51
|
Mushtaq A, Mir US, Altaf M. Multifaceted functions of RNA-binding protein vigilin in gene silencing, genome stability, and autism-related disorders. J Biol Chem 2023; 299:102988. [PMID: 36758804 PMCID: PMC10011833 DOI: 10.1016/j.jbc.2023.102988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
RNA-binding proteins (RBPs) are emerging as important players in regulating eukaryotic gene expression and genome stability. Specific RBPs have been shown to mediate various chromatin-associated processes ranging from transcription to gene silencing and DNA repair. One of the prominent classes of RBPs is the KH domain-containing proteins. Vigilin, an evolutionarily conserved KH domain-containing RBP has been shown to be associated with diverse biological processes like RNA transport and metabolism, sterol metabolism, chromosome segregation, and carcinogenesis. We have previously reported that vigilin is essential for heterochromatin-mediated gene silencing in fission yeast. More recently, we have identified that vigilin in humans plays a critical role in efficient repair of DNA double-stranded breaks and functions in homology-directed DNA repair. In this review, we highlight the multifaceted functions of vigilin and discuss the findings in the context of gene expression, genome organization, cancer, and autism-related disorders.
Collapse
Affiliation(s)
- Arjamand Mushtaq
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Ulfat Syed Mir
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mohammad Altaf
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, Jammu and Kashmir, India.
| |
Collapse
|
52
|
Jagadeesan SK, Al-gafari M, Wang J, Takallou S, Allard D, Hajikarimlou M, Kazmirchuk TDD, Moteshareie H, Said KB, Nokhbeh R, Smith M, Samanfar B, Golshani A. DBP7 and YRF1-6 Are Involved in Cell Sensitivity to LiCl by Regulating the Translation of PGM2 mRNA. Int J Mol Sci 2023; 24:ijms24021785. [PMID: 36675300 PMCID: PMC9864399 DOI: 10.3390/ijms24021785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Lithium chloride (LiCl) has been widely researched and utilized as a therapeutic option for bipolar disorder (BD). Several pathways, including cell signaling and signal transduction pathways in mammalian cells, are shown to be regulated by LiCl. LiCl can negatively control the expression and activity of PGM2, a phosphoglucomutase that influences sugar metabolism in yeast. In the presence of galactose, when yeast cells are challenged by LiCl, the phosphoglucomutase activity of PGM2p is decreased, causing an increase in the concentration of toxic galactose metabolism intermediates that result in cell sensitivity. Here, we report that the null yeast mutant strains DBP7∆ and YRF1-6∆ exhibit increased LiCl sensitivity on galactose-containing media. Additionally, we demonstrate that DBP7 and YRF1-6 modulate the translational level of PGM2 mRNA, and the observed alteration in translation seems to be associated with the 5'-untranslated region (UTR) of PGM2 mRNA. Furthermore, we observe that DBP7 and YRF1-6 influence, to varying degrees, the translation of other mRNAs that carry different 5'-UTR secondary structures.
Collapse
Affiliation(s)
- Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mustafa Al-gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Danielle Allard
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Kamaledin B. Said
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Reza Nokhbeh
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence:
| |
Collapse
|
53
|
Breeden L, Miles S. A common SSD1 truncation is toxic to cells entering quiescence and promotes sporulation. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000671. [PMID: 36575737 PMCID: PMC9790081 DOI: 10.17912/micropub.biology.000671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Ssd1p is an RNA binding protein in Saccharomyces cerevisiae that plays an important role in cell division, cell fate decisions, stress response and virulence. Lab strain W303 encodes the terminal truncation ssd1-2, which is typically interpreted to be a loss of function allele. We have shown that ssd1-2 is toxic to mpt5-Δ mutants and to diploids entering stationary phase and quiescence. The ssd1-Δ null shows no toxicity, indicating that ssd1-2 is disrupting an essential function that does not solely require Ssd1p. ssd1-2 cells are also more sensitive to stress than ssd1-Δ . These phenotypes are recessive to SSD1-1 . In contrast, ssd1-2 plays a dominant role in promoting sporulation.
Collapse
Affiliation(s)
- Linda Breeden
- Fred Hutchinson Cancer Center, Basic Science Division, Seattle, WA, USA
| | - Shawna Miles
- Fred Hutchinson Cancer Center, Basic Science Division, Seattle, WA, USA
| |
Collapse
|
54
|
Hall RA, Wallace EW. Post-transcriptional control of fungal cell wall synthesis. Cell Surf 2022; 8:100074. [PMID: 35097244 PMCID: PMC8783092 DOI: 10.1016/j.tcsw.2022.100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
Pathogenic fungi hide from their hosts by camouflage, obscuring immunogenic cell wall components such as beta-glucan with innocuous coverings such as mannoproteins and alpha-glucan that are less readily recognised by the host. Attempts to understand how such processes are regulated have met with varying success. Typically studies focus on understanding the transcriptional response of fungi to either their reservoir environment or the host. However, such approaches do not fully address this research question, due to the layers of post-transcriptional and post-translational regulation that occur within a cell. Although in animals the impact of post-transcriptional and post-translational regulation has been well characterised, our knowledge of these processes in the fungal kingdom is more limited. Mutations in RNA-binding proteins, like Ssd1 and Candida albicans Slr1, affect cell wall composition and fungal virulence indicating that post-transcriptional regulation plays a key role in these processes. Here, we review the current state of knowledge of fungal post-transcriptional regulation, and link this to potential mechanisms of immune evasion by drawing on studies from model yeast and plant pathogenic fungi. We highlight several RNA-binding proteins that regulate cell wall synthesis and could be involved in local translation of cell wall components. Expanding our knowledge on post-transcriptional regulation in human fungal pathogens is essential to fully comprehend fungal virulence strategies and for the design of novel antifungal therapies.
Collapse
Affiliation(s)
- Rebecca A. Hall
- Kent Fungal Group, Division of Natural Sciences, School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Edward W.J. Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, EH9 3FF, United Kingdom
| |
Collapse
|
55
|
Nair RR, Pataki E, Gerst JE. Transperons: RNA operons as effectors of coordinated gene expression in eukaryotes. Trends Genet 2022; 38:1217-1227. [PMID: 35934590 DOI: 10.1016/j.tig.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
Coordinated gene expression allows spatiotemporal control of cellular processes and is achieved by the cotranscription/translation of functionally related genes/proteins. Prokaryotes evolved polycistronic messages (operons) to confer expression from a single promoter to efficiently cotranslate proteins functioning on the same pathway. Yet, despite having far greater diversity (e.g., gene number, distribution, modes of expression), eukaryotic cells employ individual promoters and monocistronic messages. Although gene expression is modular, it does not account for how eukaryotes achieve coordinated localized translation. The RNA operon theory states that mRNAs derived from different chromosomes assemble into ribonucleoprotein particles (RNPs) that act as functional operons to generate protein cohorts upon cotranslation. Work in yeast has now validated this theory and shown that intergenic associations and noncanonical histone functions create pathway-specific RNA operons (transperons) that regulate cell physiology. Herein the involvement of chromatin organization in transperon formation and programmed gene coexpression is discussed.
Collapse
Affiliation(s)
- Rohini R Nair
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Emese Pataki
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
56
|
Smirnov A. How global RNA-binding proteins coordinate the behaviour of RNA regulons: an information approach. Comput Struct Biotechnol J 2022; 20:6317-6338. [DOI: 10.1016/j.csbj.2022.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
57
|
Lee CH, Biggins S. Microtubule integrity regulates budding yeast RAM pathway gene expression. Front Cell Dev Biol 2022; 10:989820. [PMID: 36172269 PMCID: PMC9511886 DOI: 10.3389/fcell.2022.989820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
During mitosis, cells must spatiotemporally regulate gene expression programs to ensure accurate cellular division. Failures to properly regulate mitotic progression result in aneuploidy, a hallmark of cancer. Entry and exit from mitosis is largely controlled by waves of cyclin-dependent kinase (CDK) activity coupled to targeted protein degradation. The correct timing of CDK-based mitotic regulation is coordinated with the structure and function of microtubules. To determine whether mitotic gene expression is also regulated by the integrity of microtubules, we performed ribosome profiling and mRNA-sequencing in the presence and absence of microtubules in the budding yeast Saccharomyces cerevisiae. We discovered a coordinated translational and transcriptional repression of genes involved in cell wall biology processes when microtubules are disrupted. The genes targeted for repression in the absence of microtubules are enriched for downstream targets of a feed-forward pathway that controls cytokinesis and septum degradation and is regulated by the Cbk1 kinase, the Regulation of Ace2 Morphogenesis (RAM) pathway. We demonstrate that microtubule disruption leads to aberrant subcellular localization of Cbk1 in a manner that partially depends on the spindle position checkpoint. Furthermore, constitutive activation of the RAM pathway in the absence of microtubules leads to growth defects. Taken together, these results uncover a previously unknown link between microtubule function and the proper execution of mitotic gene expression programs to ensure that cell division does not occur prematurely.
Collapse
Affiliation(s)
| | - Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Howard Hughes Medical Institute, Seattle, WA, United States
| |
Collapse
|
58
|
Zhao Y, Song J, Dong W, Liu X, Yang C, Wang D, Xue Y, Ruan X, Liu L, Wang P, Zhang M, Liu Y. The MBNL1/circNTRK2/PAX5 pathway regulates aerobic glycolysis in glioblastoma cells by encoding a novel protein NTRK2-243aa. Cell Death Dis 2022; 13:767. [PMID: 36064939 PMCID: PMC9445070 DOI: 10.1038/s41419-022-05219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 01/21/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common tumor of the human central nervous system. Aerobic glycolysis has been strongly related to tumor development and malignant behavior. In this study, we found that MBNL1, circNTRK2, and NTRK2-243aa were markedly downregulated and inhibited glycolysis in GBM, whereas PAX5 was upregulated and promoted glycolysis. Functionally, MBNL1 promoted the expression of circNTRK2 by binding to NTRK2 pre-mRNA, as validated using RNA pull-down and nascent RNA immunoprecipitation assays. Mass spectrometry, western blotting, and immunofluorescence staining methods were used to detect the expression of NTRK2-243aa. NTRK2-243aa-encoded by circNTRK2-phosphorylated PAX5 at Y102, leading to the attenuation of the half-life of PAX5, as validated by in vitro kinase and MG132 rescue assays. Besides, PAX5 transcriptionally facilitated the expression of PKM2 and HK2 by binding to their promoter regions, as verified by luciferase reporter and chromatin immunoprecipitation assays. Finally, overexpression of MBNL1 and circNTRK2 combined with PAX5 knockdown effectively inhibited the formation of GBM xenograft tumors and significantly prolonged the survival of orthotopic nude mice. We have delineated that the MBNL1/circNTRK2/PAX5 pathway plays a crucial role in regulating GBM glycolysis and could provide potential targets and alternative strategies for the treatment of GBM.
