51
|
Wu T, Yang Z, Chen W, Jiang M, Xiao Z, Su X, Jiao Z, Yu Y, Chen S, Song M, Yang A. miR-30e-5p-mediated FOXD1 promotes cell proliferation by blocking cellular senescence and apoptosis through p21/CDK2/Rb signaling in head and neck carcinoma. Cell Death Discov 2023; 9:295. [PMID: 37563111 PMCID: PMC10415393 DOI: 10.1038/s41420-023-01571-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
Forkhead box D1 (FOXD1) belongs to the FOX protein family, which has been found to function as a oncogene in multiple cancer types, but its role in head and neck squamous cell carcinoma (HNSCC) requires further investigation. Our research aimed to investigate the function of FOXD1 in HNSCC. Bioinformatics analysis indicated that mRNA level of FOXD1 was highly expressed in HNSCC tissues, and over-expressed FOXD1 was related to poor prognosis. Moreover, FOXD1 knockdown increased the ratio of senescent cells but decreased the proliferation ability, while FOXD1 overexpression obtained the opposite results. In vitro experiments revealed that FOXD1 bound to the p21 promoter and inhibited its transcription, which blocked the cyclin dependent kinase 2 (CDK2)/retinoblastoma (Rb) signaling pathway, thus preventing senescence and accelerating proliferation of tumor cells. CDK2 inhibitor could reverse the process to some extent. Further research has shown that miR-3oe-5p serves as a tumor suppressant by repressing the translation of FOXD1 through combining with the 3'-untranslated region (UTR). Thus, FOXD1 resists cellular senescence and facilitates HNSCC cell proliferation by affecting the expression of p21/CDK2/Rb signaling, suggesting that FOXD1 may be a potential curative target for HNSCC.
Collapse
Affiliation(s)
- Tong Wu
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Zhongyuan Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Weichao Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Mingjie Jiang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Zhichao Xiao
- Department of Otolaryngology-Head Neck Surgery, Loudi Central Hospital, Loudi, Hunan Province, China
| | - Xuan Su
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Zan Jiao
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Yongchao Yu
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
| | - Shuwei Chen
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
| | - Ming Song
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
| | - Ankui Yang
- Department of Head and Neck Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
52
|
Cui Y, Miao MZ, Wang M, Su QP, Qiu K, Arbeeva L, Chubinskaya S, Diekman BO, Loeser RF. Yes-associated protein nuclear translocation promotes anabolic activity in human articular chondrocytes. Osteoarthritis Cartilage 2023; 31:1078-1090. [PMID: 37100374 PMCID: PMC10524185 DOI: 10.1016/j.joca.2023.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
OBJECTIVE Yes-associated protein (YAP) has been widely studied as a mechanotransducer in many cell types, but its function in cartilage is controversial. The aim of this study was to identify the effect of YAP phosphorylation and nuclear translocation on the chondrocyte response to stimuli relevant to osteoarthritis (OA). DESIGN Cultured normal human articular chondrocytes from 81 donors were treated with increased osmolarity media as an in vitro model of mechanical stimulation, fibronectin fragments (FN-f) or IL-1β as catabolic stimuli, and IGF-1 as an anabolic stimulus. YAP function was assessed with gene knockdown and inhibition by verteporfin. Nuclear translocation of YAP and its transcriptional co-activator TAZ and site-specific YAP phosphorylation were determined by immunoblotting. Immunohistochemistry and immunofluorescence to detect YAP were performed on normal and OA human cartilage with different degrees of damage. RESULTS Chondrocyte YAP/TAZ nuclear translocation increased under physiological osmolarity (400 mOsm) and IGF-1 stimulation, which was associated with YAP phosphorylation at Ser128. In contrast, catabolic stimulation decreased the levels of nuclear YAP/TAZ through YAP phosphorylation at Ser127. Following YAP inhibition, anabolic gene expression and transcriptional activity decreased. Additionally, YAP knockdown reduced proteoglycan staining and levels of type II collagen. Total YAP immunostaining was greater in OA cartilage, but YAP was sequestered in the cytosol in cartilage areas with more severe damage. CONCLUSIONS YAP chondrocyte nuclear translocation is regulated by differential phosphorylation in response to anabolic and catabolic stimuli. Decreased nuclear YAP in OA chondrocytes may contribute to reduced anabolic activity and promotion of further cartilage loss.
Collapse
Affiliation(s)
- Y Cui
- Xiangya International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China; Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.
| | - M Z Miao
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Division of Oral & Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, 27599, USA.
| | - M Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA.
| | - Q P Su
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| | - K Qiu
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, 27599, USA.
| | - L Arbeeva
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.
| | - S Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - B O Diekman
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27599, USA.
| | - R F Loeser
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
53
|
Wang C, Yang K, Liu X, Wang S, Song M, Belmonte JCI, Qu J, Liu GH, Zhang W. MAVS Antagonizes Human Stem Cell Senescence as a Mitochondrial Stabilizer. RESEARCH (WASHINGTON, D.C.) 2023; 6:0192. [PMID: 37521327 PMCID: PMC10374246 DOI: 10.34133/research.0192] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023]
Abstract
Mitochondrial dysfunction is a hallmark feature of cellular senescence and organ aging. Here, we asked whether the mitochondrial antiviral signaling protein (MAVS), which is essential for driving antiviral response, also regulates human stem cell senescence. To answer this question, we used CRISPR/Cas9-mediated gene editing and directed differentiation techniques to generate various MAVS-knockout human stem cell models. We found that human mesenchymal stem cells (hMSCs) were sensitive to MAVS deficiency, as manifested by accelerated senescence phenotypes. We uncovered that the role of MAVS in maintaining mitochondrial structural integrity and functional homeostasis depends on its interaction with the guanosine triphosphatase optic atrophy type 1 (OPA1). Depletion of MAVS or OPA1 led to the dysfunction of mitochondria and cellular senescence, whereas replenishment of MAVS or OPA1 in MAVS-knockout hMSCs alleviated mitochondrial defects and premature senescence phenotypes. Taken together, our data underscore an uncanonical role of MAVS in safeguarding mitochondrial homeostasis and antagonizing human stem cell senescence.
Collapse
Affiliation(s)
- Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics,
Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics,
Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College,
University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration,
Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders,
Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration,
Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- State Key Laboratory of Membrane Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, China
| | | | - Jing Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration,
Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration,
Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders,
Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology,
Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics,
Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College,
University of Chinese Academy of Sciences, Beijing 101408, China
- Institute for Stem Cell and Regeneration,
Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
54
|
Fusi G, Constantinides M, Fissoun C, Pichard L, Pers YM, Ferreira-Lopez R, Pantesco V, Poulet C, Malaise O, De Seny D, Lemaitre JM, Jorgensen C, Brondello JM. Senescence-Driven Inflammatory and Trophic Microenvironment Imprints Mesenchymal Stromal/Stem Cells in Osteoarthritic Patients. Biomedicines 2023; 11:1994. [PMID: 37509633 PMCID: PMC10377055 DOI: 10.3390/biomedicines11071994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Senescent cells promote progressive tissue degeneration through the establishment of a combined inflammatory and trophic microenvironment. The cellular senescence state has therefore emerged as a central driving mechanism of numerous age-related diseases, including osteoarthritis (OA), the most common rheumatic disease. Senescence hallmarks are detectable in chondrocytes, synoviocytes and sub-chondral bone cells. This study investigates how the senescence-driven microenvironment could impact the cell fate of resident osteoarticular mesenchymal stromal/stem cells (MSCs) that are hence contributing to OA disease progression. For that purpose, we performed a comparative gene expression analysis of MSCs isolated from healthy donors that were in vitro chronically exposed either to interferon-gamma (IFN-γ) or Transforming Growth Factor beta 1 (TGFβ1), two archetypical factors produced by senescent cells. Both treatments reduced MSC self-renewal capacities by upregulating different senescence-driven cycle-dependent kinase inhibitors. Furthermore, a common set of differentially expressed genes was identified in both treated MSCs that was also found enriched in MSCs isolated from OA patients. These findings highlight an imprinting of OA MSCs by the senescent joint microenvironment that changes their matrisome gene expression. Altogether, this research gives new insights into OA etiology and points to new innovative therapeutic opportunities to treat OA patients.
Collapse
Affiliation(s)
- Giuseppe Fusi
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
| | | | | | - Lydiane Pichard
- SAFE-iPSC Facility INGESTEM, Montpellier University Hospital, 34298 Montpellier, France
| | - Yves-Marie Pers
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier University Hospital, 34298 Montpellier, France
| | - Rosanna Ferreira-Lopez
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier University Hospital, 34298 Montpellier, France
| | | | - Christophe Poulet
- Laboratory and Service of Rheumatology, GIGA-I3, Université de Liège, 4000 Liege, Belgium
| | - Olivier Malaise
- Laboratory and Service of Rheumatology, GIGA-I3, Université de Liège, 4000 Liege, Belgium
| | - Dominique De Seny
- Laboratory and Service of Rheumatology, GIGA-I3, Université de Liège, 4000 Liege, Belgium
| | - Jean-Marc Lemaitre
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- SAFE-iPSC Facility INGESTEM, Montpellier University Hospital, 34298 Montpellier, France
| | - Christian Jorgensen
- IRMB, University Montpellier, INSERM, 34295 Montpellier, France
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Montpellier University Hospital, 34298 Montpellier, France
| | | |
Collapse
|
55
|
He Y, Ji Q, Wu Z, Cai Y, Yin J, Zhang Y, Zhang S, Liu X, Zhang W, Liu GH, Wang S, Song M, Qu J. 4E-BP1 counteracts human mesenchymal stem cell senescence via maintaining mitochondrial homeostasis. Protein Cell 2023; 14:202-216. [PMID: 36929036 PMCID: PMC10098039 DOI: 10.1093/procel/pwac037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/22/2022] [Indexed: 11/13/2022] Open
Abstract
Although the mTOR-4E-BP1 signaling pathway is implicated in aging and aging-related disorders, the role of 4E-BP1 in regulating human stem cell homeostasis remains largely unknown. Here, we report that the expression of 4E-BP1 decreases along with the senescence of human mesenchymal stem cells (hMSCs). Genetic inactivation of 4E-BP1 in hMSCs compromises mitochondrial respiration, increases mitochondrial reactive oxygen species (ROS) production, and accelerates cellular senescence. Mechanistically, the absence of 4E-BP1 destabilizes proteins in mitochondrial respiration complexes, especially several key subunits of complex III including UQCRC2. Ectopic expression of 4E-BP1 attenuates mitochondrial abnormalities and alleviates cellular senescence in 4E-BP1-deficient hMSCs as well as in physiologically aged hMSCs. These f indings together demonstrate that 4E-BP1 functions as a geroprotector to mitigate human stem cell senescence and maintain mitochondrial homeostasis, particularly for the mitochondrial respiration complex III, thus providing a new potential target to counteract human stem cell senescence.
Collapse
Affiliation(s)
- Yifang He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Yin
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyuan Zhang
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
56
|
Kong L, Xie YS, Ma XD, Huang Y, Shang XF. Mechanism of YAP1 in the senescence and degeneration of endplate chondrocytes induced by intermittent cyclic mechanical tension. J Orthop Surg Res 2023; 18:229. [PMID: 36944987 PMCID: PMC10031924 DOI: 10.1186/s13018-023-03704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND This study aimed to investigate the potential mechanism of YAP1 in the senescence and degeneration of endplate chondrocytes induced by intermittent cyclic mechanical tension (ICMT). METHODS According to the Pfirrmann grade evaluation classification, 30 human endplate cartilage tissues were divided into the lumbar vertebra fracture (LVF) group and lumbar disc herniation (LDH) group. Then, quantitative reverse transcription polymerase chain reaction, western blot, flow cytometry, hematoxylin-eosin staining, and senescence-associated β-galactosidase staining were performed. The difference in extracellular matrix expression between LVF and LDH endplate cartilage was detected. Second, the effect of ICMT on endplate chondrocytes degeneration was observed. Finally, the key regulatory role of YAP1 in ICMT-induced endplate cartilage degeneration was further verified. RESULTS In degraded human endplate cartilage and tension-induced degraded endplate chondrocytes, the expression of YAP1, COL-2A, and Sox9 was decreased. Conversely, the expression of p53 and p21 was increased. By regulating YAP1 in vivo and in vitro, we can achieve alleviation of ICMT-induced senescence of endplate chondrocytes and effective treatment of disc degeneration. CONCLUSIONS ICMT could induce senescence and degeneration of endplate chondrocytes, and ICMT-induced senescence and degeneration of endplate chondrocytes could be alleviated by regulating YAP1 expression.
