51
|
Jin MJ, Jung W, Hyun MH, Lee SH. Effect of behavioral inhibition system and childhood emotional neglect on serotonergic activity, negative affect, and rejection sensitivity in non-clinical adults. PLoS One 2018; 13:e0207746. [PMID: 30458038 PMCID: PMC6245683 DOI: 10.1371/journal.pone.0207746] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 11/06/2018] [Indexed: 01/31/2023] Open
Abstract
Introduction Behavioral inhibition system (BIS) has a strong genetic basis, and emotional neglect (EN) in childhood is one of many environmental experiences that can affect individuals. This study aimed to examine the effects and interaction between BIS and EN on central serotonergic activity and other negative affect and cognition. Methods A total of 153 non-clinical volunteers (54 men and 99 women; average age, 27.72 years, standard deviation = 6.40) were included in the analyses. The Behavioral Inhibition System scale, Childhood Trauma Questionnaire, and negative affect and cognition (Beck Depression Inventory, State-Trait Anxiety Inventory, and Rejection Sensitivity Questionnaire) were measured. As a biomarker of central serotonergic activity, the loudness dependence of auditory evoked potentials was measured. Results High EN was associated with higher loudness dependence of auditory evoked potential (LDAEP) levels and low EN was associated with lower LDAEP levels in high BIS people only. People with high EN people showed significantly higher levels of depression and state anxiety than did those with low EN. Moreover, of people with low BIS, those who had more EN experience had higher levels of rejection sensitivity than did those with less EN experience, while people with high BIS did not show different patterns of rejection sensitivity regardless of the difference of EN. Conclusions This study revealed different effects on physiological (loudness dependence of auditory evoked potentials), intrapersonal (depression and state anxiety), and interpersonal aspects (rejection sensitivity) based on the interaction of BIS and EN. Our results suggest that the physiological and interpersonal aspects, but not the intrapersonal aspect, are significantly influenced by the interactive effect of BIS and EN.
Collapse
Affiliation(s)
- Min Jin Jin
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
- Department of Psychology, Chung-Ang University, Seoul, Republic of Korea
| | - Wookyoung Jung
- Department of Psychology, Keimyung University, Daegu, Republic of Korea
| | - Myoung Ho Hyun
- Department of Psychology, Chung-Ang University, Seoul, Republic of Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Republic of Korea
- Department of Psychiatry, Inje University, Ilsan-Paik Hospital, Goyang, Republic of Korea
- * E-mail: ,
| |
Collapse
|
52
|
Gu S, Gao M, Yan Y, Wang F, Tang YY, Huang JH. The Neural Mechanism Underlying Cognitive and Emotional Processes in Creativity. Front Psychol 2018; 9:1924. [PMID: 30429805 PMCID: PMC6220028 DOI: 10.3389/fpsyg.2018.01924] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
Creativity is related to both cognition and emotion, which are the two major mental processes, interacting with each other to form psychological processes. Emotion is the major driving force of almost all creativities, sometimes in an unconscious way. Even though there are many studies concerning the relationship between creativity and cognition, there are few studies about the neural mechanisms of the emotional effects on creativity. Here, we introduce a novel model to explain the relationship between emotions and creativities: Three Primary Color model, which proposes that there are four major basic emotions; these basic emotions are subsided by three monoamines, just like the three primary colors: dopamine-joy, norepinephrine-stress (fear and anger), and serotonin-punishment. Interestingly, these three neuromodulators play similar roles in creativity, whose core features are value and novelty (surprise), like the characteristics of the core features of basic emotions (hedonic value and arousal value). Dysfunctions of these neuromodulators may be the reasons for both psychopathology and creativity, in that they can change the thinking styles such as novelty seeking behavior, hyper-connectivity of brain areas, and/or cognitive disinhibition to induce both creativity and psychopathology. This new model will not only help researchers understand the dynamics of basic emotion elements, it can also bring an entirely new perspective into the relationship between psychopathology and creativity.
Collapse
Affiliation(s)
- Simeng Gu
- Department of Psychology, School of Medicine, Jiangsu University, Zhenjiang, China.,Institute of Emotion, School of Psychology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengdan Gao
- Institute of Emotion, School of Psychology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yaoyao Yan
- Institute of Emotion, School of Psychology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fushun Wang
- Institute of Emotion, School of Psychology, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States.,College of Medicine, Texas A&M HSC, Temple, TX, United States
| | - Yi-Yuan Tang
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX, United States.,Center for Advanced Study in the Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, TX, United States.,College of Medicine, Texas A&M HSC, Temple, TX, United States
| |
Collapse
|
53
|
Nord CL, Lawson RP, Huys QJM, Pilling S, Roiser JP. Depression is associated with enhanced aversive Pavlovian control over instrumental behaviour. Sci Rep 2018; 8:12582. [PMID: 30135491 PMCID: PMC6105578 DOI: 10.1038/s41598-018-30828-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
The dynamic modulation of instrumental behaviour by conditioned Pavlovian cues is an important process in decision-making. Patients with major depressive disorder (MDD) are known to exhibit mood-congruent biases in information processing, which may occur due to Pavlovian influences, but this hypothesis has never been tested directly in an unmedicated sample. To address this we tested unmedicated MDD patients and healthy volunteers on a computerized Pavlovian-Instrumental Transfer (PIT) task designed to separately examine instrumental approach and withdrawal actions in the context of Pavlovian appetitive and aversive cues. This design allowed us to directly measure the degree to which Pavlovian cues influence instrumental responding. Depressed patients were profoundly influenced by aversive Pavlovian stimuli, to a significantly greater degree than healthy volunteers. This was the case for instrumental behaviour both in the approach condition (in which aversive Pavlovian cues inhibited ‘go’ responses), and in the withdrawal condition (in which aversive Pavlovian cues facilitated ‘go’ responses). Exaggerated aversive PIT provides a potential cognitive mechanism for biased emotion processing in major depression. This finding also has wider significance for the understanding of disrupted motivational processing in neuropsychiatric disorders.
Collapse
Affiliation(s)
- C L Nord
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, WC1N 3AZ, London, UK. .,Department of Psychiatry, University of Cambridge, Addenbrookes Hospital, Level E4, Box 189, Hills Road, CB2 0QQ, Cambridge, UK.
| | - R P Lawson
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, WC1N 3AZ, London, UK.,Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, WC1N 3BG, London, UK.,Department of Psychology, University of Cambridge, Downing Street, CB2 3EB, Cambridge, UK
| | - Q J M Huys
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, ETH Zürich and University of Zürich, Wilfriedstrasse 6, 8032, Zürich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Lenggstasse 31, 8032, Zürich, Switzerland
| | - S Pilling
- Department of Clinical, Educational and Health Psychology, University College London, Gower Street, WC1E 6BT, London, UK
| | - J P Roiser
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, WC1N 3AZ, London, UK
| |
Collapse
|
54
|
Csifcsák G, Boayue NM, Puonti O, Thielscher A, Mittner M. Effects of transcranial direct current stimulation for treating depression: A modeling study. J Affect Disord 2018. [PMID: 29529550 DOI: 10.1016/j.jad.2018.02.077] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) above the left dorsolateral prefrontal cortex (lDLPFC) has been widely used to improve symptoms of major depressive disorder (MDD). However, the effects of different stimulation protocols in the entire frontal lobe have not been investigated in a large sample including patient data. METHODS We used 38 head models created from structural magnetic resonance imaging data of 19 healthy adults and 19 MDD patients and applied computational modeling to simulate the spatial distribution of tDCS-induced electric fields (EFs) in 20 frontal regions. We evaluated effects of seven bipolar and two multi-electrode 4 × 1 tDCS protocols. RESULTS For bipolar montages, EFs were of comparable strength in the lDLPFC and in the medial prefrontal cortex (MPFC). Depending on stimulation parameters, EF cortical maps varied to a considerable degree, but were found to be similar in controls and patients. 4 × 1 montages produced more localized, albeit weaker effects. LIMITATIONS White matter anisotropy was not modeled. The relationship between EF strength and clinical response to tDCS could not be evaluated. CONCLUSIONS In addition to lDLPFC stimulation, excitability changes in the MPFC should also be considered as a potential mechanism underlying clinical efficacy of bipolar montages. MDD-associated anatomical variations are not likely to substantially influence current flow. Individual modeling of tDCS protocols can substantially improve cortical targeting. We make recommendations for future research to explicitly test the contribution of lDLPFC vs. MPFC stimulation to therapeutic outcomes of tDCS in this disorder.
Collapse
Affiliation(s)
- Gábor Csifcsák
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Nya Mehnwolo Boayue
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Oula Puonti
- Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Axel Thielscher
- Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Matthias Mittner
- Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
55
|
Iigaya K, Fonseca MS, Murakami M, Mainen ZF, Dayan P. An effect of serotonergic stimulation on learning rates for rewards apparent after long intertrial intervals. Nat Commun 2018; 9:2477. [PMID: 29946069 PMCID: PMC6018802 DOI: 10.1038/s41467-018-04840-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/22/2018] [Indexed: 12/02/2022] Open
Abstract
Serotonin has widespread, but computationally obscure, modulatory effects on learning and cognition. Here, we studied the impact of optogenetic stimulation of dorsal raphe serotonin neurons in mice performing a non-stationary, reward-driven decision-making task. Animals showed two distinct choice strategies. Choices after short inter-trial-intervals (ITIs) depended only on the last trial outcome and followed a win-stay-lose-switch pattern. In contrast, choices after long ITIs reflected outcome history over multiple trials, as described by reinforcement learning models. We found that optogenetic stimulation during a trial significantly boosted the rate of learning that occurred due to the outcome of that trial, but these effects were only exhibited on choices after long ITIs. This suggests that serotonin neurons modulate reinforcement learning rates, and that this influence is masked by alternate, unaffected, decision mechanisms. These results provide insight into the role of serotonin in treating psychiatric disorders, particularly its modulation of neural plasticity and learning. Serotonin (5-HT) plays many important roles in reward, punishment, patience and beyond, and optogenetic stimulation of 5-HT neurons has not crisply parsed them. The authors report a novel analysis of a reward-based decision-making experiment, and show that 5-HT stimulation increases the learning rate, but only on a select subset of choices.