Collapse
Affiliation(s)
- Yubo Zhao
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Jian Song
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Weiwei Dong
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Xiaobai Liu
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Chunqing Yang
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Di Wang
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| | - Yixue Xue
- grid.412449.e0000 0000 9678 1884Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122 China
| | - Xuelei Ruan
- grid.412449.e0000 0000 9678 1884Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122 China
| | - Libo Liu
- grid.412449.e0000 0000 9678 1884Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122 China
| | - Ping Wang
- grid.412449.e0000 0000 9678 1884Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122 China
| | - Mengyang Zhang
- grid.412449.e0000 0000 9678 1884Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122 China
| | - Yunhui Liu
- grid.412467.20000 0004 1806 3501Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004 China ,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004 China ,Liaoning Medical Surgery and Rehabilitation Robot Technology Engineering Research Center, Shenyang, 110004 China
| |
Collapse
|
59
|
Sadée C, Hagler LD, Becker WR, Jarmoskaite I, Vaidyanathan PP, Denny SK, Greenleaf WJ, Herschlag D. A comprehensive thermodynamic model for RNA binding by the Saccharomyces cerevisiae Pumilio protein PUF4. Nat Commun 2022; 13:4522. [PMID: 35927243 PMCID: PMC9352680 DOI: 10.1038/s41467-022-31968-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/07/2022] [Indexed: 11/12/2022] Open
Abstract
Genomic methods have been valuable for identifying RNA-binding proteins (RBPs) and the genes, pathways, and processes they regulate. Nevertheless, standard motif descriptions cannot be used to predict all RNA targets or test quantitative models for cellular interactions and regulation. We present a complete thermodynamic model for RNA binding to the S. cerevisiae Pumilio protein PUF4 derived from direct binding data for 6180 RNAs measured using the RNA on a massively parallel array (RNA-MaP) platform. The PUF4 model is highly similar to that of the related RBPs, human PUM2 and PUM1, with one marked exception: a single favorable site of base flipping for PUF4, such that PUF4 preferentially binds to a non-contiguous series of residues. These results are foundational for developing and testing cellular models of RNA-RBP interactions and function, for engineering RBPs, for understanding the biophysical nature of RBP binding and the evolutionary landscape of RNAs and RBPs.
Collapse
Affiliation(s)
- Christoph Sadée
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren D Hagler
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Pavanapuresan P Vaidyanathan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Protillion Biosciences, Burlingame, CA, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA, USA
- Scribe Therapeutics, Alameda, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
60
|
Polymenis M. mRNA-binding proteins and cell cycle progression. Trends Genet 2022; 38:797-800. [PMID: 35618506 PMCID: PMC9933138 DOI: 10.1016/j.tig.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/10/2022] [Accepted: 04/29/2022] [Indexed: 10/18/2022]
Abstract
Proteins that bind to each mRNA may affect the latter's abundance and location in the cell and how well ribosomes will translate that mRNA into a protein. Hence, mRNA-binding proteins (mRBPs) represent obvious control points in gene expression. Surprisingly, little is known about mRBPs and cell-cycle progression.
Collapse
Affiliation(s)
- Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
61
|
Sato M, Irie K, Suda Y, Mizuno T, Irie K. The RNA-binding protein Puf5 and the HMGB protein Ixr1 contribute to cell cycle progression through the regulation of cell cycle-specific expression of CLB1 in Saccharomyces cerevisiae. PLoS Genet 2022; 18:e1010340. [PMID: 35905103 PMCID: PMC9365169 DOI: 10.1371/journal.pgen.1010340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/10/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Puf5, a Puf-family RNA-binding protein, binds to 3´ untranslated region of target mRNAs and negatively regulates their expression in Saccharomyces cerevisiae. The puf5Δ mutant shows pleiotropic phenotypes including a weakened cell wall, a temperature-sensitive growth, and a shorter lifespan. To further analyze a role of Puf5 in cell growth, we searched for a multicopy suppressor of the temperature-sensitive growth of the puf5Δ mutant in this study. We found that overexpression of CLB2 encoding B-type cyclin suppressed the temperature-sensitive growth of the puf5Δ mutant. The puf5Δ clb2Δ double mutant displayed a severe growth defect, suggesting that Puf5 positively regulates the expression of a redundant factor with Clb2 in cell cycle progression. We found that expression of CLB1 encoding a redundant B-type cyclin was decreased in the puf5Δ mutant, and that this decrease of the CLB1 expression contributed to the growth defect of the puf5Δ clb2Δ double mutant. Since Puf5 is a negative regulator of the gene expression, we hypothesized that Puf5 negatively regulates the expression of a factor that represses CLB1 expression. We found such a repressor, Ixr1, which is an HMGB (High Mobility Group box B) protein. Deletion of IXR1 restored the decreased expression of CLB1 caused by the puf5Δ mutation and suppressed the growth defect of the puf5Δ clb2Δ double mutant. The expression of IXR1 was negatively regulated by Puf5 in an IXR1 3´ UTR-dependent manner. Our results suggest that IXR1 mRNA is a physiologically important target of Puf5, and that Puf5 and Ixr1 contribute to the cell cycle progression through the regulation of the cell cycle-specific expression of CLB1.
Collapse
Affiliation(s)
- Megumi Sato
- Colledge of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kaoru Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Tomoaki Mizuno
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenji Irie
- Colledge of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
62
|
Onea G, Maitland MER, Wang X, Lajoie GA, Schild-Poulter C. Distinct assemblies and interactomes of the nuclear and cytoplasmic mammalian CTLH E3 ligase complex. J Cell Sci 2022; 135:276121. [PMID: 35833506 DOI: 10.1242/jcs.259638] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The C-terminal to LisH (CTLH) complex is a newly discovered multi-subunit E3 ubiquitin ligase whose cellular functions are poorly characterized. While some CTLH subunits have been found to localize in both the nucleus and cytoplasm of mammalian cells, differences between the compartment-specific complexes have not been explored. Here, we show that the CTLH complex forms different molecular weight complexes in nuclear and cytoplasmic fractions. Loss of WDR26 severely decreases nuclear CTLH complex subunit levels and impairs higher-order CTLH complex formation, revealing WDR26 as a critical determinant of CTLH complex nuclear stability. Through affinity purification coupled to mass spectrometry (AP-MS) of endogenous CTLH complex member RanBPM from nuclear and cytoplasmic fractions, we identified over 170 compartment-specific interactors involved in various conserved biological processes such as ribonucleoprotein biogenesis and chromatin assembly. We validated the nuclear-specific RanBPM interaction with macroH2A1 and the cytoplasmic-specific interaction with Tankyrase-1/2. Overall, this study provides critical insights into CTLH complex function and composition in both the cytoplasm and nucleus.
Collapse
Affiliation(s)
- Gabriel Onea
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada
| | - Matthew E R Maitland
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada.,Don Rix Protein Identification Facility, University of Western Ontario, London, Ontario, N6G 2V4, Canada
| | - Xu Wang
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada.,Don Rix Protein Identification Facility, University of Western Ontario, London, Ontario, N6G 2V4, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute, University of Western Ontario, London, Ontario, N6A 5B7, Canada.,Department of Biochemistry, University of Western Ontario, London, Ontario, ON N6G 2V4, Canada
| |
Collapse
|
63
|
Crawford RA, Ashe MP, Hubbard SJ, Pavitt GD. Cytosolic aspartate aminotransferase moonlights as a ribosome-binding modulator of Gcn2 activity during oxidative stress. eLife 2022; 11:73466. [PMID: 35621265 PMCID: PMC9191892 DOI: 10.7554/elife.73466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of translation is a fundamental facet of the cellular response to rapidly changing external conditions. Specific RNA-binding proteins (RBPs) co-ordinate the translational regulation of distinct mRNA cohorts during stress. To identify RBPs with previously under-appreciated roles in translational control, we used polysome profiling and mass spectrometry to identify and quantify proteins associated with translating ribosomes in unstressed yeast cells and during oxidative stress and amino acid starvation, which both induce the integrated stress response (ISR). Over 800 proteins were identified across polysome gradient fractions, including ribosomal proteins, translation factors, and many others without previously described translation-related roles, including numerous metabolic enzymes. We identified variations in patterns of PE in both unstressed and stressed cells and identified proteins enriched in heavy polysomes during stress. Genetic screening of polysome-enriched RBPs identified the cytosolic aspartate aminotransferase, Aat2, as a ribosome-associated protein whose deletion conferred growth sensitivity to oxidative stress. Loss of Aat2 caused aberrantly high activation of the ISR via enhanced eIF2α phosphorylation and GCN4 activation. Importantly, non-catalytic AAT2 mutants retained polysome association and did not show heightened stress sensitivity. Aat2 therefore has a separate ribosome-associated translational regulatory or 'moonlighting' function that modulates the ISR independent of its aspartate aminotransferase activity.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Simon J Hubbard
- Division of Evolution, Infection and Genomics, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
64
|
PRIP: A Protein-RNA Interface Predictor Based on Semantics of Sequences. Life (Basel) 2022; 12:life12020307. [PMID: 35207594 PMCID: PMC8879494 DOI: 10.3390/life12020307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
RNA–protein interactions play an indispensable role in many biological processes. Growing evidence has indicated that aberration of the RNA–protein interaction is associated with many serious human diseases. The precise and quick detection of RNA–protein interactions is crucial to finding new functions and to uncovering the mechanism of interactions. Although many methods have been presented to recognize RNA-binding sites, there is much room left for the improvement of predictive accuracy. We present a sequence semantics-based method (called PRIP) for predicting RNA-binding interfaces. The PRIP extracted semantic embedding by pre-training the Word2vec with the corpus. Extreme gradient boosting was employed to train a classifier. The PRIP obtained a SN of 0.73 over the five-fold cross validation and a SN of 0.67 over the independent test, outperforming the state-of-the-art methods. Compared with other methods, this PRIP learned the hidden relations between words in the context. The analysis of the semantics relationship implied that the semantics of some words were specific to RNA-binding interfaces. This method is helpful to explore the mechanism of RNA–protein interactions from a semantics point of view.
