51
|
Hoffmann A, Floerkemeier T, Melzer C, Hass R. Comparison of in vitro-cultivation of human mesenchymal stroma/stem cells derived from bone marrow and umbilical cord. J Tissue Eng Regen Med 2017; 11:2565-2581. [PMID: 27125777 DOI: 10.1002/term.2153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/15/2015] [Accepted: 01/21/2016] [Indexed: 12/13/2022]
Abstract
Cell-mediated therapy is currently considered as a novel approach for many human diseases. Potential uses range from topic applications with the regeneration of confined tissue areas to systemic applications. Stem cells including mesenchymal stroma/stem cells (MSCs) represent a highly attractive option. Their potential to cure or alleviate human diseases is investigated in a number of clinical trials. A wide variety of methods has been established in the past years for isolation, cultivation and characterization of human MSCs as expansion is presently deemed a prerequisite for clinical application with high numbers of cells carrying reproducible properties. MSCs have been retrieved from various tissues and used in a multitude of settings whereby numerous experimental protocols are available for expansion of MSCs in vitro. Accordingly, different isolation, culture and upscaling techniques contribute to the heterogeneity of MSC characteristics and the, sometimes, controversial results. Therefore, this review discusses and summarizes certain experimental conditions for MSC in vitro culture focusing on adult bone marrow-derived and neonatal umbilical cord-derived MSCs in order to enhance our understanding for MSC tissue sources and to stratify different procedures. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Andrea Hoffmann
- Department of Orthopaedic Surgery, OE 8893, Hannover Medical School, Hannover, Germany
| | - Thilo Floerkemeier
- Department of Orthopaedic Surgery (Annastift), OE 6270, Hannover Medical School, Hannover, Germany
| | - Catharina Melzer
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynecology, OE 6411, Hannover Medical School, Hannover, Germany
| | - Ralf Hass
- Biochemistry and Tumour Biology Laboratory, Department of Obstetrics and Gynecology, OE 6411, Hannover Medical School, Hannover, Germany
| |
Collapse
|
52
|
Han Y, Jin Y, Lee SH, Khadka DB, Cho WJ, Lee KY. Berberine bioisostere Q8 compound stimulates osteoblast differentiation and function in vitro. Pharmacol Res 2017; 119:463-475. [DOI: 10.1016/j.phrs.2017.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
|
53
|
Winning L, Robinson L, Boyd AR, El Karim IA, Lundy FT, Meenan BJ. Osteoblastic differentiation of periodontal ligament stem cells on non-stoichiometric calcium phosphate and titanium surfaces. J Biomed Mater Res A 2017; 105:1692-1702. [DOI: 10.1002/jbm.a.36044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/27/2017] [Accepted: 02/16/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Lewis Winning
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast; 97 Lisburn Road Belfast Northern Ireland BT9 7BL United Kingdom
| | - Leanne Robinson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering; Ulster University; Shore Road, Newtownabbey, Co. Antrim Northern Ireland BT37 0QB United Kingdom
| | - Adrian R. Boyd
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering; Ulster University; Shore Road, Newtownabbey, Co. Antrim Northern Ireland BT37 0QB United Kingdom
| | - Ikhlas A. El Karim
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast; 97 Lisburn Road Belfast Northern Ireland BT9 7BL United Kingdom
| | - Fionnuala T. Lundy
- Centre for Experimental Medicine, The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast; 97 Lisburn Road Belfast Northern Ireland BT9 7BL United Kingdom
| | - Brian J. Meenan
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering; Ulster University; Shore Road, Newtownabbey, Co. Antrim Northern Ireland BT37 0QB United Kingdom
| |
Collapse
|
54
|
CXCL13 inhibits microRNA-23a through PI3K/AKT signaling pathway in adipose tissue derived-mesenchymal stem cells. Biomed Pharmacother 2016; 83:876-880. [DOI: 10.1016/j.biopha.2016.07.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023] Open
|
55
|
Jian CX, Fan QS, Hu YH, He Y, Li MZ, Zheng WY, Ren Y, Li CJ. IL-7 suppresses osteogenic differentiation of periodontal ligament stem cells through inactivation of mitogen-activated protein kinase pathway. Organogenesis 2016; 12:183-193. [PMID: 27579861 DOI: 10.1080/15476278.2016.1229726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are tissue-specific mesenchymal stem cells (MSCs), having an important role in regenerative therapy for teeth loss. Interleukin-7 (IL-7) is a key cytokine produced by stromal cells including MSCs, and exhibits specific roles for B and T cell development and osteoblasts differentiation of multiple myeloma. However, the effect of IL-7 on osteogenic differentiation of PDLSCs remains unclear. Therefore, in the present study we determined whether IL-7 affects the proliferation and osteogenic differentiation of PDLSCs in vitro and explored the associated signaling pathways for IL-7-mediated cell differentiation. The results demonstrated that the isolated human PDLSCs possessed MSCs features, highly expressing CD90, CD44, CD105, CD29 and CD73, and almost did not expressed CD34, CD45, CD11b, CD14 and CD117. IL-7 could not significantly affect the proliferation of PDLSCs, but it decreased their osteogenic differentiation and inhibited alkaline phosphatase (ALP) activity. The results of quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting exhibited that the expression levels of Runx-2, SP7 and osteocalcin (OCN) were significantly reduced by IL-7. Further studies indicated that IL-7 did not significantly change JNK, ERK1/2 and p38 protein production, but markedly suppressed their phosphorylation levels. These data suggest that IL-7 inhibits the osteogenic differentiation of PDLSCs probably via inactivation of mitogen-activated protein kinase (MAPK) signaling pathway.
Collapse
Affiliation(s)
- Cong-Xiang Jian
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| | - Quan-Shui Fan
- b Chengdu Military Garrison Center for Disease Control and Prevention , Chengdu , Sichuan , China
| | - Yong-He Hu
- b Chengdu Military Garrison Center for Disease Control and Prevention , Chengdu , Sichuan , China
| | - Yong He
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| | - Ming-Zhe Li
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| | - Wei-Yin Zheng
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| | - Yu Ren
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| | - Chen-Jun Li
- a Department of Stomatolog , PLA General Hospital of Chengdu Military Region, Tianhui Town , Jinniu District, Chengdu , Sichuan Province , China
| |
Collapse
|
56
|
Babo PS, Santo VE, Gomes ME, Reis RL. Development of an Injectable Calcium Phosphate/Hyaluronic Acid Microparticles System for Platelet Lysate Sustained Delivery Aiming Bone Regeneration. Macromol Biosci 2016; 16:1662-1677. [DOI: 10.1002/mabi.201600141] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 06/24/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Pedro S. Babo
- 3B's Research Group; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| | - Vítor E. Santo
- 3B's Research Group; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| | - Manuela E. Gomes
- 3B's Research Group; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| | - Rui L. Reis
- 3B's Research Group; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark Zona Industrial da Gandra 4805-017 Barco GMR Portugal
| |
Collapse
|
57
|
Inhibition of Runx2 signaling by TNF-α in ST2 murine bone marrow stromal cells undergoing osteogenic differentiation. In Vitro Cell Dev Biol Anim 2016; 52:1026-1033. [PMID: 27401008 DOI: 10.1007/s11626-016-0068-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 06/22/2016] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) inhibits osteogenic differentiation of murine bone marrow stromal cells, and transcription factor Runx2 serves as an essential regulation target in the process. The underlying mechanism may involve the regulation of Runx2 expression and the Runx2 activity in downstream gene transcription, which has not been fully elucidated. In this study, ST2 murine bone marrow-derived stromal cells were treated with bone morphogenetic protein-2 (BMP-2) and/or TNF-α in osteogenic medium, and the expression of Runx2 was estimated. Cells were transfected with Runx2, p65, inhibitor of κBα (IκBα), 9.0 kb bone sialoprotein (BSP) promoter-luciferase or osteoblast-specific cis-acting element 2 (OSE2)-luciferase reporter vectors, and then real time-PCR and dual luciferase analysis were used to investigate the effect of TNF-α on Runx2-activated osteogenic gene transcription and the molecular mechanism. We found that TNF-α inhibited BMP-2-induced osteogenic marker expression and both the spontaneous and BMP-2-induced Runx2 expression. TNF-α stimulation or overexpression of nuclear factor-kappa B (NF-κB) p65 subunit repressed the Runx2-activated BSP and osteocalcin (OC) transcriptions. The Runx2-induced 9.0 kb BSP promoter activity was attenuated by TNF-α or p65, while the OSE2 activity was not affected. Besides, blockage of NF-κB by IκBα overexpression eliminated these inhibitory effects of TNF-α on Runx2 signaling. These results suggest that in murine bone marrow stromal cells undergoing osteogenic differentiation, TNF-α and it activated NF-κB pathway inhibit the expression of Runx2 gene, and suppress the Runx2-mediated osteogenic gene transcription via the 9.0 kb BSP promoter.
Collapse
|
58
|
Zhao R, Li Y, Lin Z, Wan J, Xu C, Zeng Y, Zhu Y. miR-199b-5p modulates BMSC osteogenesis via suppressing GSK-3β/β-catenin signaling pathway. Biochem Biophys Res Commun 2016; 477:749-754. [PMID: 27363340 DOI: 10.1016/j.bbrc.2016.06.130] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 06/26/2016] [Indexed: 01/08/2023]
Abstract
miR-199b-5p is up-regulated significantly during the osteogenesis process in human bone marrow stromal cells (BMSCs). Inhibiting miR-199b-5p notably reduces while over-expressing miR-199b-5p promotes the BMSCs osteoblast differentiation, suggested by the alternations of osteogenic genes expression, ALP activity and the ARS-stained mineral nodules. miR-199b-5p exerts its role in BMSC osteogenesis most probably through the GSK-3β/β-catenin signaling pathway. In conclusion, the present study revealed for the first time that miR-199b-5p plays a positive role in osteoblast differentiation.