Collapse
Affiliation(s)
- Kiyohito Iigaya
- Gatsby Computational Neuroscience Unit, University College London, 25 Howland Street, London, W1T 4JG, UK. .,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK. .,Division of Humanities and Social Sciences, California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA.
| | - Madalena S Fonseca
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Masayoshi Murakami
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Zachary F Mainen
- Champalimaud Research, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038, Lisbon, Portugal
| | - Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, 25 Howland Street, London, W1T 4JG, UK.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Russell Square House, 10-12 Russell Square, London, WC1B 5EH, UK
| |
Collapse
|
56
|
Moran RJ, Kishida KT, Lohrenz T, Saez I, Laxton AW, Witcher MR, Tatter SB, Ellis TL, Phillips PEM, Dayan P, Montague PR. The Protective Action Encoding of Serotonin Transients in the Human Brain. Neuropsychopharmacology 2018; 43:1425-1435. [PMID: 29297512 PMCID: PMC5916372 DOI: 10.1038/npp.2017.304] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/01/2017] [Accepted: 11/28/2017] [Indexed: 01/14/2023]
Abstract
The role of serotonin in human brain function remains elusive due, at least in part, to our inability to measure rapidly the local concentration of this neurotransmitter. We used fast-scan cyclic voltammetry to infer serotonergic signaling from the striatum of 14 brains of human patients with Parkinson's disease. Here we report these novel measurements and show that they correlate with outcomes and decisions in a sequential investment game. We find that serotonergic concentrations transiently increase as a whole following negative reward prediction errors, while reversing when counterfactual losses predominate. This provides initial evidence that the serotonergic system acts as an opponent to dopamine signaling, as anticipated by theoretical models. Serotonin transients on one trial were also associated with actions on the next trial in a manner that correlated with decreased exposure to poor outcomes. Thus, the fluctuations observed for serotonin appear to correlate with the inhibition of over-reactions and promote persistence of ongoing strategies in the face of short-term environmental changes. Together these findings elucidate a role for serotonin in the striatum, suggesting it encodes a protective action strategy that mitigates risk and modulates choice selection particularly following negative environmental events.
Collapse
Affiliation(s)
- Rosalyn J Moran
- Department of Engineering Mathematics, School of Computer Science, Electrical and Electronic Engineering, and Engineering Mathematics, University of Bristol, Bristol, UK
| | - Kenneth T Kishida
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA,Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Terry Lohrenz
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA
| | - Ignacio Saez
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Adrian W Laxton
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Mark R Witcher
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen B Tatter
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Thomas L Ellis
- Department of Neurosurgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Paul EM Phillips
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, USA,Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Peter Dayan
- The Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - P Read Montague
- Virginia Tech Carilion Research Institute, Virginia Tech, Roanoke, VA, USA,Department of Physics, Virginia Tech, Blacksburg, VA, USA,Wellcome Trust Centre for Neuroimaging, University College London, London, UK,Virginia Tech Carilion, Research Institute, 2 Riverside Circle, Roanoke, VA 24016, USA, Tel: +1 540 526 2006, Fax: +1 540 982 3805, E-mail:
| |
Collapse
|
57
|
Selvaraj S, Walker C, Arnone D, Cao B, Faulkner P, Cowen PJ, Roiser JP, Howes O. Effect of Citalopram on Emotion Processing in Humans: A Combined 5-HT 1A [ 11C]CUMI-101 PET and Functional MRI Study. Neuropsychopharmacology 2018; 43:655-664. [PMID: 28776580 PMCID: PMC5693328 DOI: 10.1038/npp.2017.166] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
A subset of patients started on a selective serotonin reuptake inhibitor (SSRI) initially experience increased anxiety, which can lead to early discontinuation before therapeutic effects are manifest. The neural basis of this early SSRI effect is not known. Presynaptic dorsal raphe neuron (DRN) 5-HT1A receptors are known to have a critical role in affect processing. Thus we investigated the effect of acute citalopram on emotional processing and the relationship between DRN 5-HT1A receptor availability and amygdala reactivity. Thirteen (mean age 48±9 years) healthy male subjects received either a saline or citalopram infusion intravenously (10 mg over 30 min) on separate occasions in a single-blind, random order, crossover design. On each occasion, participants underwent a block design face-emotion processing task during fMRI known to activate the amygdala. Ten subjects also completed a positron emission tomography (PET) scan to quantify DRN 5-HT1A availability using [11C]CUMI-101. Citalopram infusion when compared with saline resulted in a significantly increased bilateral amygdala responses to fearful vs neutral faces (left p=0.025; right p=0.038 FWE-corrected). DRN [11C]CUMI-101 availability significantly positively correlated with the effect of citalopram on the left amygdala response to fearful faces (Z=2.51, p=0.027) and right amygdala response to happy faces (Z=2.33, p=0.032). Our findings indicate that the initial effect of SSRI treatment is to alter processing of aversive stimuli and that this is linked to DRN 5-HT1A receptors in line with evidence that 5-HT1A receptors have a role in mediating emotional processing.
Collapse
Affiliation(s)
- Sudhakar Selvaraj
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA,Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, London, UK,Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Biomedical and Behavioral Sciences Building (BBSB), 1941 East Road, Suite 3208 Houston, TX 77054, USA, Tel: +1 713 486 2500, Fax: +1 713 486 2553, E-mail:
| | - Chris Walker
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Danilo Arnone
- Institute of Psychiatry, King’s College London, Centre for Affective Disorders, London, UK,IoPPN, King’s College London, Institute of Psychiatry, Psychosis Studies, London, UK
| | - Bo Cao
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul Faulkner
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Oliver Howes
- Medical Research Council London Institute of Medical Sciences, Hammersmith Hospital, London, UK,IoPPN, King’s College London, Institute of Psychiatry, Psychosis Studies, London, UK,Institute of Clinical Sciences, Imperial College, Hammersmith Hospital, London, UK
| |
Collapse
|
58
|
Smith R, Alkozei A, Killgore WDS, Lane RD. Nested positive feedback loops in the maintenance of major depression: An integration and extension of previous models. Brain Behav Immun 2018; 67:374-397. [PMID: 28943294 DOI: 10.1016/j.bbi.2017.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022] Open
Abstract
Several theories of Major Depressive Disorder (MDD) have previously been proposed, focusing largely on either a psychological (i.e., cognitive/affective), biological, or neural/computational level of description. These theories appeal to somewhat distinct bodies of work that have each highlighted separate factors as being of considerable potential importance to the maintenance of MDD. Such factors include a range of cognitive/attentional information-processing biases, a range of structural and functional brain abnormalities, and also dysregulation within the autonomic, endocrine, and immune systems. However, to date there have been limited efforts to integrate these complimentary perspectives into a single multi-level framework. Here we review previous work in each of these MDD research domains and illustrate how they can be synthesized into a more comprehensive model of how a depressive episode is maintained. In particular, we emphasize how plausible (but insufficiently studied) interactions between the various MDD-related factors listed above can lead to a series of nested positive feedback loops, which are each capable of maintaining an individual in a depressive episode. We also describe how these different feedback loops could be active to different degrees in different individual cases, potentially accounting for heterogeneity in both depressive symptoms and treatment response. We conclude by discussing how this integrative model might extend understanding of current treatment mechanisms, and also potentially guide the search for markers to inform treatment selection in individual cases.
Collapse
Affiliation(s)
- Ryan Smith
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA.
| | - Anna Alkozei
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| | | | - Richard D Lane
- Department of Psychiatry, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
59
|
Katahira K, Yamashita Y. A Theoretical Framework for Evaluating Psychiatric Research Strategies. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2017; 1:184-207. [PMID: 30090858 PMCID: PMC6067825 DOI: 10.1162/cpsy_a_00008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023]
Abstract
One of the major goals of basic studies in psychiatry is to find etiological mechanisms or biomarkers of mental disorders. A standard research strategy to pursue this goal is to compare observations of potential factors from patients with those from healthy controls. Classifications of individuals into patient and control groups are generally based on a diagnostic system, such as the Diagnostic and Statistical Manual of Mental Disorders (DSM) or the International Classification of Diseases (ICD). Several flaws in these conventional diagnostic-based approaches have been recognized. The flaws are primarily due to the complexity in the relation between the pathogenetic factors (causes) and disorders: The current diagnostic categories may not reflect the underlying etiological mechanisms. To overcome this difficulty, the National Institute of Mental Health initiated a novel research strategy called Research Domain Criteria (RDoC), which encourages studies to focus on the neurobiological mechanisms and core aspects of behavior rather than to rely on traditional diagnostic categories. However, how RDoC can improve research in psychiatry remains a matter of debate. In this article, we propose a theoretical framework for evaluating psychiatric research strategies, including the conventional diagnostic category-based approaches and the RDoC approach. The proposed framework is based on the statistical modeling of the processes of how the disorder arises from pathogenetic factors. This framework provides the statistical power to quantify how likely relevant pathogenetic factors are to be detected under various research strategies. On the basis of the proposed framework, we can discuss which approach performs better in different types of situations. We present several theoretical and numerical results that highlight the advantages and disadvantages of the strategies. We also demonstrate how a computational model is incorporated into the proposed framework as a generative model of behavioral observations. This demonstration highlights how the computational models contribute to designing psychiatric studies.
