51
|
Grasso CS, Giannakis M, Wells DK, Hamada T, Mu XJ, Quist M, Nowak JA, Nishihara R, Qian ZR, Inamura K, Morikawa T, Nosho K, Abril-Rodriguez G, Connolly C, Escuin-Ordinas H, Geybels MS, Grady WM, Hsu L, Hu-Lieskovan S, Huyghe JR, Kim YJ, Krystofinski P, Leiserson MDM, Montoya DJ, Nadel BB, Pellegrini M, Pritchard CC, Puig-Saus C, Quist EH, Raphael BJ, Salipante SJ, Shin DS, Shinbrot E, Shirts B, Shukla S, Stanford JL, Sun W, Tsoi J, Upfill-Brown A, Wheeler DA, Wu CJ, Yu M, Zaidi SH, Zaretsky JM, Gabriel SB, Lander ES, Garraway LA, Hudson TJ, Fuchs CS, Ribas A, Ogino S, Peters U. Genetic Mechanisms of Immune Evasion in Colorectal Cancer. Cancer Discov 2018; 8:730-749. [PMID: 29510987 DOI: 10.1158/2159-8290.cd-17-1327] [Citation(s) in RCA: 374] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/27/2018] [Indexed: 12/16/2022]
Abstract
To understand the genetic drivers of immune recognition and evasion in colorectal cancer, we analyzed 1,211 colorectal cancer primary tumor samples, including 179 classified as microsatellite instability-high (MSI-high). This set includes The Cancer Genome Atlas colorectal cancer cohort of 592 samples, completed and analyzed here. MSI-high, a hypermutated, immunogenic subtype of colorectal cancer, had a high rate of significantly mutated genes in important immune-modulating pathways and in the antigen presentation machinery, including biallelic losses of B2M and HLA genes due to copy-number alterations and copy-neutral loss of heterozygosity. WNT/β-catenin signaling genes were significantly mutated in all colorectal cancer subtypes, and activated WNT/β-catenin signaling was correlated with the absence of T-cell infiltration. This large-scale genomic analysis of colorectal cancer demonstrates that MSI-high cases frequently undergo an immunoediting process that provides them with genetic events allowing immune escape despite high mutational load and frequent lymphocytic infiltration and, furthermore, that colorectal cancer tumors have genetic and methylation events associated with activated WNT signaling and T-cell exclusion.Significance: This multi-omic analysis of 1,211 colorectal cancer primary tumors reveals that it should be possible to better monitor resistance in the 15% of cases that respond to immune blockade therapy and also to use WNT signaling inhibitors to reverse immune exclusion in the 85% of cases that currently do not. Cancer Discov; 8(6); 730-49. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 663.
Collapse
Affiliation(s)
- Catherine S Grasso
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California. .,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Daniel K Wells
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Tsuyoshi Hamada
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xinmeng Jasmine Mu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael Quist
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jonathan A Nowak
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Reiko Nishihara
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Zhi Rong Qian
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kentaro Inamura
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Teppei Morikawa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Katsuhiko Nosho
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Gabriel Abril-Rodriguez
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Charles Connolly
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Helena Escuin-Ordinas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Milan S Geybels
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Siwen Hu-Lieskovan
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Yeon Joo Kim
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Paige Krystofinski
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Mark D M Leiserson
- Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
| | - Dennis J Montoya
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Brian B Nadel
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California
| | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Cristina Puig-Saus
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Elleanor H Quist
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Ben J Raphael
- Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence, Rhode Island
| | - Stephen J Salipante
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Eve Shinbrot
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Brian Shirts
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Sachet Shukla
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Statistics, Iowa State University, Ames, Iowa
| | - Janet L Stanford
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| | - Wei Sun
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jennifer Tsoi
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Alexander Upfill-Brown
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - David A Wheeler
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Catherine J Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Ming Yu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Syed H Zaidi
