51
|
Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia Heterogeneity in the Single-Cell Era. Cell Rep 2021; 30:1271-1281. [PMID: 32023447 DOI: 10.1016/j.celrep.2020.01.010] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 10/19/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS) that are capable of carrying out prominent and various functions during development and adulthood under both homeostatic and disease conditions. Although microglia are traditionally thought to be heterogeneous populations, which potentially allows them to achieve a wide range of responses to environmental changes for the maintenance of CNS homeostasis, a lack of unbiased and high-throughput methods to assess microglia heterogeneity has prevented the study of spatially and temporally distributed microglia subsets. The recent emergence of novel single-cell techniques, such as cytometry by time-of-flight mass spectrometry (CyTOF) and single-cell RNA sequencing, enabled scientists to overcome such limitations and reveal the surprising context-dependent heterogeneity of microglia. In this review, we summarize the current knowledge about the spatial, temporal, and functional diversity of microglia during development, homeostasis, and disease in mice and humans.
Collapse
Affiliation(s)
- Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ori Staszewski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Berta-Ottenstein-Programme for Clinician Scientists, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany; Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
52
|
Andoh M, Koyama R. Assessing Microglial Dynamics by Live Imaging. Front Immunol 2021; 12:617564. [PMID: 33763064 PMCID: PMC7982483 DOI: 10.3389/fimmu.2021.617564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia are highly dynamic in the brain in terms of their ability to migrate, proliferate, and phagocytose over the course of an individual's life. Real-time imaging is a useful tool to examine how microglial behavior is regulated and how it affects the surrounding environment. However, microglia are sensitive to environmental stimuli, so they possibly change their state during live imaging in vivo, mainly due to surgical damage, and in vitro due to various effects associated with culture conditions. Therefore, it is difficult to perform live imaging without compromising the properties of the microglia under physiological conditions. To overcome this barrier, various experimental conditions have been developed; recently, it has become possible to perform live imaging of so-called surveillant microglia in vivo, ex vivo, and in vitro, although there are various limitations. Now, we can choose in vivo, ex vivo, or in vitro live imaging systems according to the research objective. In this review, we discuss the advantages and disadvantages of each experimental system and outline the physiological significance and molecular mechanisms of microglial behavior that have been elucidated by live imaging.
Collapse
Affiliation(s)
- Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
53
|
Deficiency of Microglial Autophagy Increases the Density of Oligodendrocytes and Susceptibility to Severe Forms of Seizures. eNeuro 2021; 8:ENEURO.0183-20.2021. [PMID: 33472865 PMCID: PMC7890520 DOI: 10.1523/eneuro.0183-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/11/2020] [Accepted: 01/02/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive activation of mTOR in microglia impairs CNS homeostasis and causes severe epilepsy. Autophagy constitutes an important part of mTOR signaling. The contribution of microglial autophagy to CNS homeostasis and epilepsy remains to be determined. Here, we report that ATG7KO mice deficient for autophagy in microglia display a marked increase of myelination markers, a higher density of mature oligodendrocytes (ODCs), and altered lengths of the nodes of Ranvier. Moreover, we found that deficiency of microglial autophagy (ATG7KO) leads to increased seizure susceptibility in three seizure models (pilocarpine, kainic acid, and amygdala kindling). We demonstrated that ATG7KO mice develop severe generalized seizures and display nearly 100% mortality to convulsions induced by pilocarpine and kainic acid. In the amygdala kindling model, we observed significant facilitation of contralateral propagation of seizures, a process underlying the development of generalized seizures. Taken together, our results reveal impaired microglial autophagy as a novel mechanism underlying altered homeostasis of ODCs and increased susceptibility to severe and fatal generalized seizures.
Collapse
|
54
|
Plaza-Zabala A, Sierra-Torre V, Sierra A. Assessing Autophagy in Microglia: A Two-Step Model to Determine Autophagosome Formation, Degradation, and Net Turnover. Front Immunol 2021; 11:620602. [PMID: 33584716 PMCID: PMC7878397 DOI: 10.3389/fimmu.2020.620602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a complex process that encompasses the enclosure of cytoplasmic debris or dysfunctional organelles in membranous vesicles, the autophagosomes, for their elimination in the lysosomes. Autophagy is increasingly recognized as a critical process in macrophages, including microglia, as it finely regulates innate immune functions such as inflammation. A gold-standard method to assess its induction is the analysis of the autophagic flux using as a surrogate the expression of the microtubule-associated light chain protein 3 conjugated to phosphatidylethanolamine (LC3-II) by Western blot, in the presence of lysosomal inhibitors. Therefore, the current definition of autophagy flux actually puts the focus on the degradation stage of autophagy. In contrast, the most important autophagy controlling genes that have been identified in the last few years in fact target early stages of autophagosome formation. From a biological standpoint is therefore conceivable that autophagosome formation and degradation are independently regulated and we argue that both stages need to be systematically analyzed. Here, we propose a simple two-step model to understand changes in autophagosome formation and degradation using data from conventional LC3-II Western blot, and test it using two models of autophagy modulation in cultured microglia: rapamycin and the ULK1/2 inhibitor, MRT68921. Our two-step model will help to unravel the effect of genetic, pharmacological, and environmental manipulations on both formation and degradation of autophagosomes, contributing to dissect out the role of autophagy in physiology and pathology in microglia as well as other cell types.
Collapse
Affiliation(s)
- Ainhoa Plaza-Zabala
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain.,Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Virginia Sierra-Torre
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Amanda Sierra
- Glial Cell Biology Lab, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|
55
|
Umpierre AD, Wu LJ. How microglia sense and regulate neuronal activity. Glia 2020; 69:1637-1653. [PMID: 33369790 DOI: 10.1002/glia.23961] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Microglia are innate immune cells of the central nervous system that sense extracellular cues. Brain injuries, inflammation, and pathology evoke dynamic structural responses in microglia, altering their morphology and motility. The dynamic motility of microglia is hypothesized to be a critical first step in sensing local alterations and engaging in pattern-specific responses. Alongside their pathological responses, microglia also sense and regulate neuronal activity. In this review, we consider the extracellular molecules, receptors, and mechanisms that allow microglia to sense neuronal activity changes under both hypoactivity and hyperactivity. We also highlight emerging in vivo evidence that microglia regulate neuronal activity, ranging from physiological to pathophysiological conditions. In addition, we discuss the emerging role of calcium signaling in microglial responses to the extracellular environment. The dynamic function of microglia in monitoring and influencing neuronal activity may be critical for brain homeostasis and circuit modification in health and disease.
Collapse
Affiliation(s)
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
56
|
Van den Broek B, Pintelon I, Hamad I, Kessels S, Haidar M, Hellings N, Hendriks JJ, Kleinewietfeld M, Brône B, Timmerman V, Timmermans J, Somers V, Michiels L, Irobi J. Microglial derived extracellular vesicles activate autophagy and mediate multi-target signaling to maintain cellular homeostasis. J Extracell Vesicles 2020; 10:e12022. [PMID: 33708355 PMCID: PMC7890546 DOI: 10.1002/jev2.12022] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/27/2022] Open
Abstract
Microglia, the immunocompetent cells of the central nervous system (CNS), play an important role in maintaining cellular homeostasis in the CNS. These cells secrete immunomodulatory factors including nanovesicles and participate in the removal of cellular debris by phagocytosis or autophagy. Accumulating evidence indicates that specifically the cellular exchange of small extracellular vesicles (EVs), participates in physiology and disease through intercellular communication. However, the contribution of microglial-derived extracellular vesicles (M-EVs) to the maintenance of microglia homeostasis and how M-EVs could influence the phenotype and gene function of other microglia subtypes is unclear. In addition, knowledge of canonical signalling pathways of inflammation and immunity gene expression patterns in human microglia exposed to M-EVs is limited. Here, we analysed the effects of M-EVs produced in vitro by either tumour necrosis factor alpha (TNFα) activated or non-activated microglia BV2 cells. We showed that M-EVs are internalized by both mouse and human C20 microglia cells and that the uptake of M-EVs in microglia induced autophagic vesicles at various stages of degradation including autophagosomes and autolysosomes. Consistently, stimulation of microglia with M-EVs increased the protein expression of the autophagy marker, microtubule-associated proteins 1A/1B light chain 3B isoform II (LC3B-II), and promoted autophagic flux in live cells. To elucidate the biological activities occurring at the transcriptional level in C20 microglia stimulated with M-EVs, the gene expression profiles, potential upstream regulators, and enrichment pathways were characterized using targeted RNA sequencing. Inflammation and immunity transcriptome gene panel sequencing of both activated and normal microglia stimulated with M-EVs showed involvement of several canonical pathways and reduced expression of key genes involved in neuroinflammation, inflammasome and apoptosis signalling pathways compared to control cells. In this study, we provide the perspective that a beneficial activity of in vitro cell culture produced EVs could be the modulation of autophagy during cellular stress. Therefore, we use a monoculture system to study microglia-microglia crosstalk which is important in the prevention and propagation of inflammation in the brain. We demonstrate that in vitro produced microglial EVs are able to influence multiple biological pathways and promote activation of autophagy in order to maintain microglia survival and homeostasis.
Collapse
Affiliation(s)
| | - Isabel Pintelon
- Laboratory of Cell Biology & HistologyAntwerp Centre for Advanced Microscopy (ACAM)University of AntwerpAntwerpBelgium
| | - Ibrahim Hamad
- Biomedical Research InstituteUHasseltHasselt UniversityHasseltBelgium
- VIB Laboratory of Translational ImmunomodulationVIB Center for Inflammation ResearchHasseltBelgium
| | - Sofie Kessels
- Biomedical Research InstituteUHasseltHasselt UniversityHasseltBelgium
| | - Mansour Haidar
- Biomedical Research InstituteUHasseltHasselt UniversityHasseltBelgium
| | - Niels Hellings
- Biomedical Research InstituteUHasseltHasselt UniversityHasseltBelgium
| | | | - Markus Kleinewietfeld
- Biomedical Research InstituteUHasseltHasselt UniversityHasseltBelgium
- VIB Laboratory of Translational ImmunomodulationVIB Center for Inflammation ResearchHasseltBelgium
| | - Bert Brône
- Biomedical Research InstituteUHasseltHasselt UniversityHasseltBelgium
| | - Vincent Timmerman
- Peripheral Neuropathy Research GroupDepartment of Biomedical SciencesInstitute Born Bunge and University of AntwerpAntwerpBelgium
| | - Jean‐Pierre Timmermans
- Laboratory of Cell Biology & HistologyAntwerp Centre for Advanced Microscopy (ACAM)University of AntwerpAntwerpBelgium
| | - Veerle Somers
- Biomedical Research InstituteUHasseltHasselt UniversityHasseltBelgium
| | - Luc Michiels
- Biomedical Research InstituteUHasseltHasselt UniversityHasseltBelgium
| | - Joy Irobi
- Biomedical Research InstituteUHasseltHasselt UniversityHasseltBelgium
| |
Collapse
|
57
|
Kokkosis AG, Tsirka SE. Neuroimmune Mechanisms and Sex/Gender-Dependent Effects in the Pathophysiology of Mental Disorders. J Pharmacol Exp Ther 2020; 375:175-192. [PMID: 32661057 PMCID: PMC7569311 DOI: 10.1124/jpet.120.266163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Innate and adaptive immune mechanisms have emerged as critical regulators of CNS homeostasis and mental health. A plethora of immunologic factors have been reported to interact with emotion- and behavior-related neuronal circuits, modulating susceptibility and resilience to mental disorders. However, it remains unclear whether immune dysregulation is a cardinal causal factor or an outcome of the pathologies associated with mental disorders. Emerging variations in immune regulatory pathways based on sex differences provide an additional framework for discussion in these psychiatric disorders. In this review, we present the current literature pertaining to the effects that disrupted immune pathways have in mental disorder pathophysiology, including immune dysregulation in CNS and periphery, microglial activation, and disturbances of the blood-brain barrier. In addition, we present the suggested origins of such immune dysregulation and discuss the gender and sex influence of the neuroimmune substrates that contribute to mental disorders. The findings challenge the conventional view of these disorders and open the window to a diverse spectrum of innovative therapeutic targets that focus on the immune-specific pathophenotypes in neuronal circuits and behavior. SIGNIFICANCE STATEMENT: The involvement of gender-dependent inflammatory mechanisms on the development of mental pathologies is gaining momentum. This review addresses these novel factors and presents the accumulating evidence introducing microglia and proinflammatory elements as critical components and potential targets for the treatment of mental disorders.