Collapse
Affiliation(s)
- Ruibo Zhao
- Department of Orthopedics, Xiangya Hospital Central South University, PR China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital Central South University, PR China
| | - Zhangyuan Lin
- Department of Orthopedics, Xiangya Hospital Central South University, PR China
| | - Jun Wan
- Department of Orthopedics, Xiangya Hospital Central South University, PR China
| | - Can Xu
- Department of Orthopedics, Xiangya Hospital Central South University, PR China
| | - Yong Zeng
- Department of Orthopedics, Xiangya Hospital Central South University, PR China
| | - Yong Zhu
- Department of Orthopedics, Xiangya Hospital Central South University, PR China.
| |
Collapse
|
59
|
Lavocat F, Osta B, Miossec P. Increased sensitivity of rheumatoid synoviocytes to Schnurri-3 expression in TNF-α and IL-17A induced osteoblastic differentiation. Bone 2016; 87:89-96. [PMID: 27072520 DOI: 10.1016/j.bone.2016.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 03/04/2016] [Accepted: 04/06/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To compare the effects of TNF-α and IL-17A on osteogenic differentiation of isolated fibroblast-like synoviocytes (FLS) from healthy donors, osteoarthritis (OA) and rheumatoid arthritis (RA) patients. METHODS FLS were cultured in osteogenic medium, with and without TNF-α and/or IL-17A. Extracellular matrix mineralization was evaluated by alizarin red staining and alkaline phosphatase activity (ALP) measurement. mRNA expression was analyzed by qRT-PCR for Wnt5a, BMP2 and Runx2, genes associated with osteogenesis, for DKK1 and RANKL, genes associated with osteogenesis inhibition and Schnurri-3, a new critical gene in the cross talk with osteoclasts. IL-6 and IL-8 production was measured by ELISA. RESULTS In osteogenic medium, matrix mineralization and increased ALP activity indicated that FLS can undergo osteogenic differentiation, which was increased with TNF-α and IL-17A. The expression of osteogenesis activators (BMP2 and Wnt5a) was increased with cytokines and that of the osteogenesis inhibitor DKK1 was decreased. There was no difference between all three cell types. In contrast, RA FLS were particularly sensitive to the synergistic increase of Shn3 with TNF-α and IL-17A. Levels of IL-6 and IL-8 were also higher for RA-FLS, compared to healthy and OA FLS. CONCLUSION IL-17A and/or TNF-α treatment favor an osteogenesis induction in isolated FLS, independent of their origin. RA-FLS were more sensitive to the synergistic increase of Schnurri-3 expression. Combined with the higher levels of inflammation, this may in turn activate osteoclastogenesis, leading to increased bone destruction seen in destructive arthritis.
Collapse
Affiliation(s)
- Fabien Lavocat
- Department of clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Edouard Herriot Hospital, Lyon, France
| | - Bilal Osta
- Department of clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Edouard Herriot Hospital, Lyon, France
| | - Pierre Miossec
- Department of clinical Immunology and Rheumatology, Immunogenomics and Inflammation Research Unit EA 4130, University of Lyon 1, Edouard Herriot Hospital, Lyon, France.
| |
Collapse
|
60
|
Xiong J, Hu Z, Wang T, Xu X, Liu J, Wu P, Che X, Li W. RUNX2 controls human IPO8 basal transcription in Saos-2 cells. Mol Med Rep 2016; 14:1418-24. [DOI: 10.3892/mmr.2016.5356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 05/09/2016] [Indexed: 11/06/2022] Open
|
61
|
Baranowski A, Klein A, Ritz U, Ackermann A, Anthonissen J, Kaufmann KB, Brendel C, Götz H, Rommens PM, Hofmann A. Surface Functionalization of Orthopedic Titanium Implants with Bone Sialoprotein. PLoS One 2016; 11:e0153978. [PMID: 27111551 PMCID: PMC4844107 DOI: 10.1371/journal.pone.0153978] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 04/06/2016] [Indexed: 12/22/2022] Open
Abstract
Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP) has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES), and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs) and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants. Both physisorption and covalent coupling of BSP are similarly effective, feasible methods, although a higher BSP concentration is recommended.
Collapse
Affiliation(s)
- Andreas Baranowski
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Anja Klein
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Angelika Ackermann
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Joris Anthonissen
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Kerstin B. Kaufmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Christian Brendel
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hermann Götz
- Platform for Biomaterial Research, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Pol M. Rommens
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopedics and Traumatology, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
62
|
Zhou R, Yuan Z, Liu J, Liu J. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells. Mol Med Rep 2016; 13:4689-96. [PMID: 27082317 PMCID: PMC4878536 DOI: 10.3892/mmr.2016.5117] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 01/15/2016] [Indexed: 12/15/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is known to induce osteoblastic differentiation and alkaline phosphatase activity in bone marrow stromal stem cells (BMSCs). However, it has remained elusive whether this effect is mediated by CGRP receptors directly or whether other signaling pathways are involved. The present study assessed the possible involvement of the Wnt/β-catenin signaling pathway in the activation of CGRP signaling during the differentiation of BMSCs. First, the differentiation of BMSCs was induced in vitro and the expression of CGRP receptors was examined by western blot analysis. The effects of exogenous CGRP and LiCl, a stimulator of the Wnt/β-catenin signaling pathway, on the osteoblastic differentiation of BMSCs were assessed; furthermore, the expression of mRNA and proteins involved in the Wnt/β-catenin signaling pathway was assessed using quantitative PCR and western blot analyses. The results revealed that CGRP receptors were expressed throughout the differentiation of BMSCs, at days 7 and 14. Incubation with CGRP and LiCl led to the upregulation of the expression of osteoblastic genes associated with the Wnt/β-catenin pathway, including the mRNA of c-myc, cyclin D1, Lef1, Tcf7 and β-catenin as well as β-catenin protein. However, the upregulation of these genes and β-catenin protein was inhibited by CGRP receptor antagonist or secreted frizzled-related protein, an antagonist of the Wnt/β-catenin pathway. The results of the present study therefore suggested that the Wnt/β-catenin signaling pathway may be involved in CGRP- and LiCl-promoted osteoblastic differentiation of BMSCs.
Collapse
Affiliation(s)
- Ri Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhi Yuan
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jierong Liu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jian Liu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
63
|
Gonçalves F, de Moraes MS, Ferreira LB, Carreira ACO, Kossugue PM, Boaro LCC, Bentini R, Garcia CRDS, Sogayar MC, Arana-Chavez VE, Catalani LH. Combination of Bioactive Polymeric Membranes and Stem Cells for Periodontal Regeneration: In Vitro and In Vivo Analyses. PLoS One 2016; 11:e0152412. [PMID: 27031990 PMCID: PMC4816539 DOI: 10.1371/journal.pone.0152412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
Regeneration of periodontal tissues requires a concerted effort to obtain consistent and predictable results in vivo. The aim of the present study was to test a new family of bioactive polymeric membranes in combination with stem cell therapy for periodontal regeneration. In particular, the novel polyester poly(isosorbide succinate-co-L-lactide) (PisPLLA) was compared with poly(L-lactide) (PLLA). Both polymers were combined with collagen (COL), hydroxyapatite (HA) and the growth factor bone morphogenetic protein-7 (BMP7), and their osteoinductive capacity was evaluated via in vitro and in vivo experiments. Membranes composed of PLLA/COL/HA or PisPLLA/COL/HA were able to promote periodontal regeneration and new bone formation in fenestration defects in rat jaws. According to quantitative real-time polymerase chain reaction (qRT-PCR) and Alizarin Red assays, better osteoconductive capacity and increased extracellular mineralization were observed for PLLA/COL/HA, whereas better osteoinductive properties were associated with PisPLLA/COL/HA. We concluded that membranes composed of either PisPLLA/COL/HA or PLLA/COL/HA present promising results in vitro as well as in vivo and that these materials could be potentially applied in periodontal regeneration.
Collapse
Affiliation(s)
- Flávia Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Míriam Santos de Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–090
| | - Lorraine Braga Ferreira
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Ana Cláudia Oliveira Carreira
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
| | - Patrícia Mayumi Kossugue
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
| | - Letícia Cristina Cidreira Boaro
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Ricardo Bentini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Célia Regina da Silva Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–090
| | - Mari Cleide Sogayar
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Victor Elias Arana-Chavez
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Luiz Henrique Catalani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
- * E-mail:
| |
Collapse
|
64
|
Activation of GLP-1 Receptor Promotes Bone Marrow Stromal Cell Osteogenic Differentiation through β-Catenin. Stem Cell Reports 2016; 6:579-591. [PMID: 26947974 PMCID: PMC4834036 DOI: 10.1016/j.stemcr.2016.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/29/2022] Open
Abstract
Glucagon-like peptide 1 (GLP-1) plays an important role in regulating bone remodeling, and GLP-1 receptor agonist shows a positive relationship with osteoblast activity. However, GLP-1 receptor is not found in osteoblast, and the mechanism of GLP-1 receptor agonist on regulating bone remodeling is unclear. Here, we show that the GLP-1 receptor agonist exendin-4 (Ex-4) promoted bone formation and increased bone mass and quality in a rat unloading-induced bone loss model. These functions were accompanied by an increase in osteoblast number and serum bone formation markers, while the adipocyte number was decreased. Furthermore, GLP-1 receptor was detected in bone marrow stromal cells (BMSCs), but not in osteoblast. Activation of GLP-1 receptor by Ex-4 promoted the osteogenic differentiation and inhibited BMSC adipogenic differentiation through regulating PKA/β-catenin and PKA/PI3K/AKT/GSK3β signaling. These findings reveal that GLP-1 receptor regulates BMSC osteogenic differentiation and provide a molecular basis for therapeutic potential of GLP-1 against osteoporosis.
Collapse
|
65
|
Sun C, Shang J, Yao Y, Yin X, Liu M, Liu H, Zhou Y. O-GlcNAcylation: a bridge between glucose and cell differentiation. J Cell Mol Med 2016; 20:769-81. [PMID: 26929182 PMCID: PMC4831356 DOI: 10.1111/jcmm.12807] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/08/2016] [Indexed: 12/12/2022] Open
Abstract
Glucose is the major energy supply and a critical metabolite for most cells and is especially important when cell is differentiating. High or low concentrations of glucose enhances or inhibits the osteogenic, chondrogenic and adipogenic differentiation of cell via the insulin, transforming growth factor‐β and peroxisome proliferator‐activated receptor γ pathways, among others. New evidence implicates the hexosamine biosynthetic pathway as a mediator of crosstalk between glucose flux, cellular signalling and epigenetic regulation of cell differentiation. Extracellular glucose flux alters intracellular O‐GlcNAcylation levels through the hexosamine biosynthetic pathway. Signalling molecules that are important for cell differentiation, including protein kinase C, extracellular signal‐regulated kinase, Runx2, CCAAT/enhancer‐binding proteins, are modified by O‐GlcNAcylation. Thus, O‐GlcNAcylation markedly alters cell fate during differentiation via the post‐transcriptional modification of proteins. Furthermore, O‐GlcNAcylation and phosphorylation show complex interactions during cell differentiation: they can either non‐competitively occupy different sites on a substrate or competitively occupy a single site or proximal sites. Therefore, the influence of glucose on cell differentiation via O‐GlcNAcylation offers a potential target for controlling tissue homoeostasis and regeneration in ageing and disease. Here, we review recent progress establishing an emerging relationship among glucose concentration, O‐GlcNAcylation levels and cell differentiation.
