51
|
Ferchaud AL, Mérot C, Normandeau E, Ragoussis J, Babin C, Djambazian H, Bérubé P, Audet C, Treble M, Walkusz W, Bernatchez L. Chromosome-level assembly reveals a putative Y-autosomal fusion in the sex determination system of the Greenland Halibut (Reinhardtius hippoglossoides). G3-GENES GENOMES GENETICS 2021; 12:6428537. [PMID: 34791178 DOI: 10.1093/g3journal/jkab376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022]
Abstract
Despite the commercial importance of Greenland Halibut (Reinhardtius hippoglossoides), important gaps still persist in our knowledge of this species, including its reproductive biology and sex determination mechanism. Here, we combined single-molecule sequencing of long reads (Pacific Sciences) with chromatin conformation capture sequencing (Hi-C) data to assemble the first chromosome-level reference genome for this species. The high-quality assembly encompassed more than 598 Megabases (Mb) assigned to 1 594 scaffolds (scaffold N50 = 25 Mb) with 96% of its total length distributed among 24 chromosomes. Investigation of the syntenic relationship with other economically important flatfish species revealed a high conservation of synteny blocks among members of this phylogenetic clade. Sex determination analysis revealed that, similar to other teleost fishes, flatfishes also exhibit a high level of plasticity and turnover in sex-determination mechanisms. A low-coverage whole-genome sequence analysis of 198 individuals revealed that Greenland Halibut possesses a male heterogametic XY system and several putative candidate genes implied in the sex determination of this species. Our study also suggests for the first time in flatfishes that a putative Y-autosomal fusion could be associated with a reduction of recombination typical of the early steps of sex chromosome evolution.
Collapse
Affiliation(s)
- Anne-Laure Ferchaud
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Claire Mérot
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Jiannis Ragoussis
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Charles Babin
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| | - Haig Djambazian
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Pierre Bérubé
- McGill Genome Centre and Department for Human Genetics, McGill University, Montreal, Quebec, H3A 0G1, Canada
| | - Céline Audet
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Margaret Treble
- Fisheries and Oceans Canada, Winnipeg Department, Arctic Aquatic Research Division, Freshwater Institute Winnipeg, Manitoba, R3T2N6, Canada
| | - Wocjciech Walkusz
- Fisheries and Oceans Canada, Winnipeg Department, Arctic Aquatic Research Division, Freshwater Institute Winnipeg, Manitoba, R3T2N6, Canada
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, G1V 0A6, Canada
| |
Collapse
|
52
|
A supernumerary "B-sex" chromosome drives male sex determination in the Pachón cavefish, Astyanax mexicanus. Curr Biol 2021; 31:4800-4809.e9. [PMID: 34496222 DOI: 10.1016/j.cub.2021.08.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/30/2021] [Accepted: 08/09/2021] [Indexed: 01/30/2023]
Abstract
Sex chromosomes are generally derived from a pair of classical type-A chromosomes, and relatively few alternative models have been proposed up to now.1,2 B chromosomes (Bs) are supernumerary and dispensable chromosomes with non-Mendelian inheritance found in many plant and animal species3,4 that have often been considered as selfish genetic elements that behave as genome parasites.5,6 The observation that in some species Bs can be either restricted or predominant in one sex7-14 raised the interesting hypothesis that Bs could play a role in sex determination.15 The characterization of putative B master sex-determining (MSD) genes, however, has not yet been provided to support this hypothesis. Here, in Astyanax mexicanus cavefish originating from Pachón cave, we show that Bs are strongly male predominant. Based on a high-quality genome assembly of a B-carrying male, we characterized the Pachón cavefish B sequence and found that it contains two duplicated loci of the putative MSD gene growth differentiation factor 6b (gdf6b). Supporting its role as an MSD gene, we found that the Pachón cavefish gdf6b gene is expressed specifically in differentiating male gonads, and that its knockout induces male-to-female sex reversal in B-carrying males. This demonstrates that gdf6b is necessary for triggering male sex determination in Pachón cavefish. Altogether these results bring multiple and independent lines of evidence supporting the conclusion that the Pachón cavefish B is a "B-sex" chromosome that contains duplicated copies of the gdf6b gene, which can promote male sex determination in this species.
Collapse
|
53
|
Sex Determination and Differentiation in Teleost: Roles of Genetics, Environment, and Brain. BIOLOGY 2021; 10:biology10100973. [PMID: 34681072 PMCID: PMC8533387 DOI: 10.3390/biology10100973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023]
Abstract
The fish reproductive system is a complex biological system. Nonetheless, reproductive organ development is conserved, which starts with sex determination and then sex differentiation. The sex of a teleost is determined and differentiated from bipotential primordium by genetics, environmental factors, or both. These two processes are species-specific. There are several prominent genes and environmental factors involved during sex determination and differentiation. At the cellular level, most of the sex-determining genes suppress the female pathway. For environmental factors, there are temperature, density, hypoxia, pH, and social interaction. Once the sexual fate is determined, sex differentiation takes over the gonadal developmental process. Environmental factors involve activation and suppression of various male and female pathways depending on the sexual fate. Alongside these factors, the role of the brain during sex determination and differentiation remains elusive. Nonetheless, GnRH III knockout has promoted a male sex-biased population, which shows brain involvement during sex determination. During sex differentiation, LH and FSH might not affect the gonadal differentiation, but are required for regulating sex differentiation. This review discusses the role of prominent genes, environmental factors, and the brain in sex determination and differentiation across a few teleost species.
Collapse
|
54
|
Sember A, Nguyen P, Perez MF, Altmanová M, Ráb P, Cioffi MDB. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200098. [PMID: 34304595 PMCID: PMC8310710 DOI: 10.1098/rstb.2020.0098] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Despite decades of cytogenetic and genomic research of dynamic sex chromosome evolution in teleost fishes, multiple sex chromosomes have been largely neglected. In this review, we compiled available data on teleost multiple sex chromosomes, identified major trends in their evolution and suggest further trajectories in their investigation. In a compiled dataset of 440 verified records of fish sex chromosomes, we counted 75 multiple sex chromosome systems with 60 estimated independent origins. We showed that male-heterogametic systems created by Y-autosome fusion predominate and that multiple sex chromosomes are over-represented in the order Perciformes. We documented a striking difference in patterns of differentiation of sex chromosomes between male and female heterogamety and hypothesize that faster W sex chromosome differentiation may constrain sex chromosome turnover in female-heterogametic systems. We also found no significant association between the mechanism of multiple sex chromosome formation and percentage of uni-armed chromosomes in teleost karyotypes. Last but not least, we hypothesized that interaction between fish populations, which differ in their sex chromosomes, can drive the evolution of multiple sex chromosomes in fishes. This underlines the importance of broader inter-population sampling in studies of fish sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Alexandr Sember
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Petr Nguyen
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Manolo F. Perez
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44 Prague, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21 Liběchov, Czech Republic
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, Rod. Washington Luiz km 235 cep, 13565-905, São Carlos, Brazil
| |
Collapse
|
55
|
Kratochvíl L, Gamble T, Rovatsos M. Sex chromosome evolution among amniotes: is the origin of sex chromosomes non-random? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200108. [PMID: 34304592 PMCID: PMC8310715 DOI: 10.1098/rstb.2020.0108] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Sex chromosomes are a great example of a convergent evolution at the genomic level, having evolved dozens of times just within amniotes. An intriguing question is whether this repeated evolution was random, or whether some ancestral syntenic blocks have significantly higher chance to be co-opted for the role of sex chromosomes owing to their gene content related to gonad development. Here, we summarize current knowledge on the evolutionary history of sex determination and sex chromosomes in amniotes and evaluate the hypothesis of non-random emergence of sex chromosomes. The current data on the origin of sex chromosomes in amniotes suggest that their evolution is indeed non-random. However, this non-random pattern is not very strong, and many syntenic blocks representing putatively independently evolved sex chromosomes are unique. Still, repeatedly co-opted chromosomes are an excellent model system, as independent co-option of the same genomic region for the role of sex chromosome offers a great opportunity for testing evolutionary scenarios on the sex chromosome evolution under the explicit control for the genomic background and gene identity. Future studies should use these systems more to explore the convergent/divergent evolution of sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA
- Milwaukee Public Museum, Milwaukee, WI, USA
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| |
Collapse
|
56
|
Ding M, Li XY, Zhu ZX, Chen JH, Lu M, Shi Q, Wang Y, Li Z, Zhao X, Wang T, Du WX, Miao C, Yao TZ, Wang MT, Zhang XJ, Wang ZW, Zhou L, Gui JF. Genomic anatomy of male-specific microchromosomes in a gynogenetic fish. PLoS Genet 2021; 17:e1009760. [PMID: 34491994 PMCID: PMC8448357 DOI: 10.1371/journal.pgen.1009760] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/17/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
Unisexual taxa are commonly considered short-lived as the absence of meiotic recombination is supposed to accumulate deleterious mutations and hinder the creation of genetic diversity. However, the gynogenetic gibel carp (Carassius gibelio) with high genetic diversity and wide ecological distribution has outlived its predicted extinction time of a strict unisexual reproduction population. Unlike other unisexual vertebrates, males associated with supernumerary microchromosomes have been observed in gibel carp, which provides a unique system to explore the rationales underlying male occurrence in unisexual lineage and evolution of unisexual reproduction. Here, we identified a massively expanded satellite DNA cluster on microchromosomes of hexaploid gibel carp via comparing with the ancestral tetraploid crucian carp (Carassius auratus). Based on the satellite cluster, we developed a method for single chromosomal fluorescence microdissection and isolated three male-specific microchromosomes in a male metaphase cell. Genomic anatomy revealed that these male-specific microchromosomes contained homologous sequences of autosomes and abundant repetitive elements. Significantly, several potential male-specific genes with transcriptional activity were identified, among which four and five genes displayed male-specific and male-biased expression in gonads, respectively, during the developmental period of sex determination. Therefore, the male-specific microchromosomes resembling common features of sex chromosomes may be the main driving force for male occurrence in gynogenetic gibel carp, which sheds new light on the evolution of unisexual reproduction.