Collapse
|
65
|
Simmons TR, Ellington AD, Contreras LM. RNP-Based Control Systems for Genetic Circuits in Synthetic Biology Beyond CRISPR. Methods Mol Biol 2022; 2518:1-31. [PMID: 35666436 DOI: 10.1007/978-1-0716-2421-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ribonucleoproteins (RNPs) are RNA-protein complexes utilized natively in both prokaryotes and eukaryotes to regulate essential processes within the cell. Over the past few years, many of these native systems have been adapted to provide control over custom genetic targets. Engineered RNP-based control systems allow for fine-tune regulation of desired targets, by providing customizable nucleotide-nucleotide interactions. However, as there have been several engineered RNP systems developed recently, identifying an optimal system for various bioprocesses is challenging. Here, we review the most successful engineered RNP systems and their applications to survey the current state of the field. Additionally, we provide selection criteria to provide users a streamlined method for identifying an RNP control system most useful to their own work. Lastly, we discuss future applications of RNP control systems and how they can be utilized to address the current grand challenges of the synthetic biology community.
Collapse
Affiliation(s)
- Trevor R Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
66
|
Forman-Kay JD, Ditlev JA, Nosella ML, Lee HO. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates? RNA (NEW YORK, N.Y.) 2022; 28:36-47. [PMID: 34772786 PMCID: PMC8675286 DOI: 10.1261/rna.079026.121] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Exciting recent work has highlighted that numerous cellular compartments lack encapsulating lipid bilayers (often called "membraneless organelles"), and that their structure and function are central to the regulation of key biological processes, including transcription, RNA splicing, translation, and more. These structures have been described as "biomolecular condensates" to underscore that biomolecules can be significantly concentrated in them. Many condensates, including RNA granules and processing bodies, are enriched in proteins and nucleic acids. Biomolecular condensates exhibit a range of material states from liquid- to gel-like, with the physical process of liquid-liquid phase separation implicated in driving or contributing to their formation. To date, in vitro studies of phase separation have provided mechanistic insights into the formation and function of condensates. However, the link between the often micron-sized in vitro condensates with nanometer-sized cellular correlates has not been well established. Consequently, questions have arisen as to whether cellular structures below the optical resolution limit can be considered biomolecular condensates. Similarly, the distinction between condensates and discrete dynamic hub complexes is debated. Here we discuss the key features that define biomolecular condensates to help understand behaviors of structures containing and generating RNA.
Collapse
Affiliation(s)
- Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonathon A Ditlev
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
67
|
Ma Y, Wang X, Luo W, Xiao J, Song X, Wang Y, Shuai H, Ren Z, Wang Y. Roles of Emerging RNA-Binding Activity of cGAS in Innate Antiviral Response. Front Immunol 2021; 12:741599. [PMID: 34899698 PMCID: PMC8660693 DOI: 10.3389/fimmu.2021.741599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
cGAS, a DNA sensor in mammalian cells, catalyzes the generation of 2'-3'-cyclic AMP-GMP (cGAMP) once activated by the binding of free DNA. cGAMP can bind to STING, activating downstream TBK1-IRF-3 signaling to initiate the expression of type I interferons. Although cGAS has been considered a traditional DNA-binding protein, several lines of evidence suggest that cGAS is a potential RNA-binding protein (RBP), which is mainly supported by its interactions with RNAs, RBP partners, RNA/cGAS-phase-separations as well as its structural similarity with the dsRNA recognition receptor 2'-5' oligoadenylate synthase. Moreover, two influential studies reported that the cGAS-like receptors (cGLRs) of fly Drosophila melanogaster sense RNA and control 3'-2'-cGAMP signaling. In this review, we summarize and discuss in depth recent studies that identified or implied cGAS as an RBP. We also comprehensively summarized current experimental methods and computational tools that can identify or predict RNAs that bind to cGAS. Based on these discussions, we appeal that the RNA-binding activity of cGAS cannot be ignored in the cGAS-mediated innate antiviral response. It will be important to identify RNAs that can bind and regulate the activity of cGAS in cells with or without virus infection. Our review provides novel insight into the regulation of cGAS by its RNA-binding activity and extends beyond its DNA-binding activity. Our review would be significant for understanding the precise modulation of cGAS activity, providing the foundation for the future development of drugs against cGAS-triggering autoimmune diseases such as Aicardi-Gourtières syndrome.
Collapse
Affiliation(s)
- Yuying Ma
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Xiaohui Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Weisheng Luo
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Ji Xiao
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Hanlin Shuai
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Virology of Guangdong Province, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
68
|
Beaudoin J, Normant V, Brault A, Henry DJ, Bachand F, Massé É, Chua G, Labbé S. Fission yeast RNA-binding proteins Puf2 and Puf4 are involved in repression of ferrireductase Frp1 expression in response to iron. Mol Microbiol 2021; 116:1361-1377. [PMID: 34614242 DOI: 10.1111/mmi.14829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 11/30/2022]
Abstract
This study identifies a post-transcriptional mechanism of iron uptake regulation by Puf2 and Puf4 of the Pumilio and FBF (Puf) family of RNA-binding proteins in Schizosaccharomyces pombe. Cells expressing Puf2 and Puf4 stimulate decay of the frp1+ mRNA encoding a key enzyme of the reductive iron uptake pathway. Results consistently showed that frp1+ mRNA is stabilized in puf2Δ puf4Δ mutant cells under iron-replete conditions. As a result, puf2Δ puf4Δ cells exhibit an increased sensitivity to iron accompanied by enhanced ferrireductase activity. A pool of GFP-frp1+ 3'UTR RNAs was generated using a reporter gene containing the 3' untranslated region (UTR) of frp1+ that was under the control of a regulatable promoter. Results showed that Puf2 and Puf4 accelerate the destabilization of mRNAs containing the frp1+ 3'UTR which harbors two Pumilio response elements (PREs). Binding studies revealed that the PUM-homology RNA-binding domain of Puf2 and Puf4 expressed in Escherichia coli specifically interacts with PREs in the frp1+ 3'UTR. Using RNA immunoprecipitation in combination with reverse transcription qPCR assays, results showed that Puf2 and Puf4 interact preferentially with frp1+ mRNA under basal and iron-replete conditions, thereby contributing to inhibit Frp1 production and protecting cells against toxic levels of iron.
Collapse
Affiliation(s)
- Jude Beaudoin
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vincent Normant
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Darren J Henry
- Biological Sciences, Integrative Cell Biology, University of Calgary, Calgary, Alberta, Canada
| | - François Bachand
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Éric Massé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gordon Chua
- Biological Sciences, Integrative Cell Biology, University of Calgary, Calgary, Alberta, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
69
|
Liu W, Zhao Y, Liu X, Zhang X, Ding J, Li Y, Tian Y, Wang H, Liu W, Lu Z. A Novel Meiosis-Related lncRNA, Rbakdn, Contributes to Spermatogenesis by Stabilizing Ptbp2. Front Genet 2021; 12:752495. [PMID: 34707642 PMCID: PMC8542969 DOI: 10.3389/fgene.2021.752495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Spermatocyte meiosis is the cornerstone of mammalian production. Thousands of long noncoding RNAs (lncRNAs) have been reported to be functional in various cellular processes, but the function of lncRNAs in meiosis remains largely unknown. Here, we profiled lncRNAs in spermatocytes at stage I of meiosis and identified a testis-specific lncRNA, Rbakdn, as a vital regulator of meiosis. Rbakdn is dynamically expressed during meiosis I, and Rbakdn knockdown inhibits meiosis in vitro. Furthermore, Rbakdn knockdown in testes in mice by intratesticular injection disturbs meiosis, reduces testicular volume, and increases apoptosis of spermatocytes, resulting in vacuolation of the seminiferous tubules. Rbakdn can bind to Ptbp2, an RNA-binding protein that is important in the regulation of the alternative splicing of many genes in spermatogenesis. Rbakdn knockdown leads to a decrease in Ptbp2 through the ubiquitination degradation pathway, indicating that Rbakdn maintains the stability of Ptbp2. In conclusion, our study identified an lncRNA, Rbakdn, with a crucial role in meiosis.
Collapse
Affiliation(s)
- Wensheng Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yinan Zhao
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xiaohua Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Xiaoya Zhang
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Jiancheng Ding
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yang Li
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yingpu Tian
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Zhongxian Lu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
70
|
Kershaw CJ, Nelson MG, Lui J, Bates CP, Jennings MD, Hubbard SJ, Ashe MP, Grant CM. Integrated multi-omics reveals common properties underlying stress granule and P-body formation. RNA Biol 2021; 18:655-673. [PMID: 34672913 PMCID: PMC8782181 DOI: 10.1080/15476286.2021.1976986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Non-membrane-bound compartments such as P-bodies (PBs) and stress granules (SGs) play important roles in the regulation of gene expression following environmental stresses. We have systematically and quantitatively determined the protein and mRNA composition of PBs and SGs formed before and after nutrient stress. We find that high molecular weight (HMW) complexes exist prior to glucose depletion that we propose may act as seeds for further condensation of proteins forming mature PBs and SGs. We identify an enrichment of proteins with low complexity and RNA binding domains, as well as long, structured mRNAs that are poorly translated following nutrient stress. Many proteins and mRNAs are shared between PBs and SGs including several multivalent RNA binding proteins that promote condensate interactions during liquid-liquid phase separation. We uncover numerous common protein and RNA components across PBs and SGs that support a complex interaction profile during the maturation of these biological condensates. These interaction networks represent a tuneable response to stress, highlighting previously unrecognized condensate heterogeneity. These studies therefore provide an integrated and quantitative understanding of the dynamic nature of key biological condensates.
Collapse
Affiliation(s)
- Christopher J Kershaw
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Michael G Nelson
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Jennifer Lui
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Christian P Bates
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Martin D Jennings
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Simon J Hubbard
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Mark P Ashe
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| | - Chris M Grant
- University of Manchester School of Biological Science, The University of Manchester Faculty of Biology Medicine and Health, Manchester, UK
| |
Collapse
|
71
|
Savinov A, Brandsen BM, Angell BE, Cuperus JT, Fields S. Effects of sequence motifs in the yeast 3' untranslated region determined from massively parallel assays of random sequences. Genome Biol 2021; 22:293. [PMID: 34663436 PMCID: PMC8522215 DOI: 10.1186/s13059-021-02509-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/30/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The 3' untranslated region (UTR) plays critical roles in determining the level of gene expression through effects on activities such as mRNA stability and translation. Functional elements within this region have largely been identified through analyses of native genes, which contain multiple co-evolved sequence features. RESULTS To explore the effects of 3' UTR sequence elements outside of native sequence contexts, we analyze hundreds of thousands of random 50-mers inserted into the 3' UTR of a reporter gene in the yeast Saccharomyces cerevisiae. We determine relative protein expression levels from the fitness of transformants in a growth selection. We find that the consensus 3' UTR efficiency element significantly boosts expression, independent of sequence context; on the other hand, the consensus positioning element has only a small effect on expression. Some sequence motifs that are binding sites for Puf proteins substantially increase expression in the library, despite these proteins generally being associated with post-transcriptional downregulation of native mRNAs. Our measurements also allow a systematic examination of the effects of point mutations within efficiency element motifs across diverse sequence backgrounds. These mutational scans reveal the relative in vivo importance of individual bases in the efficiency element, which likely reflects their roles in binding the Hrp1 protein involved in cleavage and polyadenylation. CONCLUSIONS The regulatory effects of some 3' UTR sequence features, like the efficiency element, are consistent regardless of sequence context. In contrast, the consequences of other 3' UTR features appear to be strongly dependent on their evolved context within native genes.