Collapse
Affiliation(s)
- Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jin Shang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yuan Yao
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Xiaohong Yin
- Center for Evidence-based and Translational Medicine, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Huan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
66
|
Ekin O, Calis M, Aliyev A, Yar AS, Korkusuz P, Bilgic E, Aydin HM, Celik HH, Ozgur F, Vargel I. Poly(L-Lactide)/Poly(ε-Caprolactone) and Collagen/β-Tricalcium Phosphate Scaffolds for the Treatment of Critical-Sized Rat Alveolar Defects: A Microtomographic, Molecular-Biological, and Histological Study. Cleft Palate Craniofac J 2015; 53:453-63. [PMID: 26506043 DOI: 10.1597/14-309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To determine the efficacy of a newly developed scaffold (col/β-TCP) in a preclinical rat model as compared with the gold standard treatment (autograft) and control scaffolds (PLLA/PCL). DESIGN Fifty-six Sprague-Dawley rats were randomized into four experimental groups, and critical-sized alveolar defects (7 × 4 × 3 mm) were created in each animal. Group A was the blank defect group, group B received autograft, group C received col/β-TCP scaffolds, and group D received PLLA/PCL blend scaffolds to fill the bone defects. New bone formation was assessed radiomorphometrically, histomorphometrically, and molecular-biologically at 1 and 4 months following surgery. RESULTS Radiomorphometrically, the best new bone volume rate at 1 month (43.7%) and 4 months (45.4%) was observed in the autograft group, and the difference was significantly higher than in the other three groups (P < .005, P < .001, P < .001 for 1 month and P = .004, P < .001, P < .001 for 4 months). Even though the new bone volume rate in the col/β-TCP group (21.5%) was higher than that of the PLLA/PCL group (18.2%), the difference was not significant (P = .08). Molecular-genetic analysis revealed significantly higher BSP and ALP gene expression levels in the autograft and col/β-TCP groups than in the blank defect group (P = .002 and P = .004). CONCLUSION The engineered tissue scaffolds described herein have great potential as an alternative treatment option when cost, donor region morbidity, and duration of hospitalization are considered.
Collapse
|
67
|
Wang L, Li ZY, Wang YP, Wu ZH, Yu B. Dynamic Expression Profiles of Marker Genes in Osteogenic Differentiation of Human Bone Marrow-derived Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2015; 30:108-13. [PMID: 26149002 DOI: 10.1016/s1001-9294(15)30021-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To observe the expression profiles of osteoblast-related genes in human mesenchymal stem cells (MSCs) derived from bone marrow during osteogenic differentiation. METHODS MSCs were induced to differentiate with MSC osteogenic differentiation medium for 7, 14, 21 and 28 days respectively. Alizarin Red staining was used to detect matrix mineralization. Expression of osteoblast-related genes, including osteocalcin, osteopontin, Runt-related transcription factor 2 (Runx2), alkaline phosphatase and collagen type 1, was assessed with quantitative reverse transcription-polymerase chain reaction. RESULTS On day 14 after induction of differentiation, cells were stained positively with Alizarin Red. The expression levels of these genes exhibited an upward trend as induction time was prolonged. Exposure to osteogenic differentiation medium less than 21 days did not significantly induce osteocalcin expression; osteocalcin expression levels in the differentiated cells induced for 21 and 28 days were 1.63 and 2.46 times as high as the undifferentiated cells respectively (all P<0.05). Stimulation with MSC osteogenic differentiation medium over 14 days significantly enhanced bone marrow-derived MSCs to express osteopontin and Runx2 genes (all P<0.05). Osteogenic differentiation medium could significantly induce the expressions of alkaline phosphatase and collagen type1 genes (all P<0.05). Their expressions reached the peak levels on day 21, which were increased more than 4- and 3-fold respectively. CONCLUSION Human bone marrow-derived MSCs could exhibit the sequential expression pattern of osteoblast marker genes during osteogenic differentiation in vitro.
Collapse
|
68
|
Altered Expression of Wnt Signaling Pathway Components in Osteogenesis of Mesenchymal Stem Cells in Osteoarthritis Patients. PLoS One 2015; 10:e0137170. [PMID: 26352263 PMCID: PMC4564164 DOI: 10.1371/journal.pone.0137170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 08/13/2015] [Indexed: 12/27/2022] Open
Abstract
Introduction Osteoarthritis (OA) is characterized by altered homeostasis of joint cartilage and bone, whose functional properties rely on chondrocytes and osteoblasts, belonging to mesenchymal stem cells (MSCs). WNT signaling acts as a hub integrating and crosstalking with other signaling pathways leading to the regulation of MSC functions. The aim of this study was to evaluate the existence of a differential signaling between Healthy and OA-MSCs during osteogenesis. Methods MSCs of seven OA patients and six healthy controls were isolated, characterised and expanded. During in vitro osteogenesis, cells were recovered at days 1, 10 and 21. RNA and protein content was obtained. Expression of WNT pathway genes was evaluated using RT-qPCR. Functional studies were also performed to study the MSC osteogenic commitment and functional and post-traslational status of β-catenin and several receptor tyrosine kinases. Results Several genes were downregulated in OA-MSCs during osteogenesis in vitro. These included soluble Wnts, inhibitors, receptors, co-receptors, several kinases and transcription factors. Basal levels of β-catenin were higher in OA-MSCs, but calcium deposition and expression of osteogenic genes was similar between Healthy and OA-MSCs. Interestingly an increased phosphorylation of p44/42 MAPK (ERK1/2) signaling node was present in OA-MSCs. Conclusion Our results point to the existence in OA-MSCs of alterations in expression of Wnt pathway components during in vitro osteogenesis that are partially compensated by post-translational mechanisms modulating the function of other pathways. We also point the relevance of other signaling pathways in OA pathophysiology suggesting their role in the maintenance of joint homeostasis through modulation of MSC osteogenic potential.
Collapse
|
69
|
An S, Huang X, Gao Y, Ling J, Huang Y, Xiao Y. FGF-2 induces the proliferation of human periodontal ligament cells and modulates their osteoblastic phenotype by affecting Runx2 expression in the presence and absence of osteogenic inducers. Int J Mol Med 2015; 36:705-11. [PMID: 26133673 PMCID: PMC4533781 DOI: 10.3892/ijmm.2015.2271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/30/2015] [Indexed: 02/07/2023] Open
Abstract
The exact phenotype of human periodontal ligament cells (hPDLCs) remains a controversial area. Basic fibroblast growth factor (FGF-2) exhibits various functions and its effect on hPDLCs is also controversial. Therefore, the present study examined the effect of FGF-2 on the growth and osteoblastic phenotype of hPDLCs with or without osteogenic inducers (dexamethasone and β-glycerophosphate). FGF-2 was added to defined growth culture medium and osteogenic inductive culture medium. Cell proliferation, osteogenic differentiation and mineralization were measured. The selected differentiation markers, Runx2, collagen type I, α1 (Col1a1), osteocalcin (OCN) and epidermal growth factor receptor (EGFR), were investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Runx2 and OCN protein expression was measured by western blotting. FGF-2 significantly increased the proliferation of hPDLCs, but did not affect alkaline phosphatase activity. RT-qPCR analysis revealed enhanced mRNA expression of Runx2, OCN and EGFR, but suppressed Col1a1 gene expression in the absence of osteogenic inducers, whereas all these gene levels had no clear trend in their presence. The Runx2 protein expression was clearly increased, but the OCN protein level showed no evident trend. The mineralization assay demonstrated that FGF-2 inhibited mineralized matrix deposition with osteogenic inducers. These results suggested that FGF-2 induces the growth of immature hPDLCs, which is a competitive inhibitor of epithelial downgrowth, and suppresses their differentiation into mineralized tissue by affecting Runx2 expression. Therefore, this may lead to the acceleration of periodontal regeneration.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Xiangya Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Gao
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Junqi Ling
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yihua Huang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, P.R. China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
70
|
Daltro GC, Fortuna V, de Souza ES, Salles MM, Carreira AC, Meyer R, Freire SM, Borojevic R. Efficacy of autologous stem cell-based therapy for osteonecrosis of the femoral head in sickle cell disease: a five-year follow-up study. Stem Cell Res Ther 2015; 6:110. [PMID: 26021713 PMCID: PMC4465459 DOI: 10.1186/s13287-015-0105-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/08/2015] [Accepted: 05/21/2015] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Stem cell therapy with bone marrow-derived mononuclear cells (BMMCs) is an option for improving joint function in osteonecrosis of the femoral head (ONFH). Bone marrow-derived mesenchymal stromal cell (MSC) numbers and their osteogenic differentiation are decreased in patients with ONFH. However, whether this decrease also extends to the early stages of ONFH in sickle cell disease (SCD) is still unclear. METHODS We conducted a phase I/II, non-controlled study to determine efficacy and safety of BMMC implantation using a minimally invasive technique in SCD patients with ONFH. Eighty-nine patients were recruited and followed up for 60 months after surgery. Clinical and radiographic findings were assessed, and data were completed by in vitro analysis. RESULTS At the final follow-up (60 months) there was a significant improvement in clinical joint symptoms and pain relief as measured by the Harris Hip Score (P = 0.0005). In addition, after the BMMC implantation procedure, radiographic assessment showed disease stabilization and only 3.7 % of the treated patients did not achieve a satisfactory clinical result. The amount of fibroblast colony-forming units was 28.2 ± 13.9 per 1 million BMMCs after concentration. Flow cytometry analysis showed a significantly higher number of hematopoietic stem/endothelial progenitor cell markers in concentrated BMMCs when compared with bone marrow aspirate, indicating an enrichment of these cell types. Isolated MSCs from SCD patients with pre-collapse ONFH maintained the replicative capacity without significant loss of their specific biomolecular characteristics, multi-differentiation potential, and osteogenic differentiation activities. Cytokines and growth factors (interleukin-8, transforming growth factor-beta, stromal cell-derived factor-1alpha and vascular endothelial growth factor) that mediate endogenous bone regeneration were also produced by expanded MSCs from SCD patients. CONCLUSION The autologous BMMC implantation with a minimally invasive technique resulted in significant pain relief and halted the progression of early stages of ONFH in SCD patients. MSCs from SCD patients display biological properties that may add to the efficiency of surgical treatment in ONFH. In summary, our results indicate that infusion of BMMCs enriched with stem/progenitor cells is a safe and effective treatment for the early stages of ONFH in SCD patients. TRIAL REGISTRATION ClinicalTrials.gov NCT02448121; registered 15 May 2015.