Collapse
Affiliation(s)
- Alexandros G Kokkosis
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
58
|
Konishi H, Okamoto T, Hara Y, Komine O, Tamada H, Maeda M, Osako F, Kobayashi M, Nishiyama A, Kataoka Y, Takai T, Udagawa N, Jung S, Ozato K, Tamura T, Tsuda M, Yamanaka K, Ogi T, Sato K, Kiyama H. Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO J 2020; 39:e104464. [PMID: 32959911 PMCID: PMC7667883 DOI: 10.15252/embj.2020104464] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022] Open
Abstract
Microglia are the principal phagocytes that clear cell debris in the central nervous system (CNS). This raises the question, which cells remove cell debris when microglial phagocytic activity is impaired. We addressed this question using Siglechdtr mice, which enable highly specific ablation of microglia. Non‐microglial mononuclear phagocytes, such as CNS‐associated macrophages and circulating inflammatory monocytes, did not clear microglial debris. Instead, astrocytes were activated, exhibited a pro‐inflammatory gene expression profile, and extended their processes to engulf microglial debris. This astrocytic phagocytosis was also observed in Irf8‐deficient mice, in which microglia were present but dysfunctional. RNA‐seq demonstrated that even in a healthy CNS, astrocytes express TAM phagocytic receptors, which were the main astrocytic phagocytic receptors for cell debris in the above experiments, indicating that astrocytes stand by in case of microglial impairment. This compensatory mechanism may be important for the maintenance or prolongation of a healthy CNS.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Okamoto
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Hara
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiromi Tamada
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuyo Maeda
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Fumika Osako
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Kobayashi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Nishiyama
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yosky Kataoka
- Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, Kobe, Japan.,Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Japan
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Keiko Ozato
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.,Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
59
|
Sierra-Torre V, Plaza-Zabala A, Bonifazi P, Abiega O, Díaz-Aparicio I, Tegelberg S, Lehesjoki AE, Valero J, Sierra A. Microglial phagocytosis dysfunction in the dentate gyrus is related to local neuronal activity in a genetic model of epilepsy. Epilepsia 2020; 61:2593-2608. [PMID: 32940364 PMCID: PMC7756777 DOI: 10.1111/epi.16692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Microglial phagocytosis of apoptotic cells is an essential component of the brain regenerative response during neurodegeneration. Whereas it is very efficient in physiological conditions, it is impaired in mouse and human mesial temporal lobe epilepsy, and now we extend our studies to a model of progressive myoclonus epilepsy type 1 in mice lacking cystatin B (CSTB). METHODS We used confocal imaging and stereology-based quantification of apoptosis and phagocytosis of the hippocampus of Cstb knockout (KO) mice, an in vitro model of phagocytosis and siRNAs to acutely reduce Cstb expression, and a virtual three-dimensional (3D) model to analyze the physical relationship between apoptosis, phagocytosis, and active hippocampal neurons. RESULTS Microglial phagocytosis was impaired in the hippocampus of Cstb KO mice at 1 month of age, when seizures arise and hippocampal atrophy begins. This impairment was not related to the lack of Cstb in microglia alone, as shown by in vitro experiments with microglial Cstb depletion. The phagocytosis impairment was also unrelated to seizures, as it was also present in Cstb KO mice at postnatal day 14, before seizures begin. Importantly, phagocytosis impairment was restricted to the granule cell layer and spared the subgranular zone, where there are no active neurons. Furthermore, apoptotic cells (both phagocytosed and not phagocytosed) in Cstb-deficient mice were at close proximity to active cFos+ neurons, and a virtual 3D model demonstrated that the physical relationship between apoptotic cells and cFos+ neurons was specific for Cstb KO mice. SIGNIFICANCE These results suggest a complex crosstalk between apoptosis, phagocytosis, and neuronal activity, hinting that local neuronal activity could be related to phagocytosis dysfunction in Cstb KO mice. Overall, these data suggest that phagocytosis impairment is an early feature of hippocampal damage in epilepsy and opens novel therapeutic approaches for epileptic patients based on targeting microglial phagocytosis.
Collapse
Affiliation(s)
- Virginia Sierra-Torre
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ainhoa Plaza-Zabala
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain
| | - Paolo Bonifazi
- Ikerbasque Foundation, Bilbao, Spain.,Biocruces Health Research Institute, Barakaldo, Spain
| | - Oihane Abiega
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Irune Díaz-Aparicio
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Saara Tegelberg
- Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| | | | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|
60
|
Neuroinflammation and progressive myoclonus epilepsies: from basic science to therapeutic opportunities. Expert Rev Mol Med 2020; 22:e4. [PMID: 32938505 PMCID: PMC7520540 DOI: 10.1017/erm.2020.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progressive myoclonus epilepsies (PMEs) are a group of genetic neurological disorders characterised by the occurrence of epileptic seizures, myoclonus and progressive neurological deterioration including cerebellar involvement and dementia. The primary cause of PMEs is variable and alterations in the corresponding mutated genes determine the progression and severity of the disease. In most cases, they lead to the death of the patient after a period of prolonged disability. PMEs also share poor information on the pathophysiological bases and the lack of a specific treatment. Recent reports suggest that neuroinflammation is a common trait under all these conditions. Here, we review similarities and differences in neuroinflammatory response in several PMEs and discuss the window of opportunity of using anti-inflammatory drugs in the treatment of several of these conditions.
Collapse
|
61
|
Valcárcel-Martín R, Martín-Suárez S, Muro-García T, Pastor-Alonso O, Rodríguez de Fonseca F, Estivill-Torrús G, Encinas JM. Lysophosphatidic Acid Receptor 1 Specifically Labels Seizure-Induced Hippocampal Reactive Neural Stem Cells and Regulates Their Division. Front Neurosci 2020; 14:811. [PMID: 32922255 PMCID: PMC7456947 DOI: 10.3389/fnins.2020.00811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
A population of neural stem cells (NSCs) dwelling in the dentate gyrus (DG) is able to generate neurons throughout adult life in the hippocampus of most mammals. These NSCs generate also astrocytes naturally and are capable of generating oligodendrocytes after gene manipulation. It has been more recently shown that adult hippocampal NSCs after epileptic seizures as well as subventricular zone NSCs after stroke can give rise to reactive astrocytes (RAs). In the hippocampus, the induction of seizures triggers the conversion of NSCs into reactive NSCs (React-NSCs) characterized by a drastic morphological transformation, abnormal migration, and massive activation or entry into the cell cycle to generate more React-NSCs that ultimately differentiate into RAs. In the search for tools to investigate the properties of React-NSCs, we have explored the LPA1–green fluorescent protein (GFP) transgenic line of mice in which hippocampal NSCs are specifically labeled due to the expression of lysophosphatidic acid receptor 1 (LPA1). We first addressed the validity of the transgene expression as true marker of LPA1 expression and then demonstrated how, after seizures, LPA1-GFP labeled exclusively React-NSCs for several weeks. Then React-NSCs lost LPA1-GFP expression as neurons of the granule cell layer started to express it. Finally, we used knockout for LPA1 transgenic mice to show that LPA1 plays a functional role in the activation of React-NSCs. Thus, we confirmed that LPA1-GFP expression is a valid tool to study both NSCs and React-NSCs and that the LPA1 pathway could be a target in the intent to preserve NSCs after seizures.
Collapse
Affiliation(s)
- Roberto Valcárcel-Martín
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Soraya Martín-Suárez
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Teresa Muro-García
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Oier Pastor-Alonso
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Guillermo Estivill-Torrús
- Unidad de Gestión Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Juan Manuel Encinas
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
62
|
Bottai D, Adami R, Paroni R, Ghidoni R. Brain Cancer-Activated Microglia: A Potential Role for Sphingolipids. Curr Med Chem 2020; 27:4039-4061. [PMID: 31057101 DOI: 10.2174/0929867326666190506120213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/27/2018] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
Abstract
Almost no neurological disease exists without microglial activation. Microglia has exert a pivotal role in the maintenance of the central nervous system and its response to external and internal insults. Microglia have traditionally been classified as, in the healthy central nervous system, "resting", with branched morphology system and, as a response to disease, "activated", with amoeboid morphology; as a response to diseases but this distinction is now outmoded. The most devastating disease that hits the brain is cancer, in particular glioblastoma. Glioblastoma multiforme is the most aggressive glioma with high invasiveness and little chance of being surgically removed. During tumor onset, many brain alterations are present and microglia have a major role because the tumor itself changes microglia from the pro-inflammatory state to the anti-inflammatory and protects the tumor from an immune intervention. What are the determinants of these changes in the behavior of the microglia? In this review, we survey and discuss the role of sphingolipids in microglia activation in the progression of brain tumors, with a particular focus on glioblastoma.
