51
|
Enwere EK, Lacasse EC, Adam NJ, Korneluk RG. Role of the TWEAK-Fn14-cIAP1-NF-κB Signaling Axis in the Regulation of Myogenesis and Muscle Homeostasis. Front Immunol 2014; 5:34. [PMID: 24550918 PMCID: PMC3913901 DOI: 10.3389/fimmu.2014.00034] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/21/2014] [Indexed: 12/16/2022] Open
Abstract
Mammalian skeletal muscle maintains a robust regenerative capacity throughout life, largely due to the presence of a stem cell population known as “satellite cells” in the muscle milieu. In normal conditions, these cells remain quiescent; they are activated upon injury to become myoblasts, which proliferate extensively and eventually differentiate and fuse to form new multinucleated muscle fibers. Recent findings have identified some of the factors, including the cytokine TNFα-like weak inducer of apoptosis (TWEAK), which govern these cells’ decisions to proliferate, differentiate, or fuse. In this review, we will address the functions of TWEAK, its receptor Fn14, and the associated signal transduction molecule, the cellular inhibitor of apoptosis 1 (cIAP1), in the regulation of myogenesis. TWEAK signaling can activate the canonical NF-κB signaling pathway, which promotes myoblast proliferation and inhibits myogenesis. In addition, TWEAK activates the non-canonical NF-κB pathway, which, in contrast, promotes myogenesis by increasing myoblast fusion. Both pathways are regulated by cIAP1, which is an essential component of downstream signaling mediated by TWEAK and similar cytokines. This review will focus on the seemingly contradictory roles played by TWEAK during muscle regeneration, by highlighting the interplay between the two NF-κB pathways under physiological and pathological conditions. We will also discuss how myogenesis is negatively affected by chronic conditions, which affect homeostasis of the skeletal muscle environment.
Collapse
Affiliation(s)
- Emeka K Enwere
- Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, AB , Canada
| | - Eric C Lacasse
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada
| | - Nadine J Adam
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada ; Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Robert G Korneluk
- Solange Gauthier Karsh Molecular Genetics Laboratory, Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute , Ottawa, ON , Canada ; Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
52
|
Blanco-Colio LM. TWEAK/Fn14 Axis: A Promising Target for the Treatment of Cardiovascular Diseases. Front Immunol 2014; 5:3. [PMID: 24478772 PMCID: PMC3895871 DOI: 10.3389/fimmu.2014.00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/03/2014] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular diseases (CVD) are the first cause of mortality in Western countries. CVD include several pathologies such as coronary heart disease, stroke or cerebrovascular accident, congestive heart failure, peripheral arterial disease, and aortic aneurysm, among others. Interaction between members of the tumor necrosis factor (TNF) superfamily and their receptors elicits several biological actions that could participate in CVD. TNF-like weak inducer of apoptosis (TWEAK) and its functional receptor and fibroblast growth factor-inducible molecule 14 (Fn14) are two proteins belonging to the TNF superfamily that activate NF-κB by both canonical and non-canonical pathways and regulate several cell functions such as proliferation, migration, differentiation, cell death, inflammation, and angiogenesis. TWEAK/Fn14 axis plays a beneficial role in tissue repair after acute injury. However, persistent TWEAK/Fn14 activation mediated by blocking experiments or overexpression experiments in animal models has shown an important role of this axis in the pathological remodeling underlying CVD. In this review, we summarize the role of TWEAK/Fn14 pathway in the development of CVD, focusing on atherosclerosis and stroke and the molecular mechanisms by which TWEAK/Fn14 interaction participates in these pathologies. We also review the role of the soluble form of TWEAK as a biomarker for the diagnosis and prognosis of CVD. Finally, we highlight the results obtained with other members of the TNF superfamily that also activate canonical and non-canonical NF-κB pathway.
Collapse
|
53
|
Purcell JW, Kim HK, Tanlimco SG, Doan M, Fox M, Lambert P, Chao DT, Sho M, Wilson KE, Starling GC, Culp PA. Nuclear Factor κB is Required for Tumor Growth Inhibition Mediated by Enavatuzumab (PDL192), a Humanized Monoclonal Antibody to TweakR. Front Immunol 2014; 4:505. [PMID: 24409185 PMCID: PMC3884146 DOI: 10.3389/fimmu.2013.00505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 12/20/2013] [Indexed: 02/05/2023] Open
Abstract
TweakR is a TNF receptor family member, whose natural ligand is the multifunctional cytokine TWEAK. The growth inhibitory activity observed following TweakR stimulation in certain cancer cell lines and the overexpression of TweakR in many solid tumor types led to the development of enavatuzumab (PDL192), a humanized IgG1 monoclonal antibody to TweakR. The purpose of this study was to determine the mechanism of action of enavatuzumab’s tumor growth inhibition and to provide insight into the biology behind TweakR as a cancer therapeutic target. A panel of 105 cancer lines was treated with enavatuzumab in vitro; and 29 cell lines of varying solid tumor backgrounds had >25% growth inhibition in response to the antibody. Treatment of sensitive cell lines with enavatuzumab resulted in the in vitro and in vivo (xenograft) activation of both classical (p50, p65) and non-classical (p52, RelB) NFκB pathways. Using NFκB DNA binding functional ELISAs and microarray analysis, we observed increased activation of NFκB subunits and NFκB-regulated genes in sensitive cells over that observed in resistant cell lines. Inhibiting NFκB subunits (p50, p65, RelB, p52) and upstream kinases (IKK1, IKK2) with siRNA and chemical inhibitors consistently blocked enavatuzumab’s activity. Furthermore, enavatuzumab treatment resulted in NFκB-dependent reduction in cell division as seen by the activation of the cell cycle inhibitor p21 both in vitro and in vivo. The finding that NFκB drives the growth inhibitory activity of enavatuzumab suggests that targeting TweakR with enavatuzumab may represent a novel cancer treatment strategy.