Collapse
Affiliation(s)
| | - Vitor Fortuna
- Health Science Institute, Federal University of Bahia, Reitor Miguel Calmon Avenue, Salvador, BA, 40110-100, Brazil.
| | - Eliane Silva de Souza
- Health Science Institute, Federal University of Bahia, Reitor Miguel Calmon Avenue, Salvador, BA, 40110-100, Brazil.
| | - Marcela Miranda Salles
- Health Science Institute, Federal University of Bahia, Reitor Miguel Calmon Avenue, Salvador, BA, 40110-100, Brazil.
| | - Ana Claudia Carreira
- Cell and Molecular Therapy Center NUCEL-NETCEM, School of Medicine, Internal Medicine Department, and Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo, SP, 05508-900, Brazil.
| | - Roberto Meyer
- Health Science Institute, Federal University of Bahia, Reitor Miguel Calmon Avenue, Salvador, BA, 40110-100, Brazil.
| | - Songeli Menezes Freire
- Health Science Institute, Federal University of Bahia, Reitor Miguel Calmon Avenue, Salvador, BA, 40110-100, Brazil.
| | - Radovan Borojevic
- Petrópolis School of Medicine/Arthur de Sá Earp Faculties, Petrópolis, RJ, 25680-120, Brazil. .,National Institute of Metrology, Quality and Technology (Inmetro), Xerém, Rio de Janeiro, RJ, 25250-020, Brazil.
| |
Collapse
|
71
|
Osta B, Roux JP, Lavocat F, Pierre M, Ndongo-Thiam N, Boivin G, Miossec P. Differential Effects of IL-17A and TNF-α on Osteoblastic Differentiation of Isolated Synoviocytes and on Bone Explants from Arthritis Patients. Front Immunol 2015; 6:151. [PMID: 25904914 PMCID: PMC4387961 DOI: 10.3389/fimmu.2015.00151] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 03/21/2015] [Indexed: 11/24/2022] Open
Abstract
Objective TNF-α and IL-17A act on fibroblast-like synoviocytes (FLS) and contribute to cytokine production, inflammation, and tissue destruction in rheumatoid arthritis (RA). The aim of this study was to compare their effects on osteogenic differentiation of isolated FLS and on whole bone explants from RA and osteoarthritis (OA) patients. Methods Fibroblast-like synoviocytes and bone explants were cultured in the presence or absence of TNF-α and/or IL-17A. Mineralization of extracellular matrix of FLS was measured by alizarin red and alkaline phosphatase activity (ALP). mRNA expression was analyzed by qRT-PCR for Wnt5a, BMP2, and RUNX2, key genes associated with osteogenesis. IL-6 and IL-8 levels were measured by enzyme-linked immunosorbent assays. Bone explant structure was quantified by histomorphometry. Results In isolated OA and RA FLS, the combination of TNF-α and IL-17A induced matrix mineralization, increased ALP activity and expression of the osteogenesis-associated genes Wnt5a, BMP2, and Runx2, indicating an osteogenic differentiation. Wnt5a levels increased with TNF-α alone and in combination with IL-17A. BMP2 expression decreased with IL-17A and TNF-α after 12 h with OA FLS and 24 h with RA FLS. Runx2 expression decreased only with combination of TNF-α and IL-17A in OA FLS and with cytokines alone and combined in RA FLS. IL-6 and IL-8 production increased with IL-17A and/or TNF-α in both FLS and bone samples, especially from RA. Treatment of bone explants with cytokine combination increased ALP in OA but not RA samples. A decrease in bone volume was seen with cytokine combination, especially with RA explants. Conclusion Differences were observed for the effects of IL-17A and TNF-α on osteogenic differentiation. In isolated FLS, increased osteoblastogenesis was observed, contrasting with the inhibitory effect in whole bone, specifically in RA. The net effect of IL-17A and TNF-α appears to depend on the disease state and the presence of other cells.
Collapse
Affiliation(s)
- Bilal Osta
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Jean-Paul Roux
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Fabien Lavocat
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Marlène Pierre
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Ndieme Ndongo-Thiam
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| | - Georges Boivin
- UMR 1033, INSERM, UFR de Médecine Lyon Est , Lyon , France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Clinical Immunology and Rheumatology, Edouard Herriot Hospital, University of Lyon 1 , Lyon , France
| |
Collapse
|
72
|
Adhami MD, Rashid H, Chen H, Clarke JC, Yang Y, Javed A. Loss of Runx2 in committed osteoblasts impairs postnatal skeletogenesis. J Bone Miner Res 2015; 30:71-82. [PMID: 25079226 PMCID: PMC4280286 DOI: 10.1002/jbmr.2321] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 06/19/2014] [Accepted: 07/04/2014] [Indexed: 01/09/2023]
Abstract
The Runx2 transcription factor is critical for commitment to the osteoblast lineage. However, its role in committed osteoblasts and its functions during postnatal skeletogenesis remain unclear. We established a Runx2-floxed line with insertion of loxP sites around exon 8 of the Runx2 gene. The Runx2 protein lacking the region encoded by exon 8 is imported into the nucleus and binds target DNA but exhibits diminished transcriptional activity. We specifically deleted the Runx2 gene in committed osteoblasts using 2.3-kb col1a-Cre transgenic mice. Surprisingly, the homozygous Runx2 mutant mice were born alive. The Runx2 heterozygous and homozygous null were grossly indistinguishable from wild-type littermates at birth. Runx2 deficiency did not alter proliferative capacity of osteoblasts during embryonic development (E18). Chondrocyte differentiation and cartilage growth in mutants was similar to wild-type mice from birth to 3 months of age. Analysis of the embryonic skeleton revealed poor calcification in homozygous mutants, which was more evident in bones formed by intramembranous ossification. Runx2 mutants showed progressive retardation in postnatal growth and exhibited significantly low bone mass by 1 month of age. Decreased bone formation was associated with decreased gene expression of osteoblast markers and impaired collagen assembly in the extracellular matrix. Consequently, Runx2 mutant bones exhibited decreased stiffness and structural integrity. By 3 months of age, bone acquisition in mutant mice was roughly half that of wild-type littermates. In addition to impaired osteoblast function, mutant mice showed markedly decreased osteoclast number and postnatal bone resorption. Taken together, functional deficiency of Runx2 in osteoblasts does not result in failed embryonic skeletogenesis but disrupts postnatal bone formation.
Collapse
Affiliation(s)
- Mitra D Adhami
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
73
|
Toscani D, Bolzoni M, Accardi F, Aversa F, Giuliani N. The osteoblastic niche in the context of multiple myeloma. Ann N Y Acad Sci 2014; 1335:45-62. [DOI: 10.1111/nyas.12578] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Denise Toscani
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Marina Bolzoni
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Fabrizio Accardi
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Franco Aversa
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| | - Nicola Giuliani
- Myeloma Unit, Department of Clinical and Experimental Medicine; University of Parma; Parma Italy
| |
Collapse
|
74
|
Lee S, Cho HY, Bui HTT, Kang D. The osteogenic or adipogenic lineage commitment of human mesenchymal stem cells is determined by protein kinase C delta. BMC Cell Biol 2014; 15:42. [PMID: 25420887 PMCID: PMC4258059 DOI: 10.1186/s12860-014-0042-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/05/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have the potential to differentiate into specialized cell lineages such as osteoblasts and adipocytes in vitro. There exists a reciprocal relationship between osteogenic and adipogenic differentiation of MSCs that an osteogenic phenotype occurs at the expense of an adipogenic phenotype and vice versa, which in turn influence one another's phenotype through negative feedback loops. Thus, it is important to understand what signaling molecules modulate the lineage commitment of MSCs. Protein kinase C (PKC) plays a central role in cellular signal transduction for mediating diverse biological functions, and dysregulation of PKC activity is involved in various metabolic diseases including cancer, diabetes, and heart disease. Although the role of individual PKC isoforms has been investigated in various fields, the potential role of PKC in bone metabolism is not completely understood. In this study, we investigated the potential role of PKCδ in osteogenic lineage commitment of human bone marrow-derived mesenchymal stem cells (hBMSCs). RESULTS We observed that expression and phosphorylation of PKCδ were increased during osteogenic differentiation of hBMSCs. Pharmacological inhibition and genetic ablation of PKCδ in hBMSCs resulted in a significant attenuation of osteogenic differentiation as evidenced by reduced ALP activity and ECM mineralization, as well as down-regulation of the expression of osteoblast-specific genes. These effects were also accompanied by induction of adipogenic differentiation and up-regulation of the expression of adipocyte-specific genes involved in lipid synthesis in osteogenic induction of hBMSCs. Additionally, the activation of AMPK, which is a key cellular energy sensor, induced osteogenesis of hBMSCs. However, the inhibition of AMPK activity by compound C did not affect the activation of PKCδ at all, indicating that there is no direct correlation between AMPK and PKCδ in osteogenesis of hBMSCs. CONCLUSIONS These results suggest that PKCδ is a critical regulator for the balance between osteogenesis and adipogenesis of hBMSCs and thus has a potential novel therapeutic target for the treatment of metabolic bone diseases.
Collapse
|
75
|
Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther 2014; 4:117. [PMID: 24073831 PMCID: PMC3854789 DOI: 10.1186/scrt328] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The standard procedure for the osteogenic differentiation of multipotent stem cells is treatment of a confluent monolayer with a cocktail of dexamethasone (Dex), ascorbic acid (Asc) and β-glycerophosphate (β-Gly). This review describes the effects of these substances on intracellular signaling cascades that lead to osteogenic differentiation of bone marrow stroma-derived stem cells. We conclude that Dex induces Runx2 expression by FHL2/β-catenin-mediated transcriptional activation and that Dex enhances Runx2 activity by upregulation of TAZ and MKP1. Asc leads to the increased secretion of collagen type I (Col1), which in turn leads to increased Col1/α2β1 integrin-mediated intracellular signaling. The phosphate from β-Gly serves as a source for the phosphate in hydroxylapatite and in addition influences intracellular signaling molecules. In this context we give special attention to the differences between dystrophic and bone-specific mineralization.
Collapse
|
76
|
Loebel C, Czekanska EM, Bruderer M, Salzmann G, Alini M, Stoddart MJ. In vitro osteogenic potential of human mesenchymal stem cells is predicted by Runx2/Sox9 ratio. Tissue Eng Part A 2014; 21:115-23. [PMID: 24980654 DOI: 10.1089/ten.tea.2014.0096] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Runx2 is one of the most studied transcription factors expressed in mesenchymal stem cells (MSCs) upon their commitment toward an osteogenic differentiation. During endochondral bone formation in vivo, Sox9 directly interacts with Runx2 and represses its activity; however, the role of Sox9 in direct osteogenesis in vitro has been largely overlooked. METHODS Bone marrow-derived human MSCs (hMSCs) were cultured in vitro either in the control or osteogenic medium supplemented with dexamethasone (DEX). To further investigate the role of Sox9 in direct osteogenesis in vitro, hMSCs were treated with Sox9 siRNA. RESULTS We show here that Sox9 is the key early indicator during in vitro osteogenic differentiation of hMSCs. Osteogenic induction leads to a significant decrease of Sox9 gene and protein expression by day 7. Treatment of hMSCs with Sox9 siRNA enhanced mineralization in vitro, suggesting that downregulation of Sox9 is involved in direct osteogenesis. siRNA knockdown of Sox9 did not in itself induce osteogenesis in the absence of DEX, indicating that other factors are still required. CONCLUSION Screening of not preselected donors of different ages and gender (n=12) has shown that the Runx2/Sox9 ratio on day 7 is correlated to the (45)Ca incorporation on day 28. The impact of Sox9 downregulation in the mineralization of human MSCs in vitro indicates a so far unprecedented role of Sox9 as a major regulator of direct osteogenesis. We propose that the Runx2/Sox9 ratio is a promising, early, in vitro screening method for osteogenicity of human MSCs.
