 protein in perichondrium cells of developing limbs. Our findings suggest that the EMILIN-5 gene plays an important role in skeletal development.
Collapse
Affiliation(s)
- Mitsuhito Doi
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
66
|
Abstract
Parathyroid hormone (PTH) is the major hormone regulating calcium metabolism. It is also the only FDA-approved drug for osteoporosis treatment that stimulates bone formation when injected daily. However, continuous infusion of PTH causes severe bone loss in line with its known catabolic effects. Many studies to understand the dual effects of PTH have been carried out, and in recent years a growing number of molecular and cellular mechanisms underlying these effects have emerged. Here, we outline the present knowledge and conclude that the kinetics of administration and subsequent signaling probably account for the divergent actions of the hormone.
Collapse
Affiliation(s)
- Ling Qin
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
67
|
Zhou S, Eid K, Glowacki J. Cooperation between TGF-beta and Wnt pathways during chondrocyte and adipocyte differentiation of human marrow stromal cells. J Bone Miner Res 2004; 19:463-70. [PMID: 15040835 DOI: 10.1359/jbmr.0301239] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 08/22/2003] [Accepted: 10/08/2003] [Indexed: 11/18/2022]
Abstract
UNLABELLED Human marrow stromal cells have the potential to differentiate to chondrocytes or adipocytes. We show interactions between TGF-beta and Wnt signaling pathways during stimulation of chondrogenesis and inhibition of adipogenesis. Combining these signals may be useful in marrow stromal cell therapies. INTRODUCTION Human bone marrow stromal cells (hMSCs) have the potential to differentiate to lineages of mesenchymal tissues, including cartilage, fat, bone, tendon, and muscle. Agents like transforming growth factor (TGF)-beta promote chondrocyte differentiation at the expense of adipocyte differentiation. In other processes, TGF-beta and Wnt/wingless signaling pathways play major roles in controling certain developmental events and activation of specific target genes. We tested whether these pathways interact during differentiation of chondrocytes and adipocytes in human marrow stromal cells. MATERIALS AND METHODS Both a line of human marrow stromal cells (KM101) and freshly isolated hMSCs were studied. Reverse transcriptase-polymerase chain reaction (RT-PCR), Western blot, and macroarrays were used for analysis of the modulation of TGF-beta1 on Wnt signaling-associated genes, chondrocyte differentiation genes, and TGFbeta/bone morphogenetic protein (BMP) signaling-associated genes in KM101 cells. Early passage hMSCs obtained from 42- and 58-year-old women were used for the effects of TGF-beta and/or Wnt (mimicked by LiCl) signals on chondrocyte and adipocyte differentiation in two-dimensional (2-D) cultures, 3-D pellet cultures, and collagen sponges. RESULTS As indicated by macroarray, RT-PCR, and Western blot, TGF-beta activated genes in the TGF-beta/Smad pathway, upregulated Wnt2, Wnt4, Wnt5a, Wnt7a, Wnt10a, and Wnt co-receptor LRP5, and increased nuclear accumulation and stability of beta-catenin in KM101 cells. TGF-beta upregulated chondrocyte gene expression in KM101 cells and also stimulated chondrocyte differentiation and inhibited adipocyte differentiation in hMSCs, synergistically with Wnt signal. Finally, hMSCs cultured in 3-D collagen sponges were stimulated by TGF-beta1 to express aggrecan and collagen type II mRNA, whereas expression of lipoprotein lipase was inhibited. CONCLUSIONS In summary, TGF-beta stimulated chondrocyte differentiation and inhibited adipocyte differentiation of hMSCs in vitro. The activation of both TGF-beta and Wnt signal pathways by TGF-beta, and synergy between TGF-beta and Wnt signals, supports the view that Wnt-mediated signaling is one of the mechanisms of TGF-beta's effects on chondrocyte and adipocyte differentiation of hMSCs.