Collapse
Affiliation(s)
- Miao Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Xuan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Hui Chen
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- ShenZhen People’s Hospital, Shenzhen, China
| | - Meng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin Zhao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Xuan Du
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chun Miao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Zi Yao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Tao Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
57
|
Cordaux R, Chebbi MA, Giraud I, Pleydell DRJ, Peccoud J. Characterization of a Sex-Determining Region and Its Genomic Context via Statistical Estimates of Haplotype Frequencies in Daughters and Sons Sequenced in Pools. Genome Biol Evol 2021; 13:evab121. [PMID: 34048551 PMCID: PMC8350356 DOI: 10.1093/gbe/evab121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 11/14/2022] Open
Abstract
Sex chromosomes are generally derived from a pair of autosomes that have acquired a locus controlling sex. Sex chromosomes may evolve reduced recombination around this locus and undergo a long process of molecular divergence. At that point, the original loci controlling sex may be difficult to pinpoint. This difficulty has affected many model species from mammals to birds to flies, which present highly diverged sex chromosomes. Identifying sex-controlling loci is easier in species with molecularly similar sex chromosomes. Here we aimed at pinpointing the sex-determining region (SDR) of Armadillidium vulgare, a terrestrial isopod with female heterogamety (ZW females and ZZ males) and whose sex chromosomes appear to show low genetic divergence. To locate the SDR, we assessed single-nucleotide polymorphism (SNP) allele frequencies in F1 daughters and sons sequenced in pools (pool-seq) in several families. We developed a Bayesian method that uses the SNP genotypes of individually sequenced parents and pool-seq data from F1 siblings to estimate the genetic distance between a given genomic region (contig) and the SDR. This allowed us to assign more than 43 Mb of contigs to sex chromosomes, and to demonstrate extensive recombination and very low divergence between these chromosomes. By taking advantage of multiple F1 families, we delineated a very short genomic region (∼65 kb) that presented no evidence of recombination with the SDR. In this short genomic region, the comparison of sequencing depths between sexes highlighted female-specific genes that have undergone recent duplication, and which may be involved in sex determination in A. vulgare.
Collapse
Affiliation(s)
- Richard Cordaux
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - Mohamed Amine Chebbi
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - Isabelle Giraud
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| | - David Richard John Pleydell
- UMR Animal, Santé, Territoires, Risques et Écosystèmes, INRAE, CIRAD, Montpellier SupAgro, Université de Montpellier, France
| | - Jean Peccoud
- Laboratoire Écologie et Biologie des Interactions, Équipe Écologie Évolution Symbiose, UMR CNRS 7267, Université de Poitiers, France
| |
Collapse
|
58
|
Qu M, Liu Y, Zhang Y, Wan S, Ravi V, Qin G, Jiang H, Wang X, Zhang H, Zhang B, Gao Z, Huysseune A, Zhang Z, Zhang H, Chen Z, Yu H, Wu Y, Tang L, Li C, Zhong J, Ma L, Wang F, Zheng H, Yin J, Witten PE, Meyer A, Venkatesh B, Lin Q. Seadragon genome analysis provides insights into its phenotype and sex determination locus. SCIENCE ADVANCES 2021; 7:eabg5196. [PMID: 34407945 PMCID: PMC8373133 DOI: 10.1126/sciadv.abg5196] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/01/2021] [Indexed: 05/29/2023]
Abstract
The iconic phenotype of seadragons includes leaf-like appendages, a toothless tubular mouth, and male pregnancy involving incubation of fertilized eggs on an open "brood patch." We de novo-sequenced male and female genomes of the common seadragon (Phyllopteryx taeniolatus) and its closely related species, the alligator pipefish (Syngnathoides biaculeatus). Transcription profiles from an evolutionary novelty, the leaf-like appendages, show that a set of genes typically involved in fin development have been co-opted as well as an enrichment of transcripts for potential tissue repair and immune defense genes. The zebrafish mutants for scpp5, which is lost in all syngnathids, were found to lack or have deformed pharyngeal teeth, supporting the hypothesis that the loss of scpp5 has contributed to the loss of teeth in syngnathids. A putative sex-determining locus encoding a male-specific amhr2y gene shared by common seadragon and alligator pipefish was identified.
Collapse
Affiliation(s)
- Meng Qu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Yanhong Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Shiming Wan
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Vydianathan Ravi
- Institute of Molecular and Cell Biology, A*STAR, 138673 Biopolis, Singapore
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Han Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Xin Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Zexia Gao
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ann Huysseune
- Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Zhixin Zhang
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato, Tokyo, Japan
| | - Hao Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Zelin Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Haiyan Yu
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Yongli Wu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Lu Tang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| | - Chunyan Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Jia Zhong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Liming Ma
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Fengling Wang
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Hongkun Zheng
- Biomarker Technologies Corporation, 101300 Beijing, China
| | - Jianping Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China
| | - Paul Eckhard Witten
- Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Axel Meyer
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany.
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 138673 Biopolis, Singapore.
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 510301 Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
- University of Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
59
|
Nakamoto M, Uchino T, Koshimizu E, Kuchiishi Y, Sekiguchi R, Wang L, Sudo R, Endo M, Guiguen Y, Schartl M, Postlethwait JH, Sakamoto T. A Y-linked anti-Müllerian hormone type-II receptor is the sex-determining gene in ayu, Plecoglossus altivelis. PLoS Genet 2021; 17:e1009705. [PMID: 34437539 PMCID: PMC8389408 DOI: 10.1371/journal.pgen.1009705] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/09/2021] [Indexed: 11/19/2022] Open
Abstract
Whole-genome duplication and genome compaction are thought to have played important roles in teleost fish evolution. Ayu (or sweetfish), Plecoglossus altivelis, belongs to the superorder Stomiati, order Osmeriformes. Stomiati is phylogenetically classified as sister taxa of Neoteleostei. Thus, ayu holds an important position in the fish tree of life. Although ayu is economically important for the food industry and recreational fishing in Japan, few genomic resources are available for this species. To address this problem, we produced a draft genome sequence of ayu by whole-genome shotgun sequencing and constructed linkage maps using a genotyping-by-sequencing approach. Syntenic analyses of ayu and other teleost fish provided information about chromosomal rearrangements during the divergence of Stomiati, Protacanthopterygii and Neoteleostei. The size of the ayu genome indicates that genome compaction occurred after the divergence of the family Osmeridae. Ayu has an XX/XY sex-determination system for which we identified sex-associated loci by a genome-wide association study by genotyping-by-sequencing and whole-genome resequencing using wild populations. Genome-wide association mapping using wild ayu populations revealed three sex-linked scaffolds (total, 2.03 Mb). Comparison of whole-genome resequencing mapping coverage between males and females identified male-specific regions in sex-linked scaffolds. A duplicate copy of the anti-Müllerian hormone type-II receptor gene (amhr2bY) was found within these male-specific regions, distinct from the autosomal copy of amhr2. Expression of the Y-linked amhr2 gene was male-specific in sox9b-positive somatic cells surrounding germ cells in undifferentiated gonads, whereas autosomal amhr2 transcripts were detected in somatic cells in sexually undifferentiated gonads of both genetic males and females. Loss-of-function mutation for amhr2bY induced male to female sex reversal. Taken together with the known role of Amh and Amhr2 in sex differentiation, these results indicate that the paralog of amhr2 on the ayu Y chromosome determines genetic sex, and the male-specific amh-amhr2 pathway is critical for testicular differentiation in ayu.