Collapse
Affiliation(s)
- Claudia Loebel
- 1 AO Research Institute Davos , Davos Platz, Switzerland
| | | | | | | | | | | |
Collapse
|
77
|
Salamon A, Adam S, Rychly J, Peters K. Long-term tumor necrosis factor treatment induces NFκB activation and proliferation, but not osteoblastic differentiation of adipose tissue-derived mesenchymal stem cells in vitro. Int J Biochem Cell Biol 2014; 54:149-62. [PMID: 25066315 DOI: 10.1016/j.biocel.2014.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/08/2023]
Abstract
The pro-inflammatory cytokine tumor necrosis factor (TNF) is well known to induce differentiation of bone matrix-resorbing osteoclasts from hematopoietic stem cells. However, the impact of TNF on differentiation of bone matrix-forming osteoblasts from mesenchymal stem cells (MSC) was only fragmentarily studied so far. Therefore, we investigated what impact long-term TNF treatment has on osteoblastic differentiation of MSC isolated from the adipose tissue (ASC) in vitro. In summary, we found continuous TNF exposure to induce the nuclear factor of kappa B pathway in ASC as well as secretion of the pro-inflammatory chemokine interleukin 8, but not the mitogen-activated protein kinase and the apoptosis pathway in ASC. Moreover, TNF neither induced nor inhibited osteoblastic differentiation of ASC, but strongly increased their proliferation rate. In that manner, pro-inflammatory conditions in vivo may generate significantly increased numbers of progenitor cells, and ASC especially, in conjunction with external stimuli, may contribute to the events of ectopic ossification observed in chronic inflammatory diseases. The substantiation of the translation of our in vitro findings to the disease context encourages further in vivo studies.
Collapse
Affiliation(s)
- Achim Salamon
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany.
| | - Stefanie Adam
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany
| | - Joachim Rychly
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany
| | - Kirsten Peters
- Department of Cell Biology, Rostock University Medical Center, Schillingallee 69, D-18057 Rostock, Germany
| |
Collapse
|
78
|
Duan X, Xu H, Wang Y, Wang H, Li G, Jing L. Expression of core-binding factor α1 and osteocalcin in fluoride-treated fibroblasts and osteoblasts. J Trace Elem Med Biol 2014; 28:278-83. [PMID: 24680482 DOI: 10.1016/j.jtemb.2014.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/14/2014] [Accepted: 02/15/2014] [Indexed: 12/21/2022]
Abstract
To study the effects and importance of fluoride on FBs in the development of extraperiosteal calcification and the ossification of skeletal fluorosis, the presence of the osteogenic phenotype, which is indicated by the expression of core-binding factor α1 (Cbfa1) and osteocalcin (OCN), in an FB cell line (L929) and in osteoblasts (OBs) exposed to fluoride was determined. Fibroblasts and osteoblasts were exposed to different concentrations of fluoride (0, 0.0001, 0.001, 0.1, 1.0, 10.0 and 20.0 mg/L F(-)). By using RT-PCR and ELISA, the mRNA levels of Cbfa1 and OCN were measured at 48 h, and the protein levels of Cbfa1 and OCN were measured at 2, 4, 24, 48 and 72 h. The data demonstrated the following: (1) The Cbfa1 protein level in fluoride-treated fibroblasts clearly increased at 48 h in the groups treated with 0.0001, 0.001, 0.1, 1.0 and 20.0 mg/L F(-). The Cbfa1 protein level of the group treated with 10 mg/L F(-) at 72 h was higher than that of the control group. The level of Cbfa1 mRNA in the fibroblasts was much higher at 48 h in the group treated with 10.0 mg/L F(-) than in the control group. (2) The OCN protein level in fluoride-treated fibroblasts was significantly higher than that of the control group in the 0.0001, 0.1, 1.0, 10.0 and 20.0 mg/L F(-) groups at 2 h, and in the 0.001 and 0.1 F(-) groups at 4 h. A slightly higher level of OCN mRNA in fluoride-treated fibroblasts was also found in the 1.0 and 20.0 mg/L F(-) groups compared to the control group. (3) The expressions of Cbfa1 and OCN in osteoblasts treated with the same experimental conditions as the fibroblasts were up-regulated by fluoride following the same trend as in the fibroblasts. Our results showed an increase in the expression of Cbfa1 and OCN in fibroblasts and osteoblasts exposed to fluoride and suggested that the osteogenic function of fibroblasts induced by fluoride could play an important role in the development of extraperiosteal ossification during skeletal fluorosis.
Collapse
Affiliation(s)
- Xiaoqin Duan
- Department of Rehabilitation Medicine of the Second Hospital Norman Bethune of Jilin University, Changchun 130041, China
| | - Hui Xu
- Institute of Endemic Disease of Jilin University, 1163 Xinmin Street, Changchun 130021, China
| | - Ying Wang
- The First Hospital Norman Bethune of Jilin University, Changchun 130021, China
| | - Huan Wang
- Department of Rehabilitation Medicine of the Second Hospital Norman Bethune of Jilin University, Changchun 130041, China
| | - Guangsheng Li
- Institute of Endemic Disease of Jilin University, 1163 Xinmin Street, Changchun 130021, China
| | - Ling Jing
- Institute of Endemic Disease of Jilin University, 1163 Xinmin Street, Changchun 130021, China.
| |
Collapse
|
79
|
Neuropeptide substance P improves osteoblastic and angiogenic differentiation capacity of bone marrow stem cells in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:596023. [PMID: 25050364 PMCID: PMC4090442 DOI: 10.1155/2014/596023] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/16/2014] [Indexed: 01/16/2023]
Abstract
Our previous work showed that implanting a sensory nerve or vascular bundle when constructing vascularized and neurotized bone could promote bone osteogenesis in tissue engineering. This phenomenon could be explained by the regulatory function of neuropeptides. Neuropeptide substance P (SP) has been demonstrated to contribute to bone growth by stimulating the proliferation and differentiation of bone marrow stem cells (BMSCs). However, there have been no prior studies on the association between Wnt signaling and the mechanism of SP in the context of BMSC differentiation. Our results have shown that SP could enhance the differentiation of BMSCs by activating gene and protein expression via the Wnt pathway and by translocating β-catenin, which can be inhibited by Wnt signaling blocker treatment or by the NK-1 antagonist. SP could also increase the growth factor level of bone morphogenetic protein-2 (BMP-2). Additionally, SP could enhance the migration ability of BMSCs, and the promotion of vascular endothelial growth factor (VEGF) expression by SP has been studied. In conclusion, SP could induce osteoblastic differentiation via the Wnt pathway and promote the angiogenic ability of BMSCs. These results indicate that a vascularized and neurotized tissue-engineered construct could be feasible for use in bone tissue engineering strategies.
Collapse
|
80
|
Jha AK, Jackson WM, Healy KE. Controlling osteogenic stem cell differentiation via soft bioinspired hydrogels. PLoS One 2014; 9:e98640. [PMID: 24937602 PMCID: PMC4060996 DOI: 10.1371/journal.pone.0098640] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/05/2014] [Indexed: 11/18/2022] Open
Abstract
Osteogenic differentiation of human mesenchymal stem cells (hMSCs) is guided by various physical and biochemical factors. Among these factors, modulus (i.e., rigidiy) of the ECM has gained significant attention as a physical osteoinductive signal that can contribute to endochondral ossification of a cartilaginous skeletal template. However, MSCs also participate in intramembranous bone formation, which occurs de novo from within or on a more compliant tissue environment. To further understand the role of the matrix interactions in this process, we evaluated osteogenic differentiation of hMSCs cultured on low moduli (102, 390 or 970 Pa) poly(N-isopropylacrylamide) (p(NIPAAm)) based semi-interpenetrating networks (sIPN) modified with the integrin engaging peptide bsp-RGD(15) (0, 105 or 210 µM). Cell adhesion, proliferation, and osteogenic differentiation of hMSCs, as measured by alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), bone sialoprotein-2 (iBSP), and osteocalcien (OCN) protein expression, was highest on substrates with the highest modulus and peptide concentrations. However, within this range of substrate stiffness, many osteogenic cellular functions were enhanced by increasing either the modulus or the peptide density. These findings suggest that within a compliant and low modulus substrate, a high affinity adhesive ligand serves as a substitute for a rigid matrix to foster osteogenic differentiation.
Collapse
Affiliation(s)
- Amit K. Jha
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Wesley M. Jackson
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Kevin E. Healy
- Department of Bioengineering, University of California, Berkeley, California, United States of America
- Department of Materials Science and Engineering, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
81
|
Sun JJ, Zheng XH, Wang LY, Liu L, Jing W, Lin YF, Tian W, Tang W, Long J. New bone formation enhanced by ADSCs overexpressing hRunx2 during mandibular distraction osteogenesis in osteoporotic rabbits. J Orthop Res 2014; 32:709-720. [PMID: 24522890 DOI: 10.1002/jor.22590] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/14/2014] [Indexed: 02/04/2023]
Abstract
Promoting new bone formation during distraction osteogenesis (DO) in elderly patients with osteoporosis is still a challenge. In this study, we investigated the effect of gene therapy using local Runt-related gene 2 on new bone formation during osteoporotic mandibular DO in rabbits. First, we successfully established a mandibular osteoporotic animal model by ovariectomizing rabbits. Second, the right mandibles of the osteoporotic rabbits were distracted after corticotomy. The distraction gap of the rabbits in Group A2 and B2 were injected with Adv-hRunx2-GFP-transfected adipose-derived stromal cells (ADSCs) and Adv-GFP-transfected ADSCs, respectively. Rabbits in Groups C2 (ovariectomized control) and D2 (sham surgery control) were injected with physiologic saline. New-generation bone tissue in the distraction gap was analyzed via plain radiographic examinations, micro-computed tomography, histological examinations, and biomechanical testing at weeks 3, 6, and 9 of the consolidation period. Results of above examinations showed that no ideal new bone formation was observed in Groups B2 and C2, but obvious ideal new bone formation was observed in Group A2 and D2. The results suggested that gene therapy using rhRunx2-modified ADSCs promoted new bone formation during osteoporotic mandibular DO and effectively compensated for the detrimental effects of systemic osteoporosis on new bone formation.
Collapse
Affiliation(s)
- Jing-Jing Sun
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, P.R, China; Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, P.R, China
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Effect of cyclic mechanical stimulation on the expression of osteogenesis genes in human intraoral mesenchymal stromal and progenitor cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:189516. [PMID: 24804200 PMCID: PMC3998000 DOI: 10.1155/2014/189516] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 01/29/2023]
Abstract
We evaluated the effects of mechanical stimulation on the osteogenic differentiation of human intraoral mesenchymal stem and progenitor cells (MSPCs) using the Flexcell FX5K Tension System that mediated cyclic tensile stretch on the cells. MSPCs were isolated from human mandibular retromolar bones and characterized using flow cytometry. The positive expression of CD73, CD90, and CD105 and negativity for CD14, CD19, CD34, CD45, and HLA-DR confirmed the MSPC phenotype. Mean MSPC doubling time was 30.4 ± 2.1 hrs. The percentage of lactate dehydrogenase (LDH) release showed no significant difference between the mechanically stimulated groups and the unstimulated controls. Reverse transcription quantitative real-time PCR revealed that 10% continuous cyclic strain (0.5 Hz) for 7 and 14 days induced a significant increase in the mRNA expression of the osteogenesis-specific markers type-I collagen (Col1A1), osteonectin (SPARC), bone morphogenetic protein 2 (BMP2), osteopontin (SPP1), and osteocalcin (BGLAP) in osteogenic differentiated MSPCs. Furthermore, mechanically stimulated groups produced significantly higher amounts of calcium deposited into the cultures and alkaline phosphatase (ALP). These results will contribute to a better understanding of strain-induced bone remodelling and will form the basis for the correct choice of applied force in oral and maxillofacial surgery.