Collapse
Affiliation(s)
- James W Purcell
- Department of Biologics Technologies, AbbVie Biotherapeutics , Redwood City, CA , USA
| | - Han K Kim
- Department of Biologics Technologies, AbbVie Biotherapeutics , Redwood City, CA , USA
| | - Sonia G Tanlimco
- Department of Biologics Technologies, AbbVie Biotherapeutics , Redwood City, CA , USA
| | - Minhtam Doan
- Department of Biologics Technologies, AbbVie Biotherapeutics , Redwood City, CA , USA
| | - Melvin Fox
- Department of Oncology Biologics, AbbVie Biotherapeutics , Redwood City, CA , USA
| | - Peter Lambert
- Department of Biologics Technologies, AbbVie Biotherapeutics , Redwood City, CA , USA
| | - Debra T Chao
- Department of Biologics Technologies, AbbVie Biotherapeutics , Redwood City, CA , USA
| | - Mien Sho
- Department of Biologics Technologies, AbbVie Biotherapeutics , Redwood City, CA , USA
| | - Keith E Wilson
- Department of Biologics Technologies, AbbVie Biotherapeutics , Redwood City, CA , USA
| | - Gary C Starling
- Department of Oncology Biologics, AbbVie Biotherapeutics , Redwood City, CA , USA
| | - Patricia A Culp
- Department of Oncology Biologics, AbbVie Biotherapeutics , Redwood City, CA , USA
| |
Collapse
|
54
|
Poveda J, Tabara LC, Fernandez-Fernandez B, Martin-Cleary C, Sanz AB, Selgas R, Ortiz A, Sanchez-Niño MD. TWEAK/Fn14 and Non-Canonical NF-kappaB Signaling in Kidney Disease. Front Immunol 2013; 4:447. [PMID: 24339827 PMCID: PMC3857575 DOI: 10.3389/fimmu.2013.00447] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/26/2013] [Indexed: 12/27/2022] Open
Abstract
The incidence of acute kidney injury (AKI) and chronic kidney disease (CKD) is increasing. However, there is no effective therapy for AKI and current approaches only slow down, but do not prevent progression of CKD. TWEAK is a TNF superfamily cytokine. A solid base of preclinical data suggests a role of therapies targeting the TWEAK or its receptor Fn14 in AKI and CKD. In particular TWEAK/Fn14 targeting may preserve renal function and decrease cell death, inflammation, proteinuria, and fibrosis in mouse animal models. Furthermore there is clinical evidence for a role of TWEAK in human kidney injury including increased tissue and/or urinary levels of TWEAK and parenchymal renal cell expression of the receptor Fn14. In this regard, clinical trials of TWEAK targeting are ongoing in lupus nephritis. Nuclear factor-kappa B (NF-κB) activation plays a key role in TWEAK-elicited inflammatory responses. Activation of the non-canonical NF-κB pathway is a critical difference between TWEAK and TNF. TWEAK activation of the non-canonical NF-κB pathways promotes inflammatory responses in tubular cells. However, there is an incomplete understanding of the role of non-canonical NF-κB activation in kidney disease and on its contribution to TWEAK actions in vivo.
Collapse
Affiliation(s)
- Jonay Poveda
- Department of Nephrology, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid and IRSIN , Madrid , Spain
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
The neurovascular unit (NVU) is a dynamic structure assembled by endothelial cells (EC), a basement membrane (BM), perivascular astrocytes (PA), pericytes, and surrounding neurons. The NVU regulates the passage of substances and cellular elements from the intravascular space into the brain parenchyma. This function, also known as blood-brain barrier (BBB), is regulated by the integrity of tight junctions proteins between EC, and the interaction between PA and the basal lamina. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are abundantly expressed in the NVU. Here we will review data indicating that the interaction between TWEAK and Fn14 in the endothelial cell-BM-astrocyte interface regulates the function of the BBB following an ischemic/hypoxic injury, and that pharmacological inhibition of TWEAK-Fn14 is a promising target for the treatment of patients with neurological diseases that have a direct impact on the structure and function of the NVU.
Collapse
Affiliation(s)
- Manuel Yepes
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine , Atlanta, GA , USA ; Department of Neurology, Veterans Affairs Medical Center, Emory University School of Medicine , Atlanta, GA , USA
| |
Collapse
|
56
|
Unilateral ureteral obstruction: beyond obstruction. Int Urol Nephrol 2013; 46:765-76. [PMID: 24072452 DOI: 10.1007/s11255-013-0520-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/15/2013] [Indexed: 01/10/2023]
Abstract
Unilateral ureteral obstruction is a popular experimental model of renal injury. However, the study of the kidney response to urinary tract obstruction is only one of several advantages of this model. Unilateral ureteral obstruction causes subacute renal injury characterized by tubular cell injury, interstitial inflammation and fibrosis. For this reason, it serves as a model both of irreversible acute kidney injury and of events taking place during human chronic kidney disease. Being a unilateral disease, it is not useful to study changes in global kidney function, but has the advantage of a low mortality and the availability of an internal control (the non-obstructed kidney). Experimental unilateral ureteral obstruction has illustrated the molecular mechanisms of apoptosis, inflammation and fibrosis, all three key processes in kidney injury of any cause, thus providing information beyond obstruction. Recently this model has supported key concepts on the role in kidney fibrosis of epithelial-mesenchymal transition, tubular epithelial cell G2/M arrest, the anti-aging hormone Klotho and renal innervation. We now review the experimental model and its contribution to identifying novel therapeutic targets in kidney injury and fibrosis, independently of the noxa.