Collapse
Affiliation(s)
- Andrew Savinov
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
- Present address: Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Benjamin M Brandsen
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
- Department of Chemistry and Biochemistry, Creighton University, Omaha, NE, 68178, USA
| | - Brooke E Angell
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA
- Present address: Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA.
| | - Stanley Fields
- Department of Genome Sciences, University of Washington, Box 355065, Seattle, WA, 98195, USA.
- Department of Medicine, University of Washington, Box 357720, Seattle, WA, 98195, USA.
| |
Collapse
|
72
|
Divulging the Critical Role of HuR in Pancreatic Cancer as a Therapeutic Target and a Means to Overcome Chemoresistance. Cancers (Basel) 2021; 13:cancers13184634. [PMID: 34572861 PMCID: PMC8471481 DOI: 10.3390/cancers13184634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary With pancreatic cancer incidence constantly rising, constituting one of the most lethal type of cancers worldwide, the need for discovering novel therapeutic targets and approaches becomes of the utmost importance. Meanwhile, modern eating habits, hyperadiposity, mutational burden affecting core signaling pathways and the unique tumor microenvironment of pancreatic cancer tissues intermingle and form a disease that is lethal and hard to treat. The importance of HuR in pancreatic cancer has repeatedly been observed and represents a key molecule in pancreatic carcinogenesis and chemoresistance. Therefore, creating and obtaining new therapeutic skills against HuR protein could prove to be the answer to pancreatic cancer therapy. Abstract Pancreatic cancer is set to become the most lethal and common type of cancer worldwide. This is partly attributed to the mutational burden that affects core signaling pathways and the crosstalk of tumor cells with their surrounding microenvironment, but it is also due to modern eating habits. Hyperadiposity along with the constant rise in metabolic syndrome’s incidence contribute to a state of metaflammation that impacts immune cells and causes them to shift towards an immunosuppressive phenotype that, ultimately, allows tumor cells to evade immune control. Unfortunately, among the conventional therapeutic modalities and the novel therapeutic agents introduced, pancreatic cancer still holds one of the lowest response rates to therapy. Human antigen R (HuR), an RNA binding protein (RBP), has been repeatedly found to be implicated in pancreatic carcinogenesis and chemotherapy resistance through the posttranscriptional binding and regulation of mRNA target genes. Additionally, its overexpression has been linked to adverse clinical outcomes, in terms of tumor grade, stage, lymph node status and metastasis. These properties suggest the prospective role that HuR’s therapeutic targeting can play in facilitating pancreatic neoplasia and could provide the means to overcome chemoresistance.
Collapse
|
73
|
Seeking a Role for Translational Control by Alternative Polyadenylation in Saccharomyces cerevisiae. Microorganisms 2021; 9:microorganisms9091885. [PMID: 34576779 PMCID: PMC8464734 DOI: 10.3390/microorganisms9091885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative polyadenylation (APA) represents an important mechanism for regulating isoform-specific translation efficiency, stability, and localisation. Though some progress has been made in understanding its consequences in metazoans, the role of APA in the model organism Saccharomyces cerevisiae remains a relative mystery because, despite abundant studies on the translational state of mRNA, none differentiate mRNA isoforms’ alternative 3′-end. This review discusses the implications of alternative polyadenylation in S. cerevisiae using other organisms to draw inferences. Given the foundational role that research in this yeast has played in the discovery of the mechanisms of cleavage and polyadenylation and in the drivers of APA, it is surprising that such an inference is required. However, because advances in ribosome profiling are insensitive to APA, how it impacts translation is still unclear. To bridge the gap between widespread observed APA and the discovery of any functional consequence, we also provide a review of the experimental techniques used to uncover the functional importance of 3′ UTR isoforms on translation.
Collapse
|
74
|
Novačić A, Šupljika N, Bekavac N, Žunar B, Stuparević I. Interplay of the RNA Exosome Complex and RNA-Binding Protein Ssd1 in Maintaining Cell Wall Stability in Yeast. Microbiol Spectr 2021; 9:e0029521. [PMID: 34259554 PMCID: PMC8552689 DOI: 10.1128/spectrum.00295-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 11/20/2022] Open
Abstract
Yeast cell wall stability is important for cell division and survival under stress conditions. The expression of cell-wall-related proteins is regulated by several pathways involving RNA-binding proteins and RNases. The multiprotein RNA exosome complex provides the 3'→5' exoribonuclease activity that is critical for maintaining the stability and integrity of the yeast cell wall under stress conditions such as high temperatures. In this work, we show that the temperature sensitivity of RNA exosome mutants is most pronounced in the W303 genetic background due to the nonfunctional ssd1-d allele. This gene encodes the RNA-binding protein Ssd1, which is involved in the posttranscriptional regulation of cell-wall-related genes. Expression of the functional SSD1-V allele from its native genomic locus or from a centromeric plasmid suppresses the growth defects and aberrant morphology of RNA exosome mutant cells at high temperatures or upon treatment with cell wall stressors. Moreover, combined inactivation of the RNA exosome catalytic subunit Rrp6 and Ssd1 results in a synthetically sick phenotype of cell wall instability, as these proteins may function in parallel pathways (i.e., via different mRNA targets) to maintain cell wall stability. IMPORTANCE Stressful conditions such as high temperatures can compromise cellular integrity and cause bursting. In microorganisms surrounded by a cell wall, such as yeast, the cell wall is the primary shield that protects cells from environmental stress. Therefore, remodeling its structure requires inputs from multiple signaling pathways and regulators. In this work, we identify the interplay of the RNA exosome complex and the RNA-binding protein Ssd1 as an important factor in the yeast cell wall stress response. These proteins operate in independent pathways to support yeast cell wall stability. This work highlights the contribution of RNA-binding proteins in the regulation of yeast cell wall structure, providing new insights into yeast physiology.
Collapse
Affiliation(s)
- Ana Novačić
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Nada Šupljika
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Nikša Bekavac
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Bojan Žunar
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Igor Stuparević
- Laboratory of Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
75
|
Khonsari B, Klassen R, Schaffrath R. Role of SSD1 in Phenotypic Variation of Saccharomyces cerevisiae Strains Lacking DEG1-Dependent Pseudouridylation. Int J Mol Sci 2021; 22:ijms22168753. [PMID: 34445460 PMCID: PMC8396022 DOI: 10.3390/ijms22168753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Yeast phenotypes associated with the lack of wobble uridine (U34) modifications in tRNA were shown to be modulated by an allelic variation of SSD1, a gene encoding an mRNA-binding protein. We demonstrate that phenotypes caused by the loss of Deg1-dependent tRNA pseudouridylation are similarly affected by SSD1 allelic status. Temperature sensitivity and protein aggregation are elevated in deg1 mutants and further increased in the presence of the ssd1-d allele, which encodes a truncated form of Ssd1. In addition, chronological lifespan is reduced in a deg1 ssd1-d mutant, and the negative genetic interactions of the U34 modifier genes ELP3 and URM1 with DEG1 are aggravated by ssd1-d. A loss of function mutation in SSD1, ELP3, and DEG1 induces pleiotropic and overlapping phenotypes, including sensitivity against target of rapamycin (TOR) inhibitor drug and cell wall stress by calcofluor white. Additivity in ssd1 deg1 double mutant phenotypes suggests independent roles of Ssd1 and tRNA modifications in TOR signaling and cell wall integrity. However, other tRNA modification defects cause growth and drug sensitivity phenotypes, which are not further intensified in tandem with ssd1-d. Thus, we observed a modification-specific rather than general effect of SSD1 status on phenotypic variation in tRNA modification mutants. Our results highlight how the cellular consequences of tRNA modification loss can be influenced by protein targeting specific mRNAs.
Collapse
|
76
|
Bayne RA, Jayachandran U, Kasprowicz A, Bresson S, Tollervey D, Wallace EWJ, Cook A. Yeast Ssd1 is a non-enzymatic member of the RNase II family with an alternative RNA recognition site. Nucleic Acids Res 2021; 50:2923-2937. [PMID: 34302485 PMCID: PMC8934651 DOI: 10.1093/nar/gkab615] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/07/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
Ssd1, a conserved fungal RNA-binding protein, is important in stress responses, cell division and virulence. Ssd1 is closely related to Dis3L2 of the RNase II family of nucleases, but lacks catalytic activity and likely suppresses translation of bound mRNAs. Previous studies identified RNA motifs enriched in Ssd1-associated transcripts, yet the sequence requirements for Ssd1 binding are not defined. Here, we identify precise binding sites of Ssd1 on RNA using in vivo cross-linking and cDNA analysis. These sites are enriched in 5' untranslated regions of a subset of mRNAs encoding cell wall proteins. We identified a conserved bipartite motif that binds Ssd1 with high affinity in vitro. Active RNase II enzymes have a characteristic, internal RNA binding path; the Ssd1 crystal structure at 1.9 Å resolution shows that remnants of regulatory sequences block this path. Instead, RNA binding activity has relocated to a conserved patch on the surface of the protein. Structure-guided mutations of this surface prevent Ssd1 from binding RNA in vitro and phenocopy Ssd1 deletion in vivo. These studies provide a new framework for understanding the function of a pleiotropic post-transcriptional regulator of gene expression and give insights into the evolution of regulatory and binding elements in the RNase II family.
Collapse
Affiliation(s)
- Rosemary A Bayne
- Institute of Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Uma Jayachandran
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Aleksandra Kasprowicz
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Stefan Bresson
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Edward W J Wallace
- Correspondence may also be addressed to Edward W.J. Wallace. Tel: +44 131 6513348; Fax: +44 131 6505379;
| | - Atlanta G Cook
- To whom correspondence should be addressed. Tel: +44 131 6504995; Fax: +44 131 6505379;
| |
Collapse
|
77
|
Yu H, Shen ZA, Zhou YK, Du PF. Recent advances in predicting protein-lncRNA interactions using machine learning methods. Curr Gene Ther 2021; 22:228-244. [PMID: 34254917 DOI: 10.2174/1566523221666210712190718] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/01/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
Long non-coding RNAs (LncRNAs) are a type of RNA with little or no protein-coding ability. Their length is more than 200 nucleotides. A large number of studies have indicated that lncRNAs play a significant role in various biological processes, including chromatin organizations, epigenetic programmings, transcriptional regulations, post-transcriptional processing, and circadian mechanism at the cellular level. Since lncRNAs perform vast functions through their interactions with proteins, identifying lncRNA-protein interaction is crucial to the understandings of the lncRNA molecular functions. However, due to the high cost and time-consuming disadvantage of experimental methods, a variety of computational methods have emerged. Recently, many effective and novel machine learning methods have been developed. In general, these methods fall into two categories: semi-supervised learning methods and supervised learning methods. The latter category can be further classified into the deep learning-based method, the ensemble learning-based method, and the hybrid method. In this paper, we focused on supervised learning methods. We summarized the state-of-the-art methods in predicting lncRNA-protein interactions. Furthermore, the performance and the characteristics of different methods have also been compared in this work. Considering the limits of the existing models, we analyzed the problems and discussed future research potentials.