Collapse
Affiliation(s)
- Daniele Bottai
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Raffaella Adami
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Rita Paroni
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, Milan, Italy,Aldo Ravelli Research Center, Milan, Italy
| |
Collapse
|
63
|
Microglial mTOR is Neuronal Protective and Antiepileptogenic in the Pilocarpine Model of Temporal Lobe Epilepsy. J Neurosci 2020; 40:7593-7608. [PMID: 32868461 DOI: 10.1523/jneurosci.2754-19.2020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/05/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023] Open
Abstract
Excessive activation of mammalian target of rapamycin (mTOR) signaling is epileptogenic in genetic epilepsy. However, the exact role of microglial mTOR in acquired epilepsy remains to be clarified. In the present study, we found that mTOR is strongly activated in microglia following excitatory injury elicited by status epilepticus. To determine the role of microglial mTOR signaling in excitatory injury and epileptogenesis, we generated mice with restrictive deletion of mTOR in microglia. Both male and female mice were used in the present study. We found that mTOR-deficient microglia lost their typical proliferative and inflammatory responses to excitatory injury, whereas the proliferation of astrocytes was preserved. In addition, mTOR-deficient microglia did not effectively engulf injured/dying neurons. More importantly, microglial mTOR-deficient mice displayed increased neuronal loss and developed more severe spontaneous seizures. These findings suggest that microglial mTOR plays a protective role in mitigating neuronal loss and attenuating epileptogenesis in the excitatory injury model of epilepsy.SIGNIFICANCE STATEMENT The mammalian target of rapamycin (mTOR) pathway is strongly implicated in epilepsy. However, the effect of mTOR inhibitors in preclinical models of acquired epilepsy is inconsistent. The broad presence of mTOR signaling in various brain cells could prevent mTOR inhibitors from achieving a net therapeutic effect. This conundrum has spurred further investigation of the cell type-specific effects of mTOR signaling in the CNS. We found that activation of microglial mTOR is antiepileptogenic. Thus, microglial mTOR activation represents a novel antiepileptogenic route that appears to parallel the proepileptogenic route of neuronal mTOR activation. This may explain why the net effect of mTOR inhibitors is paradoxical in the acquired models of epilepsy. Our findings could better guide the use of mTOR inhibitors in preventing acquired epilepsy.
Collapse
|
64
|
Martín-Suárez S, Abiega O, Ricobaraza A, Hernandez-Alcoceba R, Encinas JM. Alterations of the Hippocampal Neurogenic Niche in a Mouse Model of Dravet Syndrome. Front Cell Dev Biol 2020; 8:654. [PMID: 32793597 PMCID: PMC7385077 DOI: 10.3389/fcell.2020.00654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/01/2020] [Indexed: 01/24/2023] Open
Abstract
Hippocampal neurogenesis, the process by which neural stem cells (NSCs) continuously generate new neurons in the dentate gyrus (DG) of most mammals including humans, is chiefly regulated by neuronal activity. Thus, severe alterations have been found in samples from epilepsy patients and in the hippocampal neurogenic niche in mouse models of epilepsy. Reactive-like and gliogenic NSCs plus aberrant newborn neurons with altered migration, morphology, and functional properties are induced by seizures in experimental models of temporal lobe epilepsy. Hippocampal neurogenesis participates in memory and learning and in the control of anxiety and stress. It has been therefore hypothesized that part of the cognitive symptoms associated with epilepsy could be promoted by impaired hippocampal neurogenesis. We here analyze for the first time the alterations of the neurogenic niche in a novel mouse model of Dravet syndrome (DS), a genetic encephalopathy with severe epilepsy in infancy and multiple neurological comorbidities. Scn1aWT/A1783V mice, hereafter referred to as DS, carrying a heterozygous and clinically relevant SCN1A mutation (A1783V) recapitulate the disease at the genetic and phenotypic levels. We demonstrate that in the neurogenic niche of young adult DS mice there are fewer NSCs, they have impaired cell division and bear reactive-like morphology. In addition, there is significant aberrant neurogenesis. Newborn immature neurons migrate abnormally, and several morphological features are drastically changed. Thus, this study shows for the first time important modifications in hippocampal neurogenesis in DS and opens venues for further research on this topic.
Collapse
Affiliation(s)
- Soraya Martín-Suárez
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Oihane Abiega
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Ana Ricobaraza
- Gene Therapy Program CIMA, IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
| | - Rubén Hernandez-Alcoceba
- Gene Therapy Program CIMA, IdiSNA, Navarra Institute for Health Research, University of Navarra, Pamplona, Spain
| | - Juan Manuel Encinas
- The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain.,Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain.,IKERBASQUE, The Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
65
|
Victor TR, Tsirka SE. Microglial contributions to aberrant neurogenesis and pathophysiology of epilepsy. NEUROIMMUNOLOGY AND NEUROINFLAMMATION 2020; 7:234-247. [PMID: 33154976 PMCID: PMC7641338 DOI: 10.20517/2347-8659.2020.02] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microglia are dynamic cells that constitute the brain's innate immune system. Recently, research has demonstrated microglial roles beyond immunity, which include homeostatic roles in the central nervous system. The function of microglia is an active area of study, with insights into changes in neurogenesis and synaptic pruning being discovered in both health and disease. In epilepsy, activated microglia contribute to several changes that occur during epileptogenesis. In this review, we focus on the effects of microglia on neurogenesis and synaptic pruning, and discuss the current state of anti-seizure drugs and how they affect microglia during these processes. Our understanding of the role of microglia post-seizure is still limited and may be pivotal in recognizing new therapeutic targets for seizure intervention.
Collapse
Affiliation(s)
- Tanya R Victor
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Stella E Tsirka
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
66
|
Regulation of Microglial Functions by Purinergic Mechanisms in the Healthy and Diseased CNS. Cells 2020; 9:cells9051108. [PMID: 32365642 PMCID: PMC7290360 DOI: 10.3390/cells9051108] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Microglial cells, the resident macrophages of the central nervous system (CNS), exist in a process-bearing, ramified/surveying phenotype under resting conditions. Upon activation by cell-damaging factors, they get transformed into an amoeboid phenotype releasing various cell products including pro-inflammatory cytokines, chemokines, proteases, reactive oxygen/nitrogen species, and the excytotoxic ATP and glutamate. In addition, they engulf pathogenic bacteria or cell debris and phagocytose them. However, already resting/surveying microglia have a number of important physiological functions in the CNS; for example, they shield small disruptions of the blood–brain barrier by their processes, dynamically interact with synaptic structures, and clear surplus synapses during development. In neurodegenerative illnesses, they aggravate the original disease by a microglia-based compulsory neuroinflammatory reaction. Therefore, the blockade of this reaction improves the outcome of Alzheimer’s Disease, Parkinson’s Disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. The function of microglia is regulated by a whole array of purinergic receptors classified as P2Y12, P2Y6, P2Y4, P2X4, P2X7, A2A, and A3, as targets of endogenous ATP, ADP, or adenosine. ATP is sequentially degraded by the ecto-nucleotidases and 5′-nucleotidase enzymes to the almost inactive inosine as an end product. The appropriate selective agonists/antagonists for purinergic receptors as well as the respective enzyme inhibitors may profoundly interfere with microglial functions and reconstitute the homeostasis of the CNS disturbed by neuroinflammation.
Collapse
|
67
|
Márquez-Ropero M, Benito E, Plaza-Zabala A, Sierra A. Microglial Corpse Clearance: Lessons From Macrophages. Front Immunol 2020; 11:506. [PMID: 32292406 PMCID: PMC7135884 DOI: 10.3389/fimmu.2020.00506] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
From development to aging and disease, the brain parenchyma is under the constant threat of debris accumulation, in the form of dead cells and protein aggregates. To prevent garbage buildup, the brain is equipped with efficient phagocytes: the microglia. Microglia are similar, but not identical to other tissue macrophages, and in this review, we will first summarize the differences in the origin, lineage and population maintenance of microglia and macrophages. Then, we will discuss several principles that govern macrophage phagocytosis of apoptotic cells (efferocytosis), including the existence of redundant recognition mechanisms ("find-me" and "eat-me") that lead to a tight coupling between apoptosis and phagocytosis. We will then describe that resulting from engulfment and degradation of apoptotic cargo, phagocytes undergo an epigenetic, transcriptional and metabolic rewiring that leads to trained immunity, and discuss its relevance for microglia and brain function. In summary, we will show that neuroimmunologists can learn many lessons from the well-developed field of macrophage phagocytosis biology.
Collapse
Affiliation(s)
- Mar Márquez-Ropero
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Eva Benito
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Ainhoa Plaza-Zabala
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|
68
|
Perez-Pouchoulen M, Yu SJ, Roby CR, Bonsavage N, McCarthy MM. Regulatory Control of Microglial Phagocytosis by Estradiol and Prostaglandin E2 in the Developing Rat Cerebellum. THE CEREBELLUM 2020; 18:882-895. [PMID: 31435854 DOI: 10.1007/s12311-019-01071-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microglia are essential to sculpting the developing brain, and they achieve this in part through the process of phagocytosis which is regulated by microenvironmental signals associated with cell death and synaptic connectivity. In the rat cerebellum, microglial phagocytosis reaches its highest activity during the third postnatal week of development but the factors regulating this activity are unknown. A signaling pathway, involving prostaglandin E2 (PGE2) stimulation of the estrogen synthetic enzyme aromatase, peaks during the 2nd postnatal week and is a critical regulator of Purkinje cell maturation. We explored the relationship between the PGE2-estradiol pathway and microglia in the maturing cerebellum. Toward that end, we treated developing rat pups with pharmacological inhibitors of estradiol and PGE2 synthesis and then stained microglia with the universal marker Iba1 and quantified microglia engaged in phagocytosis as well as phagocytic cups in the vermis and cerebellar hemispheres. Inhibition of aromatase reduced the number of phagocytic cups in the vermis, but not in the cerebellar hemisphere at postnatal day 17. Similar results were found after treatment with nimesulide and indomethacin, inhibitors of the PGE2-producing enzymes cyclooxygenase 1 and 2. In contrast, treatment with estradiol or PGE2 had little effect on microglial phagocytosis in the developing cerebellum. Thus, endogenous estrogens and prostaglandins upregulate the phagocytic activity of microglia during a select window of postnatal cerebellar development, but exogenous treatment with these same signaling molecules does not further increase the already high levels of phagocytosis. This may be due to an upper threshold or evidence of resistance to exogenous perturbation.
Collapse
Affiliation(s)
- Miguel Perez-Pouchoulen
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA.
| | - Stacey J Yu
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Clinton R Roby
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Nicole Bonsavage
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, 670 W. Baltimore Street, HSFIII 9-130, Baltimore, MD, 21201, USA
| |
Collapse
|
69
|
Lucassen PJ, Fitzsimons CP, Salta E, Maletic-Savatic M. Adult neurogenesis, human after all (again): Classic, optimized, and future approaches. Behav Brain Res 2020; 381:112458. [DOI: 10.1016/j.bbr.2019.112458] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/29/2019] [Accepted: 12/28/2019] [Indexed: 02/08/2023]
|
70
|
Blume ZI, Lambert JM, Lovel AG, Mitchell DM. Microglia in the developing retina couple phagocytosis with the progression of apoptosis via P2RY12 signaling. Dev Dyn 2020; 249:723-740. [PMID: 32072708 DOI: 10.1002/dvdy.163] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/30/2019] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microglia colonize the developing vertebrate central nervous system coincident with the detection of developmental apoptosis. Our understanding of apoptosis in intact tissue in relation to microglial clearance of dying cells is largely based on fixed samples, which is limiting given that microglia are highly motile and mobile phagocytes. Here, we used a system of microglial depletion and in vivo real-time imaging in zebrafish to directly address microglial phagocytosis of apoptotic cells during normal retinal development, the relative timing of phagocytosis in relation to apoptotic progression, and the contribution of P2RY12 signaling to this process. RESULTS The depletion of microglia resulted in accumulation of numerous apoptotic cells in the retina. Real-time imaging revealed precise timing of microglial engulfment with the progression of apoptosis, and dynamic movement and displacement of engulfed apoptotic cells. Inhibition of P2RY12 signaling delayed microglial clearance of apoptotic cells. CONCLUSIONS Microglial engulfment of dying cells is coincident with apoptotic progression and requires P2RY12 signaling, indicating that microglial P2RY12 signaling is shared between development and injury response. Our work provides important in vivo insight into the dynamics of apoptotic cell clearance in the developing vertebrate retina and provides a basis to understand microglial phagocytic behavior in health and disease.