Collapse
Affiliation(s)
- Lei Kong
- Division of Life Science and Medicine, Department of Orthopedic, The First Affiliated Hospital of USTC, University of Science and Technology of China, HeFei, 230001, Anhui, China
| | - Yong-Sheng Xie
- Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, HeFei, 230001, Anhui, China
| | - Xu-Dong Ma
- BengBu Medical College, Bengbu, 233030, Anhui, China
| | - Yan Huang
- Division of Life Science and Medicine, Department of Orthopedic, The First Affiliated Hospital of USTC, University of Science and Technology of China, HeFei, 230001, Anhui, China
| | - Xi-Fu Shang
- Division of Life Science and Medicine, Department of Orthopedic, The First Affiliated Hospital of USTC, University of Science and Technology of China, HeFei, 230001, Anhui, China.
| |
Collapse
|
57
|
Artemisia annua Extract Improves the Cognitive Deficits and Reverses the Pathological Changes of Alzheimer’s Disease via Regulating YAP Signaling. Int J Mol Sci 2023; 24:ijms24065259. [PMID: 36982332 PMCID: PMC10049624 DOI: 10.3390/ijms24065259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/12/2023] Open
Abstract
Alzheimer’s disease (AD) is a chronic neurodegenerative disease characterized by the occurrence of cognitive deficits. With no effective treatments available, the search for new effective therapies has become a major focus of interest. In the present study, we describe the potential therapeutic effect of Artemisia annua (A. annua) extract on AD. Nine-month-old female 3xTg AD mice were treated with A. annua extract for three months via oral administration. Animals assigned to WT and model groups were administrated with an equal volume of water for the same period. Treated AD mice significantly improved the cognitive deficits and exhibited reduced Aβ accumulation, hyper-phosphorylation of tau, inflammatory factor release and apoptosis when compared with untreated AD mice. Moreover, A. annua extract promoted the survival and proliferation of neural progenitor cells (NPS) and increased the expression of synaptic proteins. Further assessment of the implicated mechanisms revealed that A. annua extract regulates the YAP signaling pathway in 3xTg AD mice. Further studies comprised the incubation of PC12 cells with Aβ1–42 at a concentration of 8 μM with or without different concentrations of A. annua extract for 24 h. Obtained ROS levels, mitochondrial membrane potential, caspase-3 activity, neuronal cell apoptosis and assessment of the signaling pathways involved was performed using western blot and immunofluorescence staining. The obtained results showed that A. annua extract significantly reversed the Aβ1–42-induced increase in ROS levels, caspase-3 activity and neuronal cell apoptosis in vitro. Moreover, either inhibition of the YAP signaling pathway, using a specific inhibitor or CRISPR cas9 knockout of YAP gene, reduced the neuroprotective effect of the A. annua extract. These findings suggest that A. annua extract may be a new multi-target anti-AD drug with potential use in the prevention and treatment of AD.
Collapse
|
58
|
Rejuvenation of tendon stem/progenitor cells for functional tendon regeneration through platelet-derived exosomes loaded with recombinant Yap1. Acta Biomater 2023; 161:80-99. [PMID: 36804538 DOI: 10.1016/j.actbio.2023.02.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/19/2023]
Abstract
The regenerative capabilities including self-renewal, migration and differentiation potentials shift from the embryonic phase to the mature period of endogenous tendon stem/progenitor cells (TSPCs) characterize restricted functions and disabilities following tendon injuries. Recent studies have shown that tendon regeneration and repair rely on multiple specific transcription factors to maintain TSPCs characteristics and functions. Here, we demonstrate Yap, a Hippo pathway downstream effector, is associated with TSPCs phenotype and regenerative potentials through gene expression analysis of tendon development and repair process. Exosomes have been proven an efficient transport platform for drug delivery. In this study, purified exosomes derived from donor platelets are loaded with recombinant Yap1 protein (PLT-Exo-Yap1) via electroporation to promote the stemness and differentiation potentials of TSPCs in vitro. Programmed TSPCs with Yap1 import maintain stemness and functions after long-term passage in vitro. The increased oxidative stress levels of TSPCs are related to the phenotype changes in duplicative senescent processes. The results show that treatment with PLT-Exo-Yap1 significantly protects TSPCs against oxidative stressor-induced stemness loss and senescence-associated secretory phenotype (SASP) through the NF-κB signaling pathway. In addition, we fabricate an Exos-Yap1-functioned GelMA hydrogel with a parallel-aligned substrate structure to enhance TSPCs adhesion, promote cell stemness and force regenerative cells toward the tendon lineage for in vitro and in vivo tendon regeneration. The application of Exos-Yap1 functioned implant assists new tendon-like tissue formation with good mechanical properties and locomotor functions in a full-cut Achilles tendon defect model. Thus, PLT-Exo-Yap1-functionalized GelMA promotes the rejuvenation of TSPCs to facilitate functional tendon regeneration. STATEMENT OF SIGNIFICANCE: This is the first study to explore that the hippo pathway downstream effector Yap is involved in tendon aging and repair processes, and is associated with the regenerative capabilities of TSPCs. In this syudy, Platelet-derived exosomes (PLT-Exos) act as an appropriate carrier platform for the delivery of recombinant Yap1 into TSPCs to regulate Yap activity. Effective Yap1 delivery inhibit oxidative stress-induced senescence associated phenotype of TSPCs by blocking ROS-mediated NF-κb signaling pathway activation. This study emphasizes that combined application of biomimetic scaffolds and Yap1 loaded PLT-Exos can provide structural support and promote rejuvenation of resident cells to assist functional regeneration for Achilles tendon defect, and has the prospect of clinical setting.
Collapse
|
59
|
Yang R, Li J, Zhang J, Xue Q, Qin R, Wang R, Goltzman D, Miao D. 17β-estradiol plays the anti-osteoporosis role via a novel ESR1-Keap1-Nrf2 axis-mediated stress response activation and Tmem119 upregulation. Free Radic Biol Med 2023; 195:231-244. [PMID: 36592659 DOI: 10.1016/j.freeradbiomed.2022.12.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Increased oxidative stress and decreased osteoblastic bone formation contribute to estrogen deficiency-induced osteoporosis. However, the role and mechanism of estrogen-deficiency in regulating oxidative stress and osteoblastic activity remain unclear. Here, we showed that estrogen-deficient bone marrow stromal/stem cells (BMSCs) exhibited impaired capacity to combat stress, characterized by increased oxidative stress, shortened cell survival and reduced osteogenic differentiation and bone formation, which were due to a decrease of nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 re-activation induced by the pyrazinyl dithiolethione oltipraz significantly rescued the cell phenotype of estrogen-deficient BMSCs in vitro and ex vivo. Mechanistically, we found that 17β-estradiol/ESR1 (Estrogen Receptor 1) facilitated Nrf2 accumulation, and activated its target genes by competing with Nrf2 for binding to Kelch-like ECH-associated protein 1 (Keap1) via ESR1 containing a highly conserved DLL motif. Of note, oltipraz, an Nrf2 activator, rescued ovariectomy-induced osteoporosis partly by inhibiting oxidative stress and promoting osteoblastic bone formation via Nrf2-induced antioxidant signaling activation and Tmem119 (transmembrane protein 119) upregulation. Conversely, Nrf2 knockout largely blocked the bone anabolic effect of 17β-estradiol in vivo and ex vivo. This study provides insight into the mechanisms whereby estrogen prevents osteoporosis through promoting osteoblastic bone formation via Nrf2-mediated activation of antioxidant signaling and upregulation of Tmem119, and thus provides evidence for Nrf2 as a potential target for clinical prevention and treatment of menopause-related osteoporosis.
Collapse
Affiliation(s)
- Renlei Yang
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.
| | - Jie Li
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qi Xue
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ran Qin
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Rong Wang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Dengshun Miao
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
60
|
Liu X, Liu Z, Wu Z, Ren J, Fan Y, Sun L, Cao G, Niu Y, Zhang B, Ji Q, Jiang X, Wang C, Wang Q, Ji Z, Li L, Esteban CR, Yan K, Li W, Cai Y, Wang S, Zheng A, Zhang YE, Tan S, Cai Y, Song M, Lu F, Tang F, Ji W, Zhou Q, Belmonte JCI, Zhang W, Qu J, Liu GH. Resurrection of endogenous retroviruses during aging reinforces senescence. Cell 2023; 186:287-304.e26. [PMID: 36610399 DOI: 10.1016/j.cell.2022.12.017] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/13/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023]
Abstract
Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.
Collapse
Affiliation(s)
- Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Sun
- NHC Beijing Institute of Geriatrics, NHC Key Laboratory of Geriatrics, Institute of Geriatric Medicine of Chinese Academy of Medical Sciences, National Center of Gerontology/Beijing Hospital, Beijing 100730, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Baohu Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cui Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanzhu Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China; The Fifth People's Hospital of Chongqing, Chongqing 400062, China
| | - Aihua Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yong E Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengjun Tan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingao Cai
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Falong Lu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuchou Tang
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan 650500, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
61
|
Sekelova T, Danisovic L, Cehakova M. Rejuvenation of Senescent Mesenchymal Stem Cells to Prevent Age-Related Changes in Synovial Joints. Cell Transplant 2023; 32:9636897231200065. [PMID: 37766590 PMCID: PMC10540599 DOI: 10.1177/09636897231200065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Mesenchymal/medicinal stem/signaling cells (MSCs), well known for regenerative potential, have been involved in hundreds of clinical trials. Even if equipped with reparative properties, aging significantly decreases their biological activity, representing a major challenge for MSC-based therapies. Age-related joint diseases, such as osteoarthritis, are associated with the accumulation of senescent cells, including synovial MSCs. An impaired ability of MSCs to self-renew and differentiate is one of the main contributors to the human aging process. Moreover, senescent MSCs (sMSCs) are characterized by the senescence-messaging secretome (SMS), which is typically manifested by the release of molecules with an adverse effect. Many factors, from genetic and metabolic pathways to environmental stressors, participate in the regulation of the senescent phenotype of MSCs. To better understand cellular senescence in MSCs, this review discusses the characteristics of sMSCs, their role in cartilage and synovial joint aging, and current rejuvenation approaches to delay/reverse age-related pathological changes, providing evidence from in vivo experiments as well.
Collapse
Affiliation(s)
- Tatiana Sekelova
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Lubos Danisovic
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | - Michaela Cehakova
- National Institute of Rheumatic Diseases, Piestany, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
62
|
Chen J, Zhang J, Li J, Qin R, Lu N, Goltzman D, Miao D, Yang R. 1,25-Dihydroxyvitamin D Deficiency Accelerates Aging-related Osteoarthritis via Downregulation of Sirt1 in Mice. Int J Biol Sci 2023; 19:610-624. [PMID: 36632467 PMCID: PMC9830508 DOI: 10.7150/ijbs.78785] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
Emerging observational data suggest that vitamin D deficiency is associated with the onset and progression of knee osteoarthritis (OA). However, the relationship between vitamin D level and OA and the role of vitamin D supplementation in the prevention of knee OA are controversial. To address these issues, we analyzed the articular cartilage phenotype of 6- and 12-month-old wild-type and 1α(OH)ase-/- mice and found that 1,25(OH)2D deficiency accelerated the development of age-related spontaneous knee OA, including cartilage surface destruction, cartilage erosion, proteoglycan loss and cytopenia, increased OARSI score, collagen X and Mmp13 positive chondrocytes, and increased chondrocyte senescence with senescence-associated secretory phenotype (SASP). 1,25(OH)2D3 supplementation rescued all knee OA phenotypes of 1α(OH)ase-/- mice in vivo, and 1,25(OH)2D3 rescued IL-1β-induced chondrocyte OA phenotypes in vitro, including decreased chondrocyte proliferation and cartilage matrix protein synthesis, and increased oxidative stress and cell senescence. We also demonstrated that VDR was expressed in mouse articular chondrocytes, and that VDR knockout mice exhibited knee OA phenotypes. Furthermore, we demonstrated that the down-regulation of Sirt1 in articular chondrocytes of 1α(OH)ase-/- mice was corrected by supplementing 1,25(OH)2D3 or overexpression of Sirt1 in mesenchymal stem cells (MSCs) and 1,25(OH)2D3 up-regulated Sirt1 through VDR mediated transcription. Finally, we demonstrated that overexpression of Sirt1 in MSCs rescued knee OA phenotypes in 1α(OH)ase-/- mice. Thus, we conclude that 1,25(OH)2D3, via VDR-mediated gene transcription, plays a key role in preventing the onset of aging-related knee OA in mouse models by up-regulating Sirt1, an aging-related gene that promotes articular chondrocyte proliferation and extracellular matrix protein synthesis, and inhibits senescence and SASP.