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada
| | - Jesse M Zaretsky
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | | | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Levi A Garraway
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Thomas J Hudson
- Ontario Institute for Cancer Research, MaRS Centre, Toronto, Ontario, Canada.,AbbVie Inc., Redwood City, California
| | - Charles S Fuchs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.,Yale Cancer Center, New Haven, Connecticut.,Department of Medicine, Yale School of Medicine, New Haven, Connecticut.,Smilow Cancer Hospital, New Haven, Connecticut
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center, Los Angeles, California.,Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Shuji Ogino
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts.,Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
52
|
NOD-like receptor(s) and host immune responses with Pseudomonas aeruginosa infection. Inflamm Res 2018; 67:479-493. [PMID: 29353310 DOI: 10.1007/s00011-018-1132-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION Molecular mechanisms underlying the interactions between Pseudomonas aeruginosa, the common opportunistic pathogen in cystic fibrosis individuals, and host induce a number of marked inflammatory responses and associate with complex therapeutic problems due to bacterial resistance to antibiotics in chronic stage of infection. METHODS Pseudomonas aeruginosa is recognized by number of pattern recognition receptors (PRRs); NOD-like receptors (NLRs) are a class of PRRs, which can recognize a variety of endogenous and exogenous ligands, thereby playing a critical role in innate immunity. RESULTS NLR activation initiates forming of a multi-protein complex called inflammasome that induces activation of caspase-1 and resulted in cleavage of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. When the IL-1β is secreted excessively, this causes tissue damage and extensive inflammatory responses that are potentially hazardous for the host. CONCLUSIONS Recent evidence has laid out inflammasome-forming NLR far beyond inflammation. This review summarizes current knowledge regarding the various roles played by different NLRs and associated down-signals, either in recognition of P. aeruginosa or may be associated with such bacterial pathogen infection, which may relate to for the complexity of lung diseases caused by P. aeruginosa.
Collapse
|
53
|
Jongsma MLM, Guarda G, Spaapen RM. The regulatory network behind MHC class I expression. Mol Immunol 2017; 113:16-21. [PMID: 29224918 DOI: 10.1016/j.molimm.2017.12.005] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/28/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022]
Abstract
The MHC class I pathway, presenting endogenously derived peptides to T lymphocytes, is hijacked in many pathological conditions. This affects MHC class I levels and peptide presentation at the cell surface leading to immune escape of cancer cells or microbes. It is therefore important to identify the molecular mechanisms behind MHC class I expression, processing and antigen presentation. The identification of NLRC5 as regulator of MHC class I transcription was a huge step forward in understanding the transcriptional mechanism involved. Nevertheless, many questions concerning MHC class I transcription are yet unsolved. Here we illuminate current knowledge on MHC class I and NLRC5 transcription, we highlight some remaining questions and discuss the use of quickly developing high-content screening tools to reveal unknowns in MHC class I transcription in the near future.
Collapse
Affiliation(s)
- Marlieke L M Jongsma
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC/UvA, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory AMC/UvA, Plesmanlaan 125, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
54
|
Innate immune receptors for cross-presentation: The expanding role of NLRs. Mol Immunol 2017; 113:6-10. [PMID: 29198621 PMCID: PMC6859786 DOI: 10.1016/j.molimm.2017.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/26/2017] [Accepted: 11/27/2017] [Indexed: 12/13/2022]
Abstract
PRRs temporally control cross-presentation during acute vs. chronic pathogen handling. NLRs signal in close proximity to phagosomal and endosomal membranes. Current status of NLR-dependent regulation of MHC class antigen presentation.
A critical role of pattern recognition receptors (PRRs) is to influence adaptive immune responses by regulating antigen presentation. Engagement of PRRs in dendritic cells (DCs) increases MHC class I antigen presentation and CD8+ T-cell activation by cross-presented peptides but the molecular mechanisms underlying these effects are not completely understood. Studies looking at the role of PRRs in cross-presentation have been largely limited to TLRs but the role of other PRRs such as cytosolic nucleotide-binding oligomerization domain-like (NOD-like) receptors remains particularly enigmatic. Here we discuss recent evidence of the role of PRRs on cross-presentation and consider how cytosolic NLR-associated pathways, such as NOD2, may integrate these signals resulting in effective adaptive CD8+ T cells responses.