Collapse
Affiliation(s)
- Zachary I Blume
- Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Jared M Lambert
- Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | - Anna G Lovel
- Biological Sciences, University of Idaho, Moscow, Idaho, USA
| | | |
Collapse
|
71
|
Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome. J Neurosci 2020; 40:1453-1482. [PMID: 31896673 PMCID: PMC7044727 DOI: 10.1523/jneurosci.0993-19.2019] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/15/2022] Open
Abstract
During adult hippocampal neurogenesis, most newborn cells undergo apoptosis and are rapidly phagocytosed by resident microglia to prevent the spillover of intracellular contents. Here, we propose that phagocytosis is not merely passive corpse removal but has an active role in maintaining neurogenesis. First, we found that neurogenesis was disrupted in male and female mice chronically deficient for two phagocytosis pathways: the purinergic receptor P2Y12, and the tyrosine kinases of the TAM family Mer tyrosine kinase (MerTK)/Axl. In contrast, neurogenesis was transiently increased in mice in which MerTK expression was conditionally downregulated. Next, we performed a transcriptomic analysis of the changes induced by phagocytosis in microglia in vitro and identified genes involved in metabolism, chromatin remodeling, and neurogenesis-related functions. Finally, we discovered that the secretome of phagocytic microglia limits the production of new neurons both in vivo and in vitro Our data suggest that microglia act as a sensor of local cell death, modulating the balance between proliferation and survival in the neurogenic niche through the phagocytosis secretome, thereby supporting the long-term maintenance of adult hippocampal neurogenesis.SIGNIFICANCE STATEMENT Microglia are the brain professional phagocytes and, in the adult hippocampal neurogenic niche, they remove newborn cells naturally undergoing apoptosis. Here we show that phagocytosis of apoptotic cells triggers a coordinated transcriptional program that alters their secretome, limiting neurogenesis both in vivo and in vitro In addition, chronic phagocytosis disruption in mice deficient for receptors P2Y12 and MerTK/Axl reduces adult hippocampal neurogenesis. In contrast, inducible MerTK downregulation transiently increases neurogenesis, suggesting that microglial phagocytosis provides a negative feedback loop that is necessary for the long-term maintenance of adult hippocampal neurogenesis. Therefore, we speculate that the effects of promoting engulfment/degradation of cell debris may go beyond merely removing corpses to actively promoting regeneration in development, aging, and neurodegenerative diseases.
Collapse
|
72
|
Abstract
Microglia are the resident immune cells and professional phagocytes of the central nervous system. However, little is known about the contribution of their phagocytic signaling to the neuropathology and pathophysiology of epilepsy. Here, we summarize and discuss the implications of recent evidence supporting that aberrant microglia phagocytic activity and alterations in phagocytosis signaling molecules occur in association with microglia-neuronal contacts, neuronal/synaptic loss, and spontaneous recurrent seizures in human and preclinical models of epilepsy. This body of evidence provides strong support that the microglial contribution to epileptogenic networks goes beyond inflammation, and suggests that phagocytic signaling molecules may be novel therapeutic targets for epilepsy.
Collapse
Affiliation(s)
| | - Amy L. Brewster
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
73
|
Savage JC, St-Pierre MK, Hui CW, Tremblay ME. Microglial Ultrastructure in the Hippocampus of a Lipopolysaccharide-Induced Sickness Mouse Model. Front Neurosci 2019; 13:1340. [PMID: 31920505 PMCID: PMC6932978 DOI: 10.3389/fnins.2019.01340] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Sickness behavior is a set of behavioral changes induced by infections and mediated by pro-inflammatory cytokines. It is characterized by fatigue, decreased appetite and weight loss, changes in sleep patterns, cognitive functions, and lost interest in social activity. It can expedite recovery by conserving energy to mount an immune response involving innate immunity. To provide insights into microglial implication in sickness behavior with special focus on cognitive and social impairment, we investigated changes in their ultrastructure and interactions with synapses using a toxemia mouse model. Adult mice were injected with 1 mg/kg lipopolysaccharide (LPS) or saline, and assayed for signs of sickness behavior. LPS treated mice displayed reduced activity in open-field tests 24 h post-injection, while social avoidance and weight gain/loss were not significantly different between treatment groups. Microglia were investigated using electron microscopy to describe changes in their structure and function at nanoscale resolution. Microglial cell bodies and processes were investigated in the hippocampus CA1, a region responsible for learning and memory that is often impacted after peripheral LPS administration. Microglia in LPS treated animals displayed larger cell bodies as well as less complex processes at the time point examined. Strikingly, microglial processes in LPS injected animals were also more likely to contact excitatory synapses and contained more phagocytic material compared with saline injected controls. We have identified at the ultrastructural level significant changes in microglia-synapse interactions shortly after LPS administration, which draws attention to studying the roles of microglia in synaptic rewiring after inflammatory stimuli.
Collapse
Affiliation(s)
- Julie C Savage
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Marie-Kim St-Pierre
- Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Chin Wai Hui
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
74
|
Synaptic Pruning by Microglia in Epilepsy. J Clin Med 2019; 8:jcm8122170. [PMID: 31818018 PMCID: PMC6947403 DOI: 10.3390/jcm8122170] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Structural and functional collapse of the balance between excitatory (E) and inhibitory (I) synapses, i.e., synaptic E/I balance, underlies the pathogeneses of various central nervous system (CNS) disorders. In epilepsy, the synaptic E/I balance tips toward excitation; thus, most of the existing epileptic remedies have focused on how to directly suppress the activity of neurons. However, because as many as 30% of patients with epilepsy are drug resistant, the discovery of new therapeutic targets is strongly desired. Recently, the roles of glial cells in epilepsy have gained attention because glial cells manipulate synaptic structures and functions in addition to supporting neuronal survival and growth. Among glial cells, microglia, which are brain-resident immune cells, have been shown to mediate inflammation, neuronal death and aberrant neurogenesis after epileptic seizures. However, few studies have investigated the involvement of synaptic pruning—one of the most important roles of microglia—in the epileptic brain. In this review, we propose and discuss the hypothesis that synaptic pruning by microglia is enhanced in the epileptic brain, drawing upon the findings of previous studies. We further discuss the possibility that aberrant synaptic pruning by microglia induces synaptic E/I imbalance, promoting the development and aggravation of epilepsy.
Collapse
|
75
|
Sierra A, Paolicelli RC, Kettenmann H. Cien Años de Microglía: Milestones in a Century of Microglial Research. Trends Neurosci 2019; 42:778-792. [PMID: 31635851 DOI: 10.1016/j.tins.2019.09.004] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022]
Abstract
The year 2019 marks the 100-year anniversary of the discovery of microglia by Pío del Río-Hortega. We will recount the state of neuroscience research at the beginning of the 20th century and the heated scientific dispute regarding microglial identity. We will then walk through some of the milestones of microglial research in the decades since then. In the last 20 years, the field has grown exponentially. Researchers have shown that microglia are unlike any other resident macrophages: they have a unique origin and distinguishing features. Microglia are extraordinarily motile cells and constantly survey their environment, interacting with neurons, astrocytes, oligodendrocytes, neural stem cells, and infiltrating immune cells. We finally highlight some open questions for future research regarding microglia's identity, population dynamics, and dual (beneficial and detrimental) role in pathology.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro Basque Center for Neuroscience, Ikerbasque Foundation, University of the Basque Country UPV/EHU, Parque Científico UPV/EHU, Barrio Sarriena s/n, Leioa, Bizkaia, 48940, Spain.
| | - Rosa C Paolicelli
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland.
| | - Helmut Kettenmann
- Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Cellular Neurosciences, Robert Roessle Str 10, 13092 Berlin, Germany.
| |
Collapse
|
76
|
Kavetsky L, Green KK, Boyle BR, Yousufzai FAK, Padron ZM, Melli SE, Kuhnel VL, Jackson HM, Blanco RE, Howell GR, Soto I. Increased interactions and engulfment of dendrites by microglia precede Purkinje cell degeneration in a mouse model of Niemann Pick Type-C. Sci Rep 2019; 9:14722. [PMID: 31605022 PMCID: PMC6788982 DOI: 10.1038/s41598-019-51246-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Niemann Pick Type-C disease (NPC) is an inherited lysosomal storage disease (LSD) caused by pathogenic variants in the Npc1 or Npc2 genes that lead to the accumulation of cholesterol and lipids in lysosomes. NPC1 deficiency causes neurodegeneration, dementia and early death. Cerebellar Purkinje cells (PCs) are particularly hypersensitive to NPC1 deficiency and degenerate earlier than other neurons in the brain. Activation of microglia is an important contributor to PCs degeneration in NPC. However, the mechanisms by which activated microglia promote PCs degeneration in NPC are not completely understood. Here, we are demonstrating that in the Npc1nmf164 mouse cerebellum, microglia in the molecular layer (ML) are activated and contacting dendrites at early stages of NPC, when no loss of PCs is detected. During the progression of PCs degeneration in Npc1nmf164 mice, accumulation of phagosomes and autofluorescent material in microglia at the ML coincided with the degeneration of dendrites and PCs. Feeding Npc1nmf164 mice a western diet (WD) increased microglia activation and corresponded with a more extensive degeneration of dendrites but not PC somata. Together our data suggest that microglia contribute to the degeneration of PCs by interacting, engulfing and phagocytosing their dendrites while the cell somata are still present.
Collapse
Affiliation(s)
- Larisa Kavetsky
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Kayla K Green
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Bridget R Boyle
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Fawad A K Yousufzai
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Zachary M Padron
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Sierra E Melli
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Victoria L Kuhnel
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | | | - Rosa E Blanco
- The Institute of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | | | - Ileana Soto
- Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ, USA.
| |
Collapse
|
77
|
Sommer D, Corstjens I, Sanchez S, Dooley D, Lemmens S, Van Broeckhoven J, Bogie J, Vanmierlo T, Vidal PM, Rose-John S, Gou-Fabregas M, Hendrix S. ADAM17-deficiency on microglia but not on macrophages promotes phagocytosis and functional recovery after spinal cord injury. Brain Behav Immun 2019; 80:129-145. [PMID: 30851378 DOI: 10.1016/j.bbi.2019.02.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
A disintegrin and metalloproteinase 17 (ADAM17) is the major sheddase involved in the cleavage of a plethora of cytokines, cytokine receptors and growth factors, thereby playing a substantial role in inflammatory and regenerative processes after central nervous system trauma. By making use of a hypomorphic ADAM17 knockin mouse model as well as pharmacological ADAM10/ADAM17 inhibitors, we showed that ADAM17-deficiency or inhibition significantly increases clearance of apoptotic cells, promotes axon growth and improves functional recovery after spinal cord injury (SCI) in mice. Microglia-specific ADAM17-knockout (ADAM17flox+/+-Cx3Cr1 Cre+/-) mice also showed improved functional recovery similar to hypomorphic ADAM17 mice. In contrast, endothelial-specific (ADAM17flox+/+-Cdh5Pacs Cre+/-) and macrophage-specific (ADAM17flox+/+-LysM Cre+/-) ADAM17-knockout mice or bone marrow chimera with transplanted ADAM17-deficient macrophages, displayed no functional improvement compared to wild type mice. These data indicate that ADAM17 expression on microglia cells (and not on macrophages or endothelial cells) plays a detrimental role in inflammation and functional recovery after SCI.