Collapse
Affiliation(s)
- Masatoshi Nakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Tsubasa Uchino
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Eriko Koshimizu
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
- Department of Human Genetics, Yokohama City University, Graduate School of Medicine, Yokohama, Japan
| | - Yudai Kuchiishi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ryota Sekiguchi
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Liu Wang
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ryusuke Sudo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masato Endo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | - Manfred Schartl
- University of Wuerzburg, Developmental Biochemistry, Biocenter, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, United States of America
| | - John H. Postlethwait
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Takashi Sakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
60
|
Bertho S, Herpin A, Schartl M, Guiguen Y. Lessons from an unusual vertebrate sex-determining gene. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200092. [PMID: 34247499 DOI: 10.1098/rstb.2020.0092] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
So far, very few sex-determining genes have been identified in vertebrates and most of them, the so-called 'usual suspects', evolved from genes which fulfil essential functions during sexual development and are thus already tightly linked to the process that they now govern. The single exception to this 'usual suspects' rule in vertebrates so far is the conserved salmonid sex-determining gene, sdY (sexually dimorphic on the Y chromosome), that evolved from a gene known to be involved in regulation of the immune response. It is contained in a jumping sex locus that has been transposed or translocated into different ancestral autosomes during the evolution of salmonids. This special feature of sdY, i.e. being inserted in a 'jumping sex locus', could explain how salmonid sex chromosomes remain young and undifferentiated to escape degeneration. Recent knowledge on the mechanism of action of sdY demonstrates that it triggers its sex-determining action by deregulating oestrogen synthesis that is a conserved and crucial pathway for ovarian differentiation in vertebrates. This result suggests that sdY has evolved to cope with a pre-existing sex differentiation regulatory network. Therefore, 'limited options' for the emergence of new master sex-determining genes could be more constrained by their need to tightly interact with a conserved sex differentiation regulatory network rather than by being themselves 'usual suspects', already inside this sex regulatory network. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Sylvain Bertho
- INRAE, LPGP, 35000 Rennes, France.,Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany
| | - Amaury Herpin
- INRAE, LPGP, 35000 Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, People's Republic of China
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany.,Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | | |
Collapse
|
61
|
Pan Q, Kay T, Depincé A, Adolfi M, Schartl M, Guiguen Y, Herpin A. Evolution of master sex determiners: TGF-β signalling pathways at regulatory crossroads. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200091. [PMID: 34247498 DOI: 10.1098/rstb.2020.0091] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To date, more than 20 different vertebrate master sex-determining genes have been identified on different sex chromosomes of mammals, birds, frogs and fish. Interestingly, six of these genes are transcription factors (Dmrt1- or Sox3- related) and 13 others belong to the TGF-β signalling pathway (Amh, Amhr2, Bmpr1b, Gsdf and Gdf6). This pattern suggests that only a limited group of factors/signalling pathways are prone to become top regulators again and again. Although being clearly a subordinate member of the sex-regulatory network in mammals, the TGF-β signalling pathway made it to the top recurrently and independently. Facing this rolling wave of TGF-β signalling pathways, this review will decipher how the TGF-β signalling pathways cope with the canonical sex gene regulatory network and challenge the current evolutionary concepts accounting for the diversity of sex-determining mechanisms. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Tomas Kay
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Mateus Adolfi
- University of Würzburg, Developmental Biochemistry, Biocenter, 97074 Würzburg, Germany
| | - Manfred Schartl
- University of Würzburg, Developmental Biochemistry, Biocenter, 97074 Würzburg, Germany.,Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | - Yann Guiguen
- INRAE, UR 1037 Fish Physiology and Genomics, 35000 Rennes, France
| | - Amaury Herpin
- INRAE, UR 1037 Fish Physiology and Genomics, 35000 Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan, People's Republic of China
| |
Collapse
|
62
|
Curzon AY, Dor L, Shirak A, Meiri-Ashkenazi I, Rosenfeld H, Ron M, Seroussi E. A novel c.1759T>G variant in follicle-stimulating hormone-receptor gene is concordant with male determination in the flathead grey mullet (Mugil cephalus). G3-GENES GENOMES GENETICS 2021; 11:6046932. [PMID: 33589926 PMCID: PMC8022982 DOI: 10.1093/g3journal/jkaa044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/08/2020] [Indexed: 12/31/2022]
Abstract
Various master key regulators (MKRs) that control a binary switch of sex determination (SD) have been found in fish; these provide an excellent model for the study of vertebrate genetic SD. The SD region in flathead grey mullet has been previously mapped to a 1 Mbp region harboring 27 genes, of which one is follicle-stimulating hormone receptor (fshr). Although this gene is involved in gonad differentiation and function, it has not been considered as an MKR of SD. We systematically investigated polymorphism in mullet fshr using DNA shotgun sequences, and compared them between males and females. Capable of encoding nonconservative amino acid substitutions, c.1732G>A and c.1759T>G exhibited association with sex on a population level (N = 83; P ≤ 6.7 × 10-19). Hence, 1732 A and 1759 G represent a male-specific haplotype of the gene, designated as "fshry." Additional flanking SNPs showed a weaker degree of association with sex, delimiting the SD critical region to 143 nucleotides on exon 14. Lack of homozygotes for fshry, and the resulting divergence from Hardy-Weinberg equilibrium (N = 170; P ≤ 3.9 × 10-5), were compatible with a male heterogametic model (XY/XX). Capable of replacing a phenylalanine with valine, c.1759T>G alters a conserved position across the sixth transmembrane domain of vertebrate FSHRs. Amino acid substitutions in this position in vertebrates are frequently associated with constant receptor activation and consequently with FSH/FSHR signaling alteration; thus, indicating a potential role of fshr as an MKR of SD.
Collapse
Affiliation(s)
- Arie Y Curzon
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Lior Dor
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel.,Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| | - Iris Meiri-Ashkenazi
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat 88112, Israel
| | - Hana Rosenfeld
- National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat 88112, Israel
| | - Micha Ron
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| | - Eyal Seroussi
- Agricultural Research Organization, Institute of Animal Science, Rishon LeTsiyon, 7528809, Israel
| |
Collapse
|
63
|
Signatures of Selection and Genomic Diversity of Muskellunge ( Esox masquinongy) from Two Populations in North America. Genes (Basel) 2021; 12:genes12071021. [PMID: 34209092 PMCID: PMC8303616 DOI: 10.3390/genes12071021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Muskellunge (Esox masquinongy) is the largest and most prized game fish in North America. However, little is known about Muskellunge genetic diversity in Iowa’s propagation program. We used Whole-Genome Sequencing of 12 brooding individuals from Iowa and publicly available RAD-seq of 625 individuals from the St. Lawrence River in Canada to study the genetic differences between populations, analyze signatures of selection, and evaluate the levels of genetic diversity in both populations. Given that there is no reference genome available, reads were aligned to the genome of Pike (Esox lucius). Variant calling produced 7,886,471 biallelic variants for the Iowa population and 16,867 high-quality SNPs that overlap with the Canadian samples. Principal component analysis (PCA) and Admixture analyses showed a large genetic difference between Canadian and Iowan populations. Window-based pooled heterozygosity found 6 highly heterozygous windows in the Iowa population and Fst between populations found 14 windows with fixation statistic (Fst) values larger than 0.9. Canadian inbreeding rate (Froh = 0.32) appears to be higher due to the inbreeding of Iowa population (Froh = 0.03), presumably due to isolation of subpopulations. Although inbreeding does not seem to be an immediate concern for Muskellunge in Iowa, the Canadian population seems to have a high rate of inbreeding. Finally, this approach can be used to assess the long-term viability of the current management practices of Muskellunge populations across North America.
Collapse
|
64
|
Curzon AY, Shirak A, Benet-Perlberg A, Naor A, Low-Tanne SI, Sharkawi H, Ron M, Seroussi E. Gene Variant of Barrier to Autointegration Factor 2 ( Banf2w) Is Concordant with Female Determination in Cichlids. Int J Mol Sci 2021; 22:7073. [PMID: 34209244 PMCID: PMC8268354 DOI: 10.3390/ijms22137073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/15/2022] Open
Abstract
Oreochromis fishes exhibit variability of sex-determination (SD) genes whose characterization contributes to understanding of the sex differentiation network, and to effective tilapia farming, which requires all-male culture. However, O. niloticus (On) amh is the only master-key regulator (MKR) of SD that has been mapped (XY/XX SD-system on LG23). In O. aureus (Oa), LG3 controls a WZ/ZZ SD-system that has recently been delimited to 9.2 Mbp, with an embedded interval rich with female-specific variation, harboring two paics genes and banf2. Developing genetic markers within this interval and using a hybrid Oa stock that demonstrates no recombination repression in LG3, we mapped the critical SD region to 235 Kbp on the orthologous On physical map (p < 1.5 × 10-26). DNA-seq assembly and peak-proportion analysis of variation based on Sanger chromatograms allowed the characterization of copy-number variation (CNV) of banf2. Oa males had three exons capable of encoding 90-amino-acid polypeptides, yet in Oa females, we found an extra copy with an 89-amino-acid polypeptide and three non-conservative amino acid substitutions, designated as banf2w. CNV analysis suggested the existence of two to five copies of banf2 in diploidic Cichlidae. Disrupting the Hardy-Weinberg equilibrium (p < 4.2 × 10-3), banf2w was concordant with female determination in Oa and in three cichlids with LG3 WZ/ZZ SD-systems (O. tanganicae, O. hornorum and Pelmatolapia mariae). Furthermore, exclusive RNA-seq expression in Oa females strengthened the candidacy of banf2w as the long-sought LG3 SD MKR. As banf genes mediate nuclear assembly, chromatin organization, gene expression and gonad development, banf2w may play a fundamental role inducing female nucleus formation that is essential for WZ/ZZ SD.