Collapse
|
55
|
Alternative Pre-mRNA Splicing in Mammals and Teleost Fish: A Effective Strategy for the Regulation of Immune Responses Against Pathogen Infection. Int J Mol Sci 2017; 18:ijms18071530. [PMID: 28714877 PMCID: PMC5536018 DOI: 10.3390/ijms18071530] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is the process by which introns are removed and the protein coding elements assembled into mature mRNAs. Alternative pre-mRNA splicing provides an important source of transcriptome and proteome complexity through selectively joining different coding elements to form mRNAs, which encode proteins with similar or distinct functions. In mammals, previous studies have shown the role of alternative splicing in regulating the function of the immune system, especially in the regulation of T-cell activation and function. As lower vertebrates, teleost fish mainly rely on a large family of pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) from various invading pathogens. In this review, we summarize recent advances in our understanding of alternative splicing of piscine PRRs including peptidoglycan recognition proteins (PGRPs), nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) and their downstream signaling molecules, compared to splicing in mammals. We also discuss what is known and unknown about the function of splicing isoforms in the innate immune responses against pathogens infection in mammals and teleost fish. Finally, we highlight the consequences of alternative splicing in the innate immune system and give our view of important directions for future studies.
Collapse
|
56
|
Wu XM, Hu YW, Xue NN, Ren SS, Chen SN, Nie P, Chang MX. Role of zebrafish NLRC5 in antiviral response and transcriptional regulation of MHC related genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:58-68. [PMID: 27876605 DOI: 10.1016/j.dci.2016.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 06/06/2023]
Abstract
Intracellular NOD-like receptors (NLRs) are emerging as critical regulators of innate and adaptive immune responses. Although the NLR family member NLRC5 is functionally defined, the role of NLRC5 in regulating innate immune signaling has been controversial in mammals, and is poorly understood in teleost fish. In the present study, we report the functional characterization of zebrafish NLRC5. The cloned NLRC5 consists of 6435 bp which encodes 1746 amino acids. The N-terminal effector-binding domain of zebrafish NLRC5 is absent which is different from all other human NLRs. Fluorescence microscopy showed that zebrafish NLRC5 is located throughout the entire cell. The higher expression of zebrafish NLRC5 in embryo than in larvae was observed, suggesting the action phase of NLRC5 in zebrafish ontogenetic stages. When the modulation of NLRC5 in pathogen infection was analyzed, it was found that zebrafish NLRC5 was upregulated by both bacterial and viral infection. Overexpression of zebrafish NLRC5 resulted in significant inhibition of SVCV replication in vivo and in vitro, but failed to activate interferon (IFN) promoters and type I IFN signaling pathway. Interestingly, NLRC5 overexpression could activate mhc2dab promoter, and induce the expression of MHC class II genes. All together, these results demonstrate that zebrafish NLRC5 is involved in IFN-independent antiviral response, and also functions as a transcriptional regulator of MHC class II genes.
Collapse
Affiliation(s)
- Xiao Man Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Na Na Xue
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shi Si Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
57
|
NLRC5/CITA: A Key Player in Cancer Immune Surveillance. Trends Cancer 2017; 3:28-38. [PMID: 28718425 DOI: 10.1016/j.trecan.2016.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
Cancer cells need to escape immune surveillance for successful tumor growth. Loss of MHC class I has been described as a major immune evasion strategy in many cancers. MHC class I transactivator (CITA), NLRC5 [nucleotide-binding domain and leucine-rich repeats containing (NLR) family, caspase activation and recruitment domain (CARD) domain containing 5], is a key transcription coactivator of MHC class I genes. Recent genetic studies have revealed that NLRC5 is a major target for cancer immune evasion mechanisms. The reduced expression or activity of NLRC5 caused by promoter methylation, copy number loss, or somatic mutations is associated with defective MHC class I expression, impaired cytotoxic T cell activation, and poor patient prognosis. Here, we review the role of NLRC5 in cancer immune evasion and the future prospects for cancer research.