Collapse
|
57
|
Ucero AC, Benito-Martin A, Fuentes-Calvo I, Santamaria B, Blanco J, Lopez-Novoa JM, Ruiz-Ortega M, Egido J, Burkly LC, Martinez-Salgado C, Ortiz A. TNF-related weak inducer of apoptosis (TWEAK) promotes kidney fibrosis and Ras-dependent proliferation of cultured renal fibroblast. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1744-55. [PMID: 23748045 DOI: 10.1016/j.bbadis.2013.05.032] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 05/20/2013] [Accepted: 05/23/2013] [Indexed: 11/18/2022]
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) regulates apoptosis, proliferation and inflammation in renal epithelial cells and plays a role in acute kidney injury. However, there is little information on the chronic effects of TWEAK. We hypothesized that TWEAK may influence renal fibrosis and regulate kidney fibroblast biology, in part, through Ras pathway. We studied a chronic model of experimental unilateral ureteral obstruction in wild type and TWEAK deficient mice, and a murine model of systemic TWEAK overexpression. TWEAK actions were also explored in cultured renal and embryonic fibroblasts. TWEAK and TWEAK receptor expression was increased in the obstructed kidneys. The absence of TWEAK decreased early kidney tubular damage, inflammatory infiltrates and myofibroblast number. TWEAK deficient mice had decreased renal fibrosis 21days after obstruction, as assessed by extracellular matrix staining. In mice without prior underlying kidney disease, systemic overexpression of TWEAK induced kidney inflammation and fibrosis. In cultured fibroblasts, TWEAK induced proliferation through activation of the Ras/ERK pathway. TWEAK also activated nuclear factor κB (NFκB)-dependent inflammatory chemokine production in murine renal fibroblasts. In conclusion, lack of TWEAK reduces renal fibrosis in a model of persistent kidney insult and overexpression of TWEAK led to renal fibrosis. TWEAK actions on renal fibroblasts may contribute to the in vivo observations, as TWEAK promotes inflammatory activity and proliferation in fibroblast cultures.
Collapse
Affiliation(s)
- Alvaro C Ucero
- IIS-FundacionJimenezDiaz, Av. Reyes Católicos, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
TWEAK-independent Fn14 self-association and NF-κB activation is mediated by the C-terminal region of the Fn14 cytoplasmic domain. PLoS One 2013; 8:e65248. [PMID: 23750247 PMCID: PMC3672086 DOI: 10.1371/journal.pone.0065248] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/26/2013] [Indexed: 11/25/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily member TNF-like weak inducer of apoptosis (TWEAK) is a pro-inflammatory and pro-angiogenic cytokine implicated in physiological tissue regeneration and wound repair. TWEAK binds to a 102-amino acid type I transmembrane cell surface receptor named fibroblast growth factor-inducible 14 (Fn14). TWEAK:Fn14 engagement activates several intracellular signaling cascades, including the NF-κB pathway, and sustained Fn14 signaling has been implicated in the pathogenesis of chronic inflammatory diseases and cancer. Although several groups are developing TWEAK- or Fn14-targeted agents for therapeutic use, much more basic science research is required before we fully understand the TWEAK/Fn14 signaling axis. For example, we and others have proposed that TWEAK-independent Fn14 signaling may occur in cells when Fn14 levels are highly elevated, but this idea has never been tested directly. In this report, we first demonstrate TWEAK-independent Fn14 signaling by showing that an Fn14 deletion mutant that is unable to bind TWEAK can activate the NF-κB pathway in transfected cells. We then show that ectopically-expressed, cell surface-localized Fn14 can self-associate into Fn14 dimers, and we show that Fn14 self-association is mediated by an 18-aa region within the Fn14 cytoplasmic domain. Endogenously-expressed Fn14 as well as ectopically-overexpressed Fn14 could also be detected in dimeric form when cell lysates were subjected to SDS-PAGE under non-reducing conditions. Additional experiments revealed that Fn14 dimerization occurs during cell lysis via formation of an intermolecular disulfide bond at cysteine residue 122. These findings provide insight into the Fn14 signaling mechanism and may aid current studies to develop therapeutic agents targeting this small cell surface receptor.
Collapse
|
59
|
Lammens A, Baehner M, Kohnert U, Niewoehner J, von Proff L, Schraeml M, Lammens K, Hopfner KP. Crystal structure of human TWEAK in complex with the Fab fragment of a neutralizing antibody reveals insights into receptor binding. PLoS One 2013; 8:e62697. [PMID: 23667509 PMCID: PMC3648529 DOI: 10.1371/journal.pone.0062697] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/25/2013] [Indexed: 12/18/2022] Open
Abstract
The tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a multifunctional cytokine playing a key role in tissue regeneration and remodeling. Dysregulation of TWEAK signaling is involved in various pathological processes like autoimmune diseases and cancer. The unique interaction with its cognate receptor Fn14 makes both ligand and receptor promising targets for novel therapeutics. To gain insights into this important signaling pathway, we determined the structure of soluble human TWEAK in complex with the Fab fragment of an antibody selected for inhibition of receptor binding. In the crystallized complex TWEAK is bound by three Fab fragments of the neutralizing antibody. Homology modeling shows that Fab binding overlaps with the putative Fn14 binding site of TWEAK. Docking of the Fn14 cysteine rich domain (CRD) to that site generates a highly complementary interface with perfectly opposing charged and hydrophobic residues. Taken together the presented structure provides new insights into the biology of TWEAK and the TWEAK/Fn14 pathway, which will help to optimize the therapeutic strategy for treatment of related cancer types and autoimmune diseases.
Collapse
Affiliation(s)
- Alfred Lammens
- Center for Integrated Protein Science-CIPSM, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Sanz AB, Sanchez-Niño MD, Martín-Cleary C, Ortiz A, Ramos AM. Progress in the development of animal models of acute kidney injury and its impact on drug discovery. Expert Opin Drug Discov 2013; 8:879-95. [PMID: 23627598 DOI: 10.1517/17460441.2013.793667] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Acute kidney injury (AKI) is a clinical syndrome characterized by the acute loss of kidney function. AKI is increasingly frequent and is associated with impaired survival and chronic kidney disease progression. Experimental AKI models have contributed to a better understanding of pathophysiological mechanisms but they have not yet resulted in routine clinical application of novel therapeutic approaches. AREAS COVERED The authors present the advances in experimental AKI models over the last decade. Furthermore, the authors review their current and expected impact on novel drug discovery. EXPERT OPINION New AKI models have been developed in rodents and non-rodents. Non-rodents allow the evaluation of specific aspects of AKI in both bigger animals and simpler organisms such as drosophila and zebrafish. New rodent models have recently reproduced described clinical entities, such as aristolochic and warfarin nephropathies, and have also provided better models for old entities such as thrombotic microangiopathy-induced AKI. Several therapies identified in animal models are now undergoing clinical trials in human AKI, including p53 RNAi and bone-marrow derived mesenchymal stem cells. It is conceivable that further refinement of animal models in combination with ongoing trials and novel trials based on already identified potential targets will eventually yield effective therapies for clinical AKI.