Collapse
Affiliation(s)
- Kentaro Katahira
- Department of Psychology, Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| | - Yuichi Yamashita
- Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
60
|
The Neural Basis of Aversive Pavlovian Guidance during Planning. J Neurosci 2017; 37:10215-10229. [PMID: 28924006 DOI: 10.1523/jneurosci.0085-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 06/19/2017] [Indexed: 01/21/2023] Open
Abstract
Important real-world decisions are often arduous as they frequently involve sequences of choices, with initial selections affecting future options. Evaluating every possible combination of choices is computationally intractable, particularly for longer multistep decisions. Therefore, humans frequently use heuristics to reduce the complexity of decisions. We recently used a goal-directed planning task to demonstrate the profound behavioral influence and ubiquity of one such shortcut, namely aversive pruning, a reflexive Pavlovian process that involves neglecting parts of the decision space residing beyond salient negative outcomes. However, how the brain implements this important decision heuristic and what underlies individual differences have hitherto remained unanswered. Therefore, we administered an adapted version of the same planning task to healthy male and female volunteers undergoing functional magnetic resonance imaging (fMRI) to determine the neural basis of aversive pruning. Through both computational and standard categorical fMRI analyses, we show that when planning was influenced by aversive pruning, the subgenual cingulate cortex was robustly recruited. This neural signature was distinct from those associated with general planning and valuation, two fundamental cognitive components elicited by our task but which are complementary to aversive pruning. Furthermore, we found that individual variation in levels of aversive pruning was associated with the responses of insula and dorsolateral prefrontal cortices to the receipt of large monetary losses, and also with subclinical levels of anxiety. In summary, our data reveal the neural signatures of an important reflexive Pavlovian process that shapes goal-directed evaluations and thereby determines the outcome of high-level sequential cognitive processes.SIGNIFICANCE STATEMENT Multistep decisions are complex because initial choices constrain future options. Evaluating every path for long decision sequences is often impractical; thus, cognitive shortcuts are often essential. One pervasive and powerful heuristic is aversive pruning, in which potential decision-making avenues are curtailed at immediate negative outcomes. We used neuroimaging to examine how humans implement such pruning. We found it to be associated with activity in the subgenual cingulate cortex, with neural signatures that were distinguishable from those covarying with planning and valuation. Individual variations in aversive pruning levels related to subclinical anxiety levels and insular cortex activation. These findings reveal the neural mechanisms by which basic negative Pavlovian influences guide decision-making during planning, with implications for disrupted decision-making in psychiatric disorders.
Collapse
|
61
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. Cross Talk: The Microbiota and Neurodevelopmental Disorders. Front Neurosci 2017; 11:490. [PMID: 28966571 PMCID: PMC5605633 DOI: 10.3389/fnins.2017.00490] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Humans evolved within a microbial ecosystem resulting in an interlinked physiology. The gut microbiota can signal to the brain via the immune system, the vagus nerve or other host-microbe interactions facilitated by gut hormones, regulation of tryptophan metabolism and microbial metabolites such as short chain fatty acids (SCFA), to influence brain development, function and behavior. Emerging evidence suggests that the gut microbiota may play a role in shaping cognitive networks encompassing emotional and social domains in neurodevelopmental disorders. Drawing upon pre-clinical and clinical evidence, we review the potential role of the gut microbiota in the origins and development of social and emotional domains related to Autism spectrum disorders (ASD) and schizophrenia. Small preliminary clinical studies have demonstrated gut microbiota alterations in both ASD and schizophrenia compared to healthy controls. However, we await the further development of mechanistic insights, together with large scale longitudinal clinical trials, that encompass a systems level dimensional approach, to investigate whether promising pre-clinical and initial clinical findings lead to clinical relevance.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College CorkCork, Ireland.,Department of Anatomy and Neuroscience, University College CorkCork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioural Science, University College CorkCork, Ireland.,APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
62
|
Mkrtchian A, Roiser JP, Robinson OJ. Threat of shock and aversive inhibition: Induced anxiety modulates Pavlovian-instrumental interactions. J Exp Psychol Gen 2017; 146:1694-1704. [PMID: 28910125 PMCID: PMC5733814 DOI: 10.1037/xge0000363] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Anxiety can be an adaptive response to potentially threatening situations. However, if experienced in inappropriate contexts, it can also lead to pathological and maladaptive anxiety disorders. Experimentally, anxiety can be induced in healthy individuals using the threat of shock (ToS) paradigm. Accumulating work with this paradigm suggests that anxiety promotes harm–avoidant mechanisms through enhanced inhibitory control. However, the specific cognitive mechanisms underlying anxiety-linked inhibitory control are unclear. Critically, behavioral inhibition can arise from at least 2 interacting valuation systems: instrumental (a goal-directed system) and Pavlovian (a “hardwired” reflexive system). The present study (N = 62) replicated a study showing improved response inhibition under ToS in healthy participants, and additionally examined the impact of ToS on aversive and appetitive Pavlovian-instrumental interactions in a reinforced go/no-go task. When Pavlovian and instrumental systems were in conflict, ToS increased inhibition to aversive events, while leaving appetitive interactions unperturbed. We argue that anxiety promotes avoidant behavior in potentially harmful situations by potentiating aversive Pavlovian reactions (i.e., promoting avoidance in the face of threats). Critically, such a mechanism would drive adaptive harm–avoidant behavior in threatening situations where Pavlovian and instrumental processes are aligned, but at the same time, result in maladaptive behaviors when misaligned and where instrumental control would be advantageous. This has important implications for our understanding of the mechanisms that underlie pathological anxiety.
Collapse
|
63
|
Fatigue modulates dopamine availability and promotes flexible choice reversals during decision making. Sci Rep 2017; 7:535. [PMID: 28373651 PMCID: PMC5428685 DOI: 10.1038/s41598-017-00561-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/03/2017] [Indexed: 01/28/2023] Open
Abstract
During decisions, animals balance goal achievement and effort management. Despite physical exercise and fatigue significantly affecting the levels of effort that an animal exerts to obtain a reward, their role in effort-based choice and the underlying neurochemistry are incompletely known. In particular, it is unclear whether fatigue influences decision (cost-benefit) strategies flexibly or only post-decision action execution and learning. To answer this question, we trained mice on a T-maze task in which they chose between a high-cost, high-reward arm (HR), which included a barrier, and a low-cost, low-reward arm (LR), with no barrier. The animals were parametrically fatigued immediately before the behavioural tasks by running on a treadmill. We report a sharp choice reversal, from the HR to LR arm, at 80% of their peak workload (PW), which was temporary and specific, as the mice returned to choose the HC when the animals were successively tested at 60% PW or in a two-barrier task. These rapid reversals are signatures of flexible choice. We also observed increased subcortical dopamine levels in fatigued mice: a marker of individual bias to use model-based control in humans. Our results indicate that fatigue levels can be incorporated in flexible cost-benefits computations that improve foraging efficiency.
Collapse
|
64
|
Correia PA, Lottem E, Banerjee D, Machado AS, Carey MR, Mainen ZF. Transient inhibition and long-term facilitation of locomotion by phasic optogenetic activation of serotonin neurons. eLife 2017; 6. [PMID: 28193320 PMCID: PMC5308893 DOI: 10.7554/elife.20975] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/16/2016] [Indexed: 01/12/2023] Open
Abstract
Serotonin (5-HT) is associated with mood and motivation but the function of endogenous 5-HT remains controversial. Here, we studied the impact of phasic optogenetic activation of 5-HT neurons in mice over time scales from seconds to weeks. We found that activating dorsal raphe nucleus (DRN) 5-HT neurons induced a strong suppression of spontaneous locomotor behavior in the open field with rapid kinetics (onset ≤1 s). Inhibition of locomotion was independent of measures of anxiety or motor impairment and could be overcome by strong motivational drive. Repetitive place-contingent pairing of activation caused neither place preference nor aversion. However, repeated 15 min daily stimulation caused a persistent increase in spontaneous locomotion to emerge over three weeks. These results show that 5-HT transients have strong and opposing short and long-term effects on motor behavior that appear to arise from effects on the underlying factors that motivate actions. DOI:http://dx.doi.org/10.7554/eLife.20975.001 The brain controls sleep, movement and the other behaviors that an animal needs to survive. A chemical called serotonin plays an important role in controlling these behaviors as it regulates the activity of nerve cells (known as neurons) throughout the brain. Serotonin is produced by a specific group of neurons found in an area at the base of the brain called the raphe nuclei. From there, serotonin is released into other parts of the brain to influence different behaviors. Although drugs that target serotonin are widely used as antidepressants, how this chemical signal acts in the brain remains a mystery. This is due, in part, to it being technically challenging to carry out experiments on the serotonin-producing neurons. A technique called optogenetics uses light to selectively activate or inhibit individual cells in live animals. Here, Correia, Lottem et al. use optogenetics to activate serotonin-producing neurons in the dorsal raphe nucleus of mice. The experiments show that triggering serotonin production for a few seconds causes the mice to move around more slowly as they explore their surroundings. This short-term release of serotonin only slows the mice down if they are not already occupied with other activities, such as finding water or balancing on a moving object. These experiments suggest that serotonin decreases an individual’s motivation to move but that this can be overcome by sufficiently powerful goals. In contrast, repeatedly activating the serotonin neurons over a period of several weeks led to long-term changes of the opposite kind – the mice begin to move around more quickly. The findings of Correia, Lottem et al. have possible implications for the use of drugs that target serotonin to treat mental disorders as it suggests important links between serotonin, movement, and the ability of the brain to change how it responds to certain situations. The next steps will be to investigate how the two different effects of serotonin are connected, which areas in the brain are involved and how best to apply these findings to clinical studies. DOI:http://dx.doi.org/10.7554/eLife.20975.002
Collapse
Affiliation(s)
- Patrícia A Correia
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Eran Lottem
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Dhruba Banerjee
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.,School of Medicine, University of California, Irvine, United States
| | - Ana S Machado
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Megan R Carey
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Zachary F Mainen
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
65
|
Raymond JG, Steele JD, Seriès P. Modeling Trait Anxiety: From Computational Processes to Personality. Front Psychiatry 2017; 8:1. [PMID: 28167920 PMCID: PMC5253387 DOI: 10.3389/fpsyt.2017.00001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
Computational methods are increasingly being applied to the study of psychiatric disorders. Often, this involves fitting models to the behavior of individuals with subclinical character traits that are known vulnerability factors for the development of psychiatric conditions. Anxiety disorders can be examined with reference to the behavior of individuals high in "trait" anxiety, which is a known vulnerability factor for the development of anxiety and mood disorders. However, it is not clear how this self-report measure relates to neural and behavioral processes captured by computational models. This paper reviews emerging computational approaches to the study of trait anxiety, specifying how interacting processes susceptible to analysis using computational models could drive a tendency to experience frequent anxious states and promote vulnerability to the development of clinical disorders. Existing computational studies are described in the light of this perspective and appropriate targets for future studies are discussed.