Collapse
Affiliation(s)
- Jie Chen
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.,Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Zhang
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jie Li
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ran Qin
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Na Lu
- The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - David Goltzman
- Calcium Research Laboratory, McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Dengshun Miao
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.,✉ Corresponding authors: Renlei Yang, Ph.D., Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, The People's Republic of China. Tel & FAX: 011-86-25-8686-9377; E-mail: ; Dengshun Miao, M.D., Ph.D., Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, The People's Republic of China. Tel & FAX: 011-86-25-8686-9377; E-mail:
| | - Renlei Yang
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.,✉ Corresponding authors: Renlei Yang, Ph.D., Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, The People's Republic of China. Tel & FAX: 011-86-25-8686-9377; E-mail: ; Dengshun Miao, M.D., Ph.D., Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, The People's Republic of China. Tel & FAX: 011-86-25-8686-9377; E-mail:
| |
Collapse
|
63
|
Liu Y, Zhang Z, Li T, Xu H, Zhang H. Senescence in osteoarthritis: from mechanism to potential treatment. Arthritis Res Ther 2022; 24:174. [PMID: 35869508 PMCID: PMC9306208 DOI: 10.1186/s13075-022-02859-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 07/05/2022] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is an age-related cartilage degenerative disease, and chondrocyte senescence has been extensively studied in recent years. Increased numbers of senescent chondrocytes are found in OA cartilage. Selective clearance of senescent chondrocytes in a post-traumatic osteoarthritis (PTOA) mouse model ameliorated OA development, while intraarticular injection of senescent cells induced mouse OA. However, the means and extent to which senescence affects OA remain unclear. Here, we review the latent mechanism of senescence in OA and propose potential therapeutic methods to target OA-related senescence, with an emphasis on immunotherapies. Natural killer (NK) cells participate in the elimination of senescent cells in multiple organs. A relatively comprehensive discussion is presented in that section. Risk factors for OA are ageing, obesity, metabolic disorders and mechanical overload. Determining the relationship between known risk factors and senescence will help elucidate OA pathogenesis and identify optimal treatments.
Collapse
|
64
|
A stem cell aging framework, from mechanisms to interventions. Cell Rep 2022; 41:111451. [DOI: 10.1016/j.celrep.2022.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
|
65
|
Hao X, Zhao J, Jia L, He T, Wang H, Fan J, Yang Y, Su F, Lu Q, Zheng C, Yang L, Jie Q. XMU-MP-1 attenuates osteoarthritis via inhibiting cartilage degradation and chondrocyte apoptosis. Front Bioeng Biotechnol 2022; 10:998077. [PMID: 36199358 PMCID: PMC9527278 DOI: 10.3389/fbioe.2022.998077] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent type of degenerative joint disease; it is reported to be associated with inflammatory responses, chondrocyte apoptosis, and cartilage degeneration. XMU-MP-1 is a selective MST1/2 inhibitor which activates the downstream effector YAP and promotes cell growth. It has displayed excellent benefits in mouse intestinal repair, as well as liver repair and regeneration. However, the effects of XMU-MP-1 on OA remain unclear. In this study, we investigated the therapeutic role of XMU-MP-1 on interleukin-1β (IL-1β)-induced inflammation in mice chondrocytes and the destabilization of the medial meniscus surgery (DMM)-induced OA model. In chondrocytes, treatment with XMU-MP-1 elevated the matrix metalloproteinases (Mmp3, Mmp13) and decreased the extracellular matrix (Col2, Acan) induced by IL-1β. Moreover, XMU-MP-1 strongly inhibited IL-1β-induced chondrocyte apoptosis and significantly promoted chondrocyte proliferation. Furthermore, XMU-MP-1 demonstrated a protective and therapeutic influence on the mouse OA model. These findings indicate that XMU-MP-1 may have a protective effect on cartilage degradation and may be a new potential therapeutic option for OA.
Collapse
Affiliation(s)
- Xue Hao
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
- Clinincal Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi’an, China
| | - Jing Zhao
- College of Life Sciences, Northwest University, Xi’an, China
| | - Liyuan Jia
- College of Life Sciences, Northwest University, Xi’an, China
| | - Ting He
- Medical Research Institute, Northwestern Polytechnical University, Xi’an, China
| | - Huanbo Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Yating Yang
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
- Clinincal Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi’an, China
| | - Fei Su
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
- Clinincal Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi’an, China
| | - Qingda Lu
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
- Clinincal Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi’an, China
| | - Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Qiang Jie
- Pediatric Orthopaedic Hospital, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
- Research Center for Skeletal Developmental Deformity and Injury Repair, School of Life Science and Medicine, Northwest University, Xi’an, China
- Clinincal Research Center for Pediatric Skeletal Deformity and Injury of Shaanxi Province, Xi’an, China
- *Correspondence: Qiang Jie,
| |
Collapse
|
66
|
Zhou C, Yao S, Fu F, Bian Y, Zhang Z, Zhang H, Luo H, Ge Y, Chen Y, Ji W, Tian K, Yue M, Jin H, Tong P, Wu C, Ruan H. Morroniside attenuates nucleus pulposus cell senescence to alleviate intervertebral disc degeneration via inhibiting ROS-Hippo-p53 pathway. Front Pharmacol 2022; 13:942435. [PMID: 36188539 PMCID: PMC9524229 DOI: 10.3389/fphar.2022.942435] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IVDD) which is highly prevalent within the elderly population, is a leading cause of chronic low back pain and disability. Nucleus pulposus (NP) cell senescence plays an indispensable role in the pathogenesis of IVDD. Morroniside is a major iridoid glycoside and one of the quality control metrics of Cornus officinalis Siebold & Zucc (CO). An increasing body of evidence suggests that morroniside and CO-containing formulae share many similar biological effects, including anti-inflammatory, anti-oxidative, and anti-apoptotic properties. In a previous study, we reported that Liuwei Dihuang Decoction, a CO-containing formula, is effective for treating IVDD by targeting p53 expression; however, the therapeutic role of morroniside on IVDD remains obscure. In this study, we assessed the pharmacological effects of morroniside on NP cell senescence and IVDD pathogenesis using a lumbar spine instability surgery-induced mouse IVDD model and an in vitro H2O2-induced NP cell senescence model. Our results demonstrated that morroniside administration could significantly ameliorate mouse IVDD progression, concomitant with substantial improvement in extracellular matrix metabolism and histological grading score. Importantly, in vivo and in vitro experiments revealed that morroniside could significantly reduce the increase in SA-β-gal activities and the expression of p53 and p21, which are the most widely used indicators of senescence. Mechanistically, morroniside suppressed ROS-induced aberrant activation of Hippo signaling by inhibiting Mst1/2 and Lats1/2 phosphorylation and reversing Yap/Taz reduction, whereas blockade of Hippo signaling by Yap/Taz inhibitor-1 or Yap/Taz siRNAs could antagonize the anti-senescence effect of morroniside on H2O2-induced NP cell senescence model by increasing p53 expression and activity. Moreover, the inhibition of Hippo signaling in the IVD tissues by morroniside was further verified in mouse IVDD model. Taken together, our findings suggest that morroniside protects against NP cell senescence to alleviate IVDD progression by inhibiting the ROS-Hippo-p53 pathway, providing a potential novel therapeutic approach for IVDD.
Collapse
Affiliation(s)
- Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Sai Yao
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fangda Fu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yishan Bian
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhiguo Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huihao Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuying Ge
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuying Chen
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Weifeng Ji
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kun Tian
- Department of Orthopaedic, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ming Yue
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongting Jin
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- *Correspondence: Chengliang Wu, ; Hongfeng Ruan,
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- *Correspondence: Chengliang Wu, ; Hongfeng Ruan,
| |
Collapse
|
67
|
FOXD1 facilitates pancreatic cancer cell proliferation, invasion, and metastasis by regulating GLUT1-mediated aerobic glycolysis. Cell Death Dis 2022; 13:765. [PMID: 36057597 PMCID: PMC9440910 DOI: 10.1038/s41419-022-05213-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/21/2023]
Abstract
Although FOXD1 has been found to be involved in the malignant processes of several types of cancers, its role in pancreatic cancer (PC) is not well understood. This study aimed to investigate the expression and function of FOXD1 in PC. We found that FOXD1 mRNA and protein expression were upregulated in PC tissues compared with non-tumor tissues, and high expression level of FOXD1 was associated with an adverse prognostic index of PC. The results of in vitro and in vivo assays indicate that overexpression of FOXD1 promotes aerobic glycolysis and the capacity of PC cells to proliferate, invade, and metastasize, whereas FOXD1 knockdown inhibits these functions. The results of mechanistic experiments suggest that FOXD1 can not only directly promote SLC2A1 transcription but also inhibit the degradation of SLC2A1 through the RNA-induced silencing complex. As a result, FOXD1 enhances GLUT1 expression and ultimately facilitates PC cell proliferation, invasion, and metastasis by regulating aerobic glycolysis. Taken together, FOXD1 is suggested to be a potential therapeutic target for PC.
Collapse
|
68
|
Bond KH, Sims-Lucas S, Oxburgh L. Targets for Renal Carcinoma Growth Control Identified by Screening FOXD1 Cell Proliferation Pathways. Cancers (Basel) 2022; 14:cancers14163958. [PMID: 36010951 PMCID: PMC9406217 DOI: 10.3390/cancers14163958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary FOXD1 regulates the proliferation of clear cell renal cell carcinoma (ccRCC) cells, and ccRCC cells in which FOXD1 has been inactivated do not form tumors efficiently in an animal model. Reproducing growth inhibition in tumor cells by inhibiting FOXD1 pathways presents a possible therapeutic approach for ccRCC and other cancers. We have established an analysis strategy to identify FOXD1-regulated target pathways that may be therapeutically tractable, and compounds that modulate these pathways were selected for testing. Targets in three pathways were identified: FOXM1, PME1, and TMEM167A, which were inhibited by compounds FDI-6, AMZ-30, and silibinin, respectively. The effects of these compounds on the growth of tumor cells from patients cultured in a novel 3D tumor-replica culture environment revealed that FDI-6 and silibinin had strong growth inhibitory effects. This investigation informs new therapeutic targets to control ccRCC tumor growth, and provides a strategy to compare the responsiveness of individual patient tumor replicas to growth-inhibitory compounds. Abstract Clinical association studies suggest that FOXD1 is a determinant of patient outcome in clear cell renal cell carcinoma (ccRCC), and laboratory investigations have defined a role for this transcription factor in controlling the growth of tumors through regulation of the G2/M cell cycle transition. We hypothesized that the identification of pathways downstream of FOXD1 may define candidates for pharmacological modulation to suppress the G2/M transition in ccRCC. We developed an analysis pipeline that utilizes RNA sequencing, transcription factor binding site analysis, and phenotype validation to identify candidate effectors downstream from FOXD1. Compounds that modulate candidate pathways were tested for their ability to cause growth delay at G2/M. Three targets were identified: FOXM1, PME1, and TMEM167A, which were targeted by compounds FDI-6, AMZ-30, and silibinin, respectively. A 3D ccRCC tumor replica model was used to investigate the effects of these compounds on the growth of primary cells from five patients. While silibinin reduced 3D growth in a subset of tumor replicas, FDI-6 reduced growth in all. This study identifies tractable pathways to target G2/M transition and inhibit ccRCC growth, demonstrates the applicability of these strategies across patient tumor replicas, and provides a platform for individualized patient testing of compounds that inhibit tumor growth.