Collapse
Affiliation(s)
- Daniela Sommer
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Inge Corstjens
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Selien Sanchez
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Dearbhaile Dooley
- Health Science Centre, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Stefanie Lemmens
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | | | - Jeroen Bogie
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | - Tim Vanmierlo
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; Division of Translational Neuroscience, MHeNs, Maastricht University, 6229ER Maastricht, the Netherlands
| | - Pia M Vidal
- Laboratory of Neuroimmunology, Fundación Ciencia & Vida, 7780272 Santiago, Chile
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts University Kiel, 24098 Kiel, Germany
| | | | - Sven Hendrix
- Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium.
| |
Collapse
|
78
|
Shi X, Jiang X, Yuan B, Liu T, Tang Y, Che Y, Shi Y, Ai Q. LINC01093 Upregulation Protects against Alcoholic Hepatitis through Inhibition of NF-κB Signaling Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 17:791-803. [PMID: 31450097 PMCID: PMC6716105 DOI: 10.1016/j.omtn.2019.06.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 12/13/2022]
Abstract
The long noncoding RNAs (lncRNAs) have been proven to be involved in the development of alcoholic hepatitis (AH), which has been regarded as a severe form of acute liver injury with a high mortality rate. Through the GEO database, the differentially expressed LINC01093 and intercellular cell adhesion molecule-1 (ICAM-1) were identified in AH. Then, to clarify their specific role and underlying mechanism in AH, we constructed an AH mouse model by using Lieber-Decarli alcoholic feed. It was found that LINC01093 was poorly expressed and ICAM-1 was highly expressed in AH mice. After that, the interactions among LINC01093, ICAM-1, and NF-κB signaling pathway were explored, which verified that LINC01093 could target ICAM-1 and inhibit the NF-κB signaling pathway. Finally, after the hepatocytes were isolated from AH mice, the expression of LINC01093 was up- or downregulated or that of ICAM-1 was silenced to evaluate their effect on cell viability and apoptosis. The corresponding results demonstrated that after overexpression of LINC01093 or silencing of ICAM-1, cell viability was increased and cell apoptosis was reduced in the hepatocytes of AH mice. Moreover, the silencing of LINC01093 was observed to inhibit the viability and promote the apoptosis of hepatocytes of AH mice. Altogether, these results provide evidence that overexpression of LINC01093 could effectively suppress hepatocyte apoptosis and promote proliferation by inhibiting the ICAM-1-mediated NF-κB signaling pathway, thus playing a functional role in AH and hepatic fibrosis.
Collapse
Affiliation(s)
- Xu Shi
- Clinical Laboratory, the First Hospital of Jilin University, Changchun 130000, China
| | - Xiaoming Jiang
- Department of Emergency, the First Hospital of Jilin University, Changchun 130000, China
| | - Baoshan Yuan
- Clinical Laboratory, the First Hospital of Jilin University, Changchun 130000, China
| | - Tianming Liu
- Clinical Laboratory, the First Hospital of Jilin University, Changchun 130000, China
| | - Ying Tang
- Department of Respiration, the First Hospital of Jilin University, Changchun 130000, China
| | - Yuanyuan Che
- Clinical Laboratory, the First Hospital of Jilin University, Changchun 130000, China
| | - Ying Shi
- Department of Hepatology, the First Hospital of Jilin University, Changchun 130000, China.
| | - Qing Ai
- Clinical Laboratory, the First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
79
|
Kaur T, Clayman AC, Nash AJ, Schrader AD, Warchol ME, Ohlemiller KK. Lack of Fractalkine Receptor on Macrophages Impairs Spontaneous Recovery of Ribbon Synapses After Moderate Noise Trauma in C57BL/6 Mice. Front Neurosci 2019; 13:620. [PMID: 31263398 PMCID: PMC6585312 DOI: 10.3389/fnins.2019.00620] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023] Open
Abstract
Noise trauma causes loss of synaptic connections between cochlear inner hair cells (IHCs) and the spiral ganglion neurons (SGNs). Such synaptic loss can trigger slow and progressive degeneration of SGNs. Macrophage fractalkine signaling is critical for neuron survival in the injured cochlea, but its role in cochlear synaptopathy is unknown. Fractalkine, a chemokine, is constitutively expressed by SGNs and signals via its receptor CX3CR1 that is expressed on macrophages. The present study characterized the immune response and examined the function of fractalkine signaling in degeneration and repair of cochlear synapses following noise trauma. Adult mice wild type, heterozygous and knockout for CX3CR1 on a C57BL/6 background were exposed for 2 h to an octave band noise at 90 dB SPL. Noise exposure caused temporary shifts in hearing thresholds without any evident loss of hair cells in CX3CR1 heterozygous mice that have intact fractalkine signaling. Enhanced macrophage migration toward the IHC-synaptic region was observed immediately after exposure in all genotypes. Synaptic immunolabeling revealed a rapid loss of ribbon synapses throughout the basal turn of the cochlea of all genotypes. The damaged synapses spontaneously recovered in mice with intact CX3CR1. However, CX3CR1 knockout (KO) animals displayed enhanced synaptic degeneration that correlated with attenuated suprathreshold neural responses at higher frequencies. Exposed CX3CR1 KO mice also exhibited increased loss of IHCs and SGN cell bodies compared to exposed heterozygous mice. These results indicate that macrophages can promote repair of damaged synapses after moderate noise trauma and that repair requires fractalkine signaling.
Collapse
Affiliation(s)
- Tejbeer Kaur
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Anna C Clayman
- Program in Audiology and Communication Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Andrew J Nash
- Program in Audiology and Communication Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Angela D Schrader
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kevin K Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States.,Program in Audiology and Communication Sciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
80
|
Zhao X, Liao Y, Morgan S, Mathur R, Feustel P, Mazurkiewicz J, Qian J, Chang J, Mathern GW, Adamo MA, Ritaccio AL, Gruenthal M, Zhu X, Huang Y. Noninflammatory Changes of Microglia Are Sufficient to Cause Epilepsy. Cell Rep 2019; 22:2080-2093. [PMID: 29466735 PMCID: PMC5880308 DOI: 10.1016/j.celrep.2018.02.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/27/2017] [Accepted: 01/31/2018] [Indexed: 12/25/2022] Open
Abstract
Microglia are well known to play a critical role in maintaining brain homeostasis. However, their role in epileptogenesis has yet to be determined. Here, we demonstrate that elevated mTOR signaling in mouse microglia leads to phenotypic changes, including an amoeboid-like morphology, increased proliferation, and robust phagocytosis activity, but without a significant induction of pro-inflammatory cytokines. We further provide evidence that these noninflammatory changes in microglia disrupt homeostasis of the CNS, leading to reduced synapse density, marked microglial infiltration into hippocampal pyramidal layers, moderate neuronal degeneration, and massive proliferation of astrocytes. Moreover, the mice thus affected develop severe early-onset spontaneous recurrent seizures (SRSs). Therefore, we have revealed an epileptogenic mechanism that is independent of the microglial inflammatory response. Our data suggest that microglia could be an opportune target for epilepsy prevention.
Collapse
Affiliation(s)
- Xiaofeng Zhao
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Yuan Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Shannon Morgan
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Ramkumar Mathur
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Paul Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Joseph Mazurkiewicz
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Jiang Qian
- Department of Pathology, Albany Medical College, Albany, NY 12208, USA
| | - Julia Chang
- Department of Neurosurgery, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gary W Mathern
- Department of Neurosurgery, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew A Adamo
- Department of Neurosurgery, Albany Medical College, Albany, NY 12208, USA
| | | | - Michael Gruenthal
- Department of Neurology, Albany Medical College, Albany, NY 12208, USA
| | - Xinjun Zhu
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA; Department of Medicine, Albany Medical College, Albany, NY 12208, USA
| | - Yunfei Huang
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
81
|
Herzog C, Pons Garcia L, Keatinge M, Greenald D, Moritz C, Peri F, Herrgen L. Rapid clearance of cellular debris by microglia limits secondary neuronal cell death after brain injury in vivo. Development 2019; 146:146/9/dev174698. [PMID: 31076485 DOI: 10.1242/dev.174698] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/11/2019] [Indexed: 12/25/2022]
Abstract
Moderate or severe traumatic brain injury (TBI) causes widespread neuronal cell death. Microglia, the resident macrophages of the brain, react to injury by migrating to the lesion site, where they phagocytose cellular debris. Microglial phagocytosis can have both beneficial (e.g. debris clearance) and detrimental (e.g. respiratory burst, phagoptosis) consequences. Hence, whether the overall effect of microglial phagocytosis after brain injury in vivo is neuroprotective or neurotoxic is not known. Here, we establish a system with which to carry out dynamic real-time analyses of the mechanisms regulating cell death after brain injury in vivo We show that mechanical injury to the larval zebrafish brain induces distinct phases of primary and secondary cell death. Excitotoxicity contributes to secondary cell death in zebrafish, reflecting findings from mammals. Microglia arrive at the lesion site within minutes of injury, where they rapidly engulf dead cells. Importantly, the rate of secondary cell death is increased when the rapid removal of cellular debris by microglia is reduced pharmacologically or genetically. In summary, our results provide evidence that microglial debris clearance is neuroprotective after brain injury in vivo.
Collapse
Affiliation(s)
- Chiara Herzog
- Centre for Discovery Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Laura Pons Garcia
- Centre for Discovery Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Marcus Keatinge
- Centre for Discovery Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - David Greenald
- Centre for Discovery Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | | | - Francesca Peri
- Institute of Molecular Life Sciences, University of Zürich, Winterthurerstraße 190, 8057 Zürich, Switzerland
| | - Leah Herrgen
- Centre for Discovery Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
82
|
Nelson LH, Saulsbery AI, Lenz KM. Small cells with big implications: Microglia and sex differences in brain development, plasticity and behavioral health. Prog Neurobiol 2019; 176:103-119. [PMID: 30193820 PMCID: PMC8008579 DOI: 10.1016/j.pneurobio.2018.09.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/17/2018] [Accepted: 09/01/2018] [Indexed: 12/20/2022]
Abstract
Brain sex differences are programmed largely by sex hormone secretions and direct sex chromosome effects in early life, and are subsequently modulated by early life experiences. The brain's resident immune cells, called microglia, actively contribute to brain development. Recent research has shown that microglia are sexually dimorphic, especially during early life, and may participate in sex-specific organization of the brain and behavior. Likewise, sex differences in immune cells and their signaling in the adult brain have been found, although in most cases their function remains unclear. Additionally, immune cells and their signaling have been implicated in many disorders in which brain development or plasticity is altered, including autism, schizophrenia, pain disorders, major depression, and postpartum depression. This review summarizes what is currently known about sex differences in neuroimmune function in development and during other major phases of brain plasticity, as well as the current state of knowledge regarding sex-specific neuroimmune function in psychiatric disorders.
