51
|
Model-based analysis uncovers mutations altering autophagy selectivity in human cancer. Nat Commun 2021; 12:3258. [PMID: 34059679 PMCID: PMC8166871 DOI: 10.1038/s41467-021-23539-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy can selectively target protein aggregates, pathogens, and dysfunctional organelles for the lysosomal degradation. Aberrant regulation of autophagy promotes tumorigenesis, while it is far less clear whether and how tumor-specific alterations result in autophagic aberrance. To form a link between aberrant autophagy selectivity and human cancer, we establish a computational pipeline and prioritize 222 potential LIR (LC3-interacting region) motif-associated mutations (LAMs) in 148 proteins. We validate LAMs in multiple proteins including ATG4B, STBD1, EHMT2 and BRAF that impair their interactions with LC3 and autophagy activities. Using a combination of transcriptomic, metabolomic and additional experimental assays, we show that STBD1, a poorly-characterized protein, inhibits tumor growth via modulating glycogen autophagy, while a patient-derived W203C mutation on LIR abolishes its cancer inhibitory function. This work suggests that altered autophagy selectivity is a frequently-used mechanism by cancer cells to survive during various stresses, and provides a framework to discover additional autophagy-related pathways that influence carcinogenesis. Although autophagy has been linked to tumourigenesis, it is unclear how genomic alterations affect autophagy selectivity in tumours. Here, the authors establish a pipeline that integrates computational and experimental approaches to show that altered autophagy selectivity is frequent in cancer cells and link glycogen autophagy with tumourigenesis.
Collapse
|
52
|
Walsh RB, Dresselhaus EC, Becalska AN, Zunitch MJ, Blanchette CR, Scalera AL, Lemos T, Lee SM, Apiki J, Wang S, Isaac B, Yeh A, Koles K, Rodal AA. Opposing functions for retromer and Rab11 in extracellular vesicle traffic at presynaptic terminals. J Cell Biol 2021; 220:212178. [PMID: 34019080 PMCID: PMC8144913 DOI: 10.1083/jcb.202012034] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer's disease, and suggest that misregulated EV traffic may be an underlying defect.
Collapse
Affiliation(s)
- Rylie B Walsh
- Department of Biology, Brandeis University, Waltham, MA
| | | | | | | | | | - Amy L Scalera
- Department of Biology, Brandeis University, Waltham, MA
| | - Tania Lemos
- Department of Biology, Brandeis University, Waltham, MA
| | - So Min Lee
- Department of Biology, Brandeis University, Waltham, MA
| | - Julia Apiki
- Department of Biology, Brandeis University, Waltham, MA
| | - ShiYu Wang
- Department of Biology, Brandeis University, Waltham, MA
| | - Berith Isaac
- Department of Biology, Brandeis University, Waltham, MA
| | - Anna Yeh
- Department of Biology, Brandeis University, Waltham, MA
| | - Kate Koles
- Department of Biology, Brandeis University, Waltham, MA
| | | |
Collapse
|
53
|
Chandra M, Kendall AK, Jackson LP. Toward Understanding the Molecular Role of SNX27/Retromer in Human Health and Disease. Front Cell Dev Biol 2021; 9:642378. [PMID: 33937239 PMCID: PMC8083963 DOI: 10.3389/fcell.2021.642378] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Aberrations in membrane trafficking pathways have profound effects in cellular dynamics of cellular sorting processes and can drive severe physiological outcomes. Sorting nexin 27 (SNX27) is a metazoan-specific sorting nexin protein from the PX-FERM domain family and is required for endosomal recycling of many important transmembrane receptors. Multiple studies have shown SNX27-mediated recycling requires association with retromer, one of the best-known regulators of endosomal trafficking. SNX27/retromer downregulation is strongly linked to Down's Syndrome (DS) via glutamate receptor dysfunction and to Alzheimer's Disease (AD) through increased intracellular production of amyloid peptides from amyloid precursor protein (APP) breakdown. SNX27 is further linked to addiction via its role in potassium channel trafficking, and its over-expression is linked to tumorigenesis, cancer progression, and metastasis. Thus, the correct sorting of multiple receptors by SNX27/retromer is vital for normal cellular function to prevent human diseases. The role of SNX27 in regulating cargo recycling from endosomes to the cell surface is firmly established, but how SNX27 assembles with retromer to generate tubulovesicular carriers remains elusive. Whether SNX27/retromer may be a putative therapeutic target to prevent neurodegenerative disease is now an emerging area of study. This review will provide an update on our molecular understanding of endosomal trafficking events mediated by the SNX27/retromer complex on endosomes.