Collapse
Affiliation(s)
- Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
68
|
Edgar AJ, Dover SL, Lodrick MN, McKay IJ, Hughes FJ, Turner W. Bone morphogenetic protein-2 induces expression of murine zinc finger transcription factor ZNF450. J Cell Biochem 2004; 94:202-15. [PMID: 15526281 DOI: 10.1002/jcb.20299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bone morphogenetic protein-2 (BMP-2) is a potent secreted factor that promotes osteoblast differentiation during development. Exposure to BMP-2 is sufficient to cause a lasting change in cell fate presumably by activating specific target genes. To identify genes downstream of BMP-2 we treated the murine pluripotent embryonic cell line, C3H10T1/2 that can be induced to form an osteoblastic phenotype, with 100 ng/ml BMP-2 for 24 h. Using suppression subtractive hybridisation we found the novel zinc finger transcription factor, ZNF450 was upregulated. The single-copy ZNF450 gene spans 15.6 kb on chromosome 10B1 and consists of seven exons, the first of which is untranslated. The open reading frame encodes a 710 reside protein. Analysis of the protein sequence reveals a highly conserved amino-terminal BTB/POZ dimerisation domain, an AT-hook motif, and eight C2H2 zinc fingers. Library screening identified a second mRNA isoform encoding a short protein isoform with one zinc finger. Using reverse transcriptase-real time PCR to measure mRNA expression we found that ZNF450, Runx2/Cbfa-1, and Sp7/osterix were induced by BMP-2 after 4 h in C2C12 myoblast cells. Treatment of C2C12 cells with BMP-2 causes a shift from a myoblastic to osteoblastic phenotype. ZNF450 was upregulated three to fivefold after 24 h in C3H10T1/2 cells and required 100 ng/ml BMP-2. Expression of the 3 kb major transcript was highest in liver, testis, and kidney. However, ZNF450 mRNA was found also in a wide range of adult tissues. The consistent induction of ZNF450 by BMP-2 after 4 h in three murine pluripotent cell lines suggests that ZNF450 may play a role in the BMP-2 signalling pathway.
Collapse
Affiliation(s)
- Alasdair J Edgar
- Department of Craniofacial Development, GKT Dental Institute, King's College, Guy's Hospital, London SE1 9RT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
69
|
Zwijsen A, Verschueren K, Huylebroeck D. New intracellular components of bone morphogenetic protein/Smad signaling cascades. FEBS Lett 2003; 546:133-9. [PMID: 12829249 DOI: 10.1016/s0014-5793(03)00566-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bone morphogenetic proteins (BMPs) regulate many processes in the embryo, including cell type specification, patterning, apoptosis, and epithelial-mesenchymal interaction. They also act in soft and hard tissues in adult life. Their signals are transduced from the plasma membrane to the nucleus through a limited number of Smad proteins. The list of Smad-interacting proteins is however growing and it is clear that these partners determine the outcome of the signal. We summarize the present status in BMP/Smad signaling, with emphasis on recently identified Smad partners and how these proteins may cooperate in the regulation of the expression of BMP target genes.
Collapse
Affiliation(s)
- An Zwijsen
- Department of Developmental Biology (VIB7), Flanders Interuniversity Institute for Biotechnology, University of Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | |
Collapse
|
70
|
Clancy BM, Johnson JD, Lambert AJ, Rezvankhah S, Wong A, Resmini C, Feldman JL, Leppanen S, Pittman DD. A gene expression profile for endochondral bone formation: oligonucleotide microarrays establish novel connections between known genes and BMP-2-induced bone formation in mouse quadriceps. Bone 2003; 33:46-63. [PMID: 12919699 DOI: 10.1016/s8756-3282(03)00116-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endochondral bone formation has been fairly well characterized from a morphological perspective and yet this process remains largely undefined at molecular and biochemical levels. In vitro and in vivo studies have shown that human bone morphogenetic protein-2 (hBMP-2) is an important developmental growth and differentiation factor, capable of inducing ectopic bone formation in vivo. This study evaluated several aspects of the osteogenic effect of hBMP-2 protein injected into quadriceps of female C57B1/6J SCID mice. Mice were euthanized 1, 2, 3, 4, 7, and 14 days postinjection and muscles were collected for several methods of analysis. Hematoxylin and eosin-stained sections of muscles injected with formulation buffer showed no evidence of osteogenesis. In contrast, sections of muscles injected with hBMP-2 showed evidence of endochondral bone formation that progressed to mineralized bone by day 14. In addition, radiographs of mice injected with hBMP-2 showed that much of the quadriceps muscle had undergone mineralization by day 14. Labeled mRNA solutions were prepared and hybridized to oligonucleotide arrays designed to monitor approximately 1300 murine, full-length genes. Changes in gene expression associated with hBMP-2 were determined from time-matched comparisons between buffer and hBMP-2 samples. A gene expression profile was created for 215 genes that showed greater than 4-fold changes at one or more of the indicated time points. One hundred twenty-two of these genes have previously been associated with bone or cartilage metabolism and showed significant increases in expression, e.g., aggrecan (Agc1), runt related transcription factor 2 (Runx2), bone Gla protein 1 (Bglap1), and procollagens type II (Col2a1) and X (Col10a1). In addition, there were 93 genes that have not been explicitly associated with bone or cartilage metabolism. Two of these genes, cytokine receptor-like factor-1 (Crlf1) and matrix metalloproteinase 23 (Mmp23), showed peak changes in gene expression of 15- and 40-fold on days 4 and 7, respectively. In situ hybridizations of muscle sections showed that Mmp23 and Crlf1 mRNAs were expressed in chondrocytes and osteoblasts, suggesting a role for both proteins in some aspect of cartilage or bone formation. In conclusion, oligonucleotide arrays enabled a broader view of endochondral bone formation than has been reported to date. An increased understanding of the roles played by these gene products will improve our understanding of skeletogenesis, fracture repair, and pathological conditions such as osteoporosis.