Collapse
|
58
|
Chelbi S, Dang A, Guarda G. Emerging Major Histocompatibility Complex Class I-Related Functions of NLRC5. Adv Immunol 2017; 133:89-119. [DOI: 10.1016/bs.ai.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
59
|
NF-Y and the immune response: Dissecting the complex regulation of MHC genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:537-542. [PMID: 27989934 DOI: 10.1016/j.bbagrm.2016.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022]
Abstract
Nuclear Factor Y (NF-Y) was first described as one of the CCAAT binding factors. Although CCAAT motifs were found to be present in various genes, NF-Y attracted a lot of interest early on, due to its role in Major Histocompatibility Complex (MHC) gene regulation. MHC genes are crucial in immune response and show peculiar expression patterns. Among other conserved elements on MHC promoters, an NF-Y binding CCAAT box was found to contribute to MHC transcriptional regulation. NF-Y along with other DNA binding factors assembles in a stereospecific manner to form a multiprotein scaffold, the MHC enhanceosome, which is necessary but not sufficient to drive transcription. Transcriptional activation is achieved by the recruitment of yet another factor, the class II transcriptional activator (CIITA). In this review, we briefly discuss basic findings on MHCII transcription regulation and we highlight NF-Y different modes of function in MHCII gene activation. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
|
60
|
Zambelli F, Pavesi G. Genome wide features, distribution and correlations of NF-Y binding sites. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:581-589. [PMID: 27769808 DOI: 10.1016/j.bbagrm.2016.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 10/10/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022]
Abstract
NF-Y is a trimeric transcription factor that binds on DNA the CCAAT-box motif. In this article we reviewed and complemented with additional bioinformatic analysis existing data on genome-wide NF-Y binding characterization in human, reaching the following main conclusions: (1) about half of NF-Y binding sites are located at promoters, about 60-80 base pairs from transcription start sites; NF-Y binding to distal genomic regions takes place at inactive chromatin loci and/or DNA repetitive elements more often than active enhancers; (2) on almost half of its binding sites, regardless of their genomic localization (promoters or distal regions), NF-Y finds on DNA more than one CCAAT-box, and most of those multiple CCAAT binding loci present precise spacing and organization of the elements composing them; (3) there exists a well defined class of transcription factors that show genome-wide co-localization with NF-Y. Some of them lack their canonical binding site in binding regions overlapping with NF-Y, hence hinting at NF-Y mediated recruitment, while others show a precise positioning on DNA of their binding sites with respect to the CCAAT box bound by NF-Y. This article is part of a Special Issue entitled: Nuclear Factor Y in Development and Disease, edited by Prof. Roberto Mantovani.
Collapse
Affiliation(s)
- Federico Zambelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy; Istituto di Biomembrane e Bioenergetica, Consiglio Nazionale delle Ricerche, Bari, Via Amendola 165/A, 70126, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Via Celoria 26, 20133, Italy.
| |
Collapse
|
61
|
Seliger B. Molecular mechanisms of HLA class I-mediated immune evasion of human tumors and their role in resistance to immunotherapies. HLA 2016; 88:213-220. [PMID: 27659281 DOI: 10.1111/tan.12898] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/13/2022]
Abstract
Although the human immune system can recognize and eradicate tumor cells, tumors have also been shown to develop different strategies to escape immune surveillance, which has been described for the first time in different mouse models. The evasion of immune recognition was often associated with a poor prognosis and reduced survival of patients. During the last years the molecular mechanisms, which protect tumor cells from this immune attack, have been identified and appear to be more complex than initially expected. However, next to the composition of cellular, soluble and physical components of the tumor microenvironment, the tumor cells changes to limit immune responses. Of particular importance are classical and non-classical human leukocyte antigen (HLA) class I antigens, which often showed a deregulated expression in cancers of distinct origin. Furthermore, HLA class I abnormalities were linked to defects in the interferon signaling, which have both been shown to be essential for mounting immune responses and are involved in resistances to T cell-based immunotherapies. Therefore this review summarizes the expression, regulation, function and clinical relevance of HLA class I antigens in association with the interferon signal transduction pathway and its role in adaptive resistances to immunotherapies.
