51
|
Rock EM, Parker LA. Cannabinoids As Potential Treatment for Chemotherapy-Induced Nausea and Vomiting. Front Pharmacol 2016; 7:221. [PMID: 27507945 PMCID: PMC4960260 DOI: 10.3389/fphar.2016.00221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/11/2016] [Indexed: 12/20/2022] Open
Abstract
Despite the advent of classic anti-emetics, chemotherapy-induced nausea is still problematic, with vomiting being somewhat better managed in the clinic. If post-treatment nausea and vomiting are not properly controlled, anticipatory nausea—a conditioned response to the contextual cues associated with illness-inducing chemotherapy—can develop. Once it develops, anticipatory nausea is refractive to current anti-emetics, highlighting the need for alternative treatment options. One of the first documented medicinal uses of Δ9-tetrahydrocannabinol (Δ9-THC) was for the treatment of chemotherapy-induced nausea and vomiting (CINV), and recent evidence is accumulating to suggest a role for the endocannabinoid system in modulating CINV. Here, we review studies assessing the therapeutic potential of cannabinoids and manipulations of the endocannabinoid system in human patients and pre-clinical animal models of nausea and vomiting.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph Guelph, ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph Guelph, ON, Canada
| |
Collapse
|
52
|
Russo EB. Clinical Endocannabinoid Deficiency Reconsidered: Current Research Supports the Theory in Migraine, Fibromyalgia, Irritable Bowel, and Other Treatment-Resistant Syndromes. Cannabis Cannabinoid Res 2016; 1:154-165. [PMID: 28861491 PMCID: PMC5576607 DOI: 10.1089/can.2016.0009] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Medicine continues to struggle in its approaches to numerous common subjective pain syndromes that lack objective signs and remain treatment resistant. Foremost among these are migraine, fibromyalgia, and irritable bowel syndrome, disorders that may overlap in their affected populations and whose sufferers have all endured the stigma of a psychosomatic label, as well as the failure of endless pharmacotherapeutic interventions with substandard benefit. The commonality in symptomatology in these conditions displaying hyperalgesia and central sensitization with possible common underlying pathophysiology suggests that a clinical endocannabinoid deficiency might characterize their origin. Its base hypothesis is that all humans have an underlying endocannabinoid tone that is a reflection of levels of the endocannabinoids, anandamide (arachidonylethanolamide), and 2-arachidonoylglycerol, their production, metabolism, and the relative abundance and state of cannabinoid receptors. Its theory is that in certain conditions, whether congenital or acquired, endocannabinoid tone becomes deficient and productive of pathophysiological syndromes. When first proposed in 2001 and subsequently, this theory was based on genetic overlap and comorbidity, patterns of symptomatology that could be mediated by the endocannabinoid system (ECS), and the fact that exogenous cannabinoid treatment frequently provided symptomatic benefit. However, objective proof and formal clinical trial data were lacking. Currently, however, statistically significant differences in cerebrospinal fluid anandamide levels have been documented in migraineurs, and advanced imaging studies have demonstrated ECS hypofunction in post-traumatic stress disorder. Additional studies have provided a firmer foundation for the theory, while clinical data have also produced evidence for decreased pain, improved sleep, and other benefits to cannabinoid treatment and adjunctive lifestyle approaches affecting the ECS.
Collapse
|
53
|
Wilker S, Pfeiffer A, Elbert T, Ovuga E, Karabatsiakis A, Krumbholz A, Thieme D, Schelling G, Kolassa IT. Endocannabinoid concentrations in hair are associated with PTSD symptom severity. Psychoneuroendocrinology 2016; 67:198-206. [PMID: 26923850 DOI: 10.1016/j.psyneuen.2016.02.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/26/2022]
Abstract
The endocannabinoid system has been implicated in the regulation of the stress response, fear memory formation, and inflammatory processes. Posttraumatic stress disorder (PTSD) can result from exposure to extreme stress and is characterized by strong, associative memories for the traumatic events experienced. Furthermore, an elevated physical disease risk has been observed in PTSD, likely to be mediated by inflammatory processes. Therefore, altered endocannabinoid regulation can be expected in individuals with PTSD. However, attempts to assess PTSD-associated differences in the endocannabinoid system from human blood samples have provided inconsistent results, possibly due to fluctuating levels of endocannabinoids. In hair, these neuromodulators are accumulated over time and thus give access to a more stable and reliable assessment. We therefore investigated PTSD-associated differences in hair concentrations of endocannabinoids (N-acyl-ethanolamides palmitoylethanolamide [PEA], oleoylethanolamide [OEA] and stearoylethanolamide [SEA]) in 38 rebel war survivors from Northern Uganda suffering from PTSD and N=38 healthy rebel war survivors without current and lifetime PTSD. PTSD diagnosis and symptom severity were assessed in structured clinical interviews employing the Posttraumatic Diagnostic Scale (PDS). A significant group difference was observed for OEA, with PTSD patients showing reduced hair concentrations. Regression analyses further revealed strong negative relationships between all investigated N-acyl-ethanolamides and symptom severity of PTSD. The observed reductions in endocannabinoids might account for the increased inflammatory state as well as for the failure to extinguish fear memories observed in PTSD. Our findings add to the accumulating evidence suggesting the endocannabinoid system as a target for pharmacological enhancement of exposure-based psychotherapy for PTSD.