Collapse
Affiliation(s)
- Ana B Sanz
- Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundació Jiménez Díaz/Universidad Autónoma de Madrid (IIS-FJD-UAM), Madrid, Spain
| | | | | | | | | |
Collapse
|
61
|
Ucero AC, Sabban B, Benito-Martin A, Carrasco S, Joeken S, Ortiz A. Laser Therapy in Metabolic Syndrome-Related Kidney Injury. Photochem Photobiol 2013; 89:953-60. [DOI: 10.1111/php.12055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/21/2013] [Indexed: 12/11/2022]
|
62
|
Association of low serum 25-hydroxyvitamin D levels and acute kidney injury in the critically ill. Crit Care Med 2013; 40:3170-9. [PMID: 22975885 DOI: 10.1097/ccm.0b013e318260c928] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Given the importance of inflammation in acute kidney injury and the relationship between vitamin D and inflammation, we sought to elucidate the effect of vitamin D on acute kidney injury. We hypothesized that deficiency in 25-hydroxyvitamin D prior to hospital admission would be associated with acute kidney injury in the critically ill. DESIGN Two-center observational study of patients treated in medical and surgical intensive care units. SETTING Two hundred nine medical and surgical intensive care beds in two teaching hospitals in Boston, Massachusetts. PATIENTS Two thousand seventy-five patients, aged ≥ 18 yrs, in whom serum 25-hydroxyvitamin D was measured prior to hospitalization between 1998 and 2009. INTERVENTIONS : None. MEASUREMENTS AND MAIN RESULTS The exposure of interest was preadmission serum 25-hydroxyvitamin D and categorized a priori as deficiency (25-hydroxyvitamin D <15 ng/mL), insufficiency (25-hydroxyvitamin D 15-30 ng/mL), or sufficiency (25-hydroxyvitamin D ≥ 30 ng/mL). The primary outcome was acute kidney injury defined as meeting Risk, Injury, Failure, Loss, and End-stage kidney disease (RIFLE) Injury or Failure criteria. Logistic regression examined the RIFLE criteria outcome. Adjusted odds ratios were estimated by multivariate logistic regression models. Preadmission 25-hydroxyvitamin D deficiency is predictive of acute kidney injury. Patients with 25-hydroxyvitamin D deficiency have an odds ratio for acute kidney injury of 1.73 (95% confidence interval 1.30-2.30; p < .0001) relative to patients with 25-hydroxyvitamin D sufficiency. 25-Hydroxyvitamin D deficiency remains a significant predictor of acute kidney injury following multivariable adjustment (adjusted odds ratio 1.50; 95% confidence interval 1.42-2.24; p < .0001). Patients with 25-hydroxyvitamin D insufficiency have an odds ratio for acute kidney injury of 1.49 (95% confidence interval 1.15-1.94; p = .003) and an adjusted odds ratio of 1.23 (95% confidence interval 1.12-1.72; p = .003) relative to patients with 25-hydroxyvitamin D sufficiency. In addition, preadmission 25-hydroxyvitamin D deficiency is predictive of mortality. Patients with 25-hydroxyvitamin D insufficiency have an odds ratio for 30-day mortality of 1.60 (95% confidence interval 1.18-2.17; p = .003) and an adjusted odds ratio of 1.61 (95% confidence interval 1.06-1.57; p = .004) relative to patients with 25-hydroxyvitamin D sufficiency. CONCLUSION Deficiency of 25-hydroxyvitamin D prior to hospital admission is a significant predictor of acute kidney injury and mortality in a critically ill patient population.
Collapse
|
63
|
Rousselet E, Traver S, Monnet Y, Perrin A, Mandjee N, Hild A, Hirsch EC, Zheng TS, Hunot S. Tumor necrosis factor-like weak inducer of apoptosis induces astrocyte proliferation through the activation of transforming-growth factor-α/epidermal growth factor receptor signaling pathway. Mol Pharmacol 2012; 82:948-57. [PMID: 22909796 DOI: 10.1124/mol.112.079608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Reactive astrogliosis is beneficial in many aspects; however, it is also detrimental in some pathological states such as the development of lethal brain tumors. It is therefore crucial to understand the mechanisms regulating astrocyte proliferation. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the tumor necrosis factor family, was shown to stimulate astrocyte proliferation in vitro. Herein, we further characterize the mitogenic potential of TWEAK on central nervous system cells. Among these cells, astrocytes express the highest level of TWEAK and Fn14 transcripts, suggesting that they are particularly sensitive to TWEAK stimulation. Using in vitro model systems, we found that TWEAK was as potent as epidermal growth factor (EGF) (a prototypical astrocyte mitogen) in mediating astrocyte proliferation. However, its mitogenic activity was delayed compared with that of EGF, suggesting distinct mechanisms of action. Using cell signaling pathway inhibitors, neutralizing antibodies, and protein assays, we further show that the mitogenic activity of TWEAK on primary astrocytes requires stimulation of the transforming growth factor-α (TGF-α) and of the epidermal growth factor receptor (EGFR) signaling pathway through extracellular signal-regulated kinase and p38 mitogen-activated protein kinase activation. In aggregates, our data demonstrate that TWEAK acts as a potent astrocyte mitogen through the induction of a TGF-α/EGFR signaling pathway. We anticipate that description of such a mechanism may allow novel approaches to human pathologies associated with astrocyte proliferation.