Collapse
Affiliation(s)
- Brian M Clancy
- Division of Musculoskeletal Sciences, Wyeth, 200 Cambridge Park Drive, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Qin L, Qiu P, Wang L, Li X, Swarthout JT, Soteropoulos P, Tolias P, Partridge NC. Gene expression profiles and transcription factors involved in parathyroid hormone signaling in osteoblasts revealed by microarray and bioinformatics. J Biol Chem 2003; 278:19723-31. [PMID: 12644456 DOI: 10.1074/jbc.m212226200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) binds to its receptor PTH1R (parathyroid hormone 1 receptor) in osteoblastic cells to regulate bone remodeling and calcium homeostasis. While prolonged exposure to PTH causes increased bone resorption, intermittent injections of PTH have an anabolic effect on bone. The molecular mechanisms regulating these processes are still largely unknown. Here, we present our results on gene expression profile changes in the PTH-treated osteoblastic cell line, UMR 106-01, using DNA microarray analysis. A total of 125 known genes and 30 unknown expressed sequence tags (ESTs) were found to have at least 2-fold expression changes after PTH treatment at 4, 12, and 24 h. 14 genes were previously known to be PTH-regulated but many were unknown to be regulated by PTH prior to our experiments. Real-time reverse transcriptase-PCR confirmed that 90 and 50% of the genes are regulated more than 2-fold by PTH in UMR 106-01 and rat primary osteoblastic cells, respectively. Most genes belong to the following protein families: hormones, growth factors, and receptors; signal transduction pathway proteins; transcription factors; proteases; metabolic enzymes; structural and matrix proteins; transporters; etc. These results provide a comprehensive and deeper knowledge about PTH regulation of osteoblastic gene expression. Next, we designed a computational method to extract information about transcription factors likely involved in regulating these genes. These factors include those previously known to be involved in PTH signaling (AP-1 and the cAMP response element-binding protein), those that were identified by microarray data (C/EBP), and some novel transcription factors (AP-2, AP-4, SP1, FoxD3, etc.). Our results suggest that a reliable bioinformatics approach can be easily applied for other systems.
Collapse
Affiliation(s)
- Ling Qin
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Balint E, Lapointe D, Drissi H, van der Meijden C, Young DW, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Phenotype discovery by gene expression profiling: mapping of biological processes linked to BMP-2-mediated osteoblast differentiation. J Cell Biochem 2003; 89:401-26. [PMID: 12704803 DOI: 10.1002/jcb.10515] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Understanding physiological control of osteoblast differentiation necessitates characterization of the regulatory signals that initiate the events directing a cell to lineage commitment and establishing competency for bone formation. The bone morphogenetic protein, BMP-2, a member of the TGFbeta superfamily, induces osteoblast differentiation and functions through the Smad signal transduction pathway during in vivo bone formation. However, the molecular targets of BMP-mediated gene transcription during the process of osteoblast differentiation have not been comprehensively identified. In the present study, BMP-2 responsive factors involved in the early stages of commitment and differentiation to the osteoblast phenotype were analyzed by microarray gene expression profiling in samples ranging from 1 to 24 h following BMP-2 dependent differentiation of C2C12 premyoblasts into the osteogenic lineage. A total of 1,800 genes were responsive to BMP-2 and expression was modulated from 3- to 14-fold for less than 100 genes during the time course. Approximately 50% of these 100 genes are either up- or downregulated. Major events associated with phenotypic changes towards the osteogenic lineage were identified from hierarchical and functional clustering analyses. BMP-2 immediately responsive genes (1-4 h), which exhibited either transient or sustained expression, reflect activation and repression of non-osseous BMP-2 developmental systems. This initial response was followed by waves of expression of nuclear proteins and developmental regulatory factors including inhibitors of DNA binding, Runx2, C/EBP, Zn finger binding proteins, forkhead, and numerous homeobox proteins (e.g., CDP/cut, paired, distaless, Hox) which are expressed at characterized stages during osteoblast differentiation. A sequential profile of genes mediating changes in cell morphology, cell growth, and basement membrane formation is observed as a secondary transient early response (2-8 