Collapse
Affiliation(s)
- Arie Yehuda Curzon
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Andrey Shirak
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Ayana Benet-Perlberg
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Alon Naor
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Shai Israel Low-Tanne
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Haled Sharkawi
- Dor Research Station, Division of Fishery and Aquaculture, Hof HaCarmel 30820, Israel; (A.B.-P.); (A.N.); (S.I.L.-T.); (H.S.)
| | - Micha Ron
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| | - Eyal Seroussi
- Institute of Animal Science, Agricultural Research Organization, Rishon LeTsiyon 7528809, Israel; (A.Y.C.); (A.S.); (M.R.)
| |
Collapse
|
65
|
Herpin A, Schartl M, Depincé A, Guiguen Y, Bobe J, Hua-Van A, Hayman ES, Octavera A, Yoshizaki G, Nichols KM, Goetz GW, Luckenbach JA. Allelic diversification after transposable element exaptation promoted gsdf as the master sex determining gene of sablefish. Genome Res 2021; 31:1366-1380. [PMID: 34183453 PMCID: PMC8327909 DOI: 10.1101/gr.274266.120] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/22/2021] [Indexed: 11/24/2022]
Abstract
Concepts of evolutionary biology suggest that morphological change may occur by rare punctual but rather large changes, or by more steady and gradual transformations. It can therefore be asked whether genetic changes underlying morphological, physiological, and/or behavioral innovations during evolution occur in a punctual manner, whereby a single mutational event has prominent phenotypic consequences, or if many consecutive alterations in the DNA over longer time periods lead to phenotypic divergence. In the marine teleost, sablefish (Anoplopoma fimbria), complementary genomic and genetic studies led to the identification of a sex locus on the Y Chromosome. Further characterization of this locus resulted in identification of the transforming growth factor, beta receptor 1a (tgfbr1a) gene, gonadal somatic cell derived factor (gsdf), as the main candidate for fulfilling the master sex determining (MSD) function. The presence of different X and Y Chromosome copies of this gene indicated that the male heterogametic (XY) system of sex determination in sablefish arose by allelic diversification. The gsdfY gene has a spatio-temporal expression profile characteristic of a male MSD gene. We provide experimental evidence demonstrating a pivotal role of a transposable element (TE) for the divergent function of gsdfY. By insertion within the gsdfY promoter region, this TE generated allelic diversification by bringing cis-regulatory modules that led to transcriptional rewiring and thus creation of a new MSD gene. This points out, for the first time in the scenario of MSD gene evolution by allelic diversification, a single, punctual molecular event in the appearance of a new trigger for male development.
Collapse
Affiliation(s)
- Amaury Herpin
- INRAE, LPGP, 35000, Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, P.R. China
| | - Manfred Schartl
- University of Wuerzburg, Developmental Biochemistry, Biocenter, 97074 Wuerzburg, Germany.,Xiphophorus Genetic Stock Center, Texas State University, San Marcos, Texas 78666, USA
| | | | | | | | - Aurélie Hua-Van
- Laboratoire Evolution, Génomes Comportement, Ecologie, CNRS Université Paris-Saclay, UMR 9191, IRD UMR 247, F-91198 Gif-sur-Yvette, France
| | - Edward S Hayman
- Ocean Associates Incorporated, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA
| | - Anna Octavera
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Goro Yoshizaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA
| | - Giles W Goetz
- Cooperative Institutes for Climate, Ocean, and Environmental Sciences, University of Washington, Seattle, Washington 98112, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, USA.,Center for Reproductive Biology, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
66
|
Strüssmann CA, Yamamoto Y, Hattori RS, Fernandino JI, Somoza GM. Where the Ends Meet: An Overview of Sex Determination in Atheriniform Fishes. Sex Dev 2021; 15:80-92. [PMID: 33951664 DOI: 10.1159/000515191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/22/2021] [Indexed: 11/19/2022] Open
Abstract
Atheriniform fishes have recently emerged as attractive models for evolutionary, ecological, and molecular/physiological studies on sex determination. Many species in this group have marked temperature-dependent sex determination (TSD) and yet many species also have a sex determinant gene that provides a strong drive for male differentiation. Thus, in these species the 2 forms of sex determination that were once considered to be mutually exclusive, environmental (ESD) and genotypic (GSD) sex determination, can coexist at environmentally relevant conditions. Here, we review the current knowledge on sex determination in atheriniform fishes with emphasis on the molecular and physiological mechanisms of ESD and GSD, the coexistence and cross-talk between these 2 mechanisms, the possibility of extragonadal transduction of environmental information and/or extragonadal onset of sex determination, and the results of field studies applying novel tools such as otolith increment analysis and molecular markers of genetic sex developed for selected New World and Old World atheriniform species. We also discuss the existence of molecular and histological mechanisms to prevent the discrepant differentiation in parts of the gonads because of ambiguous or conflicting environmental and genetic signals and particularly the possibility that the female is the default state in these species.
Collapse
Affiliation(s)
- Carlos A Strüssmann
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yoji Yamamoto
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ricardo S Hattori
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| |
Collapse
|
67
|
Martínez P, Robledo D, Taboada X, Blanco A, Moser M, Maroso F, Hermida M, Gómez-Tato A, Álvarez-Blázquez B, Cabaleiro S, Piferrer F, Bouza C, Lien S, Viñas AM. A genome-wide association study, supported by a new chromosome-level genome assembly, suggests sox2 as a main driver of the undifferentiatiated ZZ/ZW sex determination of turbot (Scophthalmus maximus). Genomics 2021; 113:1705-1718. [PMID: 33838278 DOI: 10.1016/j.ygeno.2021.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/20/2021] [Accepted: 04/05/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Understanding sex determination (SD) across taxa is a major challenge for evolutionary biology. The new genomic tools are paving the way to identify genomic features underlying SD in fish, a group frequently showing limited sex chromosome differentiation and high SD evolutionary turnover. Turbot (Scophthalmus maximus) is a commercially important flatfish with an undifferentiated ZW/ZZ SD system and remarkable sexual dimorphism. Here we describe a new long-read turbot genome assembly used to disentangle the genetic architecture of turbot SD by combining genomics and classical genetics approaches. RESULTS The new turbot genome assembly consists of 145 contigs (N50 = 22.9 Mb), 27 of them representing >95% of its estimated genome size. A genome wide association study (GWAS) identified a ~ 6.8 Mb region on chromosome 12 associated with sex in 69.4% of the 36 families analyzed. The highest associated markers flanked sox2, the only gene in the region showing differential expression between sexes before gonad differentiation. A single SNP showed consistent differences between Z and W chromosomes. The analysis of a broad sample of families suggested the presence of additional genetic and/or environmental factors on turbot SD. CONCLUSIONS The new chromosome-level turbot genome assembly, one of the most contiguous fish assemblies to date, facilitated the identification of sox2 as a consistent candidate gene putatively driving SD in this species. This chromosome SD system barely showed any signs of differentiation, and other factors beyond the main QTL seem to control SD in a certain proportion of families.
Collapse
Affiliation(s)
- Paulino Martínez
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - Xoana Taboada
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Andrés Blanco
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| | - Michel Moser
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Francesco Maroso
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Miguel Hermida
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| | - Antonio Gómez-Tato
- Departament of Mathematics, Faculty of Mathematics, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Blanca Álvarez-Blázquez
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Vigo, Cabo Estay-Canido, 36280 Vigo, Spain.
| | - Santiago Cabaleiro
- Cluster de Acuicultura de Galicia (Punta do Couso), Aguiño-Ribeira, 15695 A Coruña, Spain.
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain.
| | - Carmen Bouza
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| | - Sigbjørn Lien
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| | - Ana M Viñas
- Departament of Zoology, Genetics and Physical Anthropology, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
68
|
Imarazene B, Beille S, Jouanno E, Branthonne A, Thermes V, Thomas M, Herpin A, Rétaux S, Guiguen Y. Primordial Germ Cell Migration and Histological and Molecular Characterization of Gonadal Differentiation in Pachón Cavefish Astyanax mexicanus. Sex Dev 2021; 14:80-98. [PMID: 33691331 DOI: 10.1159/000513378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 11/19/2022] Open
Abstract
The genetic regulatory network governing vertebrate gonadal differentiation appears less conserved than previously thought. Here, we investigated the gonadal development of Astyanax mexicanus Pachón cavefish by looking at primordial germ cells (PGCs) migration and proliferation, gonad histology, and gene expression patterns. We showed that PGCs are first detected at the 80% epiboly stage and then reach the gonadal primordium at 1 day post-fertilization (dpf). However, in contrast to the generally described absence of PGCs proliferation during their migration phase, PGCs number in cavefish doubles between early neurula and 8-9 somites stages. Combining both gonadal histology and vasa (germ cell marker) expression patterns, we observed that ovarian and testicular differentiation occurs around 65 dpf in females and 90 dpf in males, respectively, with an important inter-individual variability. The expression patterns of dmrt1, gsdf, and amh revealed a conserved predominant male expression during cavefish gonadal development, but none of the ovarian differentiation genes, i. e., foxl2a, cyp19a1a, and wnt4b displayed an early sexually dimorphic expression, and surprisingly all these genes exhibited predominant expression in adult testes. Altogether, our results lay the foundation for further research on sex determination and differentiation in A. mexicanus and contribute to the emerging picture that the vertebrate sex differentiation downstream regulatory network is less conserved than previously thought, at least in teleost fishes.