Collapse
Affiliation(s)
- Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
54
|
Yong X, Billadeau DD, Jia D. All ways lead to Rome: assembly of retromer on membranes with different sorting nexins. Signal Transduct Target Ther 2021; 6:139. [PMID: 33790220 PMCID: PMC8011043 DOI: 10.1038/s41392-021-00561-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA.
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China.
| |
Collapse
|
55
|
Yanguas F, Valdivieso MH. Analysis of the SNARE Stx8 recycling reveals that the retromer-sorting motif has undergone evolutionary divergence. PLoS Genet 2021; 17:e1009463. [PMID: 33788833 PMCID: PMC8041195 DOI: 10.1371/journal.pgen.1009463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 04/12/2021] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Fsv1/Stx8 is a Schizosaccharomyces pombe protein similar to mammalian syntaxin 8. stx8Δ cells are sensitive to salts, and the prevacuolar endosome (PVE) is altered in stx8Δ cells. These defects depend on the SNARE domain, data that confirm the conserved function of syntaxin8 and Stx8 in vesicle fusion at the PVE. Stx8 localizes at the trans-Golgi network (TGN) and the prevacuolar endosome (PVE), and its recycling depends on the retromer component Vps35, and on the sorting nexins Vps5, Vps17, and Snx3. Several experimental approaches demonstrate that Stx8 is a cargo of the Snx3-retromer. Using extensive truncation and alanine scanning mutagenesis, we identified the Stx8 sorting signal. This signal is an IEMeaM sequence that is located in an unstructured protein region, must be distant from the transmembrane (TM) helix, and where the 133I, 134E, 135M, and 138M residues are all essential for recycling. This sorting motif is different from those described for most retromer cargoes, which include aromatic residues, and resembles the sorting motif of mammalian polycystin-2 (PC2). Comparison of Stx8 and PC2 motifs leads to an IEMxx(I/M) consensus. Computer-assisted screening for this and for a loose Ψ(E/D)ΨXXΨ motif (where Ψ is a hydrophobic residue with large aliphatic chain) shows that syntaxin 8 and PC2 homologues from other organisms bear variation of this motif. The phylogeny of the Stx8 sorting motifs from the Schizosaccharomyces species shows that their divergence is similar to that of the genus, showing that they have undergone evolutionary divergence. A preliminary analysis of the motifs in syntaxin 8 and PC2 sequences from various organisms suggests that they might have also undergone evolutionary divergence, what suggests that the presence of almost-identical motifs in Stx8 and PC2 might be a case of convergent evolution. Eukaryotes possess membranous intracellular compartments, whose communication is essential for cellular homeostasis. Protein complexes that facilitate the generation, transport, and fusion of coated vesicles mediate this communication. Since alterations in these processes lead to human disease, their characterization is of biological and medical interest. Retromer is a protein complex that facilitates retrograde trafficking from the prevacuolar endosome to the Golgi, being essential for the functionality of the endolysosomal system. SNAREs are required for vesicle fusion and, after facilitating membrane merging, are supposed to return to their donor organelle for new rounds of fusion. However, little is known about this recycling. We have found that Stx8, a fungal SNARE similar to human syntaxin 8, is a retromer cargo, and have identified its retromer binding motif. Sequence screening and comparison has determined that this sorting motif is conserved mainly in fungal Stx8 sequences. Notably, this motif is similar to the retromer sorting motif that is present in a family of vertebrate ion transporters. Our initial phylogenetic analyses suggest that, although retromer and some of its cargoes are conserved, the sorting motif in the cargoes might have undergone evolutionary divergence.