h). Commitment to the osteogenic phenotype is recognized by 8 h, reflected by downregulation of most myogenic-related genes and induction of a spectrum of signaling proteins and enzymes facilitating synthesis and assembly of an extracellular skeletal environment. These genes included collagens Type I and VI and the small leucine rich repeat family of proteoglycans (e.g., decorin, biglycan, osteomodulin, fibromodulin, and osteoadherin/osteoglycin) that reached peak expression at 24 h. With extracellular matrix development, the bone phenotype was further established from 16 to 24 h by induction of genes for cell adhesion and communication and enzymes that organize the bone ECM. Our microarray analysis resulted in the discovery of a class of genes, initially described in relation to differentiation of astrocytes and oligodendrocytes that are functionally coupled to signals for cellular extensions. They include nexin, neuropilin, latexin, neuroglian, neuron specific gene 1, and Ulip; suggesting novel roles for these genes in the bone microenvironment. This global analysis identified a multistage molecular and cellular cascade that supports BMP-2-mediated osteoblast differentiation.
Collapse
Affiliation(s)
- Eva Balint
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655-0106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Billiard J, Moran RA, Whitley MZ, Chatterjee-Kishore M, Gillis K, Brown EL, Komm BS, Bodine PVN. Transcriptional profiling of human osteoblast differentiation. J Cell Biochem 2003; 89:389-400. [PMID: 12704802 DOI: 10.1002/jcb.10514] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Osteoblast differentiation is a key aspect of bone formation and remodeling. To further our understanding of the differentiation process, we have developed a collection of conditionally immortalized adult human osteoblast cell lines representing discrete stages of differentiation. To evaluate changes in gene expression associated with differentiation, polyA((+)) RNA from pre-osteoblasts, early and late osteoblasts, and pre-osteocytes was subjected to gene chip analysis using the Affymetrix Hu6800 chip in conjunction with an Affymetrix custom chip enriched in bone and cartilage cDNAs. Overall, the expression of 47 genes was found to change threefold or more on both chips between the pre-osteoblastic and pre-osteocytic stages of differentiation. Many of the observed differences, including down-regulation of collagen type I and collagen-processing enzymes, reflect expected patterns and support the relevance of our results. Other changes have not been reported and offer new insight into the osteoblast differentiation process. Thus, we observed regulation of factors controlling cell cycle and proliferation, reflecting decreased proliferation, and increased apoptosis in pre-osteocytic cells. Elements maintaining the cytoskeleton, extracellular matrix, and cell-cell adhesion also changed with differentiation reflecting profound alterations in cell architecture associated with the differentiation process. We also saw dramatic down-regulation of several components of complement and other immune response factors that may be involved in recruitment and differentiation of osteoclasts. The decrease in this group of genes may provide a mechanism for controlling bone remodeling of newly formed bone. Our screen also identified several signaling proteins that may control osteoblast differentiation. These include an orphan nuclear receptor DAX1 and a small ras-related GTPase associated with diabetes, both of which increased with increasing differentiation, as well as a high mobility group-box transcription factor, SOX4, that was down-regulated during differentiation. In summary, our study provides a comprehensive transcriptional profile of human osteoblast differentiation and identifies several genes of potential importance in controlling differentiation of osteoblasts.
Collapse
Affiliation(s)
- J Billiard
- Women's Health Research Institute, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
Recent microarray studies of mouse and human osteoblast differentiation in vitro have identified novel transcription factors that may be important in the establishment and maintenance of differentiation. These findings help unravel the pattern of gene-expression changes that underly the complex process of bone formation.
Collapse
Affiliation(s)
- Joseph P Stains
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Barnes-Jewish Hospital, North Campus, 216 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Roberto Civitelli
- Division of Bone and Mineral Diseases, Department of Internal Medicine, Barnes-Jewish Hospital, North Campus, 216 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| |
Collapse
|