Collapse
Affiliation(s)
- Boudjema Imarazene
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France.,Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Séverine Beille
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Elodie Jouanno
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Adéle Branthonne
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Violette Thermes
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Manon Thomas
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Amaury Herpin
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France
| | - Sylvie Rétaux
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Gif-sur-Yvette, France
| | - Yann Guiguen
- INRAE, Laboratoire de Physiologie et Génomique des poissons, Rennes, France,
| |
Collapse
|
69
|
Feron R, Pan Q, Wen M, Imarazene B, Jouanno E, Anderson J, Herpin A, Journot L, Parrinello H, Klopp C, Kottler VA, Roco AS, Du K, Kneitz S, Adolfi M, Wilson CA, McCluskey B, Amores A, Desvignes T, Goetz FW, Takanashi A, Kawaguchi M, Detrich HW, Oliveira MA, Nóbrega RH, Sakamoto T, Nakamoto M, Wargelius A, Karlsen Ø, Wang Z, Stöck M, Waterhouse RM, Braasch I, Postlethwait JH, Schartl M, Guiguen Y. RADSex: A computational workflow to study sex determination using restriction site-associated DNA sequencing data. Mol Ecol Resour 2021; 21:1715-1731. [PMID: 33590960 DOI: 10.1111/1755-0998.13360] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
The study of sex determination and sex chromosome organization in nonmodel species has long been technically challenging, but new sequencing methodologies now enable precise and high-throughput identification of sex-specific genomic sequences. In particular, restriction site-associated DNA sequencing (RAD-Seq) is being extensively applied to explore sex determination systems in many plant and animal species. However, software specifically designed to search for and visualize sex-biased markers using RAD-Seq data is lacking. Here, we present RADSex, a computational analysis workflow designed to study the genetic basis of sex determination using RAD-Seq data. RADSex is simple to use, requires few computational resources, makes no prior assumptions about the type of sex-determination system or structure of the sex locus, and offers convenient visualization through a dedicated R package. To demonstrate the functionality of RADSex, we re-analysed a published data set of Japanese medaka, Oryzias latipes, where we uncovered a previously unknown Y chromosome polymorphism. We then used RADSex to analyse new RAD-Seq data sets from 15 fish species spanning multiple taxonomic orders. We identified the sex determination system and sex-specific markers in six of these species, five of which had no known sex-markers prior to this study. We show that RADSex greatly facilitates the study of sex determination systems in nonmodel species thanks to its speed of analyses, low resource usage, ease of application and visualization options. Furthermore, our analysis of new data sets from 15 species provides new insights on sex determination in fish.
Collapse
Affiliation(s)
- Romain Feron
- INRAE, LPGP, Rennes, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Qiaowei Pan
- INRAE, LPGP, Rennes, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Ming Wen
- INRAE, LPGP, Rennes, France.,State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | | | | | - Jennifer Anderson
- INRAE, LPGP, Rennes, France.,Department of Organismal Biology, Systematic Biology, Uppsala University, Uppsala, Sweden
| | | | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Hugues Parrinello
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Christophe Klopp
- SIGENAE, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France
| | - Verena A Kottler
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Alvaro S Roco
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Kang Du
- Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.,Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Susanne Kneitz
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Mateus Adolfi
- Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | | | | - Angel Amores
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Frederick W Goetz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Ato Takanashi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Mari Kawaguchi
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | - Harry William Detrich
- Department of Marine and Environmental Sciences, Marine Science Center, Northeastern University, Nahant, MA, USA
| | - Marcos A Oliveira
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Takashi Sakamoto
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masatoshi Nakamoto
- Department of Aquatic Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | - Zhongwei Wang
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Institute of Hydrobiology, Chinese Academy of Sciences, Beijing, China
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, IGB, Berlin, Germany
| | - Robert M Waterhouse
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Ingo Braasch
- Department of Integrative Biology, Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | | | - Manfred Schartl
- Department of Chemistry and Biochemistry, The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.,Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | | |
Collapse
|
70
|
Pan Q, Feron R, Jouanno E, Darras H, Herpin A, Koop B, Rondeau E, Goetz FW, Larson WA, Bernatchez L, Tringali M, Curran SS, Saillant E, Denys GPJ, von Hippel FA, Chen S, López JA, Verreycken H, Ocalewicz K, Guyomard R, Eche C, Lluch J, Roques C, Hu H, Tabor R, DeHaan P, Nichols KM, Journot L, Parrinello H, Klopp C, Interesova EA, Trifonov V, Schartl M, Postlethwait J, Guiguen Y. The rise and fall of the ancient northern pike master sex-determining gene. eLife 2021; 10:e62858. [PMID: 33506762 PMCID: PMC7870143 DOI: 10.7554/elife.62858] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
The understanding of the evolution of variable sex determination mechanisms across taxa requires comparative studies among closely related species. Following the fate of a known master sex-determining gene, we traced the evolution of sex determination in an entire teleost order (Esociformes). We discovered that the northern pike (Esox lucius) master sex-determining gene originated from a 65 to 90 million-year-old gene duplication event and that it remained sex linked on undifferentiated sex chromosomes for at least 56 million years in multiple species. We identified several independent species- or population-specific sex determination transitions, including a recent loss of a Y chromosome. These findings highlight the diversity of evolutionary fates of master sex-determining genes and the importance of population demographic history in sex determination studies. We hypothesize that occasional sex reversals and genetic bottlenecks provide a non-adaptive explanation for sex determination transitions.
Collapse
Affiliation(s)
- Qiaowei Pan
- INRAE, LPGPRennesFrance
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Romain Feron
- INRAE, LPGPRennesFrance
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
- Swiss Institute of BioinformaticsLausanneSwitzerland
| | | | - Hugo Darras
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | | | - Ben Koop
- Department of Biology, Centre for Biomedical Research, University of VictoriaVictoriaCanada
| | - Eric Rondeau
- Department of Biology, Centre for Biomedical Research, University of VictoriaVictoriaCanada
| | - Frederick W Goetz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAASeattleUnited States
| | - Wesley A Larson
- Fisheries Aquatic Science and Technology Laboratory at Alaska Pacific UniversityAnchorageUnited States
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université LavalQuébecCanada
| | - Mike Tringali
- Fish and Wildlife Conservation Commission, Florida Marine Research InstituteSt. PetersburgUnited States
| | - Stephen S Curran
- School of Fisheries and Aquatic Sciences, Auburn UniversityAuburnUnited States
| | - Eric Saillant
- Gulf Coast Research Laboratory, School of Ocean Science and Technology, The University of Southern MississippiOcean SpringsUnited States
| | - Gael PJ Denys
- Laboratoire de Biologie des organismes et écosystèmes aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, Laboratoire de Biologie des organismes et écosystèmes aquatiques (BOREA)ParisFrance
- Unité Mixte de Service Patrimoine Naturelle – Centre d’expertise et de données (UMS 2006 AFB, CNRS, MNHN), Muséum national d’Histoire naturelleParisFrance
| | - Frank A von Hippel
- Department of Biological Sciences, Northern Arizona UniversityFlagstaffUnited States
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, CAFS, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao)QingdaoChina
| | - J Andrés López
- College of Fisheries and Ocean Sciences FisheriesFairbanksUnited States
| | - Hugo Verreycken
- Research Institute for Nature and Forest (INBO)BrusselsBelgium
| | - Konrad Ocalewicz
- Department of Marine Biology and Ecology, Institute of Oceanography, University of GdanskGdanskPoland
| | | | - Camille Eche
- GeT‐PlaGe, INRAE, GenotoulCastanet-TolosanFrance
| | - Jerome Lluch
- GeT‐PlaGe, INRAE, GenotoulCastanet-TolosanFrance
| | | | - Hongxia Hu
- Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery BiotechnologyBeijingChina
| | - Roger Tabor
- U.S. Fish and Wildlife ServiceLaceyUnited States
| | | | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric AdministrationSeattleUnited States
| | - Laurent Journot
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. MontpellierMontpellierFrance
| | - Hugues Parrinello
- Institut de Génomique Fonctionnelle, IGF, CNRS, INSERM, Univ. MontpellierMontpellierFrance
| | | | | | - Vladimir Trifonov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk State UniversityNovosibirskRussian Federation
| | - Manfred Schartl
- University of Wuerzburg, Developmental Biochemistry, Biocenter, 97074 Würzburg, Germany; and The Xiphophorus Genetic Stock Center, Texas State UniversitySan MarcosUnited States
| | | | | |
Collapse
|
71
|
Tao W, Conte MA, Wang D, Kocher TD. Network architecture and sex chromosome turnovers: Do epistatic interactions shape patterns of sex chromosome replacement? Bioessays 2020; 43:e2000161. [PMID: 33283342 DOI: 10.1002/bies.202000161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/11/2022]
Abstract
Recent studies have revealed an astonishing diversity of sex chromosomes in many vertebrate lineages, prompting questions about the mechanisms of sex chromosome turnover. While there is considerable population genetic theory about the evolutionary forces promoting sex chromosome replacement, this theory has not yet been integrated with our understanding of the molecular and developmental genetics of sex determination. Here, we review recent data to examine four questions about how the structure of gene networks influences the evolution of sex determination. We argue that patterns of epistasis, arising from the structure of genetic networks, may play an important role in regulating the rates and patterns of sex chromosome replacement.
Collapse
Affiliation(s)
- Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
72
|
Nagahama Y, Chakraborty T, Paul-Prasanth B, Ohta K, Nakamura M. Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiol Rev 2020; 101:1237-1308. [PMID: 33180655 DOI: 10.1152/physrev.00044.2019] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A diverse array of sex determination (SD) mechanisms, encompassing environmental to genetic, have been found to exist among vertebrates, covering a spectrum from fixed SD mechanisms (mammals) to functional sex change in fishes (sequential hermaphroditic fishes). A major landmark in vertebrate SD was the discovery of the SRY gene in 1990. Since that time, many attempts to clone an SRY ortholog from nonmammalian vertebrates remained unsuccessful, until 2002, when DMY/dmrt1by was discovered as the SD gene of a small fish, medaka. Surprisingly, however, DMY/dmrt1by was found in only 2 species among more than 20 species of medaka, suggesting a large diversity of SD genes among vertebrates. Considerable progress has been made over the last 3 decades, such that it is now possible to formulate reasonable paradigms of how SD and gonadal sex differentiation may work in some model vertebrate species. This review outlines our current understanding of vertebrate SD and gonadal sex differentiation, with a focus on the molecular and cellular mechanisms involved. An impressive number of genes and factors have been discovered that play important roles in testicular and ovarian differentiation. An antagonism between the male and female pathway genes exists in gonads during both sex differentiation and, surprisingly, even as adults, suggesting that, in addition to sex-changing fishes, gonochoristic vertebrates including mice maintain some degree of gonadal sexual plasticity into adulthood. Importantly, a review of various SD mechanisms among vertebrates suggests that this is the ideal biological event that can make us understand the evolutionary conundrums underlying speciation and species diversity.