Collapse
Affiliation(s)
- Han Yu
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Zi-Ang Shen
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Yuan-Ke Zhou
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Pu-Feng Du
- College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| |
Collapse
|
78
|
Goutas D, Pergaris A, Giaginis C, Theocharis S. HuR as Therapeutic Target in Cancer: What the Future Holds. Curr Med Chem 2021; 29:56-65. [PMID: 34182901 DOI: 10.2174/0929867328666210628143430] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/22/2022]
Abstract
ELAV-like protein 1, or HuR (human antigen R), is an RNA-binding protein encoded by the ELAVL1 gene in humans. One of its best functions is to stabilize mRNAs in order to regulate gene expression. HuR protein overexpression has undoubtedly been linked to an increased risk of tumor growth, progression, and metastasis, rendering it a potential therapeutic target candidate in cancer. Novel agents interfering with HuR expression have been tested, both in vitro and in vivo, with promising results. The aim of this paper is to review the existing literature regarding the potential agents that could actively act on and inhibit HuR expression. HuR molecule controls the expression of various proto-oncogenes, cytokines and growth factors, representing a major player in tumor progression, invasion, and metastasis and constituting an emerging target for cancer therapy. PubMed database was thoroughly searched, and all published articles providing scientific data on molecules that can exhibit antitumorigenic effects via HuR inhibition were included. According to these data, HuR inhibition should be a promising target in cancer therapeutics.
Collapse
Affiliation(s)
- Dimitrios Goutas
- First Department of Pathology, The National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Alexandros Pergaris
- First Department of Pathology, The National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | | | - Stamatios Theocharis
- First Department of Pathology, The National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
79
|
Matia-González AM, Jabre I, Laing EE, Gerber AP. Oxidative stress induces coordinated remodeling of RNA-enzyme interactions. iScience 2021; 24:102753. [PMID: 34278261 PMCID: PMC8261671 DOI: 10.1016/j.isci.2021.102753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022] Open
Abstract
RNA-binding proteins (RBPs) are key post-transcriptional regulators that play a substantial role during stress adaptation. Recent proteome-wide surveys have uncovered a large number of new and “unconventional” RBPs such as metabolic enzymes, yet little is known about the reconfiguration of the RNA-binding proteome (RBPome) and RNA-enzyme interactions in response to cellular stress. Here, we applied RNA-interactome capture to monitor the dynamics of the mRBPome upon mild oxidative stress in the yeast Saccharomyces cerevisiae. Among the 257 proteins that significantly changed RNA associations, we observed the coordinated remodeling of RNA-binding enzymes — particularly of the central carbon metabolism — that complemented known metabolic responses. Furthermore, we recognized the propensity for paralogous specific alterations of enzyme-RNA interactions. Our results suggest coordinated cross talk between RNA-enzyme interactions and intermediary metabolism to maintain the physiological and molecular balance upon oxidative stress, perhaps through specialization of paralogous during evolution. Oxidative stress induces the rearrangement of 257 proteins on polyadenylated RNAs Coordinated response of RNA-enzyme interactions and metabolism Yeast RNA-binding enzymes are paralog specific Integration of three different mass spectrometry analysis tools
Collapse
Affiliation(s)
- Ana M Matia-González
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.,Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, Granada 18071, Spain
| | - Ibtissam Jabre
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Emma E Laing
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
80
|
Tuong Vi DT, Fujii S, Valderrama AL, Ito A, Matsuura E, Nishihata A, Irie K, Suda Y, Mizuno T, Irie K. Pbp1, the yeast ortholog of human Ataxin-2, functions in the cell growth on non-fermentable carbon sources. PLoS One 2021; 16:e0251456. [PMID: 33984024 PMCID: PMC8118320 DOI: 10.1371/journal.pone.0251456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 12/05/2022] Open
Abstract
Pbp1, the yeast ortholog of human Ataxin-2, was originally isolated as a poly(A) binding protein (Pab1)-binding protein. Pbp1 regulates the Pan2-Pan3 deadenylase complex, thereby modulating the mRNA stability and translation efficiency. However, the physiological significance of Pbp1 remains unclear since a yeast strain harboring PBP1 deletion grows similarly to wild-type strain on normal glucose-containing medium. In this study, we found that Pbp1 has a role in cell growth on the medium containing non-fermentable carbon sources. While the pbp1Δ mutant showed a similar growth compared to the wild-type cell on a normal glucose-containing medium, the pbp1Δ mutant showed a slower growth on the medium containing glycerol and lactate. Microarray analyses revealed that expressions of the genes involved in gluconeogenesis, such as PCK1 and FBP1, and of the genes involved in mitochondrial function, such as COX10 and COX11, were decreased in the pbp1Δ mutant. Pbp1 regulated the expressions of PCK1 and FBP1 via their promoters, while the expressions of COX10 and COX11 were regulated by Pbp1, not through their promoters. The decreased expressions of COX10 and COX11 in the pbp1Δ mutant were recovered by the loss of Dcp1 decapping enzyme or Xrn1 5’-3’exonuclease. Our results suggest that Pbp1 regulates the expressions of the genes involved in gluconeogenesis and mitochondrial function through multiple mechanisms.
Collapse
Affiliation(s)
- Dang Thi Tuong Vi
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shiori Fujii
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Arvin Lapiz Valderrama
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Ayaka Ito
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eri Matsuura
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ayaka Nishihata
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kaoru Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Tomoaki Mizuno
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenji Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
81
|
Ballou ER, Cook AG, Wallace EWJ. Repeated Evolution of Inactive Pseudonucleases in a Fungal Branch of the Dis3/RNase II Family of Nucleases. Mol Biol Evol 2021; 38:1837-1846. [PMID: 33313834 PMCID: PMC8097288 DOI: 10.1093/molbev/msaa324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The RNase II family of 3'-5' exoribonucleases is present in all domains of life, and eukaryotic family members Dis3 and Dis3L2 play essential roles in RNA degradation. Ascomycete yeasts contain both Dis3 and inactive RNase II-like "pseudonucleases." The latter function as RNA-binding proteins that affect cell growth, cytokinesis, and fungal pathogenicity. However, the evolutionary origins of these pseudonucleases are unknown: What sequence of events led to their novel function, and when did these events occur? Here, we show how RNase II pseudonuclease homologs, including Saccharomyces cerevisiae Ssd1, are descended from active Dis3L2 enzymes. During fungal evolution, active site mutations in Dis3L2 homologs have arisen at least four times, in some cases following gene duplication. In contrast, N-terminal cold-shock domains and regulatory features are conserved across diverse dikarya and mucoromycota, suggesting that the nonnuclease function requires these regions. In the basidiomycete pathogenic yeast Cryptococcus neoformans, the single Ssd1/Dis3L2 homolog is required for cytokinesis from polyploid "titan" growth stages. This phenotype of C. neoformans Ssd1/Dis3L2 deletion is consistent with those of inactive fungal pseudonucleases, yet the protein retains an active site sequence signature. We propose that a nuclease-independent function for Dis3L2 arose in an ancestral hyphae-forming fungus. This second function has been conserved across hundreds of millions of years, whereas the RNase activity was lost repeatedly in independent lineages.
Collapse
Affiliation(s)
- Elizabeth R Ballou
- Institute for Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Edward W J Wallace
- Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
82
|
Nair RR, Zabezhinsky D, Gelin-Licht R, Haas BJ, Dyhr MC, Sperber HS, Nusbaum C, Gerst JE. Multiplexed mRNA assembly into ribonucleoprotein particles plays an operon-like role in the control of yeast cell physiology. eLife 2021; 10:66050. [PMID: 33942720 PMCID: PMC8137142 DOI: 10.7554/elife.66050] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/02/2021] [Indexed: 02/02/2023] Open
Abstract
Prokaryotes utilize polycistronic messages (operons) to co-translate proteins involved in the same biological processes. Whether eukaryotes achieve similar regulation by selectively assembling and translating monocistronic messages derived from different chromosomes is unknown. We employed transcript-specific RNA pulldowns and RNA-seq/RT-PCR to identify yeast mRNAs that co-precipitate as ribonucleoprotein (RNP) complexes. Consistent with the hypothesis of eukaryotic RNA operons, mRNAs encoding components of the mating pathway, heat shock proteins, and mitochondrial outer membrane proteins multiplex in trans, forming discrete messenger ribonucleoprotein (mRNP) complexes (called transperons). Chromatin capture and allele tagging experiments reveal that genes encoding multiplexed mRNAs physically interact; thus, RNA assembly may result from co-regulated gene expression. Transperon assembly and function depends upon histone H4, and its depletion leads to defects in RNA multiplexing, decreased pheromone responsiveness and mating, and increased heat shock sensitivity. We propose that intergenic associations and non-canonical histone H4 functions contribute to transperon formation in eukaryotic cells and regulate cell physiology.
Collapse
Affiliation(s)
- Rohini R Nair
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dmitry Zabezhinsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rita Gelin-Licht
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Brian J Haas
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Michael Ca Dyhr
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Hannah S Sperber
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chad Nusbaum
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
83
|
Characterization of the RNA-Binding Protein TcSgn1 in Trypanosoma cruzi. Microorganisms 2021; 9:microorganisms9050986. [PMID: 34063193 PMCID: PMC8147501 DOI: 10.3390/microorganisms9050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
RNA-binding proteins (RBPs) participate in several steps of post-transcriptional regulation of gene expression, such as splicing, messenger RNA transport, mRNA localization, and translation. Gene-expression regulation in trypanosomatids occurs primarily at the post-transcriptional level, and RBPs play important roles in the process. Here, we characterized the RBP TcSgn1, which contains one RNA recognition motif (RRM). TcSgn1 is a close ortholog of yeast Saccharomyces cerevisiae protein ScSgn1, which plays a role in translational regulation in the cytoplasm. We found that TcSgn1 in Trypanosoma cruzi is localized in the nucleus in exponentially growing epimastigotes. By performing immunoprecipitation assays of TcSgn1, we identified hundreds of mRNAs associated with the protein, a significant fraction of them coding for nucleic acids binding, transcription, and endocytosis proteins. In addition, we show that TcSgn1 is capable of interacting directly with the poly(A) tail of the mRNAs. The study of parasites under nutritional stress showed that TcSgn1 was localized in cytoplasmic granules in addition to localizing in the nucleus. Similar to ScSgn1, we observed that TcSgn1 also interacts with the PABP1 protein, suggesting that this protein may play a role in regulating gene expression in T. cruzi. Taken together, our results show that RNA-binding protein TcSgn1 is part of ribonucleoprotein complexes associated with nuclear functions, stress response, and RNA metabolism.