Collapse
Affiliation(s)
- Kyle H. Bond
- Rogosin Institute, Room 2-43, 310 East 67th St., New York, NY 10065, USA
| | - Sunder Sims-Lucas
- Children’s Hospital of Pittsburgh, Rangos Research Building, 4401 Penn Ave, Pittsburgh, PA 15224, USA
| | - Leif Oxburgh
- Rogosin Institute, Room 2-43, 310 East 67th St., New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
69
|
Angom RS, Kulkarni T, Wang E, Kumar Dutta S, Bhattacharya S, Das P, Mukhopadhyay D. Vascular Endothelial Growth Factor Receptor-1 Modulates Hypoxia-Mediated Endothelial Senescence and Cellular Membrane Stiffness via YAP-1 Pathways. Front Cell Dev Biol 2022; 10:903047. [PMID: 35846360 PMCID: PMC9283904 DOI: 10.3389/fcell.2022.903047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
Hypoxia-induced endothelial cell (EC) dysfunction has been implicated as potential initiators of different pathogenesis, including Alzheimer’s disease and vascular dementia. However, in-depth structural, mechanical, and molecular mechanisms leading to EC dysfunction and pathology need to be revealed. Here, we show that ECs exposed to hypoxic conditions readily enter a senescence phenotype. As expected, hypoxia upregulated the expression of vascular endothelial growth factor (VEGFs) and its receptors (VEGFRs) in the ECs. Interestingly, Knockdown of VEGFR-1 expression prior to hypoxia exposure prevented EC senescence, suggesting an important role of VEGFR-1 expression in the induction of EC senescence. Using atomic force microscopy, we showed that senescent ECs had a flattened cell morphology, decreased membrane ruffling, and increased membrane stiffness, demonstrating unique morphological and nanomechanical signatures. Furthermore, we show that hypoxia inhibited the Hippo pathway Yes-associated protein (YAP-1) expression and knockdown of YAP-1 induced senescence in the ECs, supporting a key role of YAP-1 expression in the induction of EC senescence. And importantly, VEGFR-1 Knockdown in the ECs modulated YAP-1 expression, suggesting a novel VEGFR-1-YAP-1 axis in the induction of hypoxia-mediated EC senescence. In conclusion, VEGFR-1 is overexpressed in ECs undergoing hypoxia-mediated senescence, and the knockdown of VEGFR-1 restores cellular structural and nanomechanical integrity by recovering YAP-1 expression.
Collapse
Affiliation(s)
| | - Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Shamit Kumar Dutta
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Pritam Das
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Jacksonville, FL, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
- *Correspondence: Debabrata Mukhopadhyay,
| |
Collapse
|
70
|
Ji T, Chen M, Sun W, Zhang X, Cai H, Wang Y, Xu H. JAK-STAT signaling mediates the senescence of cartilage-derived stem/progenitor cells. J Mol Histol 2022; 53:635-643. [PMID: 35716329 DOI: 10.1007/s10735-022-10086-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
Aging is a major risk factor for degenerative joint diseases, such as osteoarthritis (OA). Previous studies have confirmed the link between senescent mesenchymal stem cells (MSCs) and OA. Cartilage-derived stem/progenitor cells (CSPCs) with MSCs properties have been extracted from a variety of species. We inferred that the senescence of CSPCs may promote the development of osteoarthritis. However, the cellular and molecular mechanisms of CSPCs senescence remains unknown. In this study, we investigated the role of JAK-STAT signaling pathway in a replicative senescence model of CSPCs. We showed that the late CSPCs (> 15th passage) exhibited distinct senescent phenotypes, including increased proportion of β-gal positive senescent cells and F-actin content, as well as cell cycle arrest. In late CSPCs, the activity of JAK-STAT signaling pathway was significantly increased. Activation of JAK-STAT signaling pathway promoted cell senescence in early CSPCs (< 6th passage). Conversely, pharmacological inhibition or genetic knockdown of JAK-STAT signaling pathway attenuated cell senescence in late CSPCs. In conclusion, our results demonstrated the critical role of JAK-STAT signaling pathway in CSPCs senescence.
Collapse
Affiliation(s)
- Tianyi Ji
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Xiao Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Hao Cai
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, People's Republic of China.
| |
Collapse
|
71
|
Li HN, Jin BM, Wang KW. YAP plays a protective role in T-2 toxin-induced inhibition of chondrocyte proliferation and matrix degradation. Toxicon 2022; 215:49-56. [PMID: 35697129 DOI: 10.1016/j.toxicon.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 12/21/2022]
Abstract
Previous research has shown that T-2 toxin can damage cartilage, resulting in a disease phenotype similar to osteoarthritis. The precise molecular mechanism by which T-2 toxin causes chondrocyte injury, however, is unknown. The purpose of this study was to look into the role of YAP in T-2 toxin-induced rat chondrocyte injury. Based on research results, T-2 toxin decreased the levels of collagen II and PCNA while increasing the expression of matrix metalloproteinase MMP13. These findings supported the T-2 toxin's detrimental effect on chondrocytes. YAP's role in T-2 toxin-induced chondrocyte injury was also investigated. Total YAP and related nuclear proteins were found to decrease as the concentration of T-2 toxin increased. While PYAP expression was not significantly altered in response to T-2 toxin, the PYAP/YAP ratio decreased as the T-2 toxin concentration increased, implying that the HIPPO signaling pathway was activated. Furthermore, the YAP-specific inhibitor Verteporfin was used to investigate the role of YAP in T-2 toxin-induced chondrocyte injury. YAP inhibition increased MMP13 expression while decreasing COL2 and PCNA levels. In summary, the current study found that T-2 toxin decreased the levels of COL2 and PCNA while increasing the expression of MMP13 in chondrocytes after inhibiting YAP, providing a new insight into the mechanism of T-2 toxin-induced cartilage damage.
Collapse
Affiliation(s)
- Hao-Nan Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,; Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China
| | - Bai-Ming Jin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,; Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China; Department of Preventive Medicine, Qiqihar Medical University, Qiqihar, 161006, China
| | - Ke-Wei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, China; National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health,; Harbin Medical University, Harbin, 150081, China; Institute of Cell Biotechnology, China and Russia Medical Research Center, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
72
|
Baklaushev VP, Samoilova EM, Kalsin VA, Yusubalieva GM. Aging and “rejuvenation” of resident stem cells — a new way to active longevity? КЛИНИЧЕСКАЯ ПРАКТИКА 2022; 13:79-91. [DOI: 10.17816/clinpract104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This review presents the current data on the methodology for assessing the biological and epigenetic age, describes the concept of the epigenetic clock, and characterizes the main types of resident stem cells and the specifics of their aging. It has been shown that age-related changes in organs and tissues, as well as age-related diseases, are largely due to the aging of resident stem cells. The latter represent an attractive target for cell rejuvenation, as they can be isolated, cultured ex vivo, modified, and re-introduced into the resident niches. Two main methodologies for the cellular rejuvenation are presented: genetic reprogramming with zeroing the age of a cell using transient expression of transcription factors, and various approaches to epigenetic rejuvenation. The close relationship between aging, regeneration, and oncogenesis, and between these factors and the functioning of resident stem cell niches requires further precision studies, which, we are sure, can result in the creation of an effective anti-aging strategy and prolongation of human active life.
Collapse
|
73
|
Liang C, Ke Q, Liu Z, Ren J, Zhang W, Hu J, Wang Z, Chen H, Xia K, Lai X, Wang Q, Yang K, Li W, Wu Z, Wang C, Yan H, Jiang X, Ji Z, Ma M, Long X, Wang S, Wang H, Sun H, Belmonte J, Qu J, Xiang A, Liu GH. BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates. Nucleic Acids Res 2022; 50:3323-3347. [PMID: 35286396 PMCID: PMC8989534 DOI: 10.1093/nar/gkac146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/13/2022] Open
Abstract
Aging in humans is intricately linked with alterations in circadian rhythms concomitant with physiological decline and stem cell exhaustion. However, whether the circadian machinery directly regulates stem cell aging, especially in primates, remains poorly understood. In this study, we found that deficiency of BMAL1, the only non-redundant circadian clock component, results in an accelerated aging phenotype in both human and cynomolgus monkey mesenchymal progenitor cells (MPCs). Unexpectedly, this phenotype was mainly attributed to a transcription-independent role of BMAL1 in stabilizing heterochromatin and thus preventing activation of the LINE1-cGAS-STING pathway. In senescent primate MPCs, we observed decreased capacity of BMAL1 to bind to LINE1 and synergistic activation of LINE1 expression. Likewise, in the skin and muscle tissues from the BMAL1-deficient cynomolgus monkey, we observed destabilized heterochromatin and aberrant LINE1 transcription. Altogether, these findings uncovered a noncanonical role of BMAL1 in stabilizing heterochromatin to inactivate LINE1 that drives aging in primate cells.
Collapse
Affiliation(s)
- Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Ren
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Zhang
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Xingqiang Lai
- Cardiovascular Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Li
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Wang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Haoteng Yan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Miyang Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Long
- Division of Plastic Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing 400062, China
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
74
|
Brown C, Agosta P, McKee C, Walker K, Mazzella M, Alamri A, Svinarich D, Chaudhry GR. Human primitive mesenchymal stem cell-derived retinal progenitor cells improved neuroprotection, neurogenesis, and vision in rd12 mouse model of retinitis pigmentosa. Stem Cell Res Ther 2022; 13:148. [PMID: 35395806 PMCID: PMC8994263 DOI: 10.1186/s13287-022-02828-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 01/05/2023] Open
Abstract
Background Currently, there is no treatment for retinal degenerative diseases (RDD) such as retinitis pigmentosa (RP). Stem cell-based therapies could provide promising opportunities to repair the damaged retina and restore vision. Thus far, primarily adult mesenchymal stem cells (MSCs) have been investigated in preclinical and clinical studies, and the results have not been convincing. We applied a new approach in which primitive (p) MSC-derived retinal progenitor cells (RPCs) were examined to treat retinal degeneration in an rd12 mouse model of RP. Methods Well-characterized pMSCs and RPCs labeled with PKH26 were intravitreally injected into rd12 mice. The vision and retinal function of transplanted animals were analyzed using electroretinography. Animals were killed 4 and 8 weeks after cell transplantation for histological, immunological, molecular, and transcriptomic analyses of the retina. Results Transplanted RPCs significantly improved vision and retinal thickness as well as function in rd12 mice. pMSCs and RPCs homed to distinct retinal layers. pMSCs homed to the retinal pigment epithelium, and RPCs migrated to the neural layers of the retina, where they improved the thickness of the respective layers and expressed cell-specific markers. RPCs induced anti-inflammatory and neuroprotective responses as well as upregulated the expression of genes involved in neurogenesis. The transcriptomic analysis showed that RPCs promoted neurogenesis and functional recovery of the retina through inhibition of BMP and activation of JAK/STAT and MAPK signaling pathways. Conclusions Our study demonstrated that RPCs countered inflammation, provided retinal protection, and promoted neurogenesis resulting in improved retinal structure and physiological function in rd12 mice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02828-w.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Patrina Agosta
- Ascension Providence Hospital, Southfield, MI, 48075, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Matteo Mazzella
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | - Ali Alamri
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA.,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA
| | | | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, 48309, USA. .,OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI, 48309, USA.
| |
Collapse
|
75
|
Zhao H, Ji Q, Wu Z, Wang S, Ren J, Yan K, Wang Z, Hu J, Chu Q, Hu H, Cai Y, Wang Q, Huang D, Ji Z, Li J, Belmonte JCI, Song M, Zhang W, Qu J, Liu GH. Destabilizing heterochromatin by APOE mediates senescence. NATURE AGING 2022; 2:303-316. [PMID: 35368774 DOI: 10.1038/s43587-022-00186-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 02/01/2022] [Indexed: 04/30/2023]
Abstract
Apolipoprotein E (APOE) is a component of lipoprotein particles that function in the homeostasis of cholesterol and other lipids. Although APOE is genetically associated with human longevity and Alzheimer's disease, its mechanistic role in aging is largely unknown. Here, we used human genetic, stress-induced and physiological cellular aging models to explore APOE-driven processes in stem cell homeostasis and aging. We report that in aged human mesenchymal progenitor cells (MPCs), APOE accumulation is a driver for cellular senescence. By contrast, CRISPR-Cas9-mediated deletion of APOE endows human MPCs with resistance to cellular senescence. Mechanistically, we discovered that APOE functions as a destabilizer for heterochromatin. Specifically, increased APOE leads to the degradation of nuclear lamina proteins and a heterochromatin-associated protein KRAB-associated protein 1 via the autophagy-lysosomal pathway, thereby disrupting heterochromatin and causing senescence. Altogether, our findings uncover a role of APOE as an epigenetic mediator of senescence and provide potential targets to ameliorate aging-related diseases.