Collapse
Affiliation(s)
- Yoshitaka Nagahama
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Faculty of Biological Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Tapas Chakraborty
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,South Ehime Fisheries Research Center, Ehime University, Ainan, Japan.,Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan.,Karatsu Satellite of Aqua-Bioresource Innovation Center, Kyushu University, Karatsu, Japan
| | - Bindhu Paul-Prasanth
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan.,Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidapeetham, Kochi, Kerala, India
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukouka, Japan
| | - Masaru Nakamura
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan.,Research Center, Okinawa Churashima Foundation, Okinawa, Japan
| |
Collapse
|
73
|
Hattori RS, Castañeda-Cortés DC, Arias Padilla LF, Strobl-Mazzulla PH, Fernandino JI. Activation of stress response axis as a key process in environment-induced sex plasticity in fish. Cell Mol Life Sci 2020; 77:4223-4236. [PMID: 32367192 PMCID: PMC11104976 DOI: 10.1007/s00018-020-03532-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
The determination of sex is an important hallmark in the life cycle of organisms, in which the fate of gonads and then the individual sex are defined. In gonochoristic teleost fish, this process is characterized by a high plasticity, considering that in spite of genotypic sex many environmental factors can cause shifts from one to another molecular pathway, resulting in organisms with mismatching genotypic and phenotypic sexes. Interestingly, in most instances, both female-to-male or male-to-female sex-reversed individuals develop functional gonads with normal gametogenesis and respective progenies with full viability. The study of these mechanisms is being spread to other non-model species or to those inhabiting more extreme environmental conditions. Although water temperature is an important mechanism involved in sex determination, there are other environmental stressors affected by the climate change which are also implicated in stress response-induced masculinization in fish. In this regard, the brain has emerged as the transducer of the environment input that can influence the gonadal fate. Furthermore, the evaluation of other environmental stressors or their synergic effect on sex determination at conditions that simulate the natural environments is growing gradually. Within such scope, the concerns related to climate change impacts rely on the fact that many of biotic and abiotic parameters reported to affect sex ratios are expected to increase concomitantly as a result of increased greenhouse gas emissions and, particularly worrying, many of them are related to male bias in the populations, such as high temperature, hypoxia, and acidity. These environmental changes can also generate epigenetic changes in sex-related genes affecting their expression, with implications on sex differentiation not only of exposed individuals but also in following generations. The co-analysis of multi-stressors with potential inter- and transgenerational effects is essential to allow researchers to perform long-term predictions on climate change impacts in wild populations and for establishing highly accurate monitoring tools and suitable mitigation strategies.
Collapse
Affiliation(s)
- R S Hattori
- Salmonid Experimental Station at Campos do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, Brazil
| | - D C Castañeda-Cortés
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - L F Arias Padilla
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - P H Strobl-Mazzulla
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - J I Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina.
| |
Collapse
|
74
|
Carducci F, Barucca M, Canapa A, Carotti E, Biscotti MA. Mobile Elements in Ray-Finned Fish Genomes. Life (Basel) 2020; 10:E221. [PMID: 32992841 PMCID: PMC7599744 DOI: 10.3390/life10100221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ray-finned fishes (Actinopterygii) are a very diverse group of vertebrates, encompassing species adapted to live in freshwater and marine environments, from the deep sea to high mountain streams. Genome sequencing offers a genetic resource for investigating the molecular bases of this phenotypic diversity and these adaptations to various habitats. The wide range of genome sizes observed in fishes is due to the role of transposable elements (TEs), which are powerful drivers of species diversity. Analyses performed to date provide evidence that class II DNA transposons are the most abundant component in most fish genomes and that compared to other vertebrate genomes, many TE superfamilies are present in actinopterygians. Moreover, specific TEs have been reported in ray-finned fishes as a possible result of an intricate relationship between TE evolution and the environment. The data summarized here underline the biological interest in Actinopterygii as a model group to investigate the mechanisms responsible for the high biodiversity observed in this taxon.
Collapse
Affiliation(s)
| | | | | | | | - Maria Assunta Biscotti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.C.); (M.B.); (A.C.); (E.C.)
| |
Collapse
|
75
|
Abstract
Understanding the evolution of sex determination mechanisms and sex chromosomes is of fundamental importance in biology. Here we have reconstructed the evolution of the sex-determining region in the Atlantic herring. The region is small and contains only three intact genes. The candidate sex-determining factor BMPR1BBY is an evolutionary innovation in the herring lineage. It encodes a truncated form of a BMP type I receptor, which originated by gene duplication and underwent rapid protein evolution. The receptor has maintained its kinase activity and has the potential to induce development of testis. The other two genes in the sex-determining region, CATSPERG and CATSPER3Y, are male beneficial genes because they encode proteins predicted to be essential for sperm to fertilize the egg. The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an ∼500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination.
Collapse
|
76
|
Structure and Sequence of the Sex Determining Locus in Two Wild Populations of Nile Tilapia. Genes (Basel) 2020; 11:genes11091017. [PMID: 32872430 PMCID: PMC7563666 DOI: 10.3390/genes11091017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
In domesticated strains of the Nile tilapia, phenotypic sex has been linked to genetic variants on linkage groups 1, 20 and 23. This diversity of sex-loci might reflect a naturally polymorphic sex determination system in Nile tilapia, or it might be an artefact arising from the process of domestication. Here, we searched for sex-determiners in wild populations from Kpandu, Lake Volta (Ghana-West Africa), and from Lake Koka (Ethiopia-East Africa) that have not been subjected to any genetic manipulation. We analysed lab-reared families using double-digest Restriction Associated DNA sequencing (ddRAD) and analysed wild-caught males and females with pooled whole-genome sequencing (WGS). Strong sex-linked signals were found on LG23 in both populations, and sex-linked signals with LG3 were observed in Kpandu samples. WGS uncovered blocks of high sequence coverage, suggesting the presence of B chromosomes. We confirmed the existence of a tandem amh duplication in LG23 in both populations and determined its breakpoints between the oaz1 and dot1l genes. We found two common deletions of ~5 kb in males and confirmed the presence of both amhY and amh∆Y genes. Males from Lake Koka lack both the previously reported 234 bp deletion and the 5 bp frameshift-insertion that creates a premature stop codon in amh∆Y.
Collapse
|
77
|
Hayman ES, Fairgrieve WT, Luckenbach JA. Molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with XX/XY sex determination. Gene 2020; 764:145093. [PMID: 32866588 DOI: 10.1016/j.gene.2020.145093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Phenotypic sex of an organism is determined by molecular changes in the gonads, so-called molecular sex differentiation, which should precede the rise of cellular or anatomical sex-distinguishing features. This study characterized molecular and morphological sex differentiation in sablefish (Anoplopoma fimbria), a marine teleost with established XX/XY genotypic sex determination. Next generation sequencing was conducted on sablefish ovarian and testicular mRNAs to obtain sequences for transcripts associated with vertebrate sex determination and differentiation and early reproductive development. Gene-specific PCRs were developed to determine the distribution and ontogenetic gonadal expression of transcription, growth, steroidogenic and germline factors, as well as gonadotropin and steroid receptors. Molecular changes associated with sex differentiation were first apparent in both XY- and XX-genotype sablefish at ~ 60 mm in body length and prior to histological signs of sex differentiation. The earliest and most robust markers of testicular differentiation were gsdf, amh, dmrt1, cyp11b, star, sox9a, and fshr. Markedly elevated mRNA levels of several steroidogenesis-related genes and ar2 in differentiating testes suggested that androgens play a role in sablefish testicular differentiation. The earliest markers of ovarian differentiation were cyp19a1a, lhcgr, foxl2, nr0b1, and igf3. Other transcripts such as figla, zp3, and pou5f3 were expressed predominantly in XX-genotype fish and significantly increased with the first appearance and subsequent development of primary oocytes. This study provides valuable insight to the developmental sequence of events associated with gonadal sex differentiation in marine teleosts with XX/XY sex determination. It also implicates particular genes in processes of male and female development and establishes robust molecular markers for phenotypic sex in sablefish, useful for ongoing work related to sex control and reproductive sterilization.