Collapse
Affiliation(s)
- B Seliger
- Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
62
|
Sidiq T, Yoshihama S, Downs I, Kobayashi KS. Nod2: A Critical Regulator of Ileal Microbiota and Crohn's Disease. Front Immunol 2016; 7:367. [PMID: 27703457 PMCID: PMC5028879 DOI: 10.3389/fimmu.2016.00367] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/06/2016] [Indexed: 12/19/2022] Open
Abstract
The human intestinal tract harbors large bacterial community consisting of commensal, symbiotic, and pathogenic strains, which are constantly interacting with the intestinal immune system. This interaction elicits a non-pathological basal level of immune responses and contributes to shaping both the intestinal immune system and bacterial community. Recent studies on human microbiota are revealing the critical role of intestinal bacterial community in the pathogenesis of both systemic and intestinal diseases, including Crohn’s disease (CD). NOD2 plays a key role in the regulation of microbiota in the small intestine. NOD2 is highly expressed in ileal Paneth cells that provide critical mechanism for the regulation of ileal microbiota through the secretion of anti-bacterial compounds. Genome mapping of CD patients revealed that loss of function mutations in NOD2 are associated with ileal CD. Genome-wide association studies further demonstrated that NOD2 is one of the most critical genetic factor linked to ileal CD. The bacterial community in the ileum is indeed dysregulated in Nod2-deficient mice. Nod2-deficient ileal epithelia exhibit impaired ability of killing bacteria. Thus, altered interactions between ileal microbiota and mucosal immunity through NOD2 mutations play significant roles in the disease susceptibility and pathogenesis in CD patients, thereby depicting NOD2 as a critical regulator of ileal microbiota and CD.
Collapse
Affiliation(s)
- Tabasum Sidiq
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Sayuri Yoshihama
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Isaac Downs
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University , College Station, TX , USA
| |
Collapse
|
63
|
Multifaceted Functions of NOD-Like Receptor Proteins in Myeloid Cells at the Intersection of Innate and Adaptive Immunity. Microbiol Spectr 2016; 4. [DOI: 10.1128/microbiolspec.mchd-0021-2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
NOD-like receptor (NLR) proteins, as much as Toll-like receptor proteins, play a major role in modulating myeloid cells in their immune functions. There is still, however, limited knowledge on the expression and function of several of the mammalian NLR proteins in myeloid lineages. Still, the function of pyrin domain-containing NLR proteins and NLRC4/NAIP as inflammasome components that drive interleukin-1β (IL-1β) and IL-18 maturation and secretion upon pathogen stimulation is well established. NOD1, NOD2, NLRP3, and NLRC4/NAIP act as bona fide pattern recognition receptors (PRRs) that sense microbe-associated molecular patterns (MAMPs) but also react to endogenous danger-associated molecular patterns (DAMPs). Ultimately, activation of these receptors achieves macrophage activation and maturation of dendritic cells to drive antigen-specific adaptive immune responses. Upon infection, sensing of invading pathogens and likely of DAMPs that are released in response to tissue injury is a process that involves multiple PRRs in both myeloid and epithelial cells, and these act in concert to design tailored, pathogen-adapted immune responses by induction of different cytokine profiles, giving rise to appropriate lymphocyte polarization.
Collapse
|
64
|
Chelbi ST, Guarda G. NLRC5, a promising new entry in tumor immunology. J Immunother Cancer 2016; 4:39. [PMID: 27437103 PMCID: PMC4950760 DOI: 10.1186/s40425-016-0143-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/21/2016] [Indexed: 01/23/2023] Open
Abstract
The recent use of T cell-based cancer immunotherapies, such as adoptive T-cell transfer and checkpoint blockade, yields increasing clinical benefit to patients with different cancer types. However, decrease of MHC class I expression is a common mechanism transformed cells take advantage of to evade CD8(+) T cell-mediated antitumor responses, negatively impacting on the outcome of immunotherapies. Hence, there is an urgent need to develop novel approaches to overcome this limitation. NLRC5 has been recently described as a key transcriptional regulator controlling expression of MHC class I molecules. In this commentary, we summarize and put into perspective a study by Rodriguez and colleagues recently published in Oncoimmunology, addressing the role of NLRC5 in melanoma. The authors demonstrate that NLRC5 overexpression in B16 melanoma allows to recover MHC class I expression, rising tumor immunogenicity and counteracting immune evasion. Possible ways of manipulating NLRC5 activity in tumors will be discussed. Highlighting the therapeutic potential of modulating NLRC5 levels, this publication also encourages evaluation of NLRC5, and by extension MHC class I pathway, as clinical biomarker to select personalized immunotherapeutic strategies.