Collapse
Affiliation(s)
- Estelle Rousselet
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7225, Experimental Therapeutics of Neurodegeneration, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Dohi T, Burkly LC. The TWEAK/Fn14 pathway as an aggravating and perpetuating factor in inflammatory diseases; focus on inflammatory bowel diseases. J Leukoc Biol 2012; 92:265-79. [DOI: 10.1189/jlb.0112042] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Taeko Dohi
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Linda C. Burkly
- Department of Immunology, Biogen Idec, Cambridge, Massachusetts, USA
| |
Collapse
|
65
|
Liu ZC, Zhou QL. Tumor necrosis factor-like weak inducer of apoptosis and its potential roles in lupus nephritis. Inflamm Res 2012; 61:277-84. [PMID: 22297307 DOI: 10.1007/s00011-011-0420-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/26/2011] [Accepted: 12/14/2011] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a recently identified proinflammatory cytokine of the TNF superfamily that functions through binding to Fn14 receptor in target cells. TWEAK has multiple biological activities. Studies show that TWEAK plays an important role in immune inflammatory diseases. Recent work has revealed that TWEAK may play an important role in the pathogenesis of kidney damage, including in systemic lupus erythematosus (SLE), where its concentration in urine was correlated with the level of activity of lupus nephritis (LN). OBJECTIVE The major focus of this review is to discuss the recent studies on TWEAK and its possible role in the pathogenesis of LN, and the therapeutic potential of modulating this pathway in LN. RESULTS AND CONCLUSION TWEAK plays a key role in the pathogenesis of LN through activation of multiple down-signaling pathway, inducing proinflammatory cytokines and chemokines, affecting cell proliferation/apoptosis and inducing renal IgG deposition. TWEAK blockade may be a novel therapeutic approach to reducing renal damage in SLE.
Collapse
Affiliation(s)
- Zhi-Chun Liu
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, People’s Republic of China
| | | |
Collapse
|
66
|
Michaelson JS, Wisniacki N, Burkly LC, Putterman C. Role of TWEAK in lupus nephritis: a bench-to-bedside review. J Autoimmun 2012; 39:130-42. [PMID: 22727560 DOI: 10.1016/j.jaut.2012.05.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 05/17/2012] [Indexed: 01/17/2023]
Abstract
There is significant unmet need in the treatment of lupus nephritis (LN) patients. In this review, we highlight the role of the TWEAK/Fn14 pathway in mediating key pathologic processes underlying LN involving both glomerular and tubular injury, and thus the potential for renal protection via blockade of this pathway. The specific pathological mechanisms of TWEAK - namely promoting inflammation, renal cell proliferation and apoptosis, vascular activation and fibrosis - are described, with supporting data from animal models and in vitro systems. Furthermore, we detail the translational relevance of these mechanisms to clinical readouts in human LN. We present the opportunity for an anti-TWEAK therapeutic as a renal protective agent to improve efficacy relative to current standard of care treatments hopefully without increased safety risk, and highlight a phase II trial with BIIB023, an anti-TWEAK neutralizing antibody, designed to assess efficacy in LN patients. Taken together, targeting the TWEAK/Fn14 axis represents a potential new therapeutic paradigm for achieving renal protection in LN patients.
Collapse
|
67
|
Fukushima H, Matsumoto A, Inuzuka H, Zhai B, Lau AW, Wan L, Gao D, Shaik S, Yuan M, Gygi SP, Jimi E, Asara JM, Nakayama K, Nakayama KI, Wei W. SCF(Fbw7) modulates the NFkB signaling pathway by targeting NFkB2 for ubiquitination and destruction. Cell Rep 2012; 1:434-43. [PMID: 22708077 PMCID: PMC3375724 DOI: 10.1016/j.celrep.2012.04.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The NFkB/Rel family of proteins play critical roles in a variety of cellular processes. Thus, their physiological activation is tightly controlled. Recently, the NFkB2/p100 precursor has been characterized as the fourth IkB type of suppressor for NFkB. However, the molecular mechanism(s) underlying regulated destruction of NFkB2 remains largely unknown. Here, we report that, unlike other IkBs, ubiquitination and destruction of NFkB2 are governed by SCF(Fbw7) in a GSK3-dependent manner. In Fbw(7-/-) cells, elevated expression of NFkB2/p100 leads to a subsequent reduction in NFkB signaling pathways and elevated sensitivity to TNFa-induced cell death. Reintroducing wild-type Fbw7, but not disease-derived mutant forms of Fbw7, rescues NFkB activity. Furthermore, T cell-specific depletion of Fbw7 also leads to reduced NFkB activity and perturbed T cell differentiation. Therefore, our work identifies Fbw7 as a physiological E3 ligase controlling NFkB20s stability. It further implicates that Fbw7 might exert its tumor-suppressor function by regulating NFkB activity.
Collapse
Affiliation(s)
- Hidefumi Fukushima
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alan W. Lau
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daming Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shavali Shaik
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Min Yuan
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Eijiro Jimi
- Center for Oral Biological Research, Kyushu Dental College, Fukuoka 803-8508, Japan
| | - John M. Asara
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Keiko Nakayama
- Division of Developmental Genetics, Tohoku University Graduate School of Medicine, Aoba-Ku, Sendai 980-8575, Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
68
|
A Bioinformatics Resource for TWEAK-Fn14 Signaling Pathway. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:376470. [PMID: 22649723 PMCID: PMC3357548 DOI: 10.1155/2012/376470] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 02/03/2012] [Indexed: 01/24/2023]
Abstract
TNF-related weak inducer of apoptosis (TWEAK) is a new member of the TNF superfamily. It signals through TNFRSF12A, commonly known as Fn14. The TWEAK-Fn14 interaction regulates cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, tissue remodeling and inflammation. Although TWEAK has been reported to be associated with autoimmune diseases, cancers, stroke, and kidney-related disorders, the downstream molecular events of TWEAK-Fn14 signaling are yet not available in any signaling pathway repository. In this paper, we manually compiled from the literature, in particular those reported in human systems, the downstream reactions stimulated by TWEAK-Fn14 interactions. Our manual amassment of the TWEAK-Fn14 pathway has resulted in cataloging of 46 proteins involved in various biochemical reactions and TWEAK-Fn14 induced expression of 28 genes. We have enabled the availability of data in various standard exchange formats from NetPath, a repository for signaling pathways. We believe that this composite molecular interaction pathway will enable identification of new signaling components in TWEAK signaling pathway. This in turn may lead to the identification of potential therapeutic targets in TWEAK-associated disorders.