Collapse
Affiliation(s)
- Hongkai Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Science and Technology of China, Hefei, China
| | - Qianzhao Ji
- University of the Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Chongqing Renji Hospital, University of the Chinese Academy of Sciences, Chongqing, China
| | - Jie Ren
- University of the Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jianli Hu
- University of the Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Qun Chu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Huifang Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qiaoran Wang
- University of the Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- China National Center for Bioinformation, Beijing, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | | | - Moshi Song
- University of the Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Weiqi Zhang
- University of the Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Chinese Academy of Sciences Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- China National Center for Bioinformation, Beijing, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Science and Technology of China, Hefei, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Guang-Hui Liu
- University of the Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
76
|
Foster NC, Hall NM, El Haj AJ. Two-Dimensional and Three-Dimensional Cartilage Model Platforms for Drug Evaluation and High-Throughput Screening Assays. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:421-436. [PMID: 34010074 PMCID: PMC7612674 DOI: 10.1089/ten.teb.2020.0354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is a severely painful and debilitating disease of the joint, which brings about degradation of the articular cartilage and currently has few therapeutic solutions. Two-dimensional (2D) high-throughput screening (HTS) assays have been widely used to identify candidate drugs with therapeutic potential for the treatment of OA. A number of small molecules which improve the chondrogenic differentiation of progenitor cells for tissue engineering applications have also been discovered in this way. However, due to the failure of these models to accurately represent the native joint environment, the efficacy of these drugs has been limited in vivo. Screening systems utilizing three-dimensional (3D) models, which more closely reflect the tissue and its complex cell and molecular interactions, have also been described. However, the vast majority of these systems fail to recapitulate the complex, zonal structure of articular cartilage and its unique cell population. This review summarizes current 2D HTS techniques and addresses the question of how to use existing 3D models of tissue-engineered cartilage to create 3D drug screening platforms with improved outcomes. Impact statement Currently, the use of two-dimensional (2D) screening platforms in drug discovery is common practice. However, these systems often fail to predict efficacy in vivo, as they do not accurately represent the complexity of the native three-dimensional (3D) environment. This article describes existing 2D and 3D high-throughput systems used to identify small molecules for osteoarthritis treatment or in vitro chondrogenic differentiation, and suggests ways to improve the efficacy of these systems based on the most recent research.
Collapse
Affiliation(s)
| | - Nicole M Hall
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Alicia J El Haj
- Healthcare Technologies Institute, Institute of Translational Medicine, University of Birmingham, Edgbaston, B15 2TH
| |
Collapse
|
77
|
Hu Y, Shen X, Liu F, Zhu W. Phoenixin-14 Ameliorates Cellular Senescence Against Morphine in M17 Neuronal Cells. Neurotox Res 2022; 40:498-507. [PMID: 35298792 DOI: 10.1007/s12640-022-00489-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023]
Abstract
Drug dependence on morphine is commonly accompanied by neurodegenerative disorders. A previous study showed that prolonged exposure to morphine induces cellular senescence in neuronal cells by reducing telomere length. Phoenixin-14 is a newly discovered brain peptide with pleiotropic roles. However, it is unknown whether phoenixin-14 possesses a beneficial property against morphine-induced cellular senescence. Our results show that morphine reduced the expression of G protein-coupled receptor 173 (GPR173) in M17 neuronal cells. Therefore, we speculated that phoenixin-14, as a ligand for GPR173, may be involved in the morphine-mediated response in M17 cells. Further, we found that phoenixin-14 mitigated morphine-induced oxidative stress by reducing the reactive oxygen species (ROS) production and increasing superoxide dismutase (SOD) activity in M17 neuronal cells. The morphine-induced cellular senescence in M17 neuronal cells was prevented by phoenixin-14. Phoenixin-14 resolved the morphine-caused cell cycle arrest with significant changes in the expression levels of p21, cyclin-dependent kinases 6 (CDK6), and p-Rb. It also elevated the telomerase activity and restored the expressions of human telomerase reverse transcriptase (hTERT) and TERF2 in morphine-induced M17 neuronal cells. Furthermore, phoenixin-14 restored the yes-associated protein (YAP) expression against morphine in M17 neuronal cells. Knockdown of YAP abolished the beneficial effects of phoenixin-14 on cellular senescence against morphine induction. Taken together, these aggregate data demonstrate that phoenixin-14 prevented cellular senescence against morphine induction in M17 neuronal cells via regulating YAP expression.
Collapse
Affiliation(s)
- Yonghe Hu
- Department of Anesthesiology, Huzhou Central Hospital, No. 1558, Sanhuan North RoadZhejiang Province, Wuxing District, Huzhou City, 313099, China
| | - Xinxin Shen
- Department of Anesthesiology, Huzhou Central Hospital, No. 1558, Sanhuan North RoadZhejiang Province, Wuxing District, Huzhou City, 313099, China
| | - Feifan Liu
- Department of Rheumatism, Huzhou Third People's Hospital, 2088 Tiaoxi East RoadZhejiang Province, Wuxing District, Huzhou City, 313002, No, China
| | - Weiguo Zhu
- Department of Anesthesiology, Huzhou Central Hospital, No. 1558, Sanhuan North RoadZhejiang Province, Wuxing District, Huzhou City, 313099, China.
| |
Collapse
|
78
|
Inagaki J, Nakano A, Hatipoglu OF, Ooka Y, Tani Y, Miki A, Ikemura K, Opoku G, Ando R, Kodama S, Ohtsuki T, Yamaji H, Yamamoto S, Katsuyama E, Watanabe S, Hirohata S. Potential of a Novel Chemical Compound Targeting Matrix Metalloprotease-13 for Early Osteoarthritis: An In Vitro Study. Int J Mol Sci 2022; 23:ijms23052681. [PMID: 35269821 PMCID: PMC8910651 DOI: 10.3390/ijms23052681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023] Open
Abstract
Osteoarthritis is a progressive disease characterized by cartilage destruction in the joints. Matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs) play key roles in osteoarthritis progression. In this study, we screened a chemical compound library to identify new drug candidates that target MMP and ADAMTS using a cytokine-stimulated OUMS-27 chondrosarcoma cells. By screening PCR-based mRNA expression, we selected 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide as a potential candidate. We found that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated IL-1β-induced MMP13 mRNA expression in a dose-dependent manner, without causing serious cytotoxicity. Signaling pathway analysis revealed that 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide attenuated ERK- and p-38-phosphorylation as well as JNK phosphorylation. We then examined the additive effect of 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide in combination with low-dose betamethasone on IL-1β-stimulated cells. Combined treatment with 2-(8-methoxy-2-methyl-4-oxoquinolin-1(4H)-yl)-N-(3-methoxyphenyl) acetamide and betamethasone significantly attenuated MMP13 and ADAMTS9 mRNA expression. In conclusion, we identified a potential compound of interest that may help attenuate matrix-degrading enzymes in the early osteoarthritis-affected joints.
Collapse
Affiliation(s)
- Junko Inagaki
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan;
| | - Airi Nakano
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Faculty of Medicine, Kindai University, Higashi-Sayama, Osaka 577-8502, Japan;
| | - Yuka Ooka
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Yurina Tani
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Akane Miki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Kentaro Ikemura
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Gabriel Opoku
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Ryosuke Ando
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Shintaro Kodama
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Takashi Ohtsuki
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Hirosuke Yamaji
- Heart Rhythm Center, Okayama Heart Clinic, Takeda 54-1, Okayama 703-8251, Japan;
| | - Shusei Yamamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Eri Katsuyama
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Shogo Watanabe
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan; (A.N.); (Y.O.); (Y.T.); (A.M.); (K.I.); (G.O.); (R.A.); (S.K.); (T.O.); (S.Y.); (E.K.); (S.W.)
- Correspondence: ; Tel./Fax: +81-86-235-6897
| |
Collapse
|
79
|
Chan M, Yuan H, Soifer I, Maile TM, Wang RY, Ireland A, O'Brien JJ, Goudeau J, Chan LJ, Vijay T, Freund A, Kenyon C, Bennett BD, McAllister FE, Kelley DR, Roy M, Cohen RL, Levinson AD, Botstein D, Hendrickson DG. Novel insights from a multiomics dissection of the hayflick limit. eLife 2022; 11:70283. [PMID: 35119359 PMCID: PMC8933007 DOI: 10.7554/elife.70283] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
The process wherein dividing cells exhaust proliferative capacity and enter into replicative senescence has become a prominent model for cellular aging in vitro. Despite decades of study, this cellular state is not fully understood in culture and even much less so during aging. Here, we revisit Leonard Hayflick’s original observation of replicative senescence in WI-38 human lung fibroblasts equipped with a battery of modern techniques including RNA-seq, single-cell RNA-seq, proteomics, metabolomics, and ATAC-seq. We find evidence that the transition to a senescent state manifests early, increases gradually, and corresponds to a concomitant global increase in DNA accessibility in nucleolar and lamin associated domains. Furthermore, we demonstrate that senescent WI-38 cells acquire a striking resemblance to myofibroblasts in a process similar to the epithelial to mesenchymal transition (EMT) that is regulated by t YAP1/TEAD1 and TGF-β2. Lastly, we show that verteporfin inhibition of YAP1/TEAD1 activity in aged WI-38 cells robustly attenuates this gene expression program.
Collapse
Affiliation(s)
- Michelle Chan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Han Yuan
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Ilya Soifer
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Tobias M Maile
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Rebecca Y Wang
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Andrea Ireland
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - Jérôme Goudeau
- Calico Life Sciences LLC, South San Francisco, United States
| | - Leanne Jg Chan
- Calico Life Sciences LLC, South San Francisco, United States
| | - Twaritha Vijay
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Adam Freund
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Cynthia Kenyon
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - David R Kelley
- Calico Life Sciences, LLC, South San Francisco, United States
| | - Margaret Roy
- Calico Life Sciences LLC, South San Francisco, United States
| | - Robert L Cohen
- Calico Life Sciences, LLC, South San Francisco, United States
| | | | - David Botstein
- Calico Life Sciences, LLC, South San Francisco, United States
| | | |
Collapse
|
80
|
Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discov 2022; 8:6. [PMID: 35102134 PMCID: PMC8803930 DOI: 10.1038/s41421-021-00361-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/05/2021] [Indexed: 01/07/2023] Open
Abstract
Regenerative capacity declines throughout evolution and with age. In this study, we asked whether metabolic programs underlying regenerative capability might be conserved across species, and if so, whether such metabolic drivers might be harnessed to promote tissue repair. To this end, we conducted metabolomic analyses in two vertebrate organ regeneration models: the axolotl limb blastema and antler stem cells. To further reveal why young individuals have higher regenerative capacity than the elderly, we also constructed metabolic profiles for primate juvenile and aged tissues, as well as young and aged human stem cells. In joint analyses, we uncovered that active pyrimidine metabolism and fatty acid metabolism correlated with higher regenerative capacity. Furthermore, we identified a set of regeneration-related metabolite effectors conserved across species. One such metabolite is uridine, a pyrimidine nucleoside, which can rejuvenate aged human stem cells and promote regeneration of various tissues in vivo. These observations will open new avenues for metabolic intervention in tissue repair and regeneration.