Collapse
Affiliation(s)
- Lars H Nelson
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Angela I Saulsbery
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
83
|
Abstract
Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry Böttcher C, Schlickeiser S, Sneeboer MAM, et al. Nat Neurosci. 2019;22(1):78-90. doi:10.1038/s41593-018-0290-2 Microglia, the specialized innate immune cells of the central nervous system, play crucial roles in neural development and function. Different phenotypes and functions have been ascribed to rodent microglia, but little is known about human microglia (huMG) heterogeneity. Difficulties in procuring huMG and their susceptibility to cryopreservation damage have limited large-scale studies. Here we applied multiplexed mass cytometry for a comprehensive characterization of postmortem huMG (103-104 cells). We determined expression levels of 57 markers on huMG isolated from up to 5 different brain regions of 9 donors. We identified the phenotypic signature of huMG, which was distinct from peripheral myeloid cells but was comparable to fresh huMG. We detected microglia regional heterogeneity using a hybrid workflow combining Cytobank and R/Bioconductor for multidimensional data analysis. Together, these methodologies allowed us to perform high-dimensional, large-scale Immunophenotyping of huMG at the single-cell level, which facilitates their unambiguous profiling in health and disease.
Collapse
|
84
|
Uweru JO, Eyo UB. A decade of diverse microglial-neuronal physical interactions in the brain (2008-2018). Neurosci Lett 2019; 698:33-38. [PMID: 30625349 PMCID: PMC6435396 DOI: 10.1016/j.neulet.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/29/2018] [Accepted: 01/01/2019] [Indexed: 12/17/2022]
Abstract
Microglia are unique cells of the central nervous system (CNS) with a distinct ontogeny and molecular profile. They are the predominant immune resident cell in the CNS. Recent studies have revealed a diversity of transient and terminal physical interactions between microglia and neurons in the vertebrate brain. In this review, we follow the historical trail of the discovery of these interactions, summarize their notable features, provide implications of these discoveries to CNS function, emphasize emerging themes along the way and peak into the future of what outstanding questions remain to move the field forward.
Collapse
Affiliation(s)
- Joseph O Uweru
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States; Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, United States
| | - Ukpong B Eyo
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States; Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA, United States.
| |
Collapse
|
85
|
Sayo A, Konishi H, Kobayashi M, Kano K, Kobayashi H, Hibi H, Aoki J, Kiyama H. GPR34 in spinal microglia exacerbates neuropathic pain in mice. J Neuroinflammation 2019; 16:82. [PMID: 30975169 PMCID: PMC6458787 DOI: 10.1186/s12974-019-1458-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background Neuropathic pain is caused by sensory nerve injury, but effective treatments are currently lacking. Microglia are activated in the spinal dorsal horn after sensory nerve injury and contribute to neuropathic pain. Accordingly, molecules expressed by these cells are considered potential targets for therapeutic strategies. Our previous gene screening study using a mouse model of motor nerve injury showed that the G-protein-coupled receptor 34 gene (GPR34) is induced by nerve injury. Because GPR34 is now considered a microglia-enriched gene, we explored the possibility that it might be involved in microglial activation in the dorsal horn in a mouse model of neuropathic pain. Methods mRNA expression of GPR34 and pro-inflammatory molecules was determined by quantitative real-time PCR in wild-type and GPR34-deficient mice with L4 spinal nerve injury. In situ hybridization was used to identify GPR34 expression in microglia, and immunohistochemistry with the microglial marker Iba1 was performed to examine microglial numbers and morphology. Mechanical sensitivity was evaluated by the von Frey hair test. Liquid chromatography–tandem mass spectrometry quantified expression of the ligand for GPR34, lysophosphatidylserine (LysoPS), in the dorsal horn, and a GPR34 antagonist was intrathecally administrated to examine the effect of inhibiting LysoPS-GPR34 signaling on mechanical sensitivity. Results GPR34 was predominantly expressed by microglia in the dorsal horn after L4 nerve injury. There were no histological differences in microglial numbers or morphology between WT and GPR34-deficient mice. However, nerve injury-induced pro-inflammatory cytokine expression levels in microglia and pain behaviors were significantly attenuated in GPR34-deficient mice. Furthermore, the intrathecal administration of the GPR34 antagonist reduced neuropathic pain. Conclusions Inhibition of GPR34-mediated signal by GPR34 gene deletion reduced nerve injury-induced neuropathic pain by suppressing pro-inflammatory responses of microglia without affecting their morphology. Therefore, the suppression of GPR34 activity may have therapeutic potential for alleviating neuropathic pain. Electronic supplementary material The online version of this article (10.1186/s12974-019-1458-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Akira Sayo
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.,Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Masaaki Kobayashi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kuniyuki Kano
- Department of Molecular and Cellular Biochemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Hiroki Kobayashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Junken Aoki
- Department of Molecular and Cellular Biochemistry, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, 980-8578, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
86
|
Bielefeld P, Schouten M, Meijer GM, Breuk MJ, Geijtenbeek K, Karayel S, Tiaglik A, Vuuregge AH, Willems RAL, Witkamp D, Lucassen PJ, Encinas JM, Fitzsimons CP. Co-administration of Anti microRNA-124 and -137 Oligonucleotides Prevents Hippocampal Neural Stem Cell Loss Upon Non-convulsive Seizures. Front Mol Neurosci 2019; 12:31. [PMID: 30837840 PMCID: PMC6389789 DOI: 10.3389/fnmol.2019.00031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/24/2019] [Indexed: 11/13/2022] Open
Abstract
Convulsive seizures promote adult hippocampal neurogenesis (AHN) through a transient activation of neural stem/progenitor cells (NSPCs) in the subgranular zone (SGZ) of the dentate gyrus (DG). However, in a significant population of epilepsy patients, non-convulsive seizures (ncSZ) are observed. The response of NSPCs to non-convulsive seizure induction has not been characterized before. We here studied first the short-term effects of controlled seizure induction on NSPCs fate and identity. We induced seizures of controlled intensity by intrahippocampally injecting increasing doses of the chemoconvulsant kainic acid (KA) and analyzed their effect on subdural EEG recordings, hippocampal structure, NSPC proliferation and the number and location of immature neurons shortly after seizure onset. After establishing a KA dose that elicits ncSZ, we then analyzed the effects of ncSZ on NSPC proliferation and NSC identity in the hippocampus. ncSZ specifically triggered neuroblast proliferation, but did not induce proliferation of NSPCs in the SGZ, 3 days post seizure onset. However, ncSZ induced significant changes in NSPC composition in the hippocampus, including the generation of reactive NSCs. Interestingly, intrahippocampal injection of a combination of two anti microRNA oligonucleotides targeting microRNA-124 and -137 normalized neuroblast proliferation and prevented NSC loss in the DG upon ncSZ. Our results show for the first time that ncSZ induce significant changes in neuroblast proliferation and NSC composition. Simultaneous antagonism of both microRNA-124 and -137 rescued seizure-induced alterations in NSPC, supporting their coordinated action in the regulation of NSC fate and proliferation and their potential for future seizure therapies.
Collapse
Affiliation(s)
- Pascal Bielefeld
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marijn Schouten
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Guido M Meijer
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J Breuk
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Karlijne Geijtenbeek
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sedef Karayel
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Alisa Tiaglik
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Anna H Vuuregge
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Ruth A L Willems
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Diede Witkamp
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paul J Lucassen
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Juan M Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain.,Ikerbasque Foundation, Bilbao, Spain.,University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Carlos P Fitzsimons
- Neuroscience Program, Swammerdam Institute for Life Sciences, Faculty of Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
87
|
Jonavičė U, Tunaitis V, Kriaučiūnaitė K, Jarmalavičiūtė A, Pivoriūnas A. Extracellular vesicles can act as a potent immunomodulators of human microglial cells. J Tissue Eng Regen Med 2019; 13:309-318. [PMID: 30650469 DOI: 10.1002/term.2810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/20/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023]
Abstract
Functional impairments of microglia have been recently associated with several neurological conditions. Therefore, modulation of anti-inflammatory and phagocytic properties of microglial cells could represent a novel therapeutic approach. In the present study, we investigated the effects of extracellular vesicles (EVs) derived from stem cells from the dental pulp of human exfoliated deciduous teeth (SHEDs) on the inflammatory response and functional properties of immortalized human microglial cells. NFκB reporter assays demonstrated that EVs suppressed LPS-induced activation of NFκB signalling pathway in human microglial cells. The effect was similar to that obtained with anti-TLR4 blocking antibody. We also show that EVs differentially affected phagocytic activity of unpolarized (M0) and polarized (M1 and M2) microglial cells. EVs induced significant upregulation of phagocytic activity in M0 cells (by 39%), slight decrease in M1 cells, and moderate increase (by 21%) in M2 cells. The Seahorse XF Glycolysis Stress Test revealed that EVs induced an immediate and sustained increase of glycolytic activity in M0, M1, and M2 cells. Interestingly, EVs acted in an inverse dose-dependent manner. These findings indicate that EVs can induce glycolytic reprogramming of unpolarized and polarized human microglial cells. In conclusion, our pilot study demonstrates that EVs derived from SHEDs can act as a potent immunomodulators of human microglial cells. These findings could be potentially exploited for the development of new therapeutic strategies targeting neuroinflammatory microglia.
Collapse
Affiliation(s)
- Ugnė Jonavičė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Virginijus Tunaitis
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Karolina Kriaučiūnaitė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Akvilė Jarmalavičiūtė
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| |
Collapse
|
88
|
Kyrargyri V, Attwell D, Jolivet RB, Madry C. Analysis of Signaling Mechanisms Regulating Microglial Process Movement. Methods Mol Biol 2019; 2034:191-205. [PMID: 31392686 DOI: 10.1007/978-1-4939-9658-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microglia, the brain's innate immune cells, are extremely motile cells, continuously surveying the central nervous system (CNS) to serve homeostatic functions and to respond to pathological events. In the healthy brain, microglia exhibit a small cell body with long, branched, and highly motile processes, which constantly extend and retract, effectively "patrolling" the brain parenchyma. Over the last decade, methodological advances in microscopy and the availability of genetically encoded reporter mice have allowed us to probe microglial physiology in situ. Beyond their classical immunological roles, unexpected functions of microglia have been revealed, both in the developing and the adult brain: microglia regulate the generation of newborn neurons, control the formation and elimination of synapses, and modulate neuronal activity. Many of these newly ascribed functions depend directly on microglial process movement. Thus, elucidating the mechanisms underlying microglial motility is of great importance to understand their role in brain physiology and pathophysiology. Two-photon imaging of fluorescently labeled microglia, either in vivo or ex vivo in acute brain slices, has emerged as an indispensable tool for investigating microglial movements and their functional consequences. This chapter aims to provide a detailed description of the experimental data acquisition and analysis needed to address these questions, with a special focus on key dynamic and morphological metrics such as surveillance, directed motility, and ramification.