Collapse
|
69
|
Zhang ZX, Min WP, Jevnikar AM. Use of RNA interference to minimize ischemia reperfusion injury. Transplant Rev (Orlando) 2012; 26:140-155. [PMID: 22000663 DOI: 10.1016/j.trre.2011.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/22/2011] [Indexed: 12/21/2022]
Abstract
RNA interference (RNAi) is an endogenous mechanism of cellular RNA control through degradation of specific messenger RNA sequences. This process of gene silencing may be exploited by the use of small interfering RNA (siRNA) to mediate precise control of targeted cellular functions. The nature of transplantation leads invariably to tissue injury, as organs are damaged by the loss of blood supply and resultant ischemia associated with the procurement procedure. Upon reperfusion, an inflammatory program is activated, and subsequent injury results in delayed graft function and, potentially, organ failure. Many of the molecular components in ischemia-reperfusion injury (IRI) have been identified, but effective therapeutics are not currently available. Accumulating evidence supports a role for siRNA in controlling IRI, as siRNA is specific, relatively low in toxicity, and limited in duration of effect. The capacity of siRNA to control IRI-related transcription factors, cell death and apoptosis, complement factors, and oxidative stress molecules supports the concept that RNAi-based therapeutics represent a novel and promising strategy for the control of IRI. However, there are issues of RNAi strategies, including siRNA design, "off-target" effects, and delivery that merit consideration in approaching IRI with gene silencing. This review will provide an overview of current concepts in RNAi and the potential application to IRI in solid organ transplantation.
Collapse
Affiliation(s)
- Zhu-Xu Zhang
- The Multi-Organ Transplant Program, University of Western Ontario, London, Ontario, Canada.
| | | | | |
Collapse
|
70
|
Burkly LC, Michaelson JS, Zheng TS. TWEAK/Fn14 pathway: an immunological switch for shaping tissue responses. Immunol Rev 2012; 244:99-114. [PMID: 22017434 DOI: 10.1111/j.1600-065x.2011.01054.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our immune system performs the vital function of recognizing and eliminating invading pathogens and malignancies. There is an increasing appreciation that the immune system also actively mediates tissue responses under both physiological and pathological conditions, significantly impacting the inflammatory, fibrogenic, and regenerative components. Likewise, there is a growing understanding of how epithelial, endothelial, and other non-hematopoietic tissue cell types actively contribute to the interplay that shapes tissue responses. While much of the molecular basis underlying the immune regulation of tissue responses remains to be delineated, the tumor necrosis factor (TNF) superfamily ligand/receptor pair of TNF-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor-inducible molecule 14 (Fn14) has now emerged as a key piece of this puzzle. In this review, we first discuss how the usually 'dormant' TWEAK/Fn14 pathway becomes activated specifically in injury and disease contexts. We then summarize how TWEAK-mediated Fn14 signaling triggers a wide range of activities in tissue parenchymal and stromal cells as well as progenitor cells. Finally, we review recent experimental evidence that further supports the functional dichotomy of TWEAK/Fn14 activation in physiological versus pathological tissue responses and its potential therapeutic implications. Whereas transient TWEAK/Fn14 activation promotes productive tissue responses after injury, excessive or persistent TWEAK/Fn14 activation drives pathological tissue responses, leading to progressive damage and degeneration.
Collapse
Affiliation(s)
- Linda C Burkly
- Immunology Discovery Research, Biogen Idec, Inc., Cambridge, MA 02142, USA.
| | | | | |
Collapse
|
71
|
Wen X, Peng Z, Li Y, Wang H, Bishop JV, Chedwick LR, Singbartl K, Kellum JA. One dose of cyclosporine A is protective at initiation of folic acid-induced acute kidney injury in mice. Nephrol Dial Transplant 2012; 27:3100-9. [PMID: 22294776 DOI: 10.1093/ndt/gfr766] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In most patients, acute kidney injury (AKI) represents the combined effects of ischemic, toxic and inflammatory insults. No effective pharmacologic interventions have been developed to prevent AKI or to improve outcomes to date. Cyclosporine A (CsA) is a calcineurin inhibitor that mediates T-cell receptor signaling, suppresses inflammatory cytokine expression and inhibits leukocyte migration. It is also a potent inhibitor of mitochondrial permeability, protecting cells from death. These properties make it a potentially valuable drug to prevent or treat AKI. It does, however, carry a significant risk of nephrotoxicity, especially with chronic use. By contrast, a single dose of CsA may be protective while limiting the risk of nephrotoxicity. METHODS We conducted a controlled animal experiment in male CD-1 mice. Specifically, mice were subjected to folic acid (FA)-induced AKI and then randomly assigned to sham operation or one of three dosage of CsA treatment groups. Results Intraperitoneal injection of FA consistently induced AKI. Serum interleukin (IL)-6 and urinary neutrophil gelatinase-associated lipocalin (NGAL) rose 1 day after FA injection. Compared to sham treatment, one dose (1 and 5 mg/kg body weight) of CsA significantly reduced kidney tubular cell apoptosis, serum creatinine, blood urea, serum IL-6 and urinary NGAL 2 days after FA injection. It was also shown to block the inflammatory mediator tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) expression, nuclear factor kappa-B (NFκB) activation, inflammatory cell infiltration and interstitial fibrosis 14 days after treatment in a dose-dependent fashion. By contrast, a dose of 10 mg/kg body weight CsA resulted in nephrotoxicity in the setting of FA-induced AKI. CONCLUSIONS A single dose of CsA, currently used for organ transplant, significantly protects mice from FA-induced AKI, presumably through inhibition of cell death, inflammatory reaction, interstitial cell infiltration and fibrosis. The protective effects have the potential to open a completely new line of investigation in the prevention and treatment of AKI.