Collapse
Affiliation(s)
- Sonia T Chelbi
- Department of Biochemistry, University of Lausanne, Epalinges, 1066 Switzerland
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, Epalinges, 1066 Switzerland
| |
Collapse
|
65
|
Chan WF, Parks-Dely JA, Magor BG, Magor KE. The Minor MHC Class I Gene UDA of Ducks Is Regulated by Let-7 MicroRNA. THE JOURNAL OF IMMUNOLOGY 2016; 197:1212-20. [DOI: 10.4049/jimmunol.1600332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/08/2016] [Indexed: 01/10/2023]
|
66
|
Guo XM, Liu XP, Chang GB, Xu L, Bi YL, Wang HZ, Zhang Y, Zhu PF, Wu Y, Chen GH. Characterization of the NLRC5 promoter in chicken: SNPs, regulatory elements and CpG islands. Anim Genet 2016; 47:579-87. [PMID: 27429394 DOI: 10.1111/age.12450] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2016] [Indexed: 01/07/2023]
Abstract
NLRC5 plays an important role in the innate immunity and cellular immunity in many species, but the regulatory mechanism of NLRC5 expression in chickens remains unclear. In this study, a series of deletion fragments of the NLRC5 promoter region were constructed and dual-luciferase assay was performed. Then, we detected the SNP in the core region and its function. Important transcriptional regulatory elements were predicted and identified. Methylation of CpG islands was measured. The results revealed that the two core regions of -4372 to -3756 and -2925 to -2265 in the NLRC5 promoter were essential for NLRC5 mRNA expression in which a SNP (A/G), located at -2470, was found to have an effect on the transcriptional activity. Also, the STAT1 element in the second core region of the NLRC5 promoter was identified to bind with the STAT1 transcription factor, which was necessary for the transcriptional activity. In addition, many other elements in the NLRC5 promoter, including YY1 and CEBP, may contribute significantly to the expression activity of NLRC5. Moreover, two CpG islands were searched. Part of one was located in the first core region, which suggests that epigenetic modification may regulate the activity of the first promoter region, and the other was mostly in an unmethylated state. Collectively, these results suggest the complex regulation of NLRC5 expression includes SNPs, transcription factors and methylation.
Collapse
Affiliation(s)
- X M Guo
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, China
| | - X P Liu
- Chinese Academy of Agricultural Sciences, Poultry Institute, Yangzhou, 225003, China
| | - G B Chang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, China.
| | - L Xu
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, China
| | - Y L Bi
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, China
| | - H Z Wang
- Chinese Academy of Agricultural Sciences, Poultry Institute, Yangzhou, 225003, China
| | - Y Zhang
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, China
| | - P F Zhu
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, China
| | - Y Wu
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, China
| | - G H Chen
- College of Animal Science & Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
67
|
Downs I, Vijayan S, Sidiq T, Kobayashi KS. CITA/NLRC5: A critical transcriptional regulator of MHC class I gene expression. Biofactors 2016; 42:349-57. [PMID: 27087581 DOI: 10.1002/biof.1285] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 01/01/2023]
Abstract
Major histocompatibility complex (MHC) class I and class II molecules play essential roles in the development and activation of the human adaptive immune system. An NLR protein, CIITA (MHC class II transactivator) has been recognized as a master regulator of MHC class II gene expression, albeit knowledge about the regulatory mechanism of MHC class I gene expression had been limited. Recently identified MHC class I transactivator (CITA), or NLRC5, also belongs to the NLR protein family and constitutes a critical regulator for the transcriptional activation of MHC class I genes. In addition to MHC class I genes, CITA/NLRC5 induces the expression of β2 -microglobulin, TAP1 and LMP2, essential components of the MHC class I antigen presentation pathway. Therefore, CITA/NLRC5 and CIITA are transcriptional regulators that orchestrate the concerted expression of critical components in the MHC class I and class II pathways, respectively. © 2016 BioFactors, 42(4):349-357, 2016.