Collapse
|
83
|
Zhang J, Wang JHC. Prostaglandin E2 (PGE2) exerts biphasic effects on human tendon stem cells. PLoS One 2014; 9:e87706. [PMID: 24504456 PMCID: PMC3913640 DOI: 10.1371/journal.pone.0087706] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Prostaglandin E2 (PGE2) has been reported to exert different effects on tissues at low and high levels. In the present study, cell culture experiments were performed to determine the potential biphasic effects of PGE2 on human tendon stem/progenitor cells (hTSCs). After treatment with PGE2, hTSC proliferation, stemness, and differentiation were analyzed. We found that high concentrations of PGE2 (>1 ng/ml) decreased cell proliferation and induced non-tenocyte differentiation. However, at lower concentrations (<1 ng/ml), PGE2 markedly enhanced hTSC proliferation. The expression levels of stem cell marker genes, specifically SSEA-4 and Stro-1, were more extensive in hTSCs treated with low concentrations of PGE2 than in cells treated with high levels of PGE2. Moreover, high levels of PGE2 induced hTSCs to differentiate aberrantly into non-tenocytes, which was evident by the high levels of PPARγ, collagen type II, and osteocalcin expression in hTSCs treated with PGE2 at concentrations >1 ng/ml. The findings of this study reveal that PGE2 can exhibit biphasic effects on hTSCs, indicating that while high PGE2 concentrations may be detrimental to tendons, low levels of PGE2 may play a vital role in the maintenance of tendon homeostasis in vivo.
Collapse
Affiliation(s)
- Jianying Zhang
- MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering, Mechanical Engineering and Materials Science, and Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - James H-C. Wang
- MechanoBiology Laboratory, Departments of Orthopaedic Surgery, Bioengineering, Mechanical Engineering and Materials Science, and Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
84
|
McCafferty MM, Burke GA, Meenan BJ. Mesenchymal stem cell response to conformal sputter deposited calcium phosphate thin films on nanostructured titanium surfaces. J Biomed Mater Res A 2013; 102:3585-97. [PMID: 24249697 DOI: 10.1002/jbm.a.35018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/10/2013] [Accepted: 10/30/2013] [Indexed: 01/27/2023]
Abstract
Biomaterial surfaces that can directly induce the osteogenic differentiation of mesenchymal stem cells (MSCs) present an exciting strategy for bone tissue engineering and offers significant benefits for improving the repair or replacement of damaged or lost bone tissue. In this study, titanium nanostructures with distinctive topographical features were produced by radio frequency magnetron sputtering. The response of MSCs to the nanostructured titanium (Ti) surfaces before and after augmentation by a sputter deposited calcium phosphate (CaP) coating has been investigated. The sputtered CaP has the characteristics of a calcium enriched hydroxyapatite surface layer, as determined by X-ray photoelectron spectroscopy and X-ray diffraction studies. The sputter deposited Ti has a polycrystalline surface morphology, as confirmed by atomic force microscopy, and CaP layers deposited thereon (TiCaP) conform to this topography. The effects of these surfaces on MSC focal adhesion formation, actin cytoskeleton organization and Runx2 gene expression were examined. The Ti and TiCaP surfaces were found to promote changes in MSC morphology and adhesion known to be associated with subsequent downstream osteogenic differentiation; however, the equivalent events were not as pronounced on the CaP surface. A significant increase in Runx2 expression was observed for CaP compared to Ti, but no such difference was seen between either Ti and TiCaP, nor CaP and TiCaP. Importantly, the Ti surface engendered the expected contribution of nanoscale features to the MSC response; moreover, the CaP layer when used in combination with this topography has been found to cause no adverse effects in respect of MSC behavior.
Collapse
Affiliation(s)
- Mura M McCafferty
- Nanotechnology and Integrated Bioengineering Centre (NIBEC) School of Engineering, University of Ulster, Newtownabbey, BT37 0QB, Northern Ireland
| | | | | |
Collapse
|
85
|
Bruderer M, Alini M, Stoddart MJ. Role of HOXA9 and VEZF1 in endothelial biology. J Vasc Res 2013; 50:265-78. [PMID: 23921720 DOI: 10.1159/000353287] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 03/15/2013] [Indexed: 11/19/2022] Open
Abstract
Proper development of the vascular system as one of the earliest and most critical steps during vertebrate embryogenesis is ensured by the exact spatial and temporal control of gene expression in cells forming the vessel network. Whereas the regulation of vascular system development is well elucidated on the level of ligand-receptor signaling, the processes on the transcriptional level are much less understood. As the signaling mechanisms in embryogenesis and pathological conditions are similar, the study of embryonic blood vessel development is of great interest for the treatment of cardiovascular diseases and cancer. This review discusses two transcription factors, HOXA9 and VEZF1, which are relevant for endothelial biology but are excluded in the bulk of transcription factor references discussing endothelial biology. To our knowledge, there is no comprehensive overview of these two transcription factors available to date. Here, we summarize the current knowledge of human HOXA9 and VEZF1 biology and function, we detail their target genes and roles in endothelial biology and propose that HOXA9 and VEZF1 also deserve consideration as relevant transcriptional regulators of endothelial biology. Due to their broad role in multiple aspects of endothelial biology, they might potentially become interesting targets for therapeutic manipulation of pathological blood vessel growth.
Collapse
Affiliation(s)
- Marco Bruderer
- Musculoskeletal Regeneration Program, AO Research Institute Davos, Davos, Switzerland
| | | | | |
Collapse
|
86
|
Qiang YW, Heuck CJ, Shaughnessy JD, Barlogie B, Epstein J. Proteasome inhibitors and bone disease. Semin Hematol 2013; 49:243-8. [PMID: 22726547 DOI: 10.1053/j.seminhematol.2012.04.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bone disease in patients with multiple myeloma (MM) is characterized by increase in the numbers and activity of bone-resorpting osteoclasts and decrease in the number and function of bone-formation osteoblasts. MM-triggered inhibition of bone formation may stem from suppression of Wnt/β-catenin signaling, a pivotal pathway in the differentiation of mesenchymal stem cells (MSC) into osteoblasts, and regulating production of receptor activator of nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) axis by osteoblasts. Proteasome inhibitors (PIs), such as bortezomib (Bz), induce activation of Wnt/β-catenin pathway and MSC differentiation toward osteoblasts. PIs also suppress osteoclastogenesis, possibly through regulating multiple pathways including NF-κB, Bim, and the ratio of RANKL/OPG. The critical role of PI in increasing osteoblast function and suppression of osteoclast activity is highlighted by clinical evidence of increases in bone formation and decreases in bone resorption makers. This review will discuss the function of PIs in stimulating bone formation and suppression of bone resorption, and the mechanism underlying this process that leads to inhibition bone disease in MM patients.
Collapse
Affiliation(s)
- Ya-Wei Qiang
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | |
Collapse
|
87
|
Giuliani N, Lisignoli G, Magnani M, Racano C, Bolzoni M, Dalla Palma B, Spolzino A, Manferdini C, Abati C, Toscani D, Facchini A, Aversa F. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. Stem Cells Int 2013; 2013:312501. [PMID: 23766767 PMCID: PMC3676919 DOI: 10.1155/2013/312501] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/08/2013] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) are pluripotent adult stem cells capable of being differentiated into osteoblasts, adipocytes, and chondrocytes. The osteogenic differentiation of hMSCs is regulated either by systemic hormones or by local growth factors able to induce specific intracellular signal pathways that modify the expression and activity of several transcription factors. Runt-related transcription factor 2 (Runx2) and Wnt signaling-related molecules are the major factors critically involved in the osteogenic differentiation process by hMSCs, and SRY-related high-mobility-group (HMG) box transcription factor 9 (SOX9) is involved in the chondrogenic one. hMSCs have generated a great interest in the field of regenerative medicine, particularly in bone regeneration. In this paper, we focused our attention on the molecular mechanisms involved in osteogenic and chondrogenic differentiation of hMSC, and the potential clinical use of hMSCs in osteoarticular pediatric disease characterized by fracture nonunion and pseudarthrosis.
Collapse
Affiliation(s)
- Nicola Giuliani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Gina Lisignoli
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marina Magnani
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Costantina Racano
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Marina Bolzoni
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Benedetta Dalla Palma
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Angelica Spolzino
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Cristina Manferdini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Caterina Abati
- Paediatric Orthopaedics and Traumatology, Rizzoli Orthopaedic Institute, Via GC Pupilli 1, 40136 Bologna, Italy
| | - Denise Toscani
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Andrea Facchini
- SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale e Laboratorio RAMSES, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Franco Aversa
- Hematology, Department of Clinical and Experimental Medicine, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
88
|
Guidotti S, Facchini A, Platano D, Olivotto E, Minguzzi M, Trisolino G, Filardo G, Cetrullo S, Tantini B, Martucci E, Facchini A, Flamigni F, Borzì RM. Enhanced Osteoblastogenesis of Adipose-Derived Stem Cells on Spermine Delivery via β-Catenin Activation. Stem Cells Dev 2013; 22:1588-601. [DOI: 10.1089/scd.2012.0399] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Serena Guidotti
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Medicina Clinica, Università di Bologna, Bologna, Italy
| | - Annalisa Facchini
- Dipartimento di Medicina Clinica, Università di Bologna, Bologna, Italy
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy
| | - Daniela Platano
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Medicina Clinica, Università di Bologna, Bologna, Italy
| | - Eleonora Olivotto
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Manuela Minguzzi
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Medicina Clinica, Università di Bologna, Bologna, Italy
| | - Giovanni Trisolino
- Chirurgia ricostruttiva articolare dell'anca e del ginocchio, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Filardo
- Laboratorio di Biomeccanica e Innovazione Tecnologica, Clinica III, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Cetrullo
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy
| | | | - Ermanno Martucci
- Chirurgia ricostruttiva articolare dell'anca e del ginocchio, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Andrea Facchini
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento di Medicina Clinica, Università di Bologna, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Flavio Flamigni
- Dipartimento di Biochimica, Università di Bologna, Bologna, Italy
| | - Rosa Maria Borzì
- Laboratorio di Immunoreumatologia e Rigenerazione Tessutale, Istituto Ortopedico Rizzoli, Bologna, Italy
- Dipartimento RIT, Laboratorio RAMSES, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
89
|
Gay I, Cavender A, Peto D, Sun Z, Speer A, Cao H, Amendt BA. Differentiation of human dental stem cells reveals a role for microRNA-218. J Periodontal Res 2013; 49:110-20. [PMID: 23662917 DOI: 10.1111/jre.12086] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND Regeneration of lost periodontium is the ultimate goal of periodontal therapy. Advances in tissue engineering have demonstrated the multilineage potential and plasticity of adult stem cells located in periodontal apparatus. However, it remains unclear how epigenetic mechanisms controlling signals determine tissue specification and cell lineage decisions. To date, no data are available on micro-RNA (miRNA) activity behind human-derived dental stem cells (DSCs). MATERIAL AND METHODS In this study, we isolated periodontal ligament stem cells, dental pulp stem cells and gingival stem cells from extracted third molars; human bone marrow stem cells were used as a positive control. The expression of OCT4A and NANOG was confirmed in these undifferentiated cells. All cells were cultured under osteogenic inductive conditions and RUNX2 expression was analyzed as a marker of mineralized tissue differentiation. The miRNA expression profile was obtained at baseline and after osteogenic induction in all cell types. RESULTS The expression of RUNX2 demonstrated successful osteogenic induction of all cell types, which was confirmed by alizarin red stain. The analysis of 765 miRNAs demonstrated a shift in miRNA expression that occurred in all four stem cell types, including a decrease in hsa-mir-218 across all differentiated cell populations. Hsa-mir-218 targets RUNX2 and decreases RUNX2 expression in undifferentiated human DSCs. DSC mineralized tissue type differentiation is associated with a decrease in hsa-mir-218 expression. CONCLUSION These data reveal a miRNA-regulated pathway for the differentiation of human DSCs and a select network of human miRNAs that control DSC osteogenic differentiation.