Collapse
Affiliation(s)
- James G. Raymond
- Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
| | - J. Douglas Steele
- School of Medicine (Neuroscience), Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Peggy Seriès
- Institute for Adaptive and Neural Computation, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
66
|
Iglesias S, Tomiello S, Schneebeli M, Stephan KE. Models of neuromodulation for computational psychiatry. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 8. [PMID: 27653804 DOI: 10.1002/wcs.1420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/22/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022]
Abstract
Psychiatry faces fundamental challenges: based on a syndrome-based nosology, it presently lacks clinical tests to infer on disease processes that cause symptoms of individual patients and must resort to trial-and-error treatment strategies. These challenges have fueled the recent emergence of a novel field-computational psychiatry-that strives for mathematical models of disease processes at physiological and computational (information processing) levels. This review is motivated by one particular goal of computational psychiatry: the development of 'computational assays' that can be applied to behavioral or neuroimaging data from individual patients and support differential diagnosis and guiding patient-specific treatment. Because the majority of available pharmacotherapeutic approaches in psychiatry target neuromodulatory transmitters, models that infer (patho)physiological and (patho)computational actions of different neuromodulatory transmitters are of central interest for computational psychiatry. This article reviews the (many) outstanding questions on the computational roles of neuromodulators (dopamine, acetylcholine, serotonin, and noradrenaline), outlines available evidence, and discusses promises and pitfalls in translating these findings to clinical applications. WIREs Cogn Sci 2017, 8:e1420. doi: 10.1002/wcs.1420 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sandra Iglesias
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Sara Tomiello
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Maya Schneebeli
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.,Wellcome Trust Centre for Neuroimaging, University College London, London, UK.,Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
67
|
Affiliation(s)
- Hailan Hu
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310012, People's Republic of China;
- Center for Neuroscience, School of Medicine, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
68
|
Huys QJM, Gölzer M, Friedel E, Heinz A, Cools R, Dayan P, Dolan RJ. The specificity of Pavlovian regulation is associated with recovery from depression. Psychol Med 2016; 46:1027-1035. [PMID: 26841896 PMCID: PMC4825095 DOI: 10.1017/s0033291715002597] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Changes in reflexive emotional responses are hallmarks of depression, but how emotional reflexes make an impact on adaptive decision-making in depression has not been examined formally. Using a Pavlovian-instrumental transfer (PIT) task, we compared the influence of affectively valenced stimuli on decision-making in depression and generalized anxiety disorder compared with healthy controls; and related this to the longitudinal course of the illness. METHOD A total of 40 subjects with a current DSM-IV-TR diagnosis of major depressive disorder, dysthymia, generalized anxiety disorder, or a combination thereof, and 40 matched healthy controls performed a PIT task that assesses how instrumental approach and withdrawal behaviours are influenced by appetitive and aversive Pavlovian conditioned stimuli (CSs). Patients were followed up after 4-6 months. Analyses focused on patients with depression alone (n = 25). RESULTS In healthy controls, Pavlovian CSs exerted action-specific effects, with appetitive CSs boosting active approach and aversive CSs active withdrawal. This action-specificity was absent in currently depressed subjects. Greater action-specificity in patients was associated with better recovery over the follow-up period. CONCLUSIONS Depression is associated with an abnormal influence of emotional reactions on decision-making in a way that may predict recovery.
Collapse
Affiliation(s)
- Q. J. M. Huys
- Wellcome Trust Centre for Neuroimaging,
University College London, London,
UK
- Gatsby Computational Neuroscience Unit,
University College London, London,
UK
- Translational Neuromodeling Unit,
Institute for Biomedical Engineering, University of
Zürich and Swiss Federal Institute of Technology (ETH),
Zürich, Switzerland
- Centre for Addictive Disorders,
Department of Psychiatry, Psychotherapy and Psychosomatics,
Hospital of Psychiatry Zürich, University of
Zürich, Zürich, Switzerland
| | - M. Gölzer
- Charité Universitätsmedizin Berlin,
Campus Charité Mitte, Berlin,
Germany
| | - E. Friedel
- Charité Universitätsmedizin Berlin,
Campus Charité Mitte, Berlin,
Germany
| | - A. Heinz
- Charité Universitätsmedizin Berlin,
Campus Charité Mitte, Berlin,
Germany
| | - R. Cools
- Radboud University Medical Center,
Donders Institute for Brain, Cognition and
Behaviour, Centre for Cognitive Neuroimaging,
Nijmegen, The Netherlands
| | - P. Dayan
- Gatsby Computational Neuroscience Unit,
University College London, London,
UK
| | - R. J. Dolan
- Wellcome Trust Centre for Neuroimaging,
University College London, London,
UK
- Max Planck UCL Centre for Computational Psychiatry
and Ageing Research, London, UK
- Berlin School of Mind and Brain,
Humboldt-Universität zu Berlin, Berlin,
Germany
| |
Collapse
|
69
|
Physical activity and exercise attenuate neuroinflammation in neurological diseases. Brain Res Bull 2016; 125:19-29. [PMID: 27021169 DOI: 10.1016/j.brainresbull.2016.03.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 12/15/2022]
Abstract
Major depressive disorder (MDD), schizophrenia (SCH), Alzheimer's disease (AD), and Parkinson's disease (PD) are devastating neurological disorders, which increasingly contribute to global morbidity and mortality. Although the pathogenic mechanisms of these conditions are quite diverse, chronic neuroinflammation is one underlying feature shared by all these diseases. Even though the specific root causes of these diseases remain to be identified, evidence indicates that the observed neuroinflammation is initiated by unique pathological features associated with each specific disease. If the initial acute inflammation is not resolved, a chronic neuroinflammatory state develops and ultimately contributes to disease progression. Chronic neuroinflammation is characterized by adverse and non-specific activation of glial cells, which can lead to collateral damage of nearby neurons and other glia. This misdirected neuroinflammatory response is hypothesized to contribute to neuropathology in MDD, SCH, AD, and PD. Physical activity (PA), which is critical for maintenance of whole body and brain health, may also beneficially modify neuroimmune responses. Since PA has neuroimmune-modifying properties, and the common underlying feature of MDD, SCH, AD, and PD is chronic neuroinflammation, we hypothesize that PA could minimize brain diseases by modifying glia-mediated neuroinflammation. This review highlights current evidence supporting the disease-altering potential of PA and exercise through modifications of neuroimmune responses, specifically in MDD, SCH, AD and PD.
Collapse
|
70
|
Yee DM, Krug MK, Allen AZ, Braver TS. Humans Integrate Monetary and Liquid Incentives to Motivate Cognitive Task Performance. Front Psychol 2016; 6:2037. [PMID: 26834668 PMCID: PMC4721208 DOI: 10.3389/fpsyg.2015.02037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 12/21/2015] [Indexed: 11/13/2022] Open
Abstract
It is unequivocal that a wide variety of incentives can motivate behavior. However, few studies have explicitly examined whether and how different incentives are integrated in terms of their motivational influence. The current study examines the combined effects of monetary and liquid incentives on cognitive processing, and whether appetitive and aversive incentives have distinct influences. We introduce a novel task paradigm, in which participants perform cued task-switching for monetary rewards that vary parametrically across trials, with liquid incentives serving as post-trial performance feedback. Critically, the symbolic meaning of the liquid was held constant (indicating successful reward attainment), while liquid valence was blocked. In the first experiment, monetary rewards combined additively with appetitive liquid feedback to improve subject task performance. Aversive liquid feedback counteracted monetary reward effects in low monetary reward trials, particularly in a subset of participants who tended to avoid responding under these conditions. Self-report motivation ratings predicted behavioral performance above and beyond experimental effects. A follow-up experiment replicated the predictive power of motivation ratings even when only appetitive liquids were used, suggesting that ratings reflect idiosyncratic subjective values of, rather than categorical differences between, the liquid incentives. Together, the findings indicate an integrative relationship between primary and secondary incentives and potentially dissociable influences in modulating motivational value, while informing hypotheses regarding candidate neural mechanisms.