Collapse
Affiliation(s)
- Isaac Downs
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Saptha Vijayan
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Tabasum Sidiq
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| | - Koichi S Kobayashi
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX
| |
Collapse
|
68
|
NLRC5/MHC class I transactivator is a target for immune evasion in cancer. Proc Natl Acad Sci U S A 2016; 113:5999-6004. [PMID: 27162338 DOI: 10.1073/pnas.1602069113] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers.
Collapse
|
69
|
René C, Lozano C, Eliaou JF. Expression of classical HLA class I molecules: regulation and clinical impacts: Julia Bodmer Award Review 2015. HLA 2016; 87:338-49. [PMID: 27060357 DOI: 10.1111/tan.12787] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
Human leukocyte antigen (HLA) class I genes are ubiquitously expressed, but in a tissue specific-manner. Their expression is primarily regulated at the transcriptional level and can be modulated both positively and negatively by different stimuli. Advances in sequencing technologies led to the identification of new regulatory variants located in the untranslated regions (UTRs), which could influence the expression. After a brief description of the mechanisms underlying the transcriptional regulation of HLA class I genes expression, we will review how the expression levels of HLA class I genes could affect biological and pathological processes. Then, we will discuss on the differential expression of HLA class I genes according to the locus, allele and UTR polymorphisms and its clinical impact. This interesting field of study led to a new dimension of HLA typing, going beyond a qualitative aspect.
Collapse
Affiliation(s)
- C René
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France.,Faculté de Médecine, University of Montpellier, Montpellier, France.,INSERM U1183, Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier, France
| | - C Lozano
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France
| | - J-F Eliaou
- Department of Immunology, CHRU de Montpellier, University Hospital Saint-Eloi, Montpellier, France.,Faculté de Médecine, University of Montpellier, Montpellier, France.,INSERM U1194, IRCM, University of Montpellier, Montpellier, France
| |
Collapse
|
70
|
Rodriguez GM, Bobbala D, Serrano D, Mayhue M, Champagne A, Saucier C, Steimle V, Kufer TA, Menendez A, Ramanathan S, Ilangumaran S. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8(+) T lymphocytes. Oncoimmunology 2016; 5:e1151593. [PMID: 27471621 PMCID: PMC4938303 DOI: 10.1080/2162402x.2016.1151593] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 11/10/2022] Open
Abstract
Cancers can escape immunesurveillance by diminishing the expression of MHC class-I molecules (MHC-I) and components of the antigen-processing machinery (APM). Developing new approaches to reverse these defects could boost the efforts to restore antitumor immunity. Recent studies have shown that the expression of MHC-I and antigen-processing molecules is transcriptionally regulated by NOD-like receptor CARD domain containing 5 (NLRC5). To investigate whether NLRC5 could be used to improve tumor immunogenicity, we established stable lines of B16-F10 melanoma cells expressing NLRC5 (B16-5), the T cell co-stimulatory molecule CD80 (B16-CD80) or both (B16-5/80). Cells harboring NLRC5 constitutively expressed MHC-I and LMP2, LMP7 and TAP1 genes of the APM. The B16-5 cells efficiently presented the melanoma antigenic peptide gp10025–33 to Pmel-1 TCR transgenic CD8+ T cells and induced their proliferation. In the presence of CD80, B16-5 cells stimulated Pmel-1 cells even without the addition of gp100 peptide, indicating that NLRC5 facilitated the processing and presentation of endogenous tumor antigen. Upon subcutaneous implantation, B16-5 cells showed markedly reduced tumor growth in C57BL/6 hosts but not in immunodeficient hosts, indicating that the NLRC5-expressing tumor cells elicited antitumor immunity. Following intravenous injection, B16-5 and B16-5/80 cells formed fewer lung tumor foci compared to control cells. In mice depleted of CD8+ T cells, B16-5 cells formed large subcutaneous and lung tumors. Finally, immunization with irradiated B16-5 cells conferred protection against challenge by parental B16 cells. Collectively, our findings indicate that NLRC5 could be exploited to restore tumor immunogenicity and to stimulate protective antitumor immunity.