Collapse
Affiliation(s)
- I Gay
- Dental School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Boonyagul S, Banlunara W, Sangvanich P, Thunyakitpisal P. Effect of acemannan, an extracted polysaccharide from Aloe vera, on BMSCs proliferation, differentiation, extracellular matrix synthesis, mineralization, and bone formation in a tooth extraction model. Odontology 2013; 102:310-7. [PMID: 23315202 DOI: 10.1007/s10266-012-0101-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/05/2012] [Indexed: 12/28/2022]
Abstract
Aloe vera is a traditional wound healing medicine. We hypothesized acemannan, a polysaccharide extracted from Aloe vera gel, could affect bone formation. Primary rat bone marrow stromal cells (BMSCs) were treated with various concentrations of acemannan. New DNA synthesis, VEGF, BMP-2, alkaline phosphatase activity, bone sialoprotein, osteopontin expression, and mineralization were determined by [(3)H] thymidine incorporation assay, ELISA, biochemical assay, western blotting, and Alizarin Red staining, respectively. In an animal study, mandibular right incisors of male Sprague-Dawley rats were extracted and an acemannan treated sponge was placed in the socket. After 1, 2, and 4 weeks, the mandibles were dissected. Bone formation was evaluated by dual-energy X-ray absorptiometry and histopathological examination. The in vitro results revealed acemannan significantly increased BMSC proliferation, VEGF, BMP-2, alkaline phosphatase activity, bone sialoprotein and osteopontin expression, and mineralization. In-vivo results showed acemannan-treated groups had higher bone mineral density and faster bone healing compared with untreated controls. A substantial ingrowth of bone trabeculae was observed in acemannan-treated groups. These data suggest acemannan could function as a bioactive molecule inducing bone formation by stimulating BMSCs proliferation, differentiation into osteoblasts, and extracellular matrix synthesis. Acemannan could be a candidate natural biomaterial for bone regeneration.
Collapse
Affiliation(s)
- Sani Boonyagul
- Dental Biomaterials Science Program, Graduate School, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | | | | |
Collapse
|
91
|
Cook D, Genever P. Regulation of Mesenchymal Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:213-29. [DOI: 10.1007/978-94-007-6621-1_12] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
92
|
Dalle Carbonare L, Innamorati G, Valenti MT. Transcription factor Runx2 and its application to bone tissue engineering. Stem Cell Rev Rep 2012; 8:891-7. [PMID: 22139789 DOI: 10.1007/s12015-011-9337-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cbfa1/Runx2 is a bone transcription factor homologous to the Drosophila protein, Runt. Runx2 is a master gene that encodes for a protein involved in the osteogenic differentiation process from mesenchymal precursors. It is known that in Cbfa1 deficient mice (Cbfa1(-/-)) the lack of mature osteoblasts is associated to incomplete bone mineralization. An important aim of modern biology is the development of new molecular tools for identification of therapeutic approaches. Recent discoveries in cell and molecular biology enabled researchers in the bone tissue-engineering field to develop new strategies for gene and cell-based therapies. This review summarizes the process of osteogenic differentiation from mesenchymal stem cells and the importance of bone regeneration is discussed. In particular, given the increasing interest in the study of the transcription factor Runx2, this review highlights the role of this target gene and addresses recent strategies using Runx2 for bone regeneration.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Medicine, Clinic of Internal Medicine, section D, University of Verona, Piazzale Scuro, 10, 37134 Verona, Italy
| | | | | |
Collapse
|
93
|
Cameron K, Travers P, Chander C, Buckland T, Campion C, Noble B. Directed osteogenic differentiation of human mesenchymal stem/precursor cells on silicate substituted calcium phosphate. J Biomed Mater Res A 2012; 101:13-22. [PMID: 22733430 DOI: 10.1002/jbm.a.34261] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/13/2012] [Accepted: 05/03/2012] [Indexed: 12/31/2022]
Abstract
Insufficient, underactive, or inappropriate osteoblast function results in serious clinical conditions such as osteoporosis, osteogenesis imperfecta and fracture nonunion and therefore the control of osteogenesis is a medical priority. In vitro mesenchymal stem cells (MSCs) can be directed to form osteoblasts through the addition of soluble factors such as β-glycerophosphate, ascorbic acid, and dexamethasone; however this is unlikely to be practical in the clinical setting. An alternative approach would be to use a scaffold or matrix engineered to provide cues for differentiation without the need for soluble factors. Here we describe studies using Silicate-substituted calcium phosphate (Si-CaP) and unmodified hydroxyapatite (HA) to test whether these materials are capable of promoting osteogenic differentiation of MSCs in the absence of soluble factors. Si-CaP supported attachment and proliferation of MSCs and induced osteogenesis to a greater extent than HA, as evidenced through upregulation of the osteoblast-related genes: Runx2 (1.2 fold), Col1a1 (2 fold), Pth1r (1.5 fold), and Bglap (1.7 fold) Dmp1 (1.1 fold), respectively. Osteogenic-associated proteins, alkaline phosphatase (1.4 fold), RUNX2, COL1A1, and BGLAP, were also upregulated and there was an increased production of mineralized bone matrix (1.75 fold), as detected by the Von Kossa Assay. These data indicate that inorganic substrates are capable of directing the differentiation programme of stem cells in the absence of known chemical drivers and therefore may provide the basis for bone repair in the clinical setting.
Collapse
Affiliation(s)
- Kate Cameron
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom.
| | | | | | | | | | | |
Collapse
|
94
|
Du HM, Zheng XH, Wang LY, Tang W, Liu L, Jing W, Lin YF, Tian WD, Long J. The osteogenic response of undifferentiated human adipose-derived stem cells under mechanical stimulation. Cells Tissues Organs 2012; 196:313-324. [PMID: 22584128 DOI: 10.1159/000335905] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2011] [Indexed: 01/06/2023] Open
Abstract
The purpose of this study was to investigate the osteogenic response of human adipose-derived stem cells (hASCs) under mechanical and/or chemical stimulation. hASCs were divided into three groups. In group A, the cells were cultured without any stimulation, in group B, the cells were induced with chemical stimulation, and in group C, the cells were induced with a combination of chemical stimulation and stretch loading. Stretch loading and chemical stimulation were applied using a four-point bending apparatus (0.5 Hz, 2,000 µε, 2 h/day) and osteogenic differentiation medium, respectively. At the 1st, 2nd, 3rd, 5th and 7th day following initiation of stretch loading, we detected alkaline phosphatase activity, mRNA expression (RUNX2, ALPL, osteonectin, osteopontin and type I collagen) and protein expression (RUNX2 and osteopontin) by colorimetric assay, real-time PCR and Western blot methods, respectively. Alkaline phosphatase activity, mRNA expression and protein expression all increased in groups B and C along with the culture time, but were observed to be downregulated by the 7th day in group C (p < 0.05). Compared to group A, most of the above markers were significantly higher in groups B and C (p < 0.05). All of the above markers in group C were higher than those in group B before the 5th day (p < 0.05), except at the 1st day. These results indicated that stretch loading promoted osteogenic differentiation of hASCs and that the combination of mechanical and chemical stimulation could enhance the osteogenic capability up to the 5th day relative to chemical stimulation alone.
Collapse
Affiliation(s)
- Hong-ming Du
- The State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Bahrambeigi V, Salehi R, Hashemibeni B, Esfandiari E. Transcriptomic comparison of osteopontin, osteocalcin and core binding factor 1 genes between human adipose derived differentiated osteoblasts and native osteoblasts. Adv Biomed Res 2012; 1:8. [PMID: 23210067 PMCID: PMC3507038 DOI: 10.4103/2277-9175.94431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/19/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND There are significant limitations in repair of irrecoverable bone defects. Stem-cell therapy is a promising approach for the construction of bone tissue. Mesenchymal stem cells (MSCs) have been introduced as basic tools for bone tissue generation. Through MSCs, adipose-derived stem cells (ADSCs) are more interesting. Since the similarity of native osteoblasts and differentiated osteoblasts from ADSCs in terms of gene expression pattern is unknown, this study was designed to compare gene expression patterns of some genes involved in osteogenesis between human native osteoblasts and adipose-derived differentiated osteoblasts. MATERIALS AND METHODS Realtime qRT-PCR was used for studying the gene expression of osteocalcin, osteopontin, and core binding factor alpha 1 (Cbfa1) in human native osteoblasts and adipose derived osteogenic osteoblasts at days 7, 14, 21, and 28 of differentiation. RESULTS This study demonstrated that native osteoblasts and differentiated osteoblasts, cultured in common osteogenic medium, have significant differences in gene expression levels for osteocalcin and osteopontin. Compared to native osteoblasts, these genes are expressed lower in all four groups of differentiated osteoblastic cells. We also found, there is a progressive increase in cbfa1 expression over the differentiation period of ADSCs from day 7 to day 28. CONCLUSIONS Our findings help for better assessment of adipose-derived differentiated cells as a source for cell-based therapy.