Collapse
Affiliation(s)
- Debbie M Yee
- Cognitive Control and Psychopathology Lab, Psychological and Brain Sciences, Washington University in St. Louis St. Louis, MO, USA
| | - Marie K Krug
- Cognitive Control and Psychopathology Lab, Psychological and Brain Sciences, Washington University in St. Louis St. Louis, MO, USA
| | - Ariel Z Allen
- Cognitive Control and Psychopathology Lab, Psychological and Brain Sciences, Washington University in St. Louis St. Louis, MO, USA
| | - Todd S Braver
- Cognitive Control and Psychopathology Lab, Psychological and Brain Sciences, Washington University in St. Louis St. Louis, MO, USA
| |
Collapse
|
71
|
Selvaraj S, Mouchlianitis E, Faulkner P, Turkheimer F, Cowen PJ, Roiser JP, Howes O. Presynaptic Serotoninergic Regulation of Emotional Processing: A Multimodal Brain Imaging Study. Biol Psychiatry 2015; 78:563-571. [PMID: 24882568 PMCID: PMC5322825 DOI: 10.1016/j.biopsych.2014.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND The amygdala is a central node in the brain network that processes aversive emotions and is extensively innervated by dorsal raphe nucleus (DRN) serotonin (5-hydroxytryptamine [5-HT]) neurons. Alterations in DRN 5-HT1A receptor availability cause phenotypes characterized by fearful behavior in preclinical models. However, it is unknown whether 5-HT1A receptor availability is linked specifically to the processing of aversive emotions in humans or whether it modulates connectivity in brain networks involved in emotion processing. To answer this question, we investigated the relationship between DRN 5-HT1A receptor availability and amygdala reactivity to aversive emotion and functional connectivity within the amygdala-cortical network. METHODS We studied 15 healthy human participants who underwent positron emission tomography scanning with [(11)C]CUMI-101, a 5-HT1A partial agonist radioligand, and functional magnetic resonance imaging of brain responses during an incidental emotion processing task including happy, fearful, and neutral faces. Regional estimates of 5-HT1A receptor binding potential (nondisplaceable) were obtained by calculating total volumes of distribution for presynaptic DRN and amygdala. Connectivity between the amygdala and corticolimbic areas was assessed using psychophysiologic interaction analysis with the amygdala as the seed region. RESULTS Analysis of the fear versus neutral contrast revealed a significant negative correlation between amygdala response and DRN binding potential (nondisplaceable) (r = -.87, p < .001). Availability of DRN 5-HT1A receptors positively correlated with amygdala connectivity with middle frontal gyrus, anterior cingulate cortex, bilateral precuneus, and left supramarginal gyrus for fearful (relative to neutral) faces. CONCLUSIONS Our data show that DRN 5-HT1A receptor availability is linked specifically to the processing of aversive emotions in the amygdala and the modulation of amygdala-cortical connectivity.
Collapse
Affiliation(s)
- Sudhakar Selvaraj
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK,Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Elias Mouchlianitis
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK
| | - Paul Faulkner
- Institute of Cognitive Neuroscience, University College London, WC1N 3AR, UK
| | | | | | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, WC1N 3AR, UK
| | - Oliver Howes
- Medical Research Council Clinical Sciences Centre, Hammersmith Hospital, London, W12 0NN, UK,Institute of Psychiatry, King’s College London, SE5 8AF, UK
| |
Collapse
|
72
|
Crockett MJ, Cools R. Serotonin and aversive processing in affective and social decision-making. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
73
|
Serotonin reuptake inhibitors and serotonin transporter genotype modulate performance monitoring functions but not their electrophysiological correlates. J Neurosci 2015; 35:8181-90. [PMID: 26019334 DOI: 10.1523/jneurosci.5124-14.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Serotonin (5-HT) has been hypothesized to be implicated in performance monitoring by promoting behavioral inhibition in the face of aversive events. However, it is unclear whether this is restricted to external (punishment) or includes internal (response errors) events. The aim of the current study was to test whether higher 5-HT levels instigate inhibition specifically in the face of errors, measured as post-error slowing (PES), and whether this is represented in electrophysiological correlates of error processing, namely error-related negativity (ERN) and positivity. Therefore, from a large sample of human subjects (n = 878), two extreme groups were formed regarding hypothesized high and low 5-HT transporter (5-HTT) expression based on 5-HTTLPR and two additional single nucleotide polymorphisms (rs25531, rs25532). Seventeen higher (LL) and 15 lower (SS) expressing Caucasian subjects were administered the selective serotonin reuptake inhibitor (SSRI) citalopram (10 mg) intravenously in a double-blind crossover design. We found pharmacogenetic evidence for a role of 5-HT in mediating PES: SSRI administration increased PES in both genetic groups, and SS subjects displayed higher PES. These effects were absent on post-conflict slowing. However, ERN and error positivity were unaffected by pharmacogenetic factors, but ERN was decoupled from behavioral adaptation by SSRI administration in the LL group. Thus, pharmacogenetic evidence suggests that increased 5-HT levels lead to behavioral inhibition in the context of internal aversive events, but electrophysiological correlates of performance monitoring appear unrelated to the 5-HT system. Therefore, our findings are consistent with theories suggesting that 5-HT mediates the link between aversive processing and inhibition.
Collapse
|
74
|
Abstract
Serotonin is known to play a key role in the regulation of emotional behavior. There have been conflicting hypotheses about whether the central serotonergic system is involved in positive or negative emotional information processing. To reveal whether and how such opposing information processing can be achieved by single neurons in the dorsal raphé nucleus (DRN), the major source of serotonin in the forebrain, we recorded the activity of DRN neurons while monkeys were conditioned in a Pavlovian procedure with two distinct contexts: an appetitive block where a reward was available; and an aversive one where an airpuff was delivered. We found that single DRN neurons were involved in several aspects of both appetitive and aversive information processing. First, more than half of the recorded DRN neurons discriminated between appetitive and aversive contexts by tonic changes in their activity. In the appetitive context, they then kept track of the expected reward value indicated by the conditioned stimuli. Some of them also encoded an error between the obtained and expected values. In the aversive context, the same neurons maintained tonic modulation in their activity throughout the block. However, modulation of their responses to aversive task events depending on airpuff probability was less common. Together, these results indicate that single DRN neurons encode both appetitive and aversive information, but over differing time scales: relatively shorter for appetitive, and longer for aversive. Such temporally distinct processes of value coding in the DRN may provide the neural basis of emotional information processing in different contexts.
Collapse
|
75
|
Affiliation(s)
- Philip J Cowen
- University Department of Psychiatry, Warneford HospitalOxford, OX3 7JX, UK
| | - Michael Browning
- University Department of Psychiatry, Warneford HospitalOxford, OX3 7JX, UK
| |
Collapse
|
76
|
Abstract
Neurons that produce serotonin respond in a number of different and complex ways in anticipation and receipt of rewards or punishments.
Collapse
Affiliation(s)
- Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London, London, United Kingdom
| | - Quentin Huys
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland and Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
77
|
den Ouden HEM, Swart JC, Schmidt K, Fekkes D, Geurts DEM, Cools R. Acute serotonin depletion releases motivated inhibition of response vigour. Psychopharmacology (Berl) 2015; 232:1303-12. [PMID: 25326051 DOI: 10.1007/s00213-014-3762-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/01/2014] [Indexed: 01/09/2023]
Abstract
RATIONALE The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas, however, has been mixed. OBJECTIVES In the current study, we aimed to investigate the role of serotonin (5HT) in behavioural vigour as a function of incentive motivation. METHODS We employed dietary acute tryptophan depletion (ATD) to lower the 5HT precursor tryptophan during the performance of a speeded visual discrimination task. Feedback valence and feedback probability were manipulated independently and cued prior to target onset. On feedback trials, fast correct responses led to either reward or avoidance of punishment, while slow or incorrect responses led to reward omission or punishment. RESULTS We show that behavioural responding is inhibited under high incentive motivation (i.e. high-feedback probability) at baseline 5HT levels and that lowering these leads to behavioural disinhibition, while leaving accuracy unaffected. Surprisingly, there were no differential effects of motivational valence, with 5HT depletion releasing behavioural inhibition under both appetitive and aversive motivation. CONCLUSIONS Our findings extend current theories on the role of 5HT in behavioural inhibition by showing that reductions in serotonin lead to increased behavioural vigour only if there is a motivational drive to inhibit behaviour at baseline.
Collapse
Affiliation(s)
- Hanneke E M den Ouden
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands,
| | | | | | | | | | | |
Collapse
|
78
|
Abstract
The manifold symptoms of depression are common and often transient features of healthy life that are likely to be adaptive in difficult circumstances. It is when these symptoms enter a seemingly self-propelling spiral that the maladaptive features of a disorder emerge. We examine this malignant transformation from the perspective of the computational neuroscience of decision making, investigating how dysfunction of the brain's mechanisms of evaluation might lie at its heart. We start by considering the behavioral implications of pessimistic evaluations of decision variables. We then provide a selective review of work suggesting how such pessimism might arise via specific failures of the mechanisms of evaluation or state estimation. Finally, we analyze ways that miscalibration between the subject and environment may be self-perpetuating. We employ the formal framework of Bayesian decision theory as a foundation for this study, showing how most of the problems arise from one of its broad algorithmic facets, namely model-based reasoning.
Collapse
Affiliation(s)
- Quentin J M Huys
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH) Zürich, CH-8032 Zürich, Switzerland;
| | | | | |
Collapse
|
79
|
Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2015; 14:473-92. [PMID: 24647659 DOI: 10.3758/s13415-014-0277-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations, and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response, and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation.