Collapse
Affiliation(s)
- Francisco Yanguas
- Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca. Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC). Salamanca. Spain
| | - M.-Henar Valdivieso
- Departamento de Microbiología y Genética, Universidad de Salamanca. Salamanca. Spain
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC). Salamanca. Spain
- * E-mail:
| |
Collapse
|
56
|
Yong X, Mao L, Shen X, Zhang Z, Billadeau DD, Jia D. Targeting Endosomal Recycling Pathways by Bacterial and Viral Pathogens. Front Cell Dev Biol 2021; 9:648024. [PMID: 33748141 PMCID: PMC7970000 DOI: 10.3389/fcell.2021.648024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Endosomes are essential cellular stations where endocytic and secretory trafficking routes converge. Proteins transiting at endosomes can be degraded via lysosome, or recycled to the plasma membrane, trans-Golgi network (TGN), or other cellular destinations. Pathways regulating endosomal recycling are tightly regulated in order to preserve organelle identity, to maintain lipid homeostasis, and to support other essential cellular functions. Recent studies have revealed that both pathogenic bacteria and viruses subvert host endosomal recycling pathways for their survival and replication. Several host factors that are frequently targeted by pathogens are being identified, including retromer, TBC1D5, SNX-BARs, and the WASH complex. In this review, we will focus on the recent advances in understanding how intracellular bacteria, human papillomavirus (HPV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijack host endosomal recycling pathways. This exciting work not only reveals distinct mechanisms employed by pathogens to manipulate host signaling pathways, but also deepens our understanding of the molecular intricacies regulating endosomal receptor trafficking.
Collapse
Affiliation(s)
- Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Xiaofei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhen Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
57
|
Retromer dysfunction at the nexus of tauopathies. Cell Death Differ 2021; 28:884-899. [PMID: 33473181 PMCID: PMC7937680 DOI: 10.1038/s41418-020-00727-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/13/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
Tauopathies define a broad range of neurodegenerative diseases that encompass pathological aggregation of the microtubule-associated protein tau. Although tau aggregation is a central feature of these diseases, their underlying pathobiology is remarkably heterogeneous at the molecular level. In this review, we summarize critical differences that account for this heterogeneity and contrast the physiological and pathological functions of tau. We focus on the recent understanding of its prion-like behavior that accounts for its spread in the brain. Moreover, we acknowledge the limited appreciation about how upstream cellular changes influence tauopathy. Dysfunction of the highly conserved endosomal trafficking complex retromer is found in numerous tauopathies such as Alzheimer's disease, Pick's disease, and progressive supranuclear palsy, and we discuss how this has emerged as a major contributor to various aspects of neurodegenerative diseases. In particular, we highlight recent investigations that have elucidated the contribution of retromer dysfunction to distinct measures of tauopathy such as tau hyperphosphorylation, aggregation, and impaired cognition and behavior. Finally, we discuss the potential benefit of targeting retromer for modifying disease burden and identify important considerations with such an approach moving toward clinical translation.
Collapse
|
58
|
Amatya B, Lee H, Asico LD, Konkalmatt P, Armando I, Felder RA, Jose PA. SNX-PXA-RGS-PXC Subfamily of SNXs in the Regulation of Receptor-Mediated Signaling and Membrane Trafficking. Int J Mol Sci 2021; 22:ijms22052319. [PMID: 33652569 PMCID: PMC7956473 DOI: 10.3390/ijms22052319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
The SNX-PXA-RGS-PXC subfamily of sorting nexins (SNXs) belongs to the superfamily of SNX proteins. SNXs are characterized by the presence of a common phox-homology (PX) domain, along with other functional domains that play versatile roles in cellular signaling and membrane trafficking. In addition to the PX domain, the SNX-PXA-RGS-PXC subfamily, except for SNX19, contains a unique RGS (regulators of G protein signaling) domain that serves as GTPase activating proteins (GAPs), which accelerates GTP hydrolysis on the G protein α subunit, resulting in termination of G protein-coupled receptor (GPCR) signaling. Moreover, the PX domain selectively interacts with phosphatidylinositol-3-phosphate and other phosphoinositides found in endosomal membranes, while also associating with various intracellular proteins. Although SNX19 lacks an RGS domain, all members of the SNX-PXA-RGS-PXC subfamily serve as dual regulators of receptor cargo signaling and endosomal trafficking. This review discusses the known and proposed functions of the SNX-PXA-RGS-PXC subfamily and how it participates in receptor signaling (both GPCR and non-GPCR) and endosomal-based membrane trafficking. Furthermore, we discuss the difference of this subfamily of SNXs from other subfamilies, such as SNX-BAR nexins (Bin-Amphiphysin-Rvs) that are associated with retromer or other retrieval complexes for the regulation of receptor signaling and membrane trafficking. Emerging evidence has shown that the dysregulation and malfunction of this subfamily of sorting nexins lead to various pathophysiological processes and disorders, including hypertension.