Collapse
|
81
|
Role of Yes-associated protein (YAP) in regulation of mesenchymal stem cell tenogenic differentiation. J Mol Histol 2022; 53:273-283. [DOI: 10.1007/s10735-022-10059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
|
82
|
Yin B, Ni J, Witherel CE, Yang M, Burdick JA, Wen C, Wong SHD. Harnessing Tissue-derived Extracellular Vesicles for Osteoarthritis Theranostics. Theranostics 2022; 12:207-231. [PMID: 34987642 PMCID: PMC8690930 DOI: 10.7150/thno.62708] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a prevalent chronic whole-joint disease characterized by low-grade systemic inflammation, degeneration of joint-related tissues such as articular cartilage, and alteration of bone structures that can eventually lead to disability. Emerging evidence has indicated that synovium or articular cartilage-secreted extracellular vesicles (EVs) contribute to OA pathogenesis and physiology, including transporting and enhancing the production of inflammatory mediators and cartilage degrading proteinases. Bioactive components of EVs are known to play a role in OA include microRNA, long non-coding RNA, and proteins. Thus, OA tissues-derived EVs can be used in combination with advanced nanomaterial-based biosensors for the diagnostic assessment of OA progression. Alternatively, mesenchymal stem cell- or platelet-rich plasma-derived EVs (MSC-EVs or PRP-EVs) have high therapeutic value for treating OA, such as suppressing the inflammatory immune microenvironment, which is often enriched by pro-inflammatory immune cells and cytokines that reduce chondrocytes apoptosis. Moreover, those EVs can be modified or incorporated into biomaterials for enhanced targeting and prolonged retention to treat OA effectively. In this review, we explore recently reported OA-related pathological biomarkers from OA joint tissue-derived EVs and discuss the possibility of current biosensors for detecting EVs and EV-related OA biomarkers. We summarize the applications of MSC-EVs and PRP-EVs and discuss their limitations for cartilage regeneration and alleviating OA symptoms. Additionally, we identify advanced therapeutic strategies, including engineered EVs and applying biomaterials to increase the efficacy of EV-based OA therapies. Finally, we provide our perspective on the future of EV-related diagnosis and therapeutic potential for OA treatment.
Collapse
Affiliation(s)
- Bohan Yin
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Junguo Ni
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | | | - Mo Yang
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, PA 16802, USA.,✉ Corresponding authors: Jason A. Burdick: . Chunyi Wen: . Siu Hong Dexter Wong:
| | - Chunyi Wen
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China.,Research Institute of Smart Ageing, the Hong Kong Polytechnic University, Hong Kong, 999077, China.,✉ Corresponding authors: Jason A. Burdick: . Chunyi Wen: . Siu Hong Dexter Wong:
| | - Siu Hong Dexter Wong
- Department of Biomedical Engineering, the Hong Kong Polytechnic University, Hong Kong, 999077, China.,✉ Corresponding authors: Jason A. Burdick: . Chunyi Wen: . Siu Hong Dexter Wong:
| |
Collapse
|
83
|
Weng Z, Wang Y, Ouchi T, Liu H, Qiao X, Wu C, Zhao Z, Li L, Li B. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:356-371. [PMID: 35485439 PMCID: PMC9052415 DOI: 10.1093/stcltm/szac004] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/19/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xianghe Qiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Bo Li
- Corresponding author: Bo Li, DDS, PhD, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, People’s Republic of China.
| |
Collapse
|
84
|
Yang R, Zhang J, Li J, Qin R, Chen J, Wang R, Goltzman D, Miao D. Inhibition of Nrf2 degradation alleviates age-related osteoporosis induced by 1,25-Dihydroxyvitamin D deficiency. Free Radic Biol Med 2022; 178:246-261. [PMID: 34890768 DOI: 10.1016/j.freeradbiomed.2021.12.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
Previous studies have shown that 1,25(OH)2D plays an anti-osteoporosis role by an anti-aging mechanism. Oxidative stress is a key mediator of aging and bone loss; however, whether 1,25(OH)2D can exert its anti-osteoporosis effect by inhibiting oxidative stress is unclear. In this study, osteoporosis and the bone aging phenotype induced by 1,25(OH)2D deficiency in male mice were significantly rescued in vivo upon the supplementation of oltipraz, an inhibitor of Nrf2 degradation. Increased oxidative stress, cellular senescence and reduced osteogenesis of BM-MSCs from VDR knockout mice were also significantly rescued when the cells were pre-treated with oltipraz. We found that 1,25(OH)2D3 promoted Nrf2 accumulation by inhibiting its ubiquitin-proteasome degradation, thus facilitating Nrf2 activation of its transcriptional targets. Mechanistically, 1,25(OH)2D3 enhances VDR-mediated recruitment of Ezh2 and facilitation of H3K27me3 action at the promoter region of Keap1, thus transcriptionally repressing Keap1. To further validate that the Nrf2-Keap1 pathway serves as the key mediator in the anabolic effect of 1,25(OH)2D3 on bone, Nrf2-/- mice, or hBM-MSCs with shRNA-mediated Nrf2-knockdown, were treated with 1,25(OH)2D3; we found that Nrf2 knockout largely blocked the bone anabolic effect of 1,25(OH)2D3 in vivo and ex vivo, and Nrf2 knockdown in hBM-MSCs markedly blocked the role of 1,25(OH)2D3 in inhibiting oxidative stress and promoting osteogenic differentiation and bone formation. This study provides insight into the mechanism whereby 1,25(OH)2D3 postpones age-related osteoporosis via VDR-mediated activation of Nrf2-antioxidant signaling and inhibition of oxidative stress, and thus provides evidence for oltipraz as a potential reagent for clinical prevention and treatment of age-related osteoporosis.
Collapse
Affiliation(s)
- Renlei Yang
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jiao Zhang
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jie Li
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Ran Qin
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jie Chen
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Wang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - David Goltzman
- Calcium Research Laboratory, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, H4A 3J1, Canada
| | - Dengshun Miao
- The Research Center for Aging, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China; State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
85
|
Chen J, Cheng J, Zhao C, Zhao B, Mi J, Li W. The Hippo pathway: a renewed insight in the craniofacial diseases and hard tissue remodeling. Int J Biol Sci 2021; 17:4060-4072. [PMID: 34671220 PMCID: PMC8495397 DOI: 10.7150/ijbs.63305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway plays an important role in many pathophysiological processes, including cell proliferation and differentiation, cell death, cell migration and invasion. Because of its extensive functions, Hippo pathway is closely related to not only growth and development, but also many diseases, including inflammation and cancer. In this study, the role of Hippo pathway in craniofacial diseases and hard tissue remodeling was reviewed, in attempting to find new research directions.
Collapse
Affiliation(s)
- Jun Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, China.,Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.,Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China
| | - Jingyi Cheng
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Cong Zhao
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Boxuan Zhao
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Jia Mi
- Xiangya School of Stomatology, Central South University, Changsha 410008, China
| | - Wenjie Li
- Xiangya School of Stomatology, Central South University, Changsha 410008, China.,Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.,Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Diseases and Oral Health, Central South University, Changsha 410008, China.,National Key Laboratory of Science and Technology on High-strength Structural Materials, Central South University, Changsha 410083, China.,State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
86
|
Samoilova EM, Belopasov VV, Ekusheva EV, Zhang C, Troitskiy AV, Baklaushev VP. Epigenetic Clock and Circadian Rhythms in Stem Cell Aging and Rejuvenation. J Pers Med 2021; 11:1050. [PMID: 34834402 PMCID: PMC8620936 DOI: 10.3390/jpm11111050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the current understanding of the interaction between circadian rhythms of gene expression and epigenetic clocks characterized by the specific profile of DNA methylation in CpG-islands which mirror the senescence of all somatic cells and stem cells in particular. Basic mechanisms of regulation for circadian genes CLOCK-BMAL1 as well as downstream clock-controlled genes (ССG) are also discussed here. It has been shown that circadian rhythms operate by the finely tuned regulation of transcription and rely on various epigenetic mechanisms including the activation of enhancers/suppressors, acetylation/deacetylation of histones and other proteins as well as DNA methylation. Overall, up to 20% of all genes expressed by the cell are subject to expression oscillations associated with circadian rhythms. Additionally included in the review is a brief list of genes involved in the regulation of circadian rhythms, along with genes important for cell aging, and oncogenesis. Eliminating some of them (for example, Sirt1) accelerates the aging process, while the overexpression of Sirt1, on the contrary, protects against age-related changes. Circadian regulators control a number of genes that activate the cell cycle (Wee1, c-Myc, p20, p21, and Cyclin D1) and regulate histone modification and DNA methylation. Approaches for determining the epigenetic age from methylation profiles across CpG islands in individual cells are described. DNA methylation, which characterizes the function of the epigenetic clock, appears to link together such key biological processes as regeneration and functioning of stem cells, aging and malignant transformation. Finally, the main features of adult stem cell aging in stem cell niches and current possibilities for modulating the epigenetic clock and stem cells rejuvenation as part of antiaging therapy are discussed.
Collapse
Affiliation(s)
- Ekaterina M. Samoilova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | | | - Evgenia V. Ekusheva
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center for Specialized Types of Medical Care and Medical Technologies, FMBA of Russia, 125371 Moscow, Russia;
| | - Chao Zhang
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China;
| | - Alexander V. Troitskiy
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies, FMBA of Russia, 115682 Moscow, Russia; (A.V.T.); (V.P.B.)
| |
Collapse
|
87
|
Yu AQ, Wang J, Jiang ST, Yuan LQ, Ma HY, Hu YM, Han XM, Tan LM, Wang ZX. SIRT7-Induced PHF5A Decrotonylation Regulates Aging Progress Through Alternative Splicing-Mediated Downregulation of CDK2. Front Cell Dev Biol 2021; 9:710479. [PMID: 34604215 PMCID: PMC8484718 DOI: 10.3389/fcell.2021.710479] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Dysregulation of protein posttranslational modification (PTM) can lead to a variety of pathological processes, such as abnormal sperm development, malignant tumorigenesis, depression, and aging process. SIRT7 is a NAD+-dependent protein deacetylase. Besides known deacetylation, SIRT7 may also have the capacity to remove other acylation. However, the roles of SIRT7-induced other deacylation in aging are still largely unknown. Here, we found that the expression of SIRT7 was significantly increased in senescent fibroblasts and aged tissues. Knockdown or overexpression of SIRT7 can inhibit or promote fibroblast senescence. Knockdown of SIRT7 led to increased pan-lysine crotonylation (Kcr) levels in senescent fibroblasts. Using modern mass spectrometry (MS) technology, we identified 5,149 Kcr sites across 1,541 proteins in senescent fibroblasts, and providing the largest crotonylome dataset to date in senescent cells. Specifically, among the identified proteins, we found SIRT7 decrotonylated PHF5A, an alternative splicing (AS) factor, at K25. Decrotonylation of PHF5A K25 contributed to decreased CDK2 expression by retained intron (RI)-induced abnormal AS, thereby accelerating fibroblast senescence, and supporting a key role of PHF5A K25 decrotonylation in aging. Collectively, our data revealed the molecular mechanism of SIRT7-induced k25 decrotonylation of PHF5A regulating aging and provide new ideas and molecular targets for drug intervention in cellular aging and the treatment of aging-related diseases, and indicating that protein crotonylation has important implications in the regulation of aging progress.