Collapse
|
80
|
|
81
|
Hebart MN, Gläscher J. Serotonin and dopamine differentially affect appetitive and aversive general Pavlovian-to-instrumental transfer. Psychopharmacology (Berl) 2015; 232:437-51. [PMID: 25034118 DOI: 10.1007/s00213-014-3682-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/30/2014] [Indexed: 12/29/2022]
Abstract
RATIONALE Human motivation and decision-making is influenced by the interaction of Pavlovian and instrumental systems. The neurotransmitters dopamine and serotonin have been suggested to play a major role in motivation and decision-making, but how they affect this interaction in humans is largely unknown. OBJECTIVE We investigated the effect of these neurotransmitters in a general Pavlovian-to-instrumental transfer (PIT) task which measured the nonspecific effect of appetitive and aversive Pavlovian cues on instrumental responses. METHODS For that purpose, we used selective dietary depletion of the amino acid precursors of serotonin and dopamine: tryptophan (n = 34) and tyrosine/phenylalanine (n = 35), respectively, and compared the performance of these groups to a control group (n = 34) receiving a nondepleted (balanced) amino acid drink. RESULTS We found that PIT differed between groups: Relative to the control group that exhibited only appetitive PIT, we found reduced appetitive PIT in the tyrosine/phenylalanine-depleted group and enhanced aversive PIT in the tryptophan-depleted group. CONCLUSIONS These results demonstrate a differential involvement of serotonin and dopamine in motivated behavior. They suggest that reductions in serotonin enhance the motivational influence of aversive stimuli on instrumental behavior and do not affect the influence of appetitive stimuli, while reductions in dopamine diminish the influence of appetitive stimuli. No conclusions could be drawn about how dopamine affects the influence of aversive stimuli. The interplay of both neurotransmitter systems allows for flexible and adaptive responses depending on the behavioral context.
Collapse
Affiliation(s)
- Martin N Hebart
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, W34, Martinistraße 52, 20251, Hamburg, Germany,
| | | |
Collapse
|
82
|
Dual role of serotonin in the acquisition and extinction of reward-driven learning: Involvement of 5-HT1A, 5-HT2A and 5-HT3 receptors. Behav Brain Res 2015; 277:193-203. [DOI: 10.1016/j.bbr.2014.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/27/2022]
|
83
|
Reward processing by the lateral habenula in normal and depressive behaviors. Nat Neurosci 2014; 17:1146-52. [PMID: 25157511 DOI: 10.1038/nn.3779] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/09/2014] [Indexed: 02/06/2023]
Abstract
The brain reward circuit has a central role in reinforcing behaviors that are rewarding and preventing behaviors that lead to punishment. Recent work has shown that the lateral habenula is an important part of the reward circuit by providing 'negative value' signals to the dopaminergic and serotonergic systems. Studies have also suggested that dysfunction of the lateral habenula is associated with psychiatric disorders, including major depression. Here, we discuss insights gained from neuronal recordings in monkeys regarding how the lateral habenula processes reward-related information. We then highlight recent optogenetic experiments in rodents addressing normal and abnormal functions of the habenula. Finally, we discuss how deregulation of the lateral habenula may be involved in depressive behaviors.
Collapse
|
84
|
The role of serotonin in reward, punishment and behavioural inhibition in humans: insights from studies with acute tryptophan depletion. Neurosci Biobehav Rev 2014; 46 Pt 3:365-78. [PMID: 25195164 DOI: 10.1016/j.neubiorev.2014.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/19/2014] [Accepted: 07/28/2014] [Indexed: 01/06/2023]
Abstract
Deakin and Graeff proposed that forebrain 5-hydroxytryptamine (5-HT) projections are activated by aversive events and mediate anticipatory coping responses including avoidance learning and suppression of the fight-flight escape/panic response. Other theories proposed 5-HT mediates aspects of behavioural inhibition or reward. Most of the evidence comes from rodent studies. We review 36 experimental studies in humans in which the technique of acute tryptophan depletion (ATD) was used to explicitly address the role of 5-HT in response inhibition, punishment and reward. ATD did not cause disinhibition of responding in the absence of rewards or punishments (9 studies). A major role for 5-HT in reward processing is unlikely but further tests are warranted by some ATD findings. Remarkably, ATD lessened the ability of punishments (losing points or notional money) to restrain behaviour without affecting reward processing in 7 studies. Two of these studies strongly indicate that ATD blocks 5-HT mediated aversively conditioned Pavlovian inhibition and this can explain a number of the behavioural effects of ATD.
Collapse
|
85
|
Bilderbeck AC, Wakeley J, Godlewska BR, McGlone F, Harris T, Cowen PJ, Rogers RD. Preliminary evidence that sub-chronic citalopram triggers the re-evaluation of value in intimate partnerships. Soc Cogn Affect Neurosci 2014; 9:1419-25. [PMID: 23996287 PMCID: PMC4158381 DOI: 10.1093/scan/nst135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/14/2013] [Accepted: 08/09/2013] [Indexed: 11/14/2022] Open
Abstract
Depression frequently involves disrupted inter-personal relationships, while treatment with serotonergic anti-depressants can interfere with libido and sexual function. However, little is known about how serotonin activity influences appraisals of intimate partnerships. Learning more could help to specify how serotonergic mechanisms mediate social isolation in psychiatric illness. Forty-four healthy heterosexual adults, currently in romantic relationships, received 8 days treatment with the selective serotonin re-uptake inhibitor citalopram (N = 21; 10 male) or placebo (N = 23; 12 male). Participants viewed photographs of unknown, heterosexual couples and made a series of judgements about their relationships. Participants also indicated the importance of relationship features in their own close partnerships, and close partnerships generally. Citalopram reduced the rated quality of couples' physical relationships and the importance attributed to physical and intimate aspects of participants' own relationships. In contrast, citalopram also enhanced the evaluated worth of mutual trust in relationships. Amongst males, citalopram was associated with judgements of reduced turbulence and bickering in others' relationships, and increased male dominance. These data constitute preliminary evidence that enhancing serotonin activity modulates cognitions about sexual activity as part of a re-appraisal of sources of value within close intimate relationships, enhancing the judged importance of longer-term benefits of trust and shared experiences.
Collapse
Affiliation(s)
- Amy C Bilderbeck
- Department of Psychiatry, Oxford University, Oxford, OX3 7JX, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, Institute of Psychiatry, King's College, London, England and School of Psychology, Bangor University, Adeilad Brigantia, Bangor, LL57 1AS
| | - Judi Wakeley
- Department of Psychiatry, Oxford University, Oxford, OX3 7JX, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, Institute of Psychiatry, King's College, London, England and School of Psychology, Bangor University, Adeilad Brigantia, Bangor, LL57 1AS
| | - Beata R Godlewska
- Department of Psychiatry, Oxford University, Oxford, OX3 7JX, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, Institute of Psychiatry, King's College, London, England and School of Psychology, Bangor University, Adeilad Brigantia, Bangor, LL57 1AS
| | - Francis McGlone
- Department of Psychiatry, Oxford University, Oxford, OX3 7JX, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, Institute of Psychiatry, King's College, London, England and School of Psychology, Bangor University, Adeilad Brigantia, Bangor, LL57 1AS
| | - Tirril Harris
- Department of Psychiatry, Oxford University, Oxford, OX3 7JX, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, Institute of Psychiatry, King's College, London, England and School of Psychology, Bangor University, Adeilad Brigantia, Bangor, LL57 1AS
| | - Phillip J Cowen
- Department of Psychiatry, Oxford University, Oxford, OX3 7JX, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, Institute of Psychiatry, King's College, London, England and School of Psychology, Bangor University, Adeilad Brigantia, Bangor, LL57 1AS
| | - Robert D Rogers
- Department of Psychiatry, Oxford University, Oxford, OX3 7JX, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, Institute of Psychiatry, King's College, London, England and School of Psychology, Bangor University, Adeilad Brigantia, Bangor, LL57 1AS
| |
Collapse
|
86
|
Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe-Uchida M. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep 2014; 8:1105-18. [PMID: 25108805 DOI: 10.1016/j.celrep.2014.06.042] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/20/2014] [Accepted: 06/20/2014] [Indexed: 12/30/2022] Open
Abstract
Serotonin and dopamine are major neuromodulators. Here, we used a modified rabies virus to identify monosynaptic inputs to serotonin neurons in the dorsal and median raphe (DR and MR). We found that inputs to DR and MR serotonin neurons are spatially shifted in the forebrain, and MR serotonin neurons receive inputs from more medial structures. Then, we compared these data with inputs to dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc). We found that DR serotonin neurons receive inputs from a remarkably similar set of areas as VTA dopamine neurons apart from the striatum, which preferentially targets dopamine neurons. Our results suggest three major input streams: a medial stream regulates MR serotonin neurons, an intermediate stream regulates DR serotonin and VTA dopamine neurons, and a lateral stream regulates SNc dopamine neurons. These results provide fundamental organizational principles of afferent control for serotonin and dopamine.
Collapse
Affiliation(s)
- Sachie K Ogawa
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Jeremiah Y Cohen
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| | - Dabin Hwang
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Naoshige Uchida
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Mitsuko Watabe-Uchida
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
87
|
Simonsen A, Scheel-Krüger J, Jensen M, Roepstorff A, Møller A, Frith CD, Campbell-Meiklejohn D. Serotoninergic effects on judgments and social learning of trustworthiness. Psychopharmacology (Berl) 2014; 231:2759-69. [PMID: 24464530 DOI: 10.1007/s00213-014-3444-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
Abstract
RATIONALE Certain disorders, such as depression and anxiety, to which serotonin dysfunction is historically associated, are also associated with lower assessments of other people's trustworthiness. Serotonergic changes are known to alter cognitive responses to threatening stimuli. This effect may manifest socially as reduced apparent trustworthiness of others. Trustworthiness judgments can emerge from either direct observation or references provided by third parties. OBJECTIVE We assessed whether explicit judgments of trustworthiness and social influences on those judgments are altered by changes within serotonergic systems. METHODS We implemented a double-blind between-subject design where 20 healthy female volunteers received a single dose of the selective serotonin reuptake inhibitor (SSRI) citalopram (2 × 20 mg), while 20 control subjects (matched on age, intelligence, and years of education) received a placebo. Subjects performed a face-rating task assessing how trustworthy they found 153 unfamiliar others (targets). After each rating, the subjects were told how other subjects, on average, rated the same target. The subjects then performed 30 min of distractor tasks before, unexpectedly, being asked to rate all 153 faces again, in a random order. RESULTS Compared to subjects receiving a placebo, subjects receiving citalopram rated targets as less trustworthy. They also conformed more to opinions of others, when others rated targets to be even less trustworthy than subjects had initially indicated. The two effects were independent of negative effects of citalopram on subjective state. CONCLUSIONS This is evidence that serotonin systems can mediate explicit assessment and social learning of the trustworthiness of others.