Collapse
|
84
|
Zhao Q, Liu Q, Wang Q, Qin Y, Zhong Y, Gao L, Liu G, Qu Y. Disruption of the Trichoderma reesei gul1 gene stimulates hyphal branching and reduces broth viscosity in cellulase production. J Ind Microbiol Biotechnol 2021; 48:6132311. [PMID: 33693788 PMCID: PMC9113457 DOI: 10.1093/jimb/kuab012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/05/2021] [Indexed: 12/03/2022]
Abstract
Hyphal morphology is considered to have a close relationship with the production
level of secreted proteins by filamentous fungi. In this study, the
gul1 gene, which encodes a putative mRNA-binding protein,
was disrupted in cellulase-producing fungus Trichoderma reesei.
The hyphae of Δgul1 strain produced more lateral
branches than the parent strain. Under the condition for cellulase production,
disruption of gul1 resulted in smaller mycelial clumps and
significantly lower viscosity of fermentation broth. In addition, cellulase
production was improved by 22% relative to the parent strain.
Transcriptome analysis revealed that a set of genes encoding cell wall
remodeling enzymes as well as hydrophobins were differentially expressed in the
Δgul1 strain. The results suggest that the
regulatory role of gul1 in cell morphogenesis is likely
conserved in filamentous fungi. To our knowledge, this is the first report on
the engineering of gul1 in an industrially important
fungus.
Collapse
Affiliation(s)
- Qinqin Zhao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China
| | - Qin Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China
| | - Qi Wang
- National Glycoengineering Research Center, Shandong University, 27 Binhai Road, 266237 Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, Shandong University, 27 Binhai Road, 266237 Qingdao, China
| | - Yaohua Zhong
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China
| | - Liwei Gao
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China.,Tobacco Research Institute of Chinese Academy of Agricultural Sciences, 11 Keyuanjingsi Road, 266101 Qingdao, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China.,National Glycoengineering Research Center, Shandong University, 27 Binhai Road, 266237 Qingdao, China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, 266237 Qingdao, China.,National Glycoengineering Research Center, Shandong University, 27 Binhai Road, 266237 Qingdao, China
| |
Collapse
|
85
|
Herold I, Zolti A, Garduño-Rosales M, Wang Z, López-Giráldez F, Mouriño-Pérez RR, Townsend JP, Ulitsky I, Yarden O. The GUL-1 Protein Binds Multiple RNAs Involved in Cell Wall Remodeling and Affects the MAK-1 Pathway in Neurospora crassa. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:672696. [PMID: 37744127 PMCID: PMC10512220 DOI: 10.3389/ffunb.2021.672696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 09/26/2023]
Abstract
The Neurospora crassa GUL-1 is part of the COT-1 pathway, which plays key roles in regulating polar hyphal growth and cell wall remodeling. We show that GUL-1 is a bona fide RNA-binding protein (RBP) that can associate with 828 "core" mRNA species. When cell wall integrity (CWI) is challenged, expression of over 25% of genomic RNA species are modulated (2,628 mRNAs, including the GUL-1 mRNA). GUL-1 binds mRNAs of genes related to translation, cell wall remodeling, circadian clock, endoplasmic reticulum (ER), as well as CWI and MAPK pathway components. GUL-1 interacts with over 100 different proteins, including stress-granule and P-body proteins, ER components and components of the MAPK, COT-1, and STRIPAK complexes. Several additional RBPs were also shown to physically interact with GUL-1. Under stress conditions, GUL-1 can localize to the ER and affect the CWI pathway-evident via altered phosphorylation levels of MAK-1, interaction with mak-1 transcript, and involvement in the expression level of the transcription factor adv-1. We conclude that GUL-1 functions in multiple cellular processes, including the regulation of cell wall remodeling, via a mechanism associated with the MAK-1 pathway and stress-response.
Collapse
Affiliation(s)
- Inbal Herold
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Avihai Zolti
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marisela Garduño-Rosales
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Zheng Wang
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Francesc López-Giráldez
- Yale Center for Genome Analysis, Department of Genetics, Yale University, New Haven, CT, United States
| | - Rosa R. Mouriño-Pérez
- Departamento de Microbiología, CICESE (Centro de Investigación Científica y Educación Superior de Ensenada), Ensenada, Mexico
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale University, New Haven, CT, United States
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
86
|
Lautier O, Penzo A, Rouvière JO, Chevreux G, Collet L, Loïodice I, Taddei A, Devaux F, Collart MA, Palancade B. Co-translational assembly and localized translation of nucleoporins in nuclear pore complex biogenesis. Mol Cell 2021; 81:2417-2427.e5. [PMID: 33838103 DOI: 10.1016/j.molcel.2021.03.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 01/03/2023]
Abstract
mRNA translation is coupled to multiprotein complex assembly in the cytoplasm or to protein delivery into intracellular compartments. Here, by combining systematic RNA immunoprecipitation and single-molecule RNA imaging in yeast, we have provided a complete depiction of the co-translational events involved in the biogenesis of a large multiprotein assembly, the nuclear pore complex (NPC). We report that binary interactions between NPC subunits can be established during translation, in the cytoplasm. Strikingly, the nucleoporins Nup1/Nup2, together with a number of nuclear proteins, are instead translated at nuclear pores, through a mechanism involving interactions between their nascent N-termini and nuclear transport receptors. Uncoupling this co-translational recruitment further triggers the formation of cytoplasmic foci of unassembled polypeptides. Altogether, our data reveal that distinct, spatially segregated modes of co-translational interactions foster the ordered assembly of NPC subunits and that localized translation can ensure the proper delivery of proteins to the pore and the nucleus.
Collapse
Affiliation(s)
- Ophélie Lautier
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Arianna Penzo
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Jérôme O Rouvière
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Guillaume Chevreux
- ProteoSeine@IJM, Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Louis Collet
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| | - Isabelle Loïodice
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, UMR3664 Nuclear Dynamics, Paris, France
| | - Angela Taddei
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, UMR3664 Nuclear Dynamics, Paris, France
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de biologie Paris-Seine (IBPS), UMR 7238, Laboratoire de biologie computationnelle et quantitative, LCQB, 4 place Jussieu, 75005 Paris, France
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Benoit Palancade
- Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France.
| |
Collapse
|
87
|
Reynaud K, Brothers M, Ly M, Ingolia NT. Dynamic post-transcriptional regulation by Mrn1 links cell wall homeostasis to mitochondrial structure and function. PLoS Genet 2021; 17:e1009521. [PMID: 33857138 PMCID: PMC8079021 DOI: 10.1371/journal.pgen.1009521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/27/2021] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
The RNA-binding protein Mrn1 in Saccharomyces cerevisiae targets over 300 messenger RNAs, including many involved in cell wall biogenesis. The impact of Mrn1 on these target transcripts is not known, however, nor is the cellular role for this regulation. We have shown that Mrn1 represses target mRNAs through the action of its disordered, asparagine-rich amino-terminus. Its endogenous targets include the paralogous SUN domain proteins Nca3 and Uth1, which affect mitochondrial and cell wall structure and function. While loss of MRN1 has no effect on fermentative growth, we found that mrn1Δ yeast adapt more quickly to respiratory conditions. These cells also have enlarged mitochondria in fermentative conditions, mediated in part by dysregulation of NCA3, and this may explain their faster switch to respiration. Our analyses indicated that Mrn1 acts as a hub for integrating cell wall integrity and mitochondrial biosynthesis in a carbon-source responsive manner.
Collapse
Affiliation(s)
- Kendra Reynaud
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
| | - Molly Brothers
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Nicholas T. Ingolia
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
88
|
Ho JJD, Man JHS, Schatz JH, Marsden PA. Translational remodeling by RNA-binding proteins and noncoding RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1647. [PMID: 33694288 DOI: 10.1002/wrna.1647] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Responsible for generating the proteome that controls phenotype, translation is the ultimate convergence point for myriad upstream signals that influence gene expression. System-wide adaptive translational reprogramming has recently emerged as a pillar of cellular adaptation. As classic regulators of mRNA stability and translation efficiency, foundational studies established the concept of collaboration and competition between RNA-binding proteins (RBPs) and noncoding RNAs (ncRNAs) on individual mRNAs. Fresh conceptual innovations now highlight stress-activated, evolutionarily conserved RBP networks and ncRNAs that increase the translation efficiency of populations of transcripts encoding proteins that participate in a common cellular process. The discovery of post-transcriptional functions for long noncoding RNAs (lncRNAs) was particularly intriguing given their cell-type-specificity and historical definition as nuclear-functioning epigenetic regulators. The convergence of RBPs, lncRNAs, and microRNAs on functionally related mRNAs to enable adaptive protein synthesis is a newer biological paradigm that highlights their role as "translatome (protein output) remodelers" and reinvigorates the paradigm of "RNA operons." Together, these concepts modernize our understanding of cellular stress adaptation and strategies for therapeutic development. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Translation Regulation Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- J J David Ho
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Jeffrey H S Man
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Respirology, University Health Network, Latner Thoracic Research Laboratories, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan H Schatz
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Division of Hematology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Philip A Marsden
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
89
|
Gerber AP. RNA-Centric Approaches to Profile the RNA-Protein Interaction Landscape on Selected RNAs. Noncoding RNA 2021; 7:ncrna7010011. [PMID: 33671874 PMCID: PMC7930960 DOI: 10.3390/ncrna7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
RNA–protein interactions frame post-transcriptional regulatory networks and modulate transcription and epigenetics. While the technological advances in RNA sequencing have significantly expanded the repertoire of RNAs, recently developed biochemical approaches combined with sensitive mass-spectrometry have revealed hundreds of previously unrecognized and potentially novel RNA-binding proteins. Nevertheless, a major challenge remains to understand how the thousands of RNA molecules and their interacting proteins assemble and control the fate of each individual RNA in a cell. Here, I review recent methodological advances to approach this problem through systematic identification of proteins that interact with particular RNAs in living cells. Thereby, a specific focus is given to in vivo approaches that involve crosslinking of RNA–protein interactions through ultraviolet irradiation or treatment of cells with chemicals, followed by capture of the RNA under study with antisense-oligonucleotides and identification of bound proteins with mass-spectrometry. Several recent studies defining interactomes of long non-coding RNAs, viral RNAs, as well as mRNAs are highlighted, and short reference is given to recent in-cell protein labeling techniques. These recent experimental improvements could open the door for broader applications and to study the remodeling of RNA–protein complexes upon different environmental cues and in disease.