Collapse
Affiliation(s)
- Ai Qing Yu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Jie Wang
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shi Tao Jiang
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhenzhou, China
| | - Li Qun Yuan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Hai Yan Ma
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Yi Min Hu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xing Min Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Zhengzhou University, Zhenzhou, China
| | - Li Ming Tan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Zhi Xiao Wang
- Department of Cardiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| |
Collapse
|
88
|
Xu X, Shen X, Wang J, Feng W, Wang M, Miao X, Wu Q, Wu L, Wang X, Ma Y, Wu S, Bao X, Wang W, Wang Y, Huang Z. YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimer's disease through regulating CDK6 signaling. Aging Cell 2021; 20:e13465. [PMID: 34415667 PMCID: PMC8441453 DOI: 10.1111/acel.13465] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/15/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Senescent astrocytes accumulate with aging and contribute to brain dysfunction and diseases such as Alzheimer's disease (AD), however, the mechanisms underlying the senescence of astrocytes during aging remain unclear. In the present study, we found that Yes‐associated Protein (YAP) was downregulated and inactivated in hippocampal astrocytes of aging mice and AD model mice, as well as in D‐galactose and paraquat‐induced senescent astrocytes, in a Hippo pathway‐dependent manner. Conditional knockout of YAP in astrocytes significantly promoted premature senescence of astrocytes, including reduction of cell proliferation, hypertrophic morphology, increase in senescence‐associated β‐galactosidase activity, and upregulation of several senescence‐associated genes such as p16, p53 and NF‐κB, and downregulation of Lamin B1. Further exploration of the underlying mechanism revealed that the expression of cyclin‐dependent kinase 6 (CDK6) was decreased in YAP knockout astrocytes in vivo and in vitro, and ectopic overexpression of CDK6 partially rescued YAP knockout‐induced senescence of astrocytes. Finally, activation of YAP signaling by XMU‐MP‐1 (an inhibitor of Hippo kinase MST1/2) partially rescued the senescence of astrocytes and improved the cognitive function of AD model mice and aging mice. Taken together, our studies identified unrecognized functions of YAP‐CDK6 pathway in preventing astrocytic senescence in vitro and in vivo, which may provide further insights and new targets for delaying brain aging and aging‐related neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Xingxing Xu
- School of Basic Medical Sciences Wenzhou Medical University Wenzhou China
| | - Xiya Shen
- School of Basic Medical Sciences Wenzhou Medical University Wenzhou China
| | - Jiaojiao Wang
- School of Basic Medical Sciences Wenzhou Medical University Wenzhou China
| | - Wenjin Feng
- Zhejiang Sinogen Medical Equipment Co., Ltd Wenzhou China
| | - Mianxian Wang
- School of Basic Medical Sciences Wenzhou Medical University Wenzhou China
| | - Xuemeng Miao
- School of Mental Health Wenzhou Medical University Wenzhou China
| | - Qian Wu
- School of Mental Health Wenzhou Medical University Wenzhou China
| | - Lihao Wu
- School of the First Clinical Medical Sciences School of Information and Engineering Wenzhou Medical University Wenzhou China
| | - Xiaoning Wang
- School of the First Clinical Medical Sciences School of Information and Engineering Wenzhou Medical University Wenzhou China
| | - Yimin Ma
- School of Mental Health Wenzhou Medical University Wenzhou China
| | - Shuang Wu
- School of the First Clinical Medical Sciences School of Information and Engineering Wenzhou Medical University Wenzhou China
| | - Xiaomei Bao
- School of Basic Medical Sciences Wenzhou Medical University Wenzhou China
- Department of Obstetrics and Gynecology Wenzhou People's Hospital Wenzhou China
| | - Wei Wang
- School of Mental Health Wenzhou Medical University Wenzhou China
| | - Ying Wang
- Phase I Clinical Research Center Zhejiang Provincial People's Hospital of Hangzhou Medical College Hangzhou China
| | - Zhihui Huang
- School of Basic Medical Sciences Wenzhou Medical University Wenzhou China
- School of Mental Health Wenzhou Medical University Wenzhou China
- College of Pharmacy Hangzhou Normal University Hangzhou China
| |
Collapse
|
89
|
Xie J, Wang Y, Lu L, Liu L, Yu X, Pei F. Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Res Rev 2021; 70:101413. [PMID: 34298194 DOI: 10.1016/j.arr.2021.101413] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is the inability of cells to proliferate, which has both beneficial and detrimental effects on tissue development and homeostasis. Chronic accumulation of senescent cells is associated with age-related disease, including osteoarthritis, a common joint disease responsible for joint pain and disability in older adults. The pathology of this disease includes loss of cartilage, synovium inflammation, and subchondral bone remodeling. Senescent cells are present in the cartilage of people with advanced osteoarthritis, but the link between cellular senescence and this disease is unclear. In this review, we summarize current evidence for the role of cellular senescence of different cell types in the onset and progression of osteoarthritis. We focus on the underlying mechanisms of senescence in chondrocytes, which maintain the cartilage in joints, and review the role of the Forkhead family of transcription factors, which are involved in cartilage maintenance and osteoarthritis. Finally, we discuss the potential therapeutic value and implications of targeting senescent cells using senolytic agents or immune therapies, targeting the senescence-associated secretory phenotype of these cells using senomorphic agents, and renewing the plasticity of stem cells and chondrocytes. Our review highlights current gaps in understanding of the mechanism of senescence that may, when addressed, provided new options for modifying and treating disease in osteoarthritis.
Collapse
|
90
|
Qi X, Song A, Ma M, Wang P, Zhang X, Lu C, Zhang J, Zheng S, Jin H. Curcumol inhibits ferritinophagy to restrain hepatocyte senescence through YAP/NCOA4 in non-alcoholic fatty liver disease. Cell Prolif 2021; 54:e13107. [PMID: 34346124 PMCID: PMC8450123 DOI: 10.1111/cpr.13107] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Objectives In recent years, cellular senescence has attracted a lot of interest in researchers due to its involvement in non‐alcoholic fatty liver disease (NAFLD). However, the mechanism of cellular senescence is not clear. The purpose of this study was to investigate the effect of curcumol on hepatocyte senescence in NAFLD and the molecular mechanisms implicated. Materials and methods LVG Golden Syrian hamsters, C57BL/6J mice and human hepatocyte cell line LO2 were used. Cellular senescence was assessed by analyses of senescence marker SA‐β‐gal, p16 and p21, H3K9me3, γ‐H2AX and telomerase activity. Results The results showed that curcumol could inhibit hepatocyte senescence in both in vivo and in vitro NAFLD models, and the mechanism might be related to its regulation of ferritinophagy and subsequent alleviation of iron overload. Moreover, overexpression of nuclear receptor coactivator 4 (NCOA4) weakened the effect of curcumol on ferritinophagy‐mediated iron overload and cellular senescence. Furthermore, we demonstrated that curcumol reduced the expression of NCOA4 by Yes‐associated protein (YAP). In addition, depression of YAP could impair the effect of curcumol on iron overload and cellular senescence. Conclusion Our results clarified the mechanism of curcumol inhibition of hepatocyte senescence through YAP/NCOA4 regulation of ferritinophagy in NAFLD. These findings provided a promising option of curcumol to regulate cellular senescence by target YAP/NCOA4 for the treatment of NAFLD.
Collapse
Affiliation(s)
- Xiaoyu Qi
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Anping Song
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Mingyue Ma
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Peipei Wang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Xinbei Zhang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, China
| | - Junxiu Zhang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Shuguo Zheng
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
91
|
Abstract
Mesenchymal stem cells (MSCs), a kind of multipotent stem cells with self-renewal ability and multi-differentiation ability, have become the “practical stem cells” for the treatment of diseases. MSCs have immunomodulatory properties and can be used to treat autoimmune diseases, such as systemic lupus erythematosus (SLE) and Crohn’s disease. MSCs also can be used in cancer and aging. At present, many clinical experiments are using MSCs. MSCs can reduce the occurrence of inflammation and apoptosis of tissue cells, and promote the proliferation of endogenous tissue and organ cells, so as to achieve the effect of repairing tissue and organs. MSCs presumably also play an important role in Corona Virus Disease 2019 (COVID-19) infection.
Collapse
|
92
|
Yuan P, Qi X, Song A, Ma M, Zhang X, Lu C, Bian M, Lian N, He J, Zheng S, Jin H. LncRNA MAYA promotes iron overload and hepatocyte senescence through inhibition of YAP in non-alcoholic fatty liver disease. J Cell Mol Med 2021; 25:7354-7366. [PMID: 34190396 PMCID: PMC8335668 DOI: 10.1111/jcmm.16764] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/02/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Although recent evidence has shown that hepatocyte senescence plays a crucial role in the pathogenesis and development of non‐alcoholic fatty liver disease (NAFLD), the mechanism is still not clear. The purpose of this study was to investigate the signal transduction pathways involved in the senescence of hepatocyte, in order to provide a potential strategy for blocking the process of NAFLD. The results confirmed that hepatocyte senescence occurred in HFD‐fed Golden hamsters and PA‐treated LO2 cells as manifested by increased levels of senescence marker SA‐β‐gal, p16 and p21, heterochromatin marker H3K9me3, DNA damage marker γ‐H2AX and decreased activity of telomerase. Further studies demonstrated that iron overload could promote the senescence of hepatocyte, whereas the overexpression of Yes‐associated protein (YAP) could blunt iron overload and alleviate the senescence of hepatocyte. Of importance, depression of lncRNA MAYA (MAYA) reduced iron overload and cellular senescence via promotion of YAP in PA‐treated hepatocytes. These effects were further supported by in vivo experiments. In conclusion, these data suggested that inhibition of MAYA could up‐regulate YAP, which might repress hepatocyte senescence through modulating iron overload. In addition, these findings provided a promising option for heading off the development of NAFLD by abrogating hepatocyte senescence.
Collapse
Affiliation(s)
- Ping Yuan
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Xiaoyu Qi
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Anping Song
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Mingyue Ma
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Xinbei Zhang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, China
| | - Mianli Bian
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Naqi Lian
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianling He
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, China
| | - Shuguo Zheng
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, China
| |
Collapse
|
93
|
Riquier S, Mathieu M, Bessiere C, Boureux A, Ruffle F, Lemaitre JM, Djouad F, Gilbert N, Commes T. Long non-coding RNA exploration for mesenchymal stem cell characterisation. BMC Genomics 2021; 22:412. [PMID: 34088266 PMCID: PMC8178833 DOI: 10.1186/s12864-020-07289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of RNA sequencing (RNAseq) and the corresponding emergence of public datasets have created new avenues of transcriptional marker search. The long non-coding RNAs (lncRNAs) constitute an emerging class of transcripts with a potential for high tissue specificity and function. Therefore, we tested the biomarker potential of lncRNAs on Mesenchymal Stem Cells (MSCs), a complex type of adult multipotent stem cells of diverse tissue origins, that is frequently used in clinics but which is lacking extensive characterization. RESULTS We developed a dedicated bioinformatics pipeline for the purpose of building a cell-specific catalogue of unannotated lncRNAs. The pipeline performs ab initio transcript identification, pseudoalignment and uses new methodologies such as a specific k-mer approach for naive quantification of expression in numerous RNAseq data. We next applied it on MSCs, and our pipeline was able to highlight novel lncRNAs with high cell specificity. Furthermore, with original and efficient approaches for functional prediction, we demonstrated that each candidate represents one specific state of MSCs biology. CONCLUSIONS We showed that our approach can be employed to harness lncRNAs as cell markers. More specifically, our results suggest different candidates as potential actors in MSCs biology and propose promising directions for future experimental investigations.
Collapse
Affiliation(s)
- Sébastien Riquier
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Marc Mathieu
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Chloé Bessiere
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Anthony Boureux
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Florence Ruffle
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Jean-Marc Lemaitre
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Farida Djouad
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Nicolas Gilbert
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| | - Thérèse Commes
- IRMB, University of Montpellier, INSERM, 80 rue Augustin Fliche, Montpellier, France
| |
Collapse
|
94
|
Diao Z, Ji Q, Wu Z, Zhang W, Cai Y, Wang Z, Hu J, Liu Z, Wang Q, Bi S, Huang D, Ji Z, Liu GH, Wang S, Song M, Qu J. SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res 2021; 49:4203-4219. [PMID: 33706382 PMCID: PMC8096253 DOI: 10.1093/nar/gkab161] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
Sirtuin 3 (SIRT3) is an NAD+-dependent deacetylase linked to a broad range of physiological and pathological processes, including aging and aging-related diseases. However, the role of SIRT3 in regulating human stem cell homeostasis remains unclear. Here we found that SIRT3 expression was downregulated in senescent human mesenchymal stem cells (hMSCs). CRISPR/Cas9-mediated depletion of SIRT3 led to compromised nuclear integrity, loss of heterochromatin and accelerated senescence in hMSCs. Further analysis indicated that SIRT3 interacted with nuclear envelope proteins and heterochromatin-associated proteins. SIRT3 deficiency resulted in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, increased chromatin accessibility and aberrant repetitive sequence transcription. The re-introduction of SIRT3 rescued the disorganized heterochromatin and the senescence phenotypes. Taken together, our study reveals a novel role for SIRT3 in stabilizing heterochromatin and counteracting hMSC senescence, providing new potential therapeutic targets to ameliorate aging-related diseases.