Collapse
Affiliation(s)
- Edward S Hayman
- Ocean Associates Inc., Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - William T Fairgrieve
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA
| | - J Adam Luckenbach
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
78
|
Wen M, Feron R, Pan Q, Guguin J, Jouanno E, Herpin A, Klopp C, Cabau C, Zahm M, Parrinello H, Journot L, Burgess SM, Omori Y, Postlethwait JH, Schartl M, Guiguen Y. Sex chromosome and sex locus characterization in goldfish, Carassius auratus (Linnaeus, 1758). BMC Genomics 2020; 21:552. [PMID: 32781981 PMCID: PMC7430817 DOI: 10.1186/s12864-020-06959-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Goldfish is an important model for various areas of research, including neural development and behavior and a species of significant importance in aquaculture, especially as an ornamental species. It has a male heterogametic (XX/XY) sex determination system that relies on both genetic and environmental factors, with high temperatures being able to produce female-to-male sex reversal. Little, however, is currently known on the molecular basis of genetic sex determination in this important cyprinid model. Here we used sequencing approaches to better characterize sex determination and sex-chromosomes in an experimental strain of goldfish. RESULTS Our results confirmed that sex determination in goldfish is a mix of environmental and genetic factors and that its sex determination system is male heterogametic (XX/XY). Using reduced representation (RAD-seq) and whole genome (pool-seq) approaches, we characterized sex-linked polymorphisms and developed male specific genetic markers. These male specific markers were used to distinguish sex-reversed XX neomales from XY males and to demonstrate that XX female-to-male sex reversal could even occur at a relatively low rearing temperature (18 °C), for which sex reversal has been previously shown to be close to zero. We also characterized a relatively large non-recombining region (~ 11.7 Mb) on goldfish linkage group 22 (LG22) that contained a high-density of male-biased genetic polymorphisms. This large LG22 region harbors 373 genes, including a single candidate as a potential master sex gene, i.e., the anti-Mullerian hormone gene (amh). However, no sex-linked polymorphisms were detected in the coding DNA sequence of the goldfish amh gene. CONCLUSIONS These results show that our goldfish strain has a relatively large sex locus on LG22, which is likely the Y chromosome of this experimental population. The presence of a few XX males even at low temperature also suggests that other environmental factors in addition to temperature could trigger female-to-male sex reversal. Finally, we also developed sex-linked genetic markers, which will be important tools for future research on sex determination in our experimental goldfish population. However, additional work would be needed to explore whether this sex locus is conserved in other populations of goldfish.
Collapse
Affiliation(s)
- Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
- INRAE, LPGP, 35000, Rennes, France
| | - Romain Feron
- INRAE, LPGP, 35000, Rennes, France
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Qiaowei Pan
- INRAE, LPGP, 35000, Rennes, France
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | | | | | | | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Cedric Cabau
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Margot Zahm
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Laurent Journot
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Yoshihiro Omori
- Laboratory of Functional Genomics, Graduate School of Bioscience, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga, Japan
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | - Manfred Schartl
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | | |
Collapse
|
79
|
Comparative Genomic Analyses and a Novel Linkage Map for Cisco ( Coregonus artedi) Provide Insights into Chromosomal Evolution and Rediploidization Across Salmonids. G3-GENES GENOMES GENETICS 2020; 10:2863-2878. [PMID: 32611547 PMCID: PMC7407451 DOI: 10.1534/g3.120.401497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Whole-genome duplication (WGD) is hypothesized to be an important evolutionary mechanism that can facilitate adaptation and speciation. Genomes that exist in states of both diploidy and residual tetraploidy are of particular interest, as mechanisms that maintain the ploidy mosaic after WGD may provide important insights into evolutionary processes. The Salmonidae family exhibits residual tetraploidy, and this, combined with the evolutionary diversity formed after an ancestral autotetraploidization event, makes this group a useful study system. In this study, we generate a novel linkage map for cisco (Coregonus artedi), an economically and culturally important fish in North America and a member of the subfamily Coregoninae, which previously lacked a high-density haploid linkage map. We also conduct comparative genomic analyses to refine our understanding of chromosomal fusion/fission history across salmonids. To facilitate this comparative approach, we use the naming strategy of protokaryotype identifiers (PKs) to associate duplicated chromosomes to their putative ancestral state. The female linkage map for cisco contains 20,292 loci, 3,225 of which are likely within residually tetraploid regions. Comparative genomic analyses revealed that patterns of residual tetrasomy are generally conserved across species, although interspecific variation persists. To determine the broad-scale retention of residual tetrasomy across the salmonids, we analyze sequence similarity of currently available genomes and find evidence of residual tetrasomy in seven of the eight chromosomes that have been previously hypothesized to show this pattern. This interspecific variation in extent of rediploidization may have important implications for understanding salmonid evolutionary histories and informing future conservation efforts.
Collapse
|
80
|
Peichel CL, McCann SR, Ross JA, Naftaly AFS, Urton JR, Cech JN, Grimwood J, Schmutz J, Myers RM, Kingsley DM, White MA. Assembly of the threespine stickleback Y chromosome reveals convergent signatures of sex chromosome evolution. Genome Biol 2020; 21:177. [PMID: 32684159 PMCID: PMC7368989 DOI: 10.1186/s13059-020-02097-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/08/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Heteromorphic sex chromosomes have evolved repeatedly across diverse species. Suppression of recombination between X and Y chromosomes leads to degeneration of the Y chromosome. The progression of degeneration is not well understood, as complete sequence assemblies of heteromorphic Y chromosomes have only been generated across a handful of taxa with highly degenerate sex chromosomes. Here, we describe the assembly of the threespine stickleback (Gasterosteus aculeatus) Y chromosome, which is less than 26 million years old and at an intermediate stage of degeneration. Our previous work identified that the non-recombining region between the X and the Y spans approximately 17.5 Mb on the X chromosome. RESULTS We combine long-read sequencing with a Hi-C-based proximity guided assembly to generate a 15.87 Mb assembly of the Y chromosome. Our assembly is concordant with cytogenetic maps and Sanger sequences of over 90 Y chromosome BAC clones. We find three evolutionary strata on the Y chromosome, consistent with the three inversions identified by our previous cytogenetic analyses. The threespine stickleback Y shows convergence with more degenerate sex chromosomes in the retention of haploinsufficient genes and the accumulation of genes with testis-biased expression, many of which are recent duplicates. However, we find no evidence for large amplicons identified in other sex chromosome systems. We also report an excellent candidate for the master sex-determination gene: a translocated copy of Amh (Amhy). CONCLUSIONS Together, our work shows that the evolutionary forces shaping sex chromosomes can cause relatively rapid changes in the overall genetic architecture of Y chromosomes.
Collapse
Affiliation(s)
- Catherine L. Peichel
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
| | - Shaugnessy R. McCann
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Joseph A. Ross
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | | | - James R. Urton
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jennifer N. Cech
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195 USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - Richard M. Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 USA
| | - David M. Kingsley
- Department of Developmental Biology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael A. White
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
81
|
Furman BLS, Metzger DCH, Darolti I, Wright AE, Sandkam BA, Almeida P, Shu JJ, Mank JE. Sex Chromosome Evolution: So Many Exceptions to the Rules. Genome Biol Evol 2020; 12:750-763. [PMID: 32315410 PMCID: PMC7268786 DOI: 10.1093/gbe/evaa081] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 01/10/2023] Open
Abstract
Genomic analysis of many nonmodel species has uncovered an incredible diversity of sex chromosome systems, making it possible to empirically test the rich body of evolutionary theory that describes each stage of sex chromosome evolution. Classic theory predicts that sex chromosomes originate from a pair of homologous autosomes and recombination between them is suppressed via inversions to resolve sexual conflict. The resulting degradation of the Y chromosome gene content creates the need for dosage compensation in the heterogametic sex. Sex chromosome theory also implies a linear process, starting from sex chromosome origin and progressing to heteromorphism. Despite many convergent genomic patterns exhibited by independently evolved sex chromosome systems, and many case studies supporting these theoretical predictions, emerging data provide numerous interesting exceptions to these long-standing theories, and suggest that the remarkable diversity of sex chromosomes is matched by a similar diversity in their evolution. For example, it is clear that sex chromosome pairs are not always derived from homologous autosomes. In addition, both the cause and the mechanism of recombination suppression between sex chromosome pairs remain unclear, and it may be that the spread of recombination suppression is a more gradual process than previously thought. It is also clear that dosage compensation can be achieved in many ways, and displays a range of efficacy in different systems. Finally, the remarkable turnover of sex chromosomes in many systems, as well as variation in the rate of sex chromosome divergence, suggest that assumptions about the inevitable linearity of sex chromosome evolution are not always empirically supported, and the drivers of the birth-death cycle of sex chromosome evolution remain to be elucidated. Here, we concentrate on how the diversity in sex chromosomes across taxa highlights an equal diversity in each stage of sex chromosome evolution.
Collapse
Affiliation(s)
- Benjamin L S Furman
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C H Metzger
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Iulia Darolti
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison E Wright
- Department of Animal and Plant Sciences, University of Sheffield, United Kingdom
| | - Benjamin A Sandkam
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pedro Almeida
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| | - Jacelyn J Shu
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Judith E Mank
- Beaty Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Genetics, Evolution and Environment, University College London, United Kingdom
| |
Collapse
|
82
|
Feron R, Zahm M, Cabau C, Klopp C, Roques C, Bouchez O, Eché C, Valière S, Donnadieu C, Haffray P, Bestin A, Morvezen R, Acloque H, Euclide PT, Wen M, Jouano E, Schartl M, Postlethwait JH, Schraidt C, Christie MR, Larson WA, Herpin A, Guiguen Y. Characterization of a Y-specific duplication/insertion of the anti-Mullerian hormone type II receptor gene based on a chromosome-scale genome assembly of yellow perch, Perca flavescens. Mol Ecol Resour 2020; 20:531-543. [PMID: 31903688 PMCID: PMC7050324 DOI: 10.1111/1755-0998.13133] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
Yellow perch, Perca flavescens, is an ecologically and economically important species native to a large portion of the northern United States and southern Canada and is also a promising candidate species for aquaculture. However, no yellow perch reference genome has been available to facilitate improvements in both fisheries and aquaculture management practices. By combining Oxford Nanopore Technologies long-reads, 10X Genomics Illumina short linked reads and a chromosome contact map produced with Hi-C, we generated a high-continuity chromosome-scale yellow perch genome assembly of 877.4 Mb. It contains, in agreement with the known diploid chromosome yellow perch count, 24 chromosome-size scaffolds covering 98.8% of the complete assembly (N50 = 37.4 Mb, L50 = 11). We also provide a first characterization of the yellow perch sex determination locus that contains a male-specific duplicate of the anti-Mullerian hormone type II receptor gene (amhr2by) inserted at the proximal end of the Y chromosome (chromosome 9). Using this sex-specific information, we developed a simple PCR genotyping assay which accurately differentiates XY genetic males (amhr2by+ ) from XX genetic females (amhr2by- ). Our high-quality genome assembly is an important genomic resource for future studies on yellow perch ecology, toxicology, fisheries and aquaculture research. In addition, characterization of the amhr2by gene as a candidate sex-determining gene in yellow perch provides a new example of the recurrent implication of the transforming growth factor beta pathway in fish sex determination, and highlights gene duplication as an important genomic mechanism for the emergence of new master sex determination genes.