Collapse
Affiliation(s)
- Bibhas Amatya
- The George Washington University, Washington, DC 20052, USA;
| | - Hewang Lee
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Laureano D. Asico
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Prasad Konkalmatt
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Ines Armando
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
| | - Robin A. Felder
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA;
| | - Pedro A. Jose
- Department of Medicine, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA; (H.L.); (L.D.A.); (P.K.); (I.A.)
- Department of Pathology, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA;
- Department of Pharmacology/Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC 20052, USA
- Correspondence:
| |
Collapse
|
59
|
Mao L, Liao C, Qin J, Gong Y, Zhou Y, Li S, Liu Z, Deng H, Deng W, Sun Q, Mo X, Xue Y, Billadeau DD, Dai L, Li G, Jia D. Phosphorylation of SNX27 by MAPK11/14 links cellular stress-signaling pathways with endocytic recycling. J Cell Biol 2021; 220:211812. [PMID: 33605979 PMCID: PMC7901142 DOI: 10.1083/jcb.202010048] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Endocytosed proteins can be delivered to lysosomes for degradation or recycled to either the trans-Golgi network or the plasma membrane. It remains poorly understood how the recycling versus degradation of cargoes is determined. Here, we show that multiple extracellular stimuli, including starvation, LPS, IL-6, and EGF treatment, can strongly inhibit endocytic recycling of multiple cargoes through the activation of MAPK11/14. The stress-induced kinases in turn directly phosphorylate SNX27, a key regulator of endocytic recycling, at serine 51 (Ser51). Phosphorylation of SNX27 at Ser51 alters the conformation of its cargo-binding pocket and decreases the interaction between SNX27 and cargo proteins, thereby inhibiting endocytic recycling. Our study indicates that endocytic recycling is highly dynamic and can crosstalk with cellular stress–signaling pathways. Suppression of endocytic recycling and enhancement of receptor lysosomal degradation serve as new mechanisms for cells to cope with stress and save energy.
Collapse
Affiliation(s)
- Lejiao Mao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Chenyi Liao
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jiao Qin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yanqiu Gong
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yifei Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Shasha Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Zhe Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Huaqing Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Wankun Deng
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qingxiang Sun
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xianming Mo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Seaman MNJ. The Retromer Complex: From Genesis to Revelations. Trends Biochem Sci 2021; 46:608-620. [PMID: 33526371 DOI: 10.1016/j.tibs.2020.12.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The retromer complex has a well-established role in endosomal protein sorting, being necessary for maintaining the dynamic localisation of hundreds of membrane proteins that traverse the endocytic system. Retromer function and dysfunction is linked with neurodegenerative diseases, including Alzheimer's and Parkinson's disease, and many pathogens, both viral and bacterial, exploit or interfere in retromer function for their own ends. In this review, the history of retromer is distilled into a concentrated form that spans the identification of retromer to recent discoveries that have shed new light on how retromer functions in endosomal protein sorting and why retromer is increasingly being viewed as a potential therapeutic target in neurodegenerative disease.