Collapse
Affiliation(s)
- André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
90
|
Yergert KM, Doll CA, O’Rouke R, Hines JH, Appel B. Identification of 3' UTR motifs required for mRNA localization to myelin sheaths in vivo. PLoS Biol 2021; 19:e3001053. [PMID: 33439856 PMCID: PMC7837478 DOI: 10.1371/journal.pbio.3001053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 01/26/2021] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Myelin is a specialized membrane produced by oligodendrocytes that insulates and supports axons. Oligodendrocytes extend numerous cellular processes, as projections of the plasma membrane, and simultaneously wrap multiple layers of myelin membrane around target axons. Notably, myelin sheaths originating from the same oligodendrocyte are variable in size, suggesting local mechanisms regulate myelin sheath growth. Purified myelin contains ribosomes and hundreds of mRNAs, supporting a model that mRNA localization and local protein synthesis regulate sheath growth and maturation. However, the mechanisms by which mRNAs are selectively enriched in myelin sheaths are unclear. To investigate how mRNAs are targeted to myelin sheaths, we tested the hypothesis that transcripts are selected for myelin enrichment through consensus sequences in the 3' untranslated region (3' UTR). Using methods to visualize mRNA in living zebrafish larvae, we identified candidate 3' UTRs that were sufficient to localize mRNA to sheaths and enriched near growth zones of nascent membrane. We bioinformatically identified motifs common in 3' UTRs from 3 myelin-enriched transcripts and determined that these motifs are required and sufficient in a context-dependent manner for mRNA transport to myelin sheaths. Finally, we show that 1 motif is highly enriched in the myelin transcriptome, suggesting that this sequence is a global regulator of mRNA localization during developmental myelination.
Collapse
Affiliation(s)
- Katie M. Yergert
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Caleb A. Doll
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rebecca O’Rouke
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jacob H. Hines
- Department of Biology, Winona State University, Winona, Minnesota, United States of America
| | - Bruce Appel
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
91
|
Taniue K, Akimitsu N. The Functions and Unique Features of LncRNAs in Cancer Development and Tumorigenesis. Int J Mol Sci 2021; 22:E632. [PMID: 33435206 PMCID: PMC7826647 DOI: 10.3390/ijms22020632] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decades, research on cancer biology has focused on the involvement of protein-coding genes in cancer development. Long noncoding RNAs (lncRNAs), which are transcripts longer than 200 nucleotides that lack protein-coding potential, are an important class of RNA molecules that are involved in a variety of biological functions. Although the functions of a majority of lncRNAs have yet to be clarified, some lncRNAs have been shown to be associated with human diseases such as cancer. LncRNAs have been shown to contribute to many important cancer phenotypes through their interactions with other cellular macromolecules including DNA, protein and RNA. Here we describe the literature regarding the biogenesis and features of lncRNAs. We also present an overview of the current knowledge regarding the roles of lncRNAs in cancer from the view of various aspects of cellular homeostasis, including proliferation, survival, migration and genomic stability. Furthermore, we discuss the methodologies used to identify the function of lncRNAs in cancer development and tumorigenesis. Better understanding of the molecular mechanisms involving lncRNA functions in cancer is critical for the development of diagnostic and therapeutic strategies against tumorigenesis.
Collapse
Affiliation(s)
- Kenzui Taniue
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Cancer Genomics and Precision Medicine, Division of Gastroenterology and Hematology-Oncology, Department of Medicine, Asahikawa Medical University, 2-1 Midorigaoka Higashi, Asahikawa 078-8510, Hokkaido, Japan
| | - Nobuyoshi Akimitsu
- Isotope Science Center, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
92
|
The Path towards Predicting Evolution as Illustrated in Yeast Cell Polarity. Cells 2020; 9:cells9122534. [PMID: 33255231 PMCID: PMC7760196 DOI: 10.3390/cells9122534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 01/14/2023] Open
Abstract
A bottom-up route towards predicting evolution relies on a deep understanding of the complex network that proteins form inside cells. In a rapidly expanding panorama of experimental possibilities, the most difficult question is how to conceptually approach the disentangling of such complex networks. These can exhibit varying degrees of hierarchy and modularity, which obfuscate certain protein functions that may prove pivotal for adaptation. Using the well-established polarity network in budding yeast as a case study, we first organize current literature to highlight protein entrenchments inside polarity. Following three examples, we see how alternating between experimental novelties and subsequent emerging design strategies can construct a layered understanding, potent enough to reveal evolutionary targets. We show that if you want to understand a cell’s evolutionary capacity, such as possible future evolutionary paths, seemingly unimportant proteins need to be mapped and studied. Finally, we generalize this research structure to be applicable to other systems of interest.
Collapse
|
93
|
Garrido-Godino AI, Gupta I, Gutiérrez-Santiago F, Martínez-Padilla AB, Alekseenko A, Steinmetz LM, Pérez-Ortín JE, Pelechano V, Navarro F. Rpb4 and Puf3 imprint and post-transcriptionally control the stability of a common set of mRNAs in yeast. RNA Biol 2020; 18:1206-1220. [PMID: 33094674 DOI: 10.1080/15476286.2020.1839229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Gene expression involving RNA polymerase II is regulated by the concerted interplay between mRNA synthesis and degradation, crosstalk in which mRNA decay machinery and transcription machinery respectively impact transcription and mRNA stability. Rpb4, and likely dimer Rpb4/7, seem the central components of the RNA pol II governing these processes. In this work we unravel the molecular mechanisms participated by Rpb4 that mediate the posttranscriptional events regulating mRNA imprinting and stability. By RIP-Seq, we analysed genome-wide the association of Rpb4 with mRNAs and demonstrated that it targeted a large population of more than 1400 transcripts. A group of these mRNAs was also the target of the RNA binding protein, Puf3. We demonstrated that Rpb4 and Puf3 physically, genetically, and functionally interact and also affect mRNA stability, and likely the imprinting, of a common group of mRNAs. Furthermore, the Rpb4 and Puf3 association with mRNAs depends on one another. We also demonstrated, for the first time, that Puf3 associates with chromatin in an Rpb4-dependent manner. Our data also suggest that Rpb4 could be a key element of the RNA pol II that coordinates mRNA synthesis, imprinting and stability in cooperation with RBPs.
Collapse
Affiliation(s)
- A I Garrido-Godino
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - I Gupta
- Department of Biochemical Engineering and Biotechnology, IIT Delhi, Hauz Khas, India
| | - F Gutiérrez-Santiago
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - A B Martínez-Padilla
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain
| | - A Alekseenko
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - L M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany.,Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.,Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - J E Pérez-Ortín
- E.R.I. Biotecmed, Facultad de Biológicas, Universitat de València, Burjassot, Spain
| | - V Pelechano
- SciLifeLab, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - F Navarro
- Departamento de Biología Experimental-Genética, Universidad de Jaén, Jaén, Spain.,Centro de Estudios Avanzados en Aceite de Oliva y Olivar, Universidad de Jaén, Jaén, Spain
| |
Collapse
|
94
|
Bresson S, Shchepachev V, Spanos C, Turowski TW, Rappsilber J, Tollervey D. Stress-Induced Translation Inhibition through Rapid Displacement of Scanning Initiation Factors. Mol Cell 2020; 80:470-484.e8. [PMID: 33053322 PMCID: PMC7657445 DOI: 10.1016/j.molcel.2020.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 09/21/2020] [Indexed: 12/03/2022]
Abstract
Cellular responses to environmental stress are frequently mediated by RNA-binding proteins (RBPs). Here, we examined global RBP dynamics in Saccharomyces cerevisiae in response to glucose starvation and heat shock. Each stress induced rapid remodeling of the RNA-protein interactome without corresponding changes in RBP abundance. Consistent with general translation shutdown, ribosomal proteins contacting the mRNA showed decreased RNA association. Among translation components, RNA association was most reduced for initiation factors involved in 40S scanning (eukaryotic initiation factor 4A [eIF4A], eIF4B, and Ded1), indicating a common mechanism of translational repression. In unstressed cells, eIF4A, eIF4B, and Ded1 primarily targeted the 5′ ends of mRNAs. Following glucose withdrawal, 5′ binding was abolished within 30 s, explaining the rapid translation shutdown, but mRNAs remained stable. Heat shock induced progressive loss of 5′ RNA binding by initiation factors over ∼16 min and provoked mRNA degradation, particularly for translation-related factors, mediated by Xrn1. Taken together, these results reveal mechanisms underlying translational control of gene expression during stress. A quantitative proteomic approach reveals global stress-induced changes in RNA binding Translation shutdown is driven by rapid loss of mRNA binding by key initiation factors Heat shock induces general mRNA degradation facilitated by Xrn1
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| | - Vadim Shchepachev
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
95
|
Chikashige Y, Kato H, Thornton M, Pepper W, Hilgers M, Cecil A, Asano I, Yamada H, Mori C, Brunkow C, Moravek C, Urano T, Singh CR, Asano K. Gcn2 eIF2α kinase mediates combinatorial translational regulation through nucleotide motifs and uORFs in target mRNAs. Nucleic Acids Res 2020; 48:8977-8992. [PMID: 32710633 PMCID: PMC7498311 DOI: 10.1093/nar/gkaa608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
The protein kinase Gcn2 is a central transducer of nutritional stress signaling important for stress adaptation by normal cells and the survival of cancer cells. In response to nutrient deprivation, Gcn2 phosphorylates eIF2α, thereby repressing general translation while enhancing translation of specific mRNAs with upstream ORFs (uORFs) situated in their 5'-leader regions. Here we performed genome-wide measurements of mRNA translation during histidine starvation in fission yeast Schizosaccharomyces pombe. Polysome analyses were combined with microarray measurements to identify gene transcripts whose translation was up-regulated in response to the stress in a Gcn2-dependent manner. We determined that translation is reprogrammed to enhance RNA metabolism and chromatin regulation and repress ribosome synthesis. Interestingly, translation of intron-containing mRNAs was up-regulated. The products of the regulated genes include additional eIF2α kinase Hri2 amplifying the stress signaling and Gcn5 histone acetyl transferase and transcription factors, together altering genome-wide transcription. Unique dipeptide-coding uORFs and nucleotide motifs, such as '5'-UGA(C/G)GG-3', are found in 5' leader regions of regulated genes and shown to be responsible for translational control.