Collapse
Affiliation(s)
- Romain Feron
- INRAE, UR 1037 Fish Physiology and Genomics, F-35000 Rennes, France
- Department of Ecology and Evolution, University of Lausanne, and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Margot Zahm
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France
| | - Cédric Cabau
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Christophe Klopp
- Plate-forme bio-informatique Genotoul, Mathématiques et Informatique Appliquées de Toulouse, INRAE, Castanet Tolosan, France
- SIGENAE, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Céline Roques
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Camille Eché
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Sophie Valière
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Pierrick Haffray
- SYSAAF, French poultry and aquaculture breeders, 35042, Rennes Cedex, France
| | - Anastasia Bestin
- SYSAAF, French poultry and aquaculture breeders, 35042, Rennes Cedex, France
| | - Romain Morvezen
- SYSAAF, French poultry and aquaculture breeders, 35042, Rennes Cedex, France
| | - Hervé Acloque
- GenPhySE, Université de Toulouse, INRAE, INPT, ENVT, Castanet-Tolosan, France
| | - Peter T. Euclide
- Wisconsin Cooperative Fishery Research Unit, University of Wisconsin-Stevens Point, 800 Reserve St., Stevens Point, WI 54481, USA
| | - Ming Wen
- INRAE, UR 1037 Fish Physiology and Genomics, F-35000 Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Elodie Jouano
- INRAE, UR 1037 Fish Physiology and Genomics, F-35000 Rennes, France
| | - Manfred Schartl
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany and The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA
| | | | - Claire Schraidt
- Department of Forestry and Natural Resources, Purdue University; 715 W. State St., West Lafayette, Indiana 47907-2054 USA
| | - Mark R. Christie
- Department of Forestry and Natural Resources, Purdue University; 715 W. State St., West Lafayette, Indiana 47907-2054 USA
- Department of Biological Sciences, Purdue University; 915 W. State St., West Lafayette, Indiana 47907-2054 USA
| | - Wesley A. Larson
- U.S. Geological Survey Wisconsin Cooperative Fishery Research Unit, University of Wisconsin-Stevens Point, 800 Reserve St., Stevens Point, WI 54481, USA
| | - Amaury Herpin
- INRAE, UR 1037 Fish Physiology and Genomics, F-35000 Rennes, France
| | - Yann Guiguen
- INRAE, UR 1037 Fish Physiology and Genomics, F-35000 Rennes, France
| |
Collapse
|
83
|
Dor L, Shirak A, Kohn YY, Gur T, Weller JI, Zilberg D, Seroussi E, Ron M. Mapping of the Sex Determining Region on Linkage Group 12 of Guppy ( Poecilia reticulata). G3 (BETHESDA, MD.) 2019; 9:3867-3875. [PMID: 31551287 PMCID: PMC6829149 DOI: 10.1534/g3.119.400656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/19/2019] [Indexed: 11/18/2022]
Abstract
Poecilia reticulata is one of the most popular ornamental fish species with a higher demand for males due to their large colorful fins. The objectives of this study were mapping of the sex-determining (SD) region on linkage group 12 of guppy, and identification of a sex specific marker. We generated eight polymorphic microsatellite markers distributed along the distal 5.4 Mbp sequence of the previously identified SD region on linkage group (LG) 12. The markers were tested for association with sex in 156 individuals of the Red Blonde and Flame strains, and 126 progeny of four full-sibs Red Blonde families. A male-specific allele was found for microsatellite gu1066 at position of 25.3 Mbp on LG12 for both strains, and gu832 at position 24.4 Mbp for the Flame strain. Thus, a region of 0.9 Mbp between these markers, harboring 27 annotated genes, was selected for analysis. Based on association of copy number variation and sex determination we mapped a duplicated region between LGs 9 and 12, of 1.26 Mbp, containing 59 genes on LG12. The common interval between the segment bounded by gu1066 and gu832, and the duplicated region of 0.43 Mbp on LG12 harbors 11 genes of which 6 have multiple copies (54%). Growth arrest and DNA damage inducible gamma-like (GADD45G-like) is a plausible positional and functional candidate gene for its role in male fertility. We characterized the genomic structure of the gene in guppy, and found two isoforms; but no sex-biased differences were evident in genomic sequence and gene expression.
Collapse
Affiliation(s)
- Lior Dor
- Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
- Agricultural Research Organization (ARO), Volcani Center, Institute of Animal Science, HaMaccabim Road, P.O.B 15159, 7528809, Rishon LeTsiyon, Israel
| | - Andrey Shirak
- Agricultural Research Organization (ARO), Volcani Center, Institute of Animal Science, HaMaccabim Road, P.O.B 15159, 7528809, Rishon LeTsiyon, Israel
| | - Yair Yaacov Kohn
- Central and Northern Arava Research and Development D.N. Arava Sapir, 86825 Israel, and
| | - Tal Gur
- Central and Northern Arava Research and Development D.N. Arava Sapir, 86825 Israel, and
| | - Joel Ira Weller
- Agricultural Research Organization (ARO), Volcani Center, Institute of Animal Science, HaMaccabim Road, P.O.B 15159, 7528809, Rishon LeTsiyon, Israel
| | - Dina Zilberg
- The French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Eyal Seroussi
- Agricultural Research Organization (ARO), Volcani Center, Institute of Animal Science, HaMaccabim Road, P.O.B 15159, 7528809, Rishon LeTsiyon, Israel
| | - Micha Ron
- Agricultural Research Organization (ARO), Volcani Center, Institute of Animal Science, HaMaccabim Road, P.O.B 15159, 7528809, Rishon LeTsiyon, Israel,
| |
Collapse
|
84
|
Hattori RS, Somoza GM, Fernandino JI, Colautti DC, Miyoshi K, Gong Z, Yamamoto Y, Strüssmann CA. The Duplicated Y-specific amhy Gene Is Conserved and Linked to Maleness in Silversides of the Genus Odontesthes. Genes (Basel) 2019; 10:genes10090679. [PMID: 31491991 PMCID: PMC6770987 DOI: 10.3390/genes10090679] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022] Open
Abstract
Sex-determining genes have been successively isolated in several teleosts. In Odontesthes hatcheri and O. bonariensis, the amhy gene has been identified as a master sex-determining gene. However, whether this gene is conserved along related species is still unknown. In this study, the presence of amhy and its association with phenotypic sex was analyzed in 10 species of Odontesthes genus. The primer sets from O. hatcheri that amplify both amhs successfully generated fragments that correspond to amha and amhy in all species. The full sequences of amhy and amha isolated for four key species revealed higher identity values among presumptive amhy, including the 0.5 Kbp insertion in the third intron and amhy-specific insertions/deletions. Amha was present in all specimens, regardless of species and sex, whereas amhy was amplified in most but not all phenotypic males. Complete association between amhy-homologue with maleness was found in O. argentinensis, O. incisa, O. mauleanum, O. perugiae, O. piquava, O. regia, and O. smitti, whereas O. humensis, O. mirinensis, and O. nigricans showed varied degrees of phenotypic/genotypic sex mismatch. The conservation of amhy gene in Odontesthes provide an interesting framework to study the evolution and the ecological interactions of genotypic and environmental sex determination in this group.
Collapse
Affiliation(s)
- Ricardo S Hattori
- Unidade de Pesquisa e Desenvolvimento de Campos do Jordão, Sao Paulo Fisheries Institue, APTA/SAA, Campos do Jordão 12460-000, Brazil.
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (Consejo Nacional de Investigaciones Científicasy Técnicas-Universidad Nacional de San Martin), Chascomús 7130, Argentina.
| | - Juan I Fernandino
- Instituto Tecnológico de Chascomús (Consejo Nacional de Investigaciones Científicasy Técnicas-Universidad Nacional de San Martin), Chascomús 7130, Argentina.
| | - Dario C Colautti
- Instituto de Limnología "Dr. Raúl A. Ringuelet" (ILPLA) (Consejo Nacional de Investigaciones Científicasy Técnicas-Universidad Nacional de La Plata), La Plata 1900, Argentina.
| | - Kaho Miyoshi
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| | - Zhuang Gong
- School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316002, China.
| | - Yoji Yamamoto
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| | - Carlos A Strüssmann
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|