Collapse
Affiliation(s)
- Vasiliki Kyrargyri
- Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Renaud Blaise Jolivet
- Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva, Switzerland
- CERN, Geneva, Switzerland
| | - Christian Madry
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
89
|
Uzuneser TC, Speidel J, Kogias G, Wang AL, de Souza Silva MA, Huston JP, Zoicas I, von Hörsten S, Kornhuber J, Korth C, Müller CP. Disrupted-in-Schizophrenia 1 (DISC1) Overexpression and Juvenile Immune Activation Cause Sex-Specific Schizophrenia-Related Psychopathology in Rats. Front Psychiatry 2019; 10:222. [PMID: 31057438 PMCID: PMC6465888 DOI: 10.3389/fpsyt.2019.00222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023] Open
Abstract
Synaptic pruning is a critical refinement step during neurodevelopment, and schizophrenia has been associated with overpruning of cortical dendritic spines. Both human studies and animal models implicate disrupted-in-schizophrenia 1 (DISC1) gene as a strong susceptibility factor for schizophrenia. Accumulating evidence supports the involvement of DISC1 protein in the modulation of synaptic elimination during critical periods of neurodevelopment and of dopamine D2-receptor-mediated signaling during adulthood. In many species, synaptic pruning occurs during juvenile and adolescent periods and is mediated by microglia, which can be over-activated by an immune challenge, giving rise to overpruning. Therefore, we sought to investigate possible interactions between a transgenic DISC1 model (tgDISC1) and juvenile immune activation (JIA) by the bacterial cell wall endotoxin lipopolysaccharide on the induction of schizophrenia-related behavioral and neurochemical disruptions in adult female and male rats. We examined possible behavioral aberrations along three major symptom dimensions of schizophrenia including psychosis, social and emotional disruptions, and cognitive impairments. We detected significant gene-environment interactions in the amphetamine-induced locomotion in female animals and in the amphetamine-induced anxiety in male animals. Surprisingly, gene-environment interactions improved social memory in both male and female animals. JIA alone disrupted spatial memory and recognition memory, but only in male animals. DISC1 overexpression alone induced an improvement in sensorimotor gating, but only in female animals. Our neurochemical analyses detected sex- and manipulation-dependent changes in the postmortem monoamine content of animals. Taken together, we here report sex-specific effects of environment and genotype as well as their interaction on behavioral phenotypes and neurochemical profiles relevant for schizophrenia.
Collapse
Affiliation(s)
- Taygun C Uzuneser
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jil Speidel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Georgios Kogias
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - An-Li Wang
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Maria A de Souza Silva
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioral Neuroscience, Institute of Experimental Psychology, University of Düsseldorf, Düsseldorf, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten Korth
- Department of Neuropathology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
90
|
Duncan D, Barisano G, Cabeen R, Sepehrband F, Garner R, Braimah A, Vespa P, Pitkänen A, Law M, Toga AW. Analytic Tools for Post-traumatic Epileptogenesis Biomarker Search in Multimodal Dataset of an Animal Model and Human Patients. Front Neuroinform 2018; 12:86. [PMID: 30618695 PMCID: PMC6307529 DOI: 10.3389/fninf.2018.00086] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/02/2018] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is among the most common serious disabling disorders of the brain, and the global burden of epilepsy exerts a tremendous cost to society. Most people with epilepsy have acquired forms of the disorder, and the development of antiepileptogenic interventions could potentially prevent or cure epilepsy in many of them. However, the discovery of potential antiepileptogenic treatments and clinical validation would require a means to identify populations of patients at very high risk for epilepsy after a potential epileptogenic insult, to know when to treat and to document prevention or cure. A fundamental challenge in discovering biomarkers of epileptogenesis is that this process is likely multifactorial and crosses multiple modalities. Investigators must have access to a large number of high quality, well-curated data points and study subjects for biomarker signals to be detectable above the noise inherent in complex phenomena, such as epileptogenesis, traumatic brain injury (TBI), and conditions of data collection. Additionally, data generating and collecting sites are spread worldwide among different laboratories, clinical sites, heterogeneous data types, formats, and across multi-center preclinical trials. Before the data can even be analyzed, these data must be standardized. The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is a multi-center project with the overarching goal that epileptogenesis after TBI can be prevented with specific treatments. The identification of relevant biomarkers and performance of rigorous preclinical trials will permit the future design and performance of economically feasible full-scale clinical trials of antiepileptogenic therapies. We have been analyzing human data collected from UCLA and rat data collected from the University of Eastern Finland, both centers collecting data for EpiBioS4Rx, to identify biomarkers of epileptogenesis. Big data techniques and rigorous analysis are brought to longitudinal data collected from humans and an animal model of TBI, epilepsy, and their interaction. The prolonged continuous data streams of intracranial, cortical surface, and scalp EEG from humans and an animal model of epilepsy span months. By applying our innovative mathematical tools via supervised and unsupervised learning methods, we are able to subject a robust dataset to recently pioneered data analysis tools and visualize multivariable interactions with novel graphical methods.
Collapse
Affiliation(s)
- Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Giuseppe Barisano
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Ryan Cabeen
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Farshid Sepehrband
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Rachael Garner
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Adebayo Braimah
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Paul Vespa
- Division of Neurosurgery, Department of Neurology, University of California at Los Angeles School of Medicine Los Angeles, CA, United States
| | - Asla Pitkänen
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland, Kuopio, Finland
| | - Meng Law
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| | - Arthur W Toga
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California Los Angeles, CA, United States
| |
Collapse
|
91
|
Hu G, Liao K, Niu F, Yang L, Dallon BW, Callen S, Tian C, Shu J, Cui J, Sun Z, Lyubchenko YL, Ka M, Chen XM, Buch S. Astrocyte EV-Induced lincRNA-Cox2 Regulates Microglial Phagocytosis: Implications for Morphine-Mediated Neurodegeneration. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:450-463. [PMID: 30388619 PMCID: PMC6202788 DOI: 10.1016/j.omtn.2018.09.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022]
Abstract
Impairment of microglial functions, such as phagocytosis and/or dysregulation of immune responses, has been implicated as an underlying factor involved in the pathogenesis of various neurodegenerative disorders. Our previous studies have demonstrated that long intergenic noncoding RNA (lincRNA)-Cox2 expression is influenced by nuclear factor κB (NF-κB) signaling and serves as a coactivator of transcriptional factors to regulate the expression of a vast array of immune-related genes in microglia. Extracellular vesicles (EVs) have been recognized as primary facilitators of cell-to-cell communication and cellular regulation. Herein, we show that EVs derived from astrocytes exposed to morphine can be taken up by microglial endosomes, leading, in turn, to activation of Toll-like receptor 7 (TLR7) with a subsequent upregulation of lincRNA-Cox2 expression, ultimately resulting in impaired microglial phagocytosis. This was further validated in vivo, wherein inhibition of microglial phagocytic activity was also observed in brain slices isolated from morphine-administrated mice compared with control mice. Additionally, we also showed that intranasal delivery of EVs containing lincRNA-Cox2 siRNA (small interfering RNA) was able to restore microglial phagocytic activity in mice administered morphine. These findings have ramifications for the development of EV-loaded RNA-based therapeutics for the treatment of various disorders involving functional impairment of microglia.
Collapse
Affiliation(s)
- Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Lu Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Blake W Dallon
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Shannon Callen
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Changhai Tian
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
| | - Jiang Shu
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Juan Cui
- Department of Computer Science and Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Zhiqiang Sun
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Minhan Ka
- Center for Substance Abuse Pharmacology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Xian-Ming Chen
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
92
|
Reduced Microglial Activity and Enhanced Glutamate Transmission in the Basolateral Amygdala in Early CNS Autoimmunity. J Neurosci 2018; 38:9019-9033. [PMID: 30185466 DOI: 10.1523/jneurosci.0398-18.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/21/2022] Open
Abstract
Emotional dysfunction is common in multiple sclerosis (MS) patients and in mouse models of MS, including experimental autoimmune encephalomyelitis (EAE); however, the etiology of these behaviors is poorly understood. To identify CNS changes associated with these behaviors, we focused on the basolateral amygdala (BLA) because of its central role in the regulation of emotional behavior. Whole-cell recordings were performed in the principal neurons of the BLA in early EAE, before demyelination, T-cell invasion, and motor dysfunction. EAE female mice displayed increased frequency of mEPSCs, with no alteration in amplitude or evoked EPSC paired-pulse ratio compared with controls. We found an increase in the AMPA-NMDA ratio and dendritic spine density, indicating increased numbers of glutamatergic synapses. We saw similar electrophysiological changes in BLA principal neurons after microglia were either inactivated (minocycline) or depleted (Mac1-Saporin) in the BLA. Microglia regulate synapses through pruning, directed by complement protein 3 (C3) expression. C3 was downregulated in the BLA in EAE. Ultrastructural analysis of microglia revealed more complex ramifications and reduced extracellular digestion of cellular elements. We also observed reduced IBA-1 and CD68 staining and lack of proinflammatory cytokine expression in the amygdala. Thus, early EAE is a state of microglial "deactivation" associated with reduced synaptic pruning. This contrasts with the prototypic microglial activation commonly associated with inflammatory CNS disease. Additionally, these data support a role for the acquired immune system to influence both neuronal and microglial function in early CNS autoimmunity.SIGNIFICANCE STATEMENT Microglia help regulate synaptic homeostasis, but there has been little evidence for how this might be important in neuroinflammatory diseases. The data from this study reveal increased synaptic activity and spine density in early stages of experimental autoimmune encephalomyelitis (an animal model of multiple sclerosis) in the basolateral amygdala, a nucleus important in the types of behavioral changes we have previously described. These electrophysiological and morphological effects occurred without significant elevation of local inflammatory cytokines or local demyelination. Unexpectedly, in the context of inflammatory state, we found that microglia were "deactivated." This study provides strong evidence for a link between microglial activity and synaptic function; the conclusions contrast with the generally accepted view that microglia are activated in inflammatory disease.
Collapse
|
93
|
Konishi H, Kiyama H. Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Front Cell Neurosci 2018; 12:206. [PMID: 30127720 PMCID: PMC6087757 DOI: 10.3389/fncel.2018.00206] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022] Open
Abstract
Microglia are activated after neuronal injury and in neurodegenerative diseases, and trigger neuroinflammation in the central nervous system (CNS). Microglia-derived neuroinflammation has both beneficial and detrimental effects on neurons. Because the timing and magnitude of microglial activation is thought to be a critical determinant of neuronal fate, understanding the molecular mechanisms underlying microglial activation is required to enable establishment of microglia-targeted therapies for neural diseases. Plasma membrane receptors play primary roles as activators of microglia and in this review, we focus on a receptor complex involving triggering receptor expressed on myeloid cells 2 (TREM2) and DNAX-activating protein of 12 kDa (DAP12), both of which are causative genes for Nasu-Hakola disease, a dementia with bone cysts. Recent transcriptome approaches demonstrated TREM2/DAP12 signaling as the principal regulator that transforms microglia from a homeostatic to a neural disease-associated state. Furthermore, animal model studies revealed critical roles for TREM2/DAP12 in the regulation of microglial activity, including survival, phagocytosis, and cytokine production, not only in Alzheimer's disease but also in other neural diseases, such as Parkinson's disease, demyelinating disease, ischemia, and peripheral nerve injury. Intriguingly, while TREM2/DAP12-mediated microglial activation is detrimental for some diseases, including peripheral nerve injury, it is beneficial for other diseases. As the role of activated microglia differs among disease models, TREM2/DAP12 signaling may result in different outcomes in different diseases. In this review we discuss recent perspectives on the role of TREM2/DAP12 in microglia and their contribution to neural diseases.