Collapse
Affiliation(s)
- Matthew N J Seaman
- University of Cambridge, Cambridge Institute for Medical Research, The Keith Peters Building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| |
Collapse
|
61
|
Sargent D, Moore DJ. Mechanisms of VPS35-Mediated Neurodegeneration in Parkinson's Disease. INTERNATIONAL REVIEW OF MOVEMENT DISORDERS 2021; 2:221-244. [PMID: 35497708 DOI: 10.1016/bs.irmvd.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkinson's disease is a sporadic and common neurodegenerative movement disorder resulting from the complex interplay between genetic risk, aging and environmental exposure. Familial forms of PD account for ~10% of cases and are known to result from the inheritance of mutations in at least 15 genes. Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene cause late-onset, autosomal dominant familial PD. VPS35 is a key suunit of the pentameric retromer complex that plays a role in the retrograde sorting and recycling of transmembrane cargo proteins from endosomes to the plasma membrane and trans-Golgi network. A single heterozygous Asp620Asn (D620N) mutation in VPS35 has been identified in multiple families that segregates with PD, and a number of experimental cellular and animal models have been developed to understand its pathogenic effects. At the molecular level, the D620N mutation has been shown to impair the interaction of VPS35 with the WASH complex, that plays an accessory function in retromer-dependent sorting. In addition, the D620N mutation has been linked to the abnormal sorting of retromer cargo, including CI-M6PR, AMPA receptor subunits, MUL1, LAMP2a and ATG9A, as well as to LRRK2 hyperactivation. At the cellular level, data support an impact of D620N VPS35 on mitochondrial function, the autophagy-lysosomal pathway, Wnt signaling and neurotransmission via altered endosomal sorting. The relevance of abnormal retromer sorting and cellular pathways to PD-related neurodegenerative phenotypes induced by D620N VPS35 in rodent models is not yet clear. There is also uncertainty regarding the mechanism-of-action of the D620N mutation and whether it manifests pathogenic effects in animal models and PD through a gain-of-function and/or a partial dominant-negative mechanism. Here, we discuss the emerging molecular and cellular mechanisms underlying PD induced by familial VPS35 mutations, going from structure to cellular function to neuropathology. We further discuss studies linking reduced retromer function to other neurodegenerative diseases and potential therapeutic strategies to normalize retromer function to mitigate disease.
Collapse
Affiliation(s)
- Dorian Sargent
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
62
|
Hanley SE, Cooper KF. Sorting Nexins in Protein Homeostasis. Cells 2020; 10:cells10010017. [PMID: 33374212 PMCID: PMC7823608 DOI: 10.3390/cells10010017] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis is maintained by removing misfolded, damaged, or excess proteins and damaged organelles from the cell by three major pathways; the ubiquitin-proteasome system, the autophagy-lysosomal pathway, and the endo-lysosomal pathway. The requirement for ubiquitin provides a link between all three pathways. Sorting nexins are a highly conserved and diverse family of membrane-associated proteins that not only traffic proteins throughout the cells but also provide a second common thread between protein homeostasis pathways. In this review, we will discuss the connections between sorting nexins, ubiquitin, and the interconnected roles they play in maintaining protein quality control mechanisms. Underlying their importance, genetic defects in sorting nexins are linked with a variety of human diseases including neurodegenerative, cardiovascular diseases, viral infections, and cancer. This serves to emphasize the critical roles sorting nexins play in many aspects of cellular function.
Collapse
|
63
|
Abstract
For decades, recycling of membrane proteins has been represented in figures by arrows between the "endosome" and the plasma membrane, but recently there has been an explosion in the understanding of the mechanisms and protein complexes required to facilitate protein recycling. Here, some key discoveries will be introduced, including assigning function to a number of recently recognized protein complexes and linking their function to protein recycling. Furthermore, the importance of lipid interactions and links to diseases and epithelial polarity will be summarized.
Collapse
Affiliation(s)
- Fiona J McDonald
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
64
|
Molecular Basis for PI(3,5)P2 Recognition by SNX11, a Protein Involved in Lysosomal Degradation and Endosome Homeostasis Regulation. J Mol Biol 2020; 432:4750-4761. [DOI: 10.1016/j.jmb.2020.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/23/2022]
|