Collapse
Affiliation(s)
- Yuji Chikashige
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Hiroaki Kato
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Mackenzie Thornton
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Whitney Pepper
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Madelyn Hilgers
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ariana Cecil
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Izumi Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Haana Yamada
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
- Department of Advanced Transdisciplinary Sciences, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Chie Mori
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Cheyenne Brunkow
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Carter Moravek
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, Shimane 693-8501, Japan
| | - Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
96
|
Abstract
RNA movements and localization pervade biology, from embryonic development to disease. To identify RNAs at specific locations, we developed a strategy in which a uridine-adding enzyme is anchored to subcellular sites, where it directly marks RNAs with 3' terminal uridines. This localized RNA recording approach yields a record of RNA locations, and is validated through identification of RNAs localized selectively to the endoplasmic reticulum (ER) or mitochondria. We identify a broad dual localization pattern conserved from yeast to human cells, in which the same battery of mRNAs encounter both ER and mitochondria in both species, and include an mRNA encoding a key stress sensor. Subunits of many multiprotein complexes localize to both the ER and mitochondria, suggesting coordinated assembly. Noncoding RNAs in the course of RNA surveillance and processing encounter both organelles. By providing a record of RNA locations over time, the approach complements those that capture snapshots of instantaneous positions.
Collapse
|
97
|
Si W, Li Z, Huang Z, Ye S, Li X, Li Y, Kuang W, Chen D, Zhu M. RNA Binding Protein Motif 3 Inhibits Oxygen-Glucose Deprivation/Reoxygenation-Induced Apoptosis Through Promoting Stress Granules Formation in PC12 Cells and Rat Primary Cortical Neurons. Front Cell Neurosci 2020; 14:559384. [PMID: 32982696 PMCID: PMC7492797 DOI: 10.3389/fncel.2020.559384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/13/2020] [Indexed: 11/17/2022] Open
Abstract
As a sensitive cold-shock protein, RNA binding protein motif 3 (RBM3) exhibits a neuroprotective function in the condition of brain injury. However, how RBM3 is involved in acute ischemic stroke by affecting stress granules (SGs) remains unclear. Here, we established an oxygen-glucose deprivation/reperfusion (OGD/R) model in rat primary cortical neurons and PC12 cells to explore the potential mechanism between RBM3 and SG formation in acute ischemic/reperfusion (I/R) condition. The immunofluorescence results showed that the SG formation significantly decreased in rat primary cortical neurons and PC12 cells during the reperfusion period after 6 h of OGD stimulation. The western blot results, flow cytometry analysis, and cell viability assessment showed that the RBM3 expression and ratio of cell viability significantly decreased, while the rate of apoptosis increased in PC12 cells during the reperfusion period after 6 h of OGD stimulation. Co-immunoprecipitation (Co-IP) and immunofluorescence indicated that RBM3 and GTPase-activating protein-binding protein 1 (G3BP1) colocalized cytoplasm of PC12 cells after 6 h of OGD stimulation when the SGs formation reached the highest level. Besides, overexpression and knockdown of the RBM3 were achieved via plasmid transfection and CRISPR-Cas9 technology, respectively. The results of overexpression and knockdown of RBM3 gene illustrated the pivotal role of RBM3 in affecting SG formation and apoptosis level in OGD-treated PC12 cells. In conclusion, RBM3 could combine with G3BP1 resulted in increasing stress granules generation in rat primary cortical neurons and PC12 cells after 6 h of oxygen-glucose deprivation (OGD) injury, which ultimately reduced the apoptosis in OGD-induced cells. Our study may enable a new promising target for alleviating ischemia-reperfusion injury in cells.
Collapse
Affiliation(s)
- Wenwen Si
- Shenzhen Bao'an Traditional Chinese Medicine Hospital (Group), Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhen Li
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zifeng Huang
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Shanyu Ye
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinrong Li
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yi Li
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiling Zhu
- Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
98
|
Moss ND, Sussel L. mRNA Processing: An Emerging Frontier in the Regulation of Pancreatic β Cell Function. Front Genet 2020; 11:983. [PMID: 33088281 PMCID: PMC7490333 DOI: 10.3389/fgene.2020.00983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023] Open
Abstract
Robust endocrine cell function, particularly β cell function, is required to maintain blood glucose homeostasis. Diabetes can result from the loss or dysfunction of β cells. Despite decades of clinical and basic research, the precise regulation of β cell function and pathogenesis in diabetes remains incompletely understood. In this review, we highlight RNA processing of mRNAs as a rapidly emerging mechanism regulating β cell function and survival. RNA-binding proteins (RBPs) and RNA modifications are primed to be the next frontier to explain many of the poorly understood molecular processes that regulate β cell formation and function, and provide an exciting potential for the development of novel therapeutics. Here we outline the current understanding of β cell specific functions of several characterized RBPs, alternative splicing events, and transcriptome wide changes in RNA methylation. We also highlight several RBPs that are dysregulated in both Type 1 and Type 2 diabetes, and discuss remaining knowledge gaps in the field.
Collapse
Affiliation(s)
- Nicole D Moss
- Cell, Stem Cells, and Development Graduate Program, Department of Pediatrics, Barbara Davis Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| | - Lori Sussel
- Cell, Stem Cells, and Development Graduate Program, Department of Pediatrics, Barbara Davis Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
99
|
Healey KR, Paderu P, Hou X, Jimenez Ortigosa C, Bagley N, Patel B, Zhao Y, Perlin DS. Differential Regulation of Echinocandin Targets Fks1 and Fks2 in Candida glabrata by the Post-Transcriptional Regulator Ssd1. J Fungi (Basel) 2020; 6:jof6030143. [PMID: 32825653 PMCID: PMC7558938 DOI: 10.3390/jof6030143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022] Open
Abstract
Invasive infections caused by the opportunistic pathogen Candida glabrata are treated with echinocandin antifungals that target β-1,3-glucan synthase, an enzyme critical for fungal cell wall biosynthesis. Echinocandin resistance develops upon mutation of genes (FKS1 or FKS2) that encode the glucan synthase catalytic subunits. We have analyzed cellular factors that influence echinocandin susceptibility and here describe effects of the post-transcriptional regulator Ssd1, which in S. cerevisiae, can bind cell wall related gene transcripts. The SSD1 homolog in C. glabrata was disrupted in isogenic wild type and equivalent FKS1 and FKS2 mutant strains that demonstrate echinocandin resistance (MICs ˃ 0.5 µg/mL). A reversal of resistance (8- to 128-fold decrease in MICs) was observed in FKS1 mutants, but not in FKS2 mutants, following SSD1 deletion. Additionally, this phenotype was complemented upon expression of SSD1 from plasmid (pSSD1). All SSD1 disruptants displayed susceptibility to the calcineurin inhibitor FK506, similar to fks1∆. Decreases in relative gene expression ratios of FKS1 to FKS2 (2.6- to 4.5-fold) and in protein ratios of Fks1 to Fks2 (2.7- and 8.4-fold) were observed in FKS mutants upon SSD1 disruption. Additionally, a complementary increase in protein ratio was observed in the pSSD1 expressing strain. Overall, we describe a cellular factor that influences Fks1-specific mediated resistance and demonstrates further differential regulation of FKS1 and FKS2 in C. glabrata.
Collapse
Affiliation(s)
- Kelley R. Healey
- Department of Biology, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA; (N.B.); (B.P.)
- Correspondence:
| | - Padmaja Paderu
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; (P.P.); (X.H.); (C.J.O.); (Y.Z.); (D.S.P.)
| | - Xin Hou
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; (P.P.); (X.H.); (C.J.O.); (Y.Z.); (D.S.P.)
- Department of Clinical Laboratory, Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Cristina Jimenez Ortigosa
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; (P.P.); (X.H.); (C.J.O.); (Y.Z.); (D.S.P.)
| | - Nicole Bagley
- Department of Biology, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA; (N.B.); (B.P.)
| | - Biren Patel
- Department of Biology, William Paterson University, 300 Pompton Road, Wayne, NJ 07470, USA; (N.B.); (B.P.)
| | - Yanan Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; (P.P.); (X.H.); (C.J.O.); (Y.Z.); (D.S.P.)
- Department of Medical Sciences, Hackensack Meridian School of Medicine, 340 Kingsland Street, Nutley, NJ 07110, USA
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; (P.P.); (X.H.); (C.J.O.); (Y.Z.); (D.S.P.)
| |
Collapse
|
100
|
The Ndr/LATS Kinase Cbk1 Regulates a Specific Subset of Ace2 Functions and Suppresses the Hypha-to-Yeast Transition in Candida albicans. mBio 2020; 11:mBio.01900-20. [PMID: 32817109 PMCID: PMC7439482 DOI: 10.1128/mbio.01900-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The regulation of Ace2 and morphogenesis (RAM) pathway is a key regulatory network that plays a role in many aspects of C. albicans pathobiology. In addition to characterizing the transcriptional effects of this pathway, we discovered that Cbk1 and Ace2, a key RAM pathway regulator-effector pair, mediate a specific set of the overall functions of the RAM pathway. We have also discovered a new function for the Cbk1-Ace2 axis: suppression of the hypha-to-yeast transition. Very few regulators of this transition have been described, and our data indicate that maintenance of hyphal morphogenesis requires suppression of yeast phase growth by Cbk1-regulated Ace2. The regulation of Ace2 and morphogenesis (RAM) pathway is an important regulatory network in the human fungal pathogen Candida albicans. The RAM pathway’s two most well-studied components, the NDR/Lats kinase Cbk1 and its putative substrate, the transcription factor Ace2, have a wide range of phenotypes and functions. It is not clear, however, which of these functions are specifically due to the phosphorylation of Ace2 by Cbk1. To address this question, we first compared the transcriptional profiles of CBK1 and ACE2 deletion mutants. This analysis indicates that, of the large number of genes whose expression is affected by deletion of CBK1 and ACE2, only 5.5% of those genes are concordantly regulated. Our data also suggest that Ace2 directly or indirectly represses a large set of genes during hyphal morphogenesis. Second, we generated strains containing ACE2 alleles with alanine mutations at the Cbk1 phosphorylation sites. Phenotypic and transcriptional analysis of these ace2 mutants indicates that, as in Saccharomyces cerevisiae, Cbk1 regulation is important for daughter cell localization of Ace2 and cell separation during yeast-phase growth. In contrast, Cbk1 phosphorylation of Ace2 plays a minor role in C. albicans yeast-to-hypha transition. We have, however, discovered a new function for the Cbk1-Ace2 axis. Specifically, Cbk1 phosphorylation of Ace2 prevents the hypha-to-yeast transition. To our knowledge, this is one of the first regulators of the C. albicans hypha-to-yeast transition to be described. Finally, we present an integrated model for the role of Cbk1 in the regulation of hyphal morphogenesis in C. albicans.
Collapse
|