Collapse
Affiliation(s)
- Hiroyuki Konishi
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
94
|
Deregulation of the endocannabinoid system and therapeutic potential of ABHD6 blockade in the cuprizone model of demyelination. Biochem Pharmacol 2018; 157:189-201. [PMID: 30075103 DOI: 10.1016/j.bcp.2018.07.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of unknown etiology in which tissue pathology suggests both immune-dependent attacks to oligodendroglia and primary oligodendrocyte demise. The endocannabinoid system has been crucially involved in the control of autoimmune demyelination and cannabinoid-based therapies exhibit therapeutic potential, but also limitations, in MS patients. In this context, growing evidence suggests that targeting the hydrolysis of the main endocannabinoid 2-arachidonoylglycerol (2-AG) may offer a more favorable benefit-to-risk balance in MS than existing cannabinoid medicines. Here we evaluated the modulation of endocannabinoid signaling and the therapeutic potential of targeting the 2-AG hydrolytic enzyme alpha/beta-hydrolase domain-containing 6 (ABHD6) in the cuprizone model of non-immune dependent demyelination. The concentrations of N-arachidonoylethanolamine (anandamide, AEA) and its congener N-palmitoylethanolamine (PEA) were reduced following 6 weeks of cuprizone feeding. Deregulation of AEA and PEA levels was not due to differences in the expression of the hydrolytic and biosynthetic enzymes fatty acid amide hydrolase and N-acylphosphatidylethanolamine-phospholipase D, respectively. Conversely, we measured elevated transcript levels of 2-AG hydrolytic enzymes monoacylglycerol lipase, ABHD6 and ABHD12 without changes in bulk 2-AG concentration. Upregulated CB1 and CB2 receptors expression, ascribed in part to microglia, was also detected in the brain of cuprizone-treated mice. Administration of an ABHD6 inhibitor partially attenuated myelin damage, astrogliosis and microglia/macrophage reactivity associated to cuprizone feeding. However, ABHD6 blockade was ineffective at engaging protective or differentiation promoting effects in oligodendrocyte cultures. These results show specific alterations of the endocannabinoid system and modest beneficial effects resulting from ABHD6 inactivation in a relevant model of primary demyelination.
Collapse
|
95
|
Transneuronal Downregulation of the Premotor Cholinergic System After Corticospinal Tract Loss. J Neurosci 2018; 38:8329-8344. [PMID: 30049887 DOI: 10.1523/jneurosci.3410-17.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Injury to the supraspinal motor systems, especially the corticospinal tract, leads to movement impairments. In addition to direct disruption of descending motor pathways, spinal motor circuits that are distant to and not directly damaged by the lesion undergo remodeling that contributes significantly to the impairments. Knowing which spinal circuits are remodeled and the underlying mechanisms are critical for understanding the functional changes in the motor pathway and for developing repair strategies. Here, we target spinal premotor cholinergic interneurons (IN) that directly modulate motoneuron excitability via their cholinergic C-bouton terminals. Using a model of unilateral medullary corticospinal tract lesion in male rats, we found transneuronal downregulation of the premotor cholinergic pathway. Phagocytic microglial cells were upregulated in parallel with cholinergic pathway downregulation and both were blocked by minocycline, a microglia activation inhibitor. Additionally, we found a transient increase in interneuronal complement protein C1q expression that preceded cell loss. 3D reconstructions showed ongoing phagocytosis of C1q-expressing cholinergic INs by microglia 3 d after injury, which was complete by 10 d after injury. Unilateral motor cortex inactivation using the GABAA receptor agonist muscimol replicated the changes detected at 3 d after lesion, indicating activity dependence. The neuronal loss after the lesion was rescued by increasing spinal activity using cathodal trans-spinal direct current stimulation. Our finding of activity-dependent modulation of cholinergic premotor INs after CST injury provides the mechanistic insight that maintaining activity, possibly during a critical period, helps to protect distant motor circuits from further damage and, as a result, may improve motor functional recovery and rehabilitation.SIGNIFICANCE STATEMENT Supraspinal injury to the motor system disrupts descending motor pathways, leading to movement impairments. Whether and how intrinsic spinal circuits are remodeled after a brain injury is unclear. Using a rat model of unilateral corticospinal tract lesion in the medulla, we show activity-dependent, transneuronal downregulation of the spinal premotor cholinergic system, which is mediated by microglial phagocytosis, possibly involving a rapid and transient increase in neuronal C1q before neuronal loss. Spinal cord neuromodulation after injury to augment spinal activity rescued the premotor cholinergic system. Our findings provide the mechanistic insight that maintaining activity, possibly during an early critical period, could protect distant motor circuits from further damage mediated by microglia and interneuronal complement protein and improve motor functional outcomes.
Collapse
|
96
|
Bosco DB, Zheng J, Xu Z, Peng J, Eyo UB, Tang K, Yan C, Huang J, Feng L, Wu G, Richardson JR, Wang H, Wu LJ. RNAseq analysis of hippocampal microglia after kainic acid-induced seizures. Mol Brain 2018; 11:34. [PMID: 29925434 PMCID: PMC6011524 DOI: 10.1186/s13041-018-0376-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
Microglia have been shown to be of critical importance to the progression of temporal lobe epilepsy. However, the broad transcriptional changes that these cells undergo following seizure induction is not well understood. As such, we utilized RNAseq analysis upon microglia isolated from the hippocampus to determine expression pattern alterations following kainic acid induced seizure. We determined that microglia undergo dramatic changes to their expression patterns, particularly with regard to mitochondrial activity and metabolism. We also observed that microglia initiate immunological activity, specifically increasing interferon beta responsiveness. Our results provide novel insights into microglia transcriptional regulation following acute seizures and suggest potential therapeutic targets specifically in microglia for the treatment of seizures and epilepsy.
Collapse
Affiliation(s)
- Dale B. Bosco
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Zhiyan Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu China
| | - Jiyun Peng
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Ukpong B. Eyo
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
| | - Ke Tang
- Admera Health LLC, South Plainfield, NJ 07080 USA
| | - Cheng Yan
- Admera Health LLC, South Plainfield, NJ 07080 USA
| | - Jun Huang
- Admera Health LLC, South Plainfield, NJ 07080 USA
| | - Lijie Feng
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032 Anhui China
| | - Gongxiong Wu
- One Harvard Street Institute of Health, Brookline, MA 02446 USA
| | - Jason R. Richardson
- Department of Pharmaceutical Sciences and Center for Neurodegenerative Disease and Aging, Northeast Ohio Medical University, Rootstown, OH 44272 USA
| | - Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226001 Jiangsu China
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854 USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905 USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA
| |
Collapse
|
97
|
Young K, Morrison H. Quantifying Microglia Morphology from Photomicrographs of Immunohistochemistry Prepared Tissue Using ImageJ. J Vis Exp 2018. [PMID: 29939190 PMCID: PMC6103256 DOI: 10.3791/57648] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Microglia are brain phagocytes that participate in brain homeostasis and
continuously survey their environment for dysfunction, injury, and disease. As
the first responders, microglia have important functions to mitigate neuron and
glia dysfunction, and in this process, they undergo a broad range of morphologic
changes. Microglia morphologies can be categorized descriptively or,
alternatively, can be quantified as a continuous variable for parameters such as
cell ramification, complexity, and shape. While methods for quantifying
microglia are applied to single cells, few techniques apply to multiple
microglia in an entire photomicrograph. The purpose of this method is to
quantify multiple and single cells using readily available ImageJ protocols.
This protocol is a summary of the steps and ImageJ plugins recommended to
convert fluorescence and bright-field photomicrographs into representative
binary and skeletonized images and to analyze them using software plugins
AnalyzeSkeleton (2D/3D) and FracLac for morphology data collection. The outputs
of these plugins summarize cell morphology in terms of process endpoints,
junctions, and length as well as complexity, cell shape, and size descriptors.
The skeleton analysis protocol described herein is well suited for a regional
analysis of multiple microglia within an entire photomicrograph or region of
interest (ROI) whereas FracLac provides a complementary individual cell
analysis. Combined, the protocol provides an objective, sensitive, and
comprehensive assessment tool that can be used to stratify between diverse
microglia morphologies present in the healthy and injured brain.
Collapse
|
98
|
Beccari S, Diaz‐Aparicio I, Sierra A. Quantifying Microglial Phagocytosis of Apoptotic Cells in the Brain in Health and Disease. ACTA ACUST UNITED AC 2018; 122:e49. [DOI: 10.1002/cpim.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sol Beccari
- Achucarro Basque Center for Neuroscience Leioa Bizkaia Spain
- University of the Basque Country UPV/EHU Leioa Bizkaia Spain
| | - Irune Diaz‐Aparicio
- Achucarro Basque Center for Neuroscience Leioa Bizkaia Spain
- University of the Basque Country UPV/EHU Leioa Bizkaia Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience Leioa Bizkaia Spain
- University of the Basque Country UPV/EHU Leioa Bizkaia Spain
- Ikerbasque Foundation Bilbao Bizkaia Spain
| |
Collapse
|
99
|
Disease-Associated Microglia: A Universal Immune Sensor of Neurodegeneration. Cell 2018; 173:1073-1081. [DOI: 10.1016/j.cell.2018.05.003] [Citation(s) in RCA: 860] [Impact Index Per Article: 122.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/17/2018] [Accepted: 04/29/2018] [Indexed: 11/18/2022]
|
100
|
Lenz KM, Nelson LH. Microglia and Beyond: Innate Immune Cells As Regulators of Brain Development and Behavioral Function. Front Immunol 2018; 9:698. [PMID: 29706957 PMCID: PMC5908908 DOI: 10.3389/fimmu.2018.00698] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/21/2018] [Indexed: 01/10/2023] Open
Abstract
Innate immune cells play a well-documented role in the etiology and disease course of many brain-based conditions, including multiple sclerosis, Alzheimer's disease, traumatic brain and spinal cord injury, and brain cancers. In contrast, it is only recently becoming clear that innate immune cells, primarily brain resident macrophages called microglia, are also key regulators of brain development. This review summarizes the current state of knowledge regarding microglia in brain development, with particular emphasis on how microglia during development are distinct from microglia later in life. We also summarize the effects of early life perturbations on microglia function in the developing brain, the role that biological sex plays in microglia function, and the potential role that microglia may play in developmental brain disorders. Finally, given how new the field of developmental neuroimmunology is, we highlight what has yet to be learned about how innate immune cells shape the development of brain and behavior.
Collapse
Affiliation(s)
- Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, United States.,Department of Neuroscience, The Ohio State University, Columbus, OH, United States.,Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Lars H Nelson
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, United States
| |
Collapse
|