Collapse
Affiliation(s)
- Vahid Bahrambeigi
- Division of Genetics, Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan, Iran ; Applied Physiology Research Center, Isfahan, Iran
| | | | | | | |
Collapse
|
96
|
Liu Y, Goldberg AJ, Dennis JE, Gronowicz GA, Kuhn LT. One-step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One 2012; 7:e33225. [PMID: 22457746 PMCID: PMC3310052 DOI: 10.1371/journal.pone.0033225] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 02/13/2012] [Indexed: 12/21/2022] Open
Abstract
Controlled differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) into cells that resemble adult mesenchymal stem cells (MSCs) is an attractive approach to obtain a readily available source of progenitor cells for tissue engineering. The present study reports a new method to rapidly derive MSC-like cells from hESCs and hiPSCs, in one step, based on culturing the cells on thin, fibrillar, type I collagen coatings that mimic the structure of physiological collagen. Human H9 ESCs and HDFa-YK26 iPSCs were singly dissociated in the presence of ROCK inhibitor Y-27632, plated onto fibrillar collagen coated plates and cultured in alpha minimum essential medium (alpha-MEM) supplemented with 10% fetal bovine serum, 50 uM magnesium L-ascorbic acid phosphate and 100 nM dexamethasone. While fewer cells attached on the collagen surface initially than standard tissue culture plastic, after culturing for 10 days, resilient colonies of homogenous spindle-shaped cells were obtained. Flow cytometric analysis showed that a high percentage of the derived cells expressed typical MSC surface markers including CD73, CD90, CD105, CD146 and CD166 and were negative as expected for hematopoietic markers CD34 and CD45. The MSC-like cells derived from pluripotent cells were successfully differentiated in vitro into three different lineages: osteogenic, chondrogenic, and adipogenic. Both H9 hES and YK26 iPS cells displayed similar morphological changes during the derivation process and yielded MSC-like cells with similar properties. In conclusion, this study demonstrates that bioimimetic, fibrillar, type I collagen coatings applied to cell culture plates can be used to guide a rapid, efficient derivation of MSC-like cells from both human ES and iPS cells.
Collapse
Affiliation(s)
- Yongxing Liu
- Center for Biomaterials, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - A. Jon Goldberg
- Center for Biomaterials, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - James E. Dennis
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, United States of America
| | - Gloria A. Gronowicz
- Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Liisa T. Kuhn
- Center for Biomaterials, Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
97
|
An S, Gao Y, Ling J, Wei X, Xiao Y. Calcium ions promote osteogenic differentiation and mineralization of human dental pulp cells: implications for pulp capping materials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:789-795. [PMID: 22190198 DOI: 10.1007/s10856-011-4531-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/09/2011] [Indexed: 05/31/2023]
Abstract
Calcium (Ca) is the main element of most pulp capping materials and plays an essential role in mineralization. Different pulp capping materials can release various concentrations of Ca ions leading to different clinical outcomes. The purpose of this study was to investigate the effects of various concentrations of Ca ions on the growth and osteogenic differentiation of human dental pulp cells (hDPCs). Different concentrations of Ca ions were added to growth culture medium and osteogenic inductive culture medium. A Cell Counting Kit-8 was used to determine the proliferation of hDPCs in growth culture medium. Osteogenic differentiation and mineralization were measured by alkaline phosphatase (ALP) assay, Alizarin red S/von kossa staining, Ca content quantitative assay. The selected osteogenic differentiation markers were investigated by quantitative real-time polymerase chain reaction (qRT-PCR). Within the range of 1.8-16.2 mM, increased concentrations of Ca ions had no effect on cell proliferation, but led to changes in osteogenic differentiation. It was noted that enhanced mineralized matrix nodule formation was found in higher Ca ions concentrations; however, ALP activity and gene expression were reduced. qRT-PCR results showed a trend towards down-regulated mRNA expression of type I collagen and Runx2 at elevated concentrations of Ca ions, whereas osteopontin and osteocalcin mRNA expression were significantly up-regulated. Ca ions content in the culture media can significantly influence the osteogenic properties of hDPCs, indicating the importance of optimizing Ca ions release from dental pulp capping materials in order to achieve desirable clinical outcomes.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | | | | | | | | |
Collapse
|
98
|
Paracrine interactions between mesenchymal stem cells affect substrate driven differentiation toward tendon and bone phenotypes. PLoS One 2012; 7:e31504. [PMID: 22355373 PMCID: PMC3280320 DOI: 10.1371/journal.pone.0031504] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 01/12/2012] [Indexed: 01/09/2023] Open
Abstract
We investigated substrate dependent paracrine signaling between subpopulations of bone marrow stromal cells (BMSCs) that may affect the formation, or perhaps malformation, of the regenerating tendon to bone enthesis. Polyacrylamide substrates approximating the elastic modulus of tendon granulation tissue and the osteoid of healing bone (10–90 kPa) were functionalized with whole length fibronectin (Fn), type-I collagen (Col), or a mixed ligand solution (Fn/Col), and BMSCs were cultured in growth media alone or media supplemented with soluble Col or Fn. More rigid substrates with a narrow mechanical gradient (70–90 kPa) robustly induced osteogenic cell differentiation when functionalized with either Col or Fn. On broader mechanical gradient substrates (with a linear elastic modulus gradient from 10–90 kPa), cell differentiation was markedly osteogenic on subregions of Fn functionalized substrates above 20 kPa, but osteogenic activity was inhibited on all subregions of Col substrates. Osteogenic behavior was not observed when cells were cultured on Fn substrates if Col was present either in the media or on the substrate (Fn/Col). Tenogenic differentiation markers were observed only on Col substrates with moderate rigidity (∼30–50 kPa). Tenogenic differentiation was unaltered by soluble or substrate bound Fn. Co-culture of narrow gradient subsections revealed that any inclusion of tenogenic substrates (30–50 kPa, Col), caused otherwise osteogenic substrates to not develop markers of osteogenic differentiation, while increasing cell proliferation. These apparently paracrine effects could be mediated by bone morphogenetic protein-2 (BMP-2), as first confirmed by gene-level expression of BMP-2 and the transcription factor Smad8, and verified by BMP-2 media supplementation at levels similar to observed cell-secreted concentrations, which arrested osteogenic differentiation in 14 day cultures. Thus, cell instructive biomaterials with engineered mechanical and biochemical properties represent potentially powerful tools for directing BMSC differentiation to tendon and bone, however paracrine signals from tenogenic cells may delay osteogenesis at the healing enthesis.
Collapse
|
99
|
Saldaña L, Bensiamar F, Boré A, Vilaboa N. In search of representative models of human bone-forming cells for cytocompatibility studies. Acta Biomater 2011; 7:4210-21. [PMID: 21827875 DOI: 10.1016/j.actbio.2011.07.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 07/20/2011] [Accepted: 07/24/2011] [Indexed: 01/22/2023]
Abstract
Osteosarcoma-derived cells have been routinely used for studying osteoblastic functions, but it remains unclear to what extent they mimic the behavior of primary osteoblasts in the study of cells and materials interactions. This study reports comparatively on the responses of three human osteosarcoma cell lines, MG-63, Saos-2 and U-2 OS, and human primary osteoblasts cultured on Ti6Al4V surfaces or exposed to Ti particles. Phenotypic characterization of the cell lines revealed that Saos-2 cells and primary osteoblasts displayed similar expression patterns of Cbfa1, SP7 and osteocalcin. Unlike primary cells, the cell lines expressed markers of undifferentiated cells, had high proliferative rates and poor fibronectin matrix assembly. None of the three cell lines faithfully reproduced the adhesive behavior of primary osteoblasts when cultured on Ti6Al4V surfaces or exposed to Ti particles. Differences in cell growth between the cell lines and primary osteoblasts cultured on Ti6Al4V surfaces were also observed. Ti particles inhibited the growth of Saos-2 cells and primary osteoblasts to a similar extent, while no such effect was observed in U-2 OS and MG-63 cells. Saos-2 cells reproduced the alkaline phosphatase (ALP) activity profile of primary osteoblasts cultured on metallic surfaces or exposed to particles. Altogether, these results show that none of the osteoblast-like cells studied perfectly mimic the behavior of human osteoblast cells (hOB) on Ti6Al4V surfaces or exposed to Ti particles. Saos-2 cells reproduce some of the hOB responses such as the profile of enzymatic ALP activity when cultured on the surfaces or treated with particles as well as cell growth inhibition when exposed to Ti particles. Although in vitro cytocompatibility studies involve the evaluation of multiple parameters, Saos-2 cells may be used as representative of human osteoblasts when these standard tests are evaluated.
Collapse
Affiliation(s)
- Laura Saldaña
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | | | | | | |
Collapse
|
100
|
Id Boufker H, Lagneaux L, Fayyad-Kazan H, Badran B, Najar M, Wiedig M, Ghanem G, Laurent G, Body JJ, Journé F. Role of farnesoid X receptor (FXR) in the process of differentiation of bone marrow stromal cells into osteoblasts. Bone 2011; 49:1219-31. [PMID: 21893226 DOI: 10.1016/j.bone.2011.08.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 12/16/2022]
Abstract
Bone tissue contains bile acids which accumulate from serum and which can be released in large amounts in the bone microenvironment during bone resorption. However, the direct effects of bile acids on bone cells remain largely unexplored. Bile acids have been identified as physiological ligands of the farnesoid X receptor (FXR, NR1H4). In the present study, we have examined the effects of FXR activation/inhibition on the osteoblastic differentiation of human bone marrow stromal cells (BMSC). We first demonstrated the expression of FXR in BMSC and SaOS2 osteoblast-like cells, and observed that FXR activation by chenodeoxycholic acid (CDCA) or by farnesol (FOH) increases the activity of alkaline phosphatase and the calcification of the extracellular matrix. In addition, we observed that FXR agonists are able to stimulate the expression of osteoblast marker genes [bone sialoprotein (BSP), osteocalcin (OC), osteopontin (OPN) and alkaline phosphatase (ALP)] (FXR involvement validated by shRNA-induced gene silencing), as well as the DNA binding activity of the bone transcription factor RUNX2 (EMSA and ChIP assay). Importantly, we observed that nitrogen-containing bisphosphonates (BPs) inhibit the basal osteoblastic differentiation of BMSC, possibly through suppression of endogenous FOH production, independently of their effects on protein prenylation. Likewise, we found that the FXR antagonist guggulsterone (GGS) inhibits ALP activity, calcium deposition, DNA binding of RUNX2, and bone marker expression, indicating that GGS interferes with osteoblastic differentiation. Furthermore, GGS induced the appearance of lipid vesicles in BMSC and stimulated the expression of adipose tissue markers (peroxisome proliferator activated receptor-gamma (PPARγ), adipoQ, leptin and CCAAT/enhancer-binding protein-alpha (C/EBPα)). In conclusion, our data support a new role for FXR in the modulation of osteoblast/adipocyte balance: its activation stimulates RUNX2-mediated osteoblastic differentiation of BMSC, whereas its inhibition leads to an adipocyte-like phenotype.
Collapse
Affiliation(s)
- Hichame Id Boufker
- Laboratoire d'Hématologie Expérimentale, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|