Collapse
Affiliation(s)
- Zhiqing Diao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianzhao Ji
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zehua Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianli Hu
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaoran Wang
- University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.,China National Center for Bioinformation, Beijing 100101, China
| | - Shijia Bi
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.,Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing 100049, China.,State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
95
|
Role of Yes-associated protein and transcriptional coactivator with PDZ-binding motif in the malignant transformation of oral submucous fibrosis. Arch Oral Biol 2021; 128:105164. [PMID: 34044344 DOI: 10.1016/j.archoralbio.2021.105164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE(S) The objective of the present manuscript is to elucidate the role of matrix stiffness in the malignant transformation of oral submucous fibrosis. DESIGN The role of matrix stiffness in several cancers including oral cancer was reviewed with a tailored search strategy using relevant keywords as per the Medline format. The role of molecular mediators, Yes-associated protein 1 (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) was weighed in the context of OSF along two distinct pathways. RESULTS Increased matrix stiffness activates the transcriptional coactivators, YAP and TAZ shuttling between the nucleus and cytoplasm. YAP and TAZ, serve as mechanical transducers in promoting cell migration, invasion and epithelial-mesenchymal transition (EMT). The hypoxic microenvironment in the advanced stage of OSF promotes the migratory phenotype through mechanical memory. CONCLUSIONS Reprogramming of a stiff matrix has the potential to restore the Hippo-YAP/TAZ tumor suppressor pathway and reverse fibrosis-associated tumor development.
Collapse
|
96
|
Yan P, Liu Z, Song M, Wu Z, Xu W, Li K, Ji Q, Wang S, Liu X, Yan K, Esteban CR, Ci W, Belmonte JCI, Xie W, Ren J, Zhang W, Sun Q, Qu J, Liu GH. Genome-wide R-loop Landscapes during Cell Differentiation and Reprogramming. Cell Rep 2021; 32:107870. [PMID: 32640235 DOI: 10.1016/j.celrep.2020.107870] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022] Open
Abstract
DNA:RNA hybrids play key roles in both physiological and disease states by regulating chromatin and genome organization. Their homeostasis during cell differentiation and cell plasticity remains elusive. Using an isogenic human stem cell platform, we systematically characterize R-loops, DNA methylation, histone modifications, and chromatin accessibility in pluripotent cells and their lineage-differentiated derivatives. We confirm that a portion of R-loops formed co-transcriptionally at pluripotency genes in pluripotent stem cells and at lineage-controlling genes in differentiated lineages. Notably, a subset of R-loops maintained after differentiation are associated with repressive chromatin marks on silent pluripotency genes and undesired lineage genes. Moreover, in reprogrammed pluripotent cells, cell-of-origin-specific R-loops are initially present but are resolved with serial passaging. Our analysis suggests a multifaceted role of R-loops in cell fate determination that may serve as an additional layer of modulation on cell fate memory and cell plasticity.
Collapse
Affiliation(s)
- Pengze Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeming Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kuan Li
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Weimin Ci
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jie Ren
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing 100101, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, School of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qianwen Sun
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
97
|
Chen Y, An X, Wang Z, Guan S, An H, Huang Q, Zhang H, Liang L, Huang B, Wang H, Lu M, Nie H, Wang J, Dai X, Lu X. Transcriptome and lipidome profile of human mesenchymal stem cells with reduced senescence and increased trilineage differentiation ability upon drug treatment. Aging (Albany NY) 2021; 13:9991-10014. [PMID: 33795523 PMCID: PMC8064146 DOI: 10.18632/aging.202759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 11/25/2022]
Abstract
Human Mesenchymal stem cells (hMSCs) are multi-potential cells which are widely used in cell therapy. However, the frequently emerged senescence and decrease of differentiation capabilities limited the broad applications of MSC. Several strategies such as small molecules treatment have been widely studied and used to improve the stem characteristics bypassing the senescence but the exact mechanisms for them to reduce senescence have not been fully studied. In this study, hMSCs were treated by rapamycin, oltipraz, metformin, and vitamin C for the indicated time and these cells were subjected to senescence evaluation and trilineage differentiation. Furthermore, transcriptomics and lipidomics datasets of hMSCs after drug treatment were analyzed to interpret biological pathways responsible for their anti-senescence effects. Although four drugs exhibited significant activities in promoting MSC osteogenic differentiation, metformin is the optimal drug to promote trilineage differentiation. GO terms illustrated that the anti-aging effects of drugs were mainly associated with cellular senescence, mitotic and meiosis process. Biosynthesis of phosphatidylcholines (PC) and phosphatidylethanolamine (PE) were inhibited whereas production of phosphatidylinositols (PIs) and saturated fatty acids (SFA)/ mono-unsaturated fatty acids (MUFA) conversion was activated. Medium free fatty acids (FFA) was increased in hMSCs with different anti-aging phenotypes. Therefore, we established a comprehensive method in assessing drug intervention based on the results of transcriptomics and lipidomics. The method can be used to study different biological phenotypes upon drug intervention in MSC which will extend the clinical application of hMSCs.
Collapse
Affiliation(s)
- Yue Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Xinglan An
- National & Local Joint Engineering Laboratory for Animal Models of Human Diseases, First Hospital, Jilin University, Changchun 130021, China
| | - Zengmiao Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.,State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Shuanghong Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Hongyu An
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Qingyuan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Haobo Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Lin Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Bo Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Huiyu Wang
- School of Pharmacy, Qiqihar Medical University, Qiqihar 161000, Heilongjiang, China
| | - Min Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| | - Jun Wang
- BeiGene (Beijing) Co., Ltd, Beijing 102206, China
| | - Xiangpeng Dai
- National & Local Joint Engineering Laboratory for Animal Models of Human Diseases, First Hospital, Jilin University, Changchun 130021, China
| | - Xin Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, Heilongjiang, China
| |
Collapse
|
98
|
LeBlanc L, Ramirez N, Kim J. Context-dependent roles of YAP/TAZ in stem cell fates and cancer. Cell Mol Life Sci 2021; 78:4201-4219. [PMID: 33582842 PMCID: PMC8164607 DOI: 10.1007/s00018-021-03781-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/30/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
Hippo effectors YAP and TAZ control cell fate and survival through various mechanisms, including transcriptional regulation of key genes. However, much of this research has been marked by conflicting results, as well as controversy over whether YAP and TAZ are redundant. A substantial portion of the discordance stems from their contradictory roles in stem cell self-renewal vs. differentiation and cancer cell survival vs. apoptosis. In this review, we present an overview of the multiple context-dependent functions of YAP and TAZ in regulating cell fate decisions in stem cells and organoids, as well as their mechanisms of controlling programmed cell death pathways in cancer.
Collapse
Affiliation(s)
- Lucy LeBlanc
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA. .,Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Nereida Ramirez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.,Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - Jonghwan Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA. .,Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, TX, 78712, USA. .,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
99
|
Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res 2021; 31:187-205. [PMID: 32737416 PMCID: PMC8027439 DOI: 10.1038/s41422-020-0385-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/07/2020] [Indexed: 01/29/2023] Open
Abstract
Accumulating evidence indicates an association between the circadian clock and the aging process. However, it remains elusive whether the deregulation of circadian clock proteins underlies stem cell aging and whether they are targetable for the alleviation of aging-associated syndromes. Here, we identified a transcription factor-independent role of CLOCK, a core component of the molecular circadian clock machinery, in counteracting human mesenchymal stem cell (hMSC) decay. CLOCK expression was decreased during hMSC aging. In addition, CLOCK deficiency accelerated hMSC senescence, whereas the overexpression of CLOCK, even as a transcriptionally inactive form, rejuvenated physiologically and pathologically aged hMSCs. Mechanistic studies revealed that CLOCK formed complexes with nuclear lamina proteins and KAP1, thus maintaining heterochromatin architecture and stabilizing repetitive genomic sequences. Finally, gene therapy with lentiviral vectors encoding CLOCK promoted cartilage regeneration and attenuated age-related articular degeneration in mice. These findings demonstrate a noncanonical role of CLOCK in stabilizing heterochromatin, promoting tissue regeneration, and mitigating aging-associated chronic diseases.
Collapse
|
100
|
Yang D, Xu X, Wang X, Feng W, Shen X, Zhang J, Liu H, Xie C, Wu Q, Miao X, Guo Y, Cai H, Wu L, Zhou S, Yao X, Wang Y, Xie T, Huang Z. β-elemene promotes the senescence of glioma cells through regulating YAP-CDK6 signaling. Am J Cancer Res 2021; 11:370-388. [PMID: 33575077 PMCID: PMC7868755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023] Open
Abstract
Glioma is currently the most widespread and malignant primary intracranial tumor, which is characterized by high heterogeneity and high fatality rates. β-elemene, which is a bioactive compound extracted from a Chinese herb, Curcuma wenyujin, has been reported to reduce resistance of chemotherapeutic drugs and induce apoptosis in tumor cells. However, the role and mechanisms of β-elemene in glioma senescence remains unknown. In the present study, we found that a low concentration of β-elemene (10 μg/mL) induced senescence in glioma cells, including reduction of cell proliferation, hypertrophic morphology, increase of senescence-associated β-galactosidase (SA-β-Gal) activity, upregulation of several senescence-associated genes such as p16, p53 and NF-κB, and downregulation of Lamin B1. However, a high concentration of β-elemene induced apoptosis in glioma cells. Treatment with β-elemene caused a marked down-regulation of Yes-associated protein (YAP) expression in glioma cells, which is a key transcriptional co-activator in multiple cancers. Moreover, cyclin dependent kinase 6 (CDK6), which is a known downstream target of YAP, was decreased in glioma cells that treated with β-elemene. The overexpression of YAP and CDK6 significantly rescued β-elemene-induced senescence in glioma cells. Finally, β-elemene treatment also induced the senescence of glioma cells in glioma xenograft model through inactivation of YAP-CDK6 pathways, which might inhibit the glioma growth. Taken together, these results reveal a previously unknown role of β-elemene in glioma cell senescence in vitro and in vivo that is associated with YAP-CDK6 signaling pathway, which will enhance our understanding of glioma cell senescence, and provide novel strategies for the treatment of gliomas.
Collapse
Affiliation(s)
- Danlu Yang
- Key Laboratory of β-elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery, The Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Xingxing Xu
- School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Xin Wang
- Key Laboratory of β-elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery, The Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Wenjin Feng
- Zhejiang Sinogen Medical Equipment Co., Ltd.Wenzhou 325000, Zhejiang, China
| | - Xiya Shen
- School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Jingjing Zhang
- School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Huitao Liu
- School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Changnan Xie
- School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Qian Wu
- School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Xuemeng Miao
- School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Yifan Guo
- School of The 1st Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Hao Cai
- School of The 1st Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Lihao Wu
- School of The 1st Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Shuxian Zhou
- School of The 1st Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Xinfei Yao
- School of The 1st Clinical Medical Sciences, School of Information and Engineering, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| | - Ying Wang
- Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital of Hangzhou Medical CollegeHangzhou 310053, Zhejiang, China
| | - Tian Xie
- Key Laboratory of β-elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery, The Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
| | - Zhihui Huang
- Key Laboratory of β-elemene Anti-cancer Medicine of Zhejiang Province and Holistic Integrative Pharmacy Institutes, and Department of Neurosurgery, The Affiliated Hospital, Hangzhou Normal UniversityHangzhou 311121, Zhejiang, China
- School of Basic Medical Sciences, Wenzhou Medical UniversityWenzhou 325035, Zhejiang, China
| |
Collapse
|