Collapse
Affiliation(s)
- Xiaoyan Wen
- The Clinical Research, Investigation and Systems Modeling of Acute illness Center, Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Izquierdo MC, Sanz AB, Mezzano S, Blanco J, Carrasco S, Sanchez-Niño MD, Benito-Martín A, Ruiz-Ortega M, Egido J, Ortiz A. TWEAK (tumor necrosis factor-like weak inducer of apoptosis) activates CXCL16 expression during renal tubulointerstitial inflammation. Kidney Int 2012; 81:1098-107. [PMID: 22278019 DOI: 10.1038/ki.2011.475] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
TWEAK (tumor necrosis factor-like weak inducer of apoptosis) is a TNF superfamily cytokine that activates the fibroblast growth factor-inducible 14 (Fn14) receptor. Transcriptional analysis of experimental kidney tubulointerstitial inflammation showed a correlation between an upregulation of the mRNA for the transmembrane chemokine CXCL16, a T-cell chemoattractant, and Fn14 activation. Exogenous TWEAK increased mouse kidney CXCL16 expression and T-lymphocyte infiltration in vivo, processes inhibited by the NF-κB inhibitor parthenolide. Tubular cell CXCL16 was increased in a nephrotoxic tubulointerstitial inflammation model and neutralizing anti-TWEAK antibodies decreased this CXCL16 expression and lymphocyte infiltration. In human kidney biopsies with tubulointerstitial inflammation, tubular cell CXCL16 and Fn14 expressions were associated with inflammatory infiltrates. TWEAK upregulated CXCL16 mRNA expression in cultured renal tubular cells in an NF-κB-dependent manner and increased soluble and cellular CXCL16 protein. CXCL16 modestly promoted the expression of cytokines in tubular cells expressing its receptor (CXCR6) and appeared to synergize with TWEAK to promote an inflammatory response; however, it did not modulate tubular cell proliferation or survival. Thus, TWEAK upregulates the expression of the chemokine CXCL16 in tubular epithelium and this may contribute to kidney tubulointerstitial inflammation.
Collapse
Affiliation(s)
- María Concepción Izquierdo
- IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid and Fundación Renal Iñigo Álvarez de Toledo, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Hofmann J, Mair F, Greter M, Schmidt-Supprian M, Becher B. NIK signaling in dendritic cells but not in T cells is required for the development of effector T cells and cell-mediated immune responses. J Exp Med 2011; 208:1917-29. [PMID: 21807870 PMCID: PMC3171087 DOI: 10.1084/jem.20110128] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 06/29/2011] [Indexed: 12/24/2022] Open
Abstract
The canonical NF-κB pathway is a driving force for virtually all aspects of inflammation. Conversely, the role of the noncanonical NF-κB pathway and its central mediator NF-κB-inducing kinase (NIK) remains poorly defined. NIK has been proposed to be involved in the formation of T(H)17 cells, and its absence in T(H) cells renders them incapable of inducing autoimmune responses, suggesting a T cell-intrinsic role for NIK. Upon systematic analysis of NIK function in cell-mediated immunity, we found that NIK signaling is dispensable within CD4(+) T cells but played a pivotal role in dendritic cells (DCs). We discovered that NIK signaling is required in DCs to deliver co-stimulatory signals to CD4(+) T cells and that DC-restricted expression of NIK is sufficient to restore T(H)1 and T(H)17 responses as well as cell-mediated immunity in NIK(-/-) mice. When CD4(+) T cells developed in the absence of NIK-sufficient DCs, they were rendered anergic. Reintroduction of NIK into DCs allowed developing NIK(-/-) CD4(+) T cells to become functional effector populations and restored the development of autoimmune disease. Therefore, our data suggest that a population of thymic DCs requires NIK to shape the formation of most αβ CD4(+) T effector lineages during early development.
Collapse
MESH Headings
- Animals
- Clonal Anergy/genetics
- Clonal Anergy/immunology
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Immunity, Cellular/physiology
- Mice
- Mice, Knockout
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/immunology
- Protein Serine-Threonine Kinases/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Janin Hofmann
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Florian Mair
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Marc Schmidt-Supprian
- Molecular Immunology and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
74
|
Moreno JA, Izquierdo MC, Sanchez-Niño MD, Suárez-Alvarez B, Lopez-Larrea C, Jakubowski A, Blanco J, Ramirez R, Selgas R, Ruiz-Ortega M, Egido J, Ortiz A, Sanz AB. The inflammatory cytokines TWEAK and TNFα reduce renal klotho expression through NFκB. J Am Soc Nephrol 2011; 22:1315-25. [PMID: 21719790 PMCID: PMC3137579 DOI: 10.1681/asn.2010101073] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 03/28/2011] [Indexed: 01/17/2023] Open
Abstract
Proinflammatory cytokines contribute to renal injury, but the downstream effectors within kidney cells are not well understood. One candidate effector is Klotho, a protein expressed by renal cells that has antiaging properties; Klotho-deficient mice have an accelerated aging-like phenotype, including vascular injury and renal injury. Whether proinflammatory cytokines, such as TNF and TNF-like weak inducer of apoptosis (TWEAK), modulate Klotho is unknown. In mice, exogenous administration of TWEAK decreased expression of Klotho in the kidney. In the setting of acute kidney injury induced by folic acid, the blockade or absence of TWEAK abrogated the injury-related decrease in renal and plasma Klotho levels. TWEAK, TNFα, and siRNA-mediated knockdown of IκBα all activated NFκB and reduced Klotho expression in the MCT tubular cell line. Furthermore, inhibition of NFκB with parthenolide prevented TWEAK- or TNFα-induced downregulation of Klotho. Inhibition of histone deacetylase reversed TWEAK-induced downregulation of Klotho, and chromatin immunoprecipitation showed that TWEAK promotes RelA binding to the Klotho promoter, inducing its deacetylation. In conclusion, inflammatory cytokines, such as TWEAK and TNFα, downregulate Klotho expression through an NFκB-dependent mechanism. These results may partially explain the relationship between inflammation and diseases characterized by accelerated aging of organs, including CKD.