Collapse
Affiliation(s)
- Arndis Simonsen
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000, Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
88
|
Selvaraj S, Arnone D, Cappai A, Howes O. Alterations in the serotonin system in schizophrenia: a systematic review and meta-analysis of postmortem and molecular imaging studies. Neurosci Biobehav Rev 2014; 45:233-45. [PMID: 24971825 DOI: 10.1016/j.neubiorev.2014.06.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/13/2014] [Accepted: 06/16/2014] [Indexed: 02/04/2023]
Abstract
Serotonergic dysfunction is thought to contribute to the pathophysiology of schizophrenia but the evidence has not been systematically synthesised before. We therefore systematically reviewed postmortem and in vivo molecular imaging studies of serotonin function in schizophrenia. We identified fifty relevant studies investigating eight different serotonin receptor systems in a total of 684 patients and 675 controls. Meta-analysis of postmortem studies found an elevation in prefrontal 5-HT1A receptors with a moderate to large effect size (N=8, 85 patients and 94 controls, SMD=0.60; CI: 0.17-1.03; p=0.007) and a reduction with a large effect size in prefrontal 5-HT2A receptors (N=8, 168 patients and 163 controls, SMD=-0.73; CI: -1.33, -0.12; p=0.019) in schizophrenia vs healthy controls. The evidence for alterations in serotonin transporter availability or other serotonin receptors (5-HT1B; 5-HT1D; 5-HT3; 5-HT4; 5-HT7) is limited. There are fewer studies investigating 5-HT receptors in schizophrenia with neuroimaging. Findings indicated possible 5-HT alterations at psychosis onset, although due to the limited number it was not possible to combine studies in a meta-analysis. Further in vivo studies, particularly in drug naive patients using radiotracers that can index high affinity states, will help determine if the postmortem findings are primary or secondary to other factors.
Collapse
Affiliation(s)
- Sudhakar Selvaraj
- Medical Research Council, Clinical Sciences Centre, Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK; Department of Psychiatry and Behavioural Sciences, The University of Texas Health Science Centre at Houston, Houston, TX, USA.
| | - Danilo Arnone
- Centre for Affective Disorders, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| | - Alessandra Cappai
- Medical Research Council, Clinical Sciences Centre, Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK; Forensic Outreach Service & Inreach Team HMP Wandsworth, South West London & St George's NHS Mental Health Trust, Springfield Hospital, Glenburnie Road, London SW17 7DJ, UK
| | - Oliver Howes
- Medical Research Council, Clinical Sciences Centre, Institute of Clinical Sciences, Hammersmith Hospital Campus, Imperial College London, London W12 0NN, UK; Department of Psychosis Studies, Institute of Psychiatry, King's College London, London SE5 8AF, UK
| |
Collapse
|
89
|
Taylor AMW, Murphy NP, Evans CJ, Cahill CM. Correlation between ventral striatal catecholamine content and nociceptive thresholds in neuropathic mice. THE JOURNAL OF PAIN 2014; 15:878-85. [PMID: 25052072 DOI: 10.1016/j.jpain.2014.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Neuropathic pain is characterized by persistent, intractable pain following damage or dysfunction of the nervous system. Analgesics that include central, rather than purely peripheral, targets are more effective when treating neuropathic pain, highlighting the spinal and/or supraspinal mechanisms that contribute to this aberrant pain condition. The striatum represents one of the brain regions that have been implicated in pain processing. Release of dopamine in the ventral striatum is normally associated with analgesia. Clinical and human imaging studies suggest that dopamine is disrupted in neuropathic pain patients, although the conclusions drawn from these studies are limited by their noninvasive imaging or pharmacologic approaches. In this study, we used a C57Bl/6 mouse model of neuropathic pain to describe the changes in neurotransmitter content in the striatum and their relationship to evoked pain thresholds. Striatal dopamine content negatively correlated with mechanical thresholds in sham animals. Neuropathic pain animals had reduced dopamine content that was not correlated with mechanical thresholds. In contrast, norepinephrine content was significantly increased and correlated with mechanical thresholds in neuropathic, but not sham, animals. These results describe changes in striatal signaling in neuropathic pain animals and contribute to the literature defining the role of dopamine and norepinephrine in mediating sensory thresholds in healthy and neuropathic pain states. PERSPECTIVE Results show significant loss of ventral striatal dopamine in neuropathic pain conditions, and the relationship of ventral striatal catecholamines to pain thresholds is changed in neuropathic pain. These results complement human imaging studies and provide evidence that chronic pain alters the function of reward systems.
Collapse
Affiliation(s)
- Anna M W Taylor
- Department of Anesthesiology and Perioperative Medicine, University of California, Irvine, California; Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Niall P Murphy
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Christopher J Evans
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Catherine M Cahill
- Department of Anesthesiology and Perioperative Medicine, University of California, Irvine, California.
| |
Collapse
|
90
|
Griffiths KR, Morris RW, Balleine BW. Translational studies of goal-directed action as a framework for classifying deficits across psychiatric disorders. Front Syst Neurosci 2014; 8:101. [PMID: 24904322 PMCID: PMC4033402 DOI: 10.3389/fnsys.2014.00101] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/09/2014] [Indexed: 11/13/2022] Open
Abstract
The ability to learn contingencies between actions and outcomes in a dynamic environment is critical for flexible, adaptive behavior. Goal-directed actions adapt to changes in action-outcome contingencies as well as to changes in the reward-value of the outcome. When networks involved in reward processing and contingency learning are maladaptive, this fundamental ability can be lost, with detrimental consequences for decision-making. Impaired decision-making is a core feature in a number of psychiatric disorders, ranging from depression to schizophrenia. The argument can be developed, therefore, that seemingly disparate symptoms across psychiatric disorders can be explained by dysfunction within common decision-making circuitry. From this perspective, gaining a better understanding of the neural processes involved in goal-directed action, will allow a comparison of deficits observed across traditional diagnostic boundaries within a unified theoretical framework. This review describes the key processes and neural circuits involved in goal-directed decision-making using evidence from animal studies and human neuroimaging. Select studies are discussed to outline what we currently know about causal judgments regarding actions and their consequences, action-related reward evaluation, and, most importantly, how these processes are integrated in goal-directed learning and performance. Finally, we look at how adaptive decision-making is impaired across a range of psychiatric disorders and how deepening our understanding of this circuitry may offer insights into phenotypes and more targeted interventions.
Collapse
Affiliation(s)
- Kristi R Griffiths
- Behavioural Neuroscience Laboratory, Brain and Mind Research Institute, University of Sydney Camperdown, Sydney, NSW, Australia
| | - Richard W Morris
- Behavioural Neuroscience Laboratory, Brain and Mind Research Institute, University of Sydney Camperdown, Sydney, NSW, Australia
| | - Bernard W Balleine
- Behavioural Neuroscience Laboratory, Brain and Mind Research Institute, University of Sydney Camperdown, Sydney, NSW, Australia
| |
Collapse
|
91
|
Balasubramani PP, Chakravarthy VS, Ravindran B, Moustafa AA. An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning. Front Comput Neurosci 2014; 8:47. [PMID: 24795614 PMCID: PMC3997037 DOI: 10.3389/fncom.2014.00047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 03/30/2014] [Indexed: 11/29/2022] Open
Abstract
Although empirical and neural studies show that serotonin (5HT) plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL)-framework. The model depicts the roles of dopamine (DA) and serotonin (5HT) in Basal Ganglia (BG). In this model, the DA signal is represented by the temporal difference error (δ), while the 5HT signal is represented by a parameter (α) that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: (1) Risk-sensitive decision making, where 5HT controls risk assessment, (2) Temporal reward prediction, where 5HT controls time-scale of reward prediction, and (3) Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG.
Collapse
Affiliation(s)
| | | | - Balaraman Ravindran
- Department of Computer Science and Engineering, Indian Institute of Technology - Madras Chennai, India
| | - Ahmed A Moustafa
- Foundational Processes of Behaviour Research Concentration, Marcs Institute for Brain and Behaviour & School of Social Sciences and Psychology, University of Western Sydney Sydney, NSW, Australia
| |
Collapse
|
92
|
Ye Z, Altena E, Nombela C, Housden CR, Maxwell H, Rittman T, Huddleston C, Rae CL, Regenthal R, Sahakian BJ, Barker RA, Robbins TW, Rowe JB. Selective serotonin reuptake inhibition modulates response inhibition in Parkinson's disease. Brain 2014; 137:1145-55. [PMID: 24578545 PMCID: PMC3959561 DOI: 10.1093/brain/awu032] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Impulsivity is common in Parkinson's disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic 'overdose' and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson's disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with an integrated Stop-Signal and NoGo paradigm. Twenty-one patients with idiopathic Parkinson's disease (46-76 years old, 11 male, Hoehn and Yahr stage 1.5-3) received 30 mg citalopram or placebo in addition to their usual dopaminergic medication in two separate sessions. Twenty matched healthy control subjects (54-74 years old, 12 male) were tested without medication. The effects of disease and drug on behavioural performance and regional brain activity were analysed using general linear models. In addition, anatomical connectivity was examined using diffusion tensor imaging and tract-based spatial statistics. We confirmed that Parkinson's disease caused impairment in response inhibition, with longer Stop-Signal Reaction Time and more NoGo errors under placebo compared with controls, without affecting Go reaction times. This was associated with less stop-specific activation in the right inferior frontal cortex, but no significant difference in NoGo-related activation. Although there was no beneficial main effect of citalopram, it reduced Stop-Signal Reaction Time and NoGo errors, and enhanced inferior frontal activation, in patients with relatively more severe disease (higher Unified Parkinson's Disease Rating Scale motor score). The behavioural effect correlated with the citalopram-induced enhancement of prefrontal activation and the strength of preserved structural connectivity between the frontal and striatal regions. In conclusion, the behavioural effect of citalopram on response inhibition depends on individual differences in prefrontal cortical activation and frontostriatal connectivity. The correlation between disease severity and the effect of citalopram on response inhibition may be due to the progressive loss of forebrain serotonergic projections. These results contribute to a broader understanding of the critical roles of serotonin in regulating cognitive and behavioural control, as well as new strategies for patient stratification in clinical trials of serotonergic treatments in Parkinson's disease.