Collapse
Affiliation(s)
- Sarah Wilker
- Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany.
| | - Anett Pfeiffer
- Clinical Psychology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Thomas Elbert
- Clinical Psychology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany
| | - Emilio Ovuga
- Faculty of Medicine, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Alexander Karabatsiakis
- Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| | - Aniko Krumbholz
- Institute of Doping Analysis and Sports Biochemistry Dresden, 01731 Kreischa, Germany
| | - Detlef Thieme
- Institute of Doping Analysis and Sports Biochemistry Dresden, 01731 Kreischa, Germany
| | - Gustav Schelling
- Department of Anaesthesiology, Ludwig-Maximilians University, 82131 Munich, Germany
| | - Iris-Tatjana Kolassa
- Clinical & Biological Psychology, Institute of Psychology & Education, Ulm University, Albert-Einstein-Allee 47, 89069 Ulm, Germany
| |
Collapse
|
54
|
Rock EM, Sticht MA, Limebeer CL, Parker LA. Cannabinoid Regulation of Acute and Anticipatory Nausea. Cannabis Cannabinoid Res 2016; 1:113-121. [PMID: 28861486 PMCID: PMC5576606 DOI: 10.1089/can.2016.0006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy-induced nausea is one of the most distressing symptoms reported by patients undergoing treatment, and even with the introduction of newer antiemetics such as ondansetron and aprepitant, nausea remains problematic in the clinic. Indeed, when acute nausea is not properly managed, the cues of the clinic can become associated with this distressing symptom resulting in anticipatory nausea for which no effective treatments are available. Clinical trials exploring the potential of exogenous or endogenous cannabinoids to reduce chemotherapy-induced nausea are sparse; therefore, we must rely on the data from pre-clinical rat models of nausea. In this review, we explore the human and pre-clinical animal literature examining the potential for exogenous and endogenous cannabinoid treatments to regulate chemotherapy-induced nausea. The pre-clinical evidence points to a compelling need to evaluate the antinausea potential of cannabidiol, cannabidiolic acid, and treatments that boost the functioning of the endocannabinoid system in human clinical trials.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, Canada
| | - Martin A Sticht
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Graduate Program, University of Guelph, Guelph, Canada
| |
Collapse
|
55
|
Morena M, Patel S, Bains JS, Hill MN. Neurobiological Interactions Between Stress and the Endocannabinoid System. Neuropsychopharmacology 2016; 41:80-102. [PMID: 26068727 PMCID: PMC4677118 DOI: 10.1038/npp.2015.166] [Citation(s) in RCA: 446] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
Stress affects a constellation of physiological systems in the body and evokes a rapid shift in many neurobehavioral processes. A growing body of work indicates that the endocannabinoid (eCB) system is an integral regulator of the stress response. In the current review, we discuss the evidence to date that demonstrates stress-induced regulation of eCB signaling and the consequential role changes in eCB signaling have with respect to many of the effects of stress. Across a wide array of stress paradigms, studies have generally shown that stress evokes bidirectional changes in the two eCB molecules, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), with stress exposure reducing AEA levels and increasing 2-AG levels. Additionally, in almost every brain region examined, exposure to chronic stress reliably causes a downregulation or loss of cannabinoid type 1 (CB1) receptors. With respect to the functional role of changes in eCB signaling during stress, studies have demonstrated that the decline in AEA appears to contribute to the manifestation of the stress response, including activation of the hypothalamic-pituitary-adrenal (HPA) axis and increases in anxiety behavior, while the increased 2-AG signaling contributes to termination and adaptation of the HPA axis, as well as potentially contributing to changes in pain perception, memory and synaptic plasticity. More so, translational studies have shown that eCB signaling in humans regulates many of the same domains and appears to be a critical component of stress regulation, and impairments in this system may be involved in the vulnerability to stress-related psychiatric conditions, such as depression and posttraumatic stress disorder. Collectively, these data create a compelling argument that eCB signaling is an important regulatory system in the brain that largely functions to buffer against many of the effects of stress and that dynamic changes in this system contribute to different aspects of the stress response.