Collapse
Affiliation(s)
| | | | | | | | - Audrey Champagne
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Caroline Saucier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; CRCHUS, Sherbrooke, Québec, Canada
| | - Viktor Steimle
- Department of Biology, Faculty of Sciences, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim , Stuttgart, Germany
| | - Alfredo Menendez
- CRCHUS, Sherbrooke, Québec, Canada; Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Immunology division, Department of Pediatrics; CRCHUS, Sherbrooke, Québec, Canada
| | - Subburaj Ilangumaran
- Immunology division, Department of Pediatrics; CRCHUS, Sherbrooke, Québec, Canada
| |
Collapse
|
71
|
Rota G, Ludigs K, Siegert S, Tardivel A, Morgado L, Reith W, De Gassart A, Guarda G. T Cell Priming by Activated Nlrc5-Deficient Dendritic Cells Is Unaffected despite Partially Reduced MHC Class I Levels. THE JOURNAL OF IMMUNOLOGY 2016; 196:2939-46. [PMID: 26944927 DOI: 10.4049/jimmunol.1502084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/01/2016] [Indexed: 11/19/2022]
Abstract
NLRC5, a member of the NOD-like receptor (NLR) protein family, has recently been characterized as the master transcriptional regulator of MHCI molecules in lymphocytes, in which it is highly expressed. However, its role in activated dendritic cells (DCs), which are instrumental to initiate T cell responses, remained elusive. We show in this study that, following stimulation of DCs with inflammatory stimuli, not only did NLRC5 level increase, but also its importance in directing MHCI transcription. Despite markedly reduced mRNA and intracellular H2-K levels, we unexpectedly observed nearly normal H2-K surface display in Nlrc5(-/-) DCs. Importantly, this discrepancy between a strong intracellular and a mild surface defect in H2-K levels was observed also in DCs with H2-K transcription defects independent of Nlrc5. Hence, alongside with demonstrating the importance of NLRC5 in MHCI transcription in activated DCs, we uncover a general mechanism counteracting low MHCI surface expression. In agreement with the decreased amount of neosynthesized MHCI, Nlrc5(-/-) DCs exhibited a defective capacity to display endogenous Ags. However, neither T cell priming by endogenous Ags nor cross-priming ability was substantially affected in activated Nlrc5(-/-) DCs. Altogether, these data show that Nlrc5 deficiency, despite significantly affecting MHCI transcription and Ag display, is not sufficient to hinder T cell activation, underlining the robustness of the T cell priming process by activated DCs.
Collapse
Affiliation(s)
- Giorgia Rota
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Kristina Ludigs
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Stefanie Siegert
- Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; and
| | - Aubry Tardivel
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Leonor Morgado
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - Aude De Gassart
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Greta Guarda
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland;
| |
Collapse
|
72
|
NLRC5 shields T lymphocytes from NK-cell-mediated elimination under inflammatory conditions. Nat Commun 2016; 7:10554. [PMID: 26861112 PMCID: PMC4749981 DOI: 10.1038/ncomms10554] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 12/26/2015] [Indexed: 12/18/2022] Open
Abstract
NLRC5 is a transcriptional regulator of MHC class I (MHCI), which maintains high MHCI expression particularly in T cells. Recent evidence highlights an important NK–T-cell crosstalk, raising the question on whether NLRC5 specifically modulates this interaction. Here we show that NK cells from Nlrc5-deficient mice exhibit moderate alterations in inhibitory receptor expression and responsiveness. Interestingly, NLRC5 expression in T cells is required to protect them from NK-cell-mediated elimination upon inflammation. Using T-cell-specific Nlrc5-deficient mice, we show that NK cells surprisingly break tolerance even towards ‘self' Nlrc5-deficient T cells under inflammatory conditions. Furthermore, during chronic LCMV infection, the total CD8+ T-cell population is severely decreased in these mice, a phenotype reverted by NK-cell depletion. These findings strongly suggest that endogenous T cells with low MHCI expression become NK-cell targets, having thus important implications for T-cell responses in naturally or therapeutically induced inflammatory conditions. NK cell tolerance to self-MHCI levels is calibrated during their development. Here the authors show that this tolerance is overcome by an inflammatory environment and that NLRC5 protects T cells from NK cell-mediated elimination by maintaining high MHCI expression.
Collapse
|