Collapse
Affiliation(s)
- Zheng Ye
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ellemarije Altena
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cristina Nombela
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Helen Maxwell
- 2 Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Chelan Huddleston
- 2 Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Charlotte L. Rae
- 3 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - Ralf Regenthal
- 4 Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | | - Roger A. Barker
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Trevor W. Robbins
- 2 Department of Experimental Psychology, University of Cambridge, Cambridge, UK,5 Behavioural and Clinical Neuroscience Institute, Cambridge, UK
| | - James B. Rowe
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,3 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK,5 Behavioural and Clinical Neuroscience Institute, Cambridge, UK
| |
Collapse
|
93
|
Dayan P. Rationalizable irrationalities of choice. Top Cogn Sci 2014; 6:204-28. [PMID: 24648392 DOI: 10.1111/tops.12082] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 02/19/2013] [Accepted: 08/14/2013] [Indexed: 11/28/2022]
Abstract
Although seemingly irrational choice abounds, the rules governing these mis-steps that might provide hints about the factors limiting normative behavior are unclear. We consider three experimental tasks, which probe different aspects of non-normative choice under uncertainty. We argue for systematic statistical, algorithmic, and implementational sources of irrationality, including incomplete evaluation of long-run future utilities, Pavlovian actions, and habits, together with computational and statistical noise and uncertainty. We suggest structural and functional adaptations that minimize their maladaptive effects.
Collapse
Affiliation(s)
- Peter Dayan
- Gatsby Computational Neuroscience Unit, University College London
| |
Collapse
|
94
|
Geurts DEM, Huys QJM, den Ouden HEM, Cools R. Serotonin and aversive Pavlovian control of instrumental behavior in humans. J Neurosci 2013; 33:18932-9. [PMID: 24285898 PMCID: PMC6618702 DOI: 10.1523/jneurosci.2749-13.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 11/21/2022] Open
Abstract
Adaptive decision-making involves interaction between systems regulating Pavlovian and instrumental control of behavior. Here we investigate in humans the role of serotonin in such Pavlovian-instrumental transfer in both the aversive and the appetitive domain using acute tryptophan depletion, known to lower central serotonin levels. Acute tryptophan depletion attenuated the inhibiting effect of aversive Pavlovian cues on instrumental behavior, while leaving unaltered the activating effect of appetitive Pavlovian cues. These data suggest that serotonin is selectively involved in Pavlovian inhibition due to aversive expectations and have implications for our understanding of the mechanisms underlying a range of affective, impulsive, and aggressive neuropsychiatric disorders.
Collapse
Affiliation(s)
- Dirk E M Geurts
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging and Department of Psychiatry, 6500 HB, Nijmegen, The Netherlands, Gatsby Computational Neuroscience Unit and Wellcome Trust Centre for Neuroimaging, UCL, WC1N 3AR, London, United Kingdom, Translational Neuromodeling Unit, ETH, University of Zurich, CH-8032 Zurich, Switzerland, and Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry Zurich, CH-8032 Zurich, Switzerland
| | | | | | | |
Collapse
|
95
|
Short-term quetiapine treatment alters the use of reinforcement signals during risky decision-making and promotes the choice of negative expected values in healthy adult males. J Neurosci 2013; 33:15588-95. [PMID: 24068825 DOI: 10.1523/jneurosci.5721-11.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Effective decision-making can involve using environmental signals about the possible good and bad outcomes, and their probabilities, to select optimal actions. Problematic decision-making in psychiatric disorders, and particularly bipolar illness, may result from disrupted use of these reinforcement cues, leading to actions that reflect or precipitate pathological changes in mood. Previous experiments indicate that the processing of reinforcement cues while selecting between risky actions can be influenced by dopamine and serotonin activity. Quetiapine is an atypical antipsychotic agent with a complex pharmacology, including antagonist actions at 5-HT2A and, to a lesser extent, D2 receptors. Here, we investigated the effects of (short-term) treatment with quetiapine on the risky decision-making of healthy human adults. Twenty participants received 150 mg of quetiapine XL for 7 d, whereas 20 age- and IQ-matched participants received a placebo. On the eighth day, all participants completed a risky decision-making task that involved making a series of choices between two simultaneously presented gambles that differed in the magnitudes of their possible gains and losses, and the probabilities with which these outcomes were delivered. Quetiapine treatment was associated with a marked tendency to choose options with negative expected values compared with placebo treatment in male but not female participants. Our results demonstrate that antagonism of serotonin and dopamine receptor activity can alter the way individuals use information about gains and losses when selecting between risky actions, possibly reflecting gender-specific differences in risk attitudes. These effects may be beneficial by correcting decision-making biases that feature in mood disorders.
Collapse
|
96
|
Abstract
In a sample of 569 Chinese high school students, the present findings indicated that students with the 4-repeat genotype showed a higher level of test anxiety. Furthermore, the prediction of academic performance on test anxiety was stronger among students with the 3-repeat genotype than those with the 4-repeat genotype. The present findings suggest that mono-amine-oxidase type A gene polymorphism is significantly related to test anxiety.
Collapse
|
97
|
Castro-Rodrigues P, Oliveira-Maia AJ. Exploring the effects of depression and treatment of depression in reinforcement learning. Front Integr Neurosci 2013; 7:72. [PMID: 24198769 PMCID: PMC3814110 DOI: 10.3389/fnint.2013.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 09/14/2013] [Indexed: 12/01/2022] Open
Affiliation(s)
- Pedro Castro-Rodrigues
- Neuropsychiatry Unit, Champalimaud Clinical Centre, Champalimaud Foundation Lisboa, Portugal ; Centro Hospitalar Psiquiátrico de Lisboa Lisboa, Portugal
| | | |
Collapse
|
98
|
den Ouden H, Daw N, Fernandez G, Elshout J, Rijpkema M, Hoogman M, Franke B, Cools R. Dissociable Effects of Dopamine and Serotonin on Reversal Learning. Neuron 2013; 80:1090-100. [DOI: 10.1016/j.neuron.2013.08.030] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 12/16/2022]
|
99
|
Harlé KM, Shenoy P, Paulus MP. The influence of emotions on cognitive control: feelings and beliefs-where do they meet? Front Hum Neurosci 2013; 7:508. [PMID: 24065901 PMCID: PMC3776943 DOI: 10.3389/fnhum.2013.00508] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 08/08/2013] [Indexed: 11/16/2022] Open
Abstract
The influence of emotion on higher-order cognitive functions, such as attention allocation, planning, and decision-making, is a growing area of research with important clinical applications. In this review, we provide a computational framework to conceptualize emotional influences on inhibitory control, an important building block of executive functioning. We first summarize current neuro-cognitive models of inhibitory control and show how Bayesian ideal observer models can help reframe inhibitory control as a dynamic decision-making process. Finally, we propose a Bayesian framework to study emotional influences on inhibitory control, providing several hypotheses that may be useful to conceptualize inhibitory control biases in mental illness such as depression and anxiety. To do so, we consider the neurocognitive literature pertaining to how affective states can bias inhibitory control, with particular attention to how valence and arousal may independently impact inhibitory control by biasing probabilistic representations of information (i.e., beliefs) and valuation processes (e.g., speed-error tradeoffs).
Collapse
Affiliation(s)
- Katia M Harlé
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
100
|
Geurts DEM, Huys QJM, den Ouden HEM, Cools R. Aversive Pavlovian Control of Instrumental Behavior in Humans. J Cogn Neurosci 2013; 25:1428-41. [DOI: 10.1162/jocn_a_00425] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Adaptive behavior involves interactions between systems regulating Pavlovian and instrumental control of actions. Here, we present the first investigation of the neural mechanisms underlying aversive Pavlovian–instrumental transfer using fMRI in humans. Recent evidence indicates that these Pavlovian influences on instrumental actions are action-specific: Instrumental approach is invigorated by appetitive Pavlovian cues but inhibited by aversive Pavlovian cues. Conversely, instrumental withdrawal is inhibited by appetitive Pavlovian cues but invigorated by aversive Pavlovian cues. We show that BOLD responses in the amygdala and the nucleus accumbens were associated with behavioral inhibition by aversive Pavlovian cues, irrespective of action context. Furthermore, BOLD responses in the ventromedial prefrontal cortex differed between approach and withdrawal actions. Aversive Pavlovian conditioned stimuli modulated connectivity between the ventromedial prefrontal cortex and the caudate nucleus. These results show that action-specific aversive control of instrumental behavior involves the modulation of fronto-striatal interactions by Pavlovian conditioned stimuli.
Collapse
Affiliation(s)
| | - Quentin J. M. Huys
- 2University College London
- 3Guy's and St. Thomas' National Health Service Foundation Trust, London, UK
| | | | - Roshan Cools
- 1Radboud University Nijmegen Medical Centre, The Netherlands
| |
Collapse
|