Collapse
Affiliation(s)
- Juan A. Moreno
- IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Maria C. Izquierdo
- IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Maria D. Sanchez-Niño
- IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Beatriz Suárez-Alvarez
- Histocompatibility and Transplantation Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos Lopez-Larrea
- Histocompatibility and Transplantation Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Aniela Jakubowski
- BiogenIdec Inc., Department of Immunobiology, Cambridge, Massachusetts
| | | | - Rafael Ramirez
- Unidad de Investigación, Servicio de Nefrología, Hospital Universitario Reina Sofía, Córdoba, Spain
| | | | - Marta Ruiz-Ortega
- IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Jesus Egido
- IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| | - Ana B. Sanz
- IIS-Fundación Jiménez Díaz, Universidad Autónoma de Madrid and Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain
| |
Collapse
|
75
|
Abstract
Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is a cytokine of the TNF superfamily that activates the Fn14 receptor. TWEAK may regulate cell proliferation, cell death, cell differentiation, and inflammation. TWEAK and Fn14 are constitutively present in the kidney. Sources of TWEAK and Fn14 include intrinsic renal cells and infiltrating leukocytes. Basal Fn14 expression is low, but Fn14 is greatly upregulated during kidney injury. TWEAK contributes to kidney inflammation promoting chemokine secretion by renal cells through canonical and non-canonical NFκB activation. TWEAK also promotes tubular cell proliferation. However, TWEAK induces mesangial and tubular cell apoptosis under proinflammatory conditions. These data indicate that TWEAK is a multifunctional cytokine in the kidney, the actions of which are modulated by the cell microenvironment. Confirmation of the role of TWEAK in kidney injury came from functional studies in experimental animal models. The TWEAK/Fn14 pathway contributed to cell death and interstitial inflammation during acute kidney injury, to glomerular injury in lupus nephritis, to hyperlipidemia-associated kidney injury, and to tubular cell hyperplasia following unilateral nephrectomy. Circulating soluble TWEAK (sTWEAK) levels are a potential biomarker of adverse outcomes in chronic kidney disease and urinary sTWEAK is a potential biomarker of lupus nephritis activity. The available evidence suggests that TWEAK may provide diagnostic information and be a therapeutic target in renal injury. Its role in human kidney disease should be further explored.
Collapse
|
76
|
Abstract
The main function of chemokines is to guide inflammatory cells in their migration to sites of inflammation. During the last 2 decades, an expanding number of chemokines and their receptors have driven broad inquiry into how inflammatory cells are recruited in a variety of diseases. Although this review focuses on chemokines and their receptors in renal injury, proinflammatory IL-17, TGFβ, and TWEAK signaling pathways also play a critical role in their expression. Recent studies in transgenic mice as well as blockade of chemokine signaling by neutralizing ligands or receptor antagonists now allow direct interrogation of chemokine action. The emerging role of regulatory T cells and Th17 cells during renal injury also forges tight relationships between chemokines and T cell infiltration in the development of kidney disease. As chemokine receptor blockade inches toward clinical use, the field remains an attractive area with potential for unexpected opportunity in the future.
Collapse
Affiliation(s)
- Arthur C K Chung
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
77
|
Carrero JJ, Stenvinkel P. Inflammation in End-Stage Renal Disease-What Have We Learned in 10 Years? Semin Dial 2010; 23:498-509. [DOI: 10.1111/j.1525-139x.2010.00784.x] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
78
|
TNF superfamily: a growing saga of kidney injury modulators. Mediators Inflamm 2010; 2010. [PMID: 20953353 PMCID: PMC2952810 DOI: 10.1155/2010/182958] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 08/31/2010] [Accepted: 09/06/2010] [Indexed: 12/30/2022] Open
Abstract
Members of the TNF superfamily participate in kidney disease. Tumor necrosis factor (TNF) and Fas ligand regulate renal cell survival and inflammation, and therapeutic targeting improves the outcome of experimental renal injury. TNF-related apoptosis-inducing ligand (TRAIL and its potential decoy receptor osteoprotegerin are the two most upregulated death-related genes in human diabetic nephropathy. TRAIL activates NF-kappaB in tubular cells and promotes apoptosis in tubular cells and podocytes, especially in a high-glucose environment. By contrast, osteoprotegerin plays a protective role against TRAIL-induced apoptosis. Another family member, TNF-like weak inducer of apoptosis (TWEAK induces inflammation and tubular cell death or proliferation, depending on the microenvironment. While TNF only activates canonical NF-kappaB signaling, TWEAK promotes both canonical and noncanonical NF-kappaB activation in tubular cells, regulating different inflammatory responses. TWEAK promotes the secretion of MCP-1 and RANTES through NF-kappaB RelA-containing complexes and upregulates CCl21 and CCL19 expression through NF-kappaB inducing kinase (NIK-) dependent RelB/NF-kappaB2 complexes. In vivo TWEAK promotes postnephrectomy compensatory renal cell proliferation in a noninflammatory milieu. However, in the inflammatory milieu of acute kidney injury, TWEAK promotes tubular cell death and inflammation. Therapeutic targeting of TNF superfamily cytokines, including multipronged approaches targeting several cytokines should be further explored.
Collapse
|
79
|
Ortiz A, Ucero AC, Egido J. Unravelling fibrosis: two newcomers and an old foe. Nephrol Dial Transplant 2010; 25:3492-5. [PMID: 20833689 DOI: 10.1093/ndt/gfq518] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Alberto Ortiz
- Dpto de Nefrología Experimental y Patología Vascular, IIS-Fundación Jiménez Díaz, Av/ Reyes Católicos, Madrid, Spain
| | | | | |
Collapse
|
80
|
Sanz AB, Sanchez-Niño MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J, Ortiz A. NF-kappaB in renal inflammation. J Am Soc Nephrol 2010; 21:1254-62. [PMID: 20651166 DOI: 10.1681/asn.2010020218] [Citation(s) in RCA: 453] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The NF-kappaB family of transcription factors regulates the induction and resolution of inflammation. Two main pathways, classical and alternative, control the nuclear translocation of NF-kappaB. Classical NF-kappaB activation is usually a rapid and transient response to a wide range of stimuli whose main effector is RelA/p50. The alternative NF-kappaB pathway is a more delayed response to a smaller range of stimuli resulting in DNA binding of RelB/p52 complexes. Additional complexity in this system involves the posttranslational modification of NF-kappaB proteins and an ever-increasing range of co-activators, co-repressors, and NF-kappaB complex proteins. Collectively, NF-kappaB regulates the expression of numerous genes that play a key role in the inflammatory response during human and experimental kidney injury. Multiple stimuli activate NF-kappaB through the classical pathway in somatic renal cells, and noncanonical pathway activation by TWEAK occurs in acute kidney injury. Under most test conditions, specific NF-kappaB inhibitors tend to reduce inflammation in experimental kidney injury but not always. Although many drugs in current use clinically influence NF-kappaB activation, there are no data regarding specific NF-kappaB inhibition in human kidney disease.
Collapse
Affiliation(s)
- Ana Belen Sanz
- Servicio de Nefrologia, Fundación para la Investigación Biomédica del Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|