Collapse
Affiliation(s)
- Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada
| | - Sachin Patel
- Department of Molecular Physiology and Biophysics and Psychiatry, Vanderbilt Brain Institute, Vanderbilt-Kennedy Center for Research on Human Development, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada,Departments of Cell Biology and Anatomy and Psychiatry, University of Calgary, Calgary, AB, Canada,Departments of Cell Biology and Anatomy, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N4N1, Canada, Tel: +1 403 220 8466, Fax: +1 403 283 2700, E-mail:
| |
Collapse
|
56
|
Abstract
One of the first recognized medical uses of Δ(9)-tetrahydrocannabinol was treatment of chemotherapy-induced nausea and vomiting. Although vomiting is well controlled with the currently available non-cannabinoid antiemetics, nausea continues to be a distressing side effect of chemotherapy and other disorders. Indeed, when nausea becomes conditionally elicited by the cues associated with chemotherapy treatment, known as anticipatory nausea (AN), currently available antiemetics are largely ineffective. Considerable evidence demonstrates that the endocannabinoid system regulates nausea in humans and other animals. In this review, we describe recent evidence suggesting that cannabinoids and manipulations that enhance the functioning of the natural endocannabinoid system are promising treatments for both acute nausea and AN.
Collapse
|
57
|
Zhang LL, Wang JQ, Qi RR, Pan LL, Li M, Cai YL. Motion Sickness: Current Knowledge and Recent Advance. CNS Neurosci Ther 2015; 22:15-24. [PMID: 26452639 DOI: 10.1111/cns.12468] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 01/02/2023] Open
Abstract
Motion sickness (MS) is a common physiological response to real or virtual motion. Numerous studies have investigated the neurobiological mechanism and the control measures of MS. This review summarizes the current knowledge about pathogenesis and pathophysiology, prediction, evaluation, and countermeasures of MS. The sensory conflict hypothesis is the most widely accepted theory for MS. Both the hippocampus and vestibular cortex might play a role in forming internal model. The pathophysiology focuses on the visceral afference, thermoregulation and MS-related neuroendocrine. Single-nucleotide polymorphisms (SNPs) in some genes and epigenetic modulation might contribute to MS susceptibility and habituation. Questionnaires, heart rate variability (HRV) and electrogastrogram (EGG) are useful for diagnosing and evaluating MS. We also list MS medications to guide clinical practice. Repeated real motion exposure and combined visual-vestibular interaction training accelerate the progress of habituation. Behavioral and dietary countermeasures, as well as physiotherapy, are also effective in alleviating MS symptoms.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Jun-Qin Wang
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Rui-Rui Qi
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Lei-Lei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Min Li
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Yi-Ling Cai
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| |
Collapse
|
58
|
Sadhasivam S, Zhang X, Chidambaran V, Mavi J, Pilipenko V, Mersha TB, Meller J, Kaufman KM, Martin LJ, McAuliffe J. Novel associations between FAAH genetic variants and postoperative central opioid-related adverse effects. THE PHARMACOGENOMICS JOURNAL 2015; 15:436-42. [PMID: 25558980 PMCID: PMC4492912 DOI: 10.1038/tpj.2014.79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/15/2014] [Accepted: 11/07/2014] [Indexed: 01/01/2023]
Abstract
Opioid effects are potentiated by cannabinoid agonists including anandamide, an endocannabinoid. Inter-individual variability in responses to opioids is a major clinical problem. Multiple deaths and anoxic brain injuries occur every year because of opioid-induced respiratory depression (RD) in surgical patients and drug abusers of opioids and cannabinoids. This study aimed to determine specific associations between genetic variants of fatty acid amide hydrolase (FAAH) and postoperative central opioid adverse effects in children undergoing tonsillectomy. This is a prospective genotype-blinded observational study in which 259 healthy children between 6 and 15 years of age who received standard perioperative care with a standard anesthetic and an intraoperative dose of morphine were enrolled. Associations between frequent polymorphisms of FAAH and central postoperative opioid adverse effects including, RD, postoperative nausea and vomiting (PONV) and prolonged stay in Post Anesthesia Recovery Room (postoperative anesthesia care unit, PACU) due to RD and PONV were analyzed. Five specific FAAH single nucleotide polymorphisms (SNPs) had significant associations with more than twofold increased risk for refractory PONV (adjusted P<0.0018), and nominal associations (P<0.05) with RD and prolonged PACU stay in white children undergoing tonsillectomy. The FAAH SNP, rs324420, is a missense mutation with altered FAAH function and it is linked with other FAAH SNPs associated with PONV and RD in our cohort; association between PONV and rs324420 was confirmed in our extended cohort with additional 66 white children. Specific FAAH polymorphisms are associated with refractory PONV, opioid-related RD, and prolonged PACU stay due to opioid adverse effects in white children undergoing tonsillectomy.
Collapse
Affiliation(s)
- Senthilkumar Sadhasivam
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Xue Zhang
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Vidya Chidambaran
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jagroop Mavi
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Valentina Pilipenko
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Tesfaye B. Mersha
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Asthma Research, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jaroslaw Meller
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Bioinformatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth M. Kaufman
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Rheumatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Lisa J. Martin
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - John McAuliffe
- Department of Anesthesia, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
59
|
Lindgren L, Gouveia-Figueira S, Nording ML, Fowler CJ. Endocannabinoids and related lipids in blood plasma following touch massage: a randomised, crossover study. BMC Res Notes 2015; 8:504. [PMID: 26420002 PMCID: PMC4589181 DOI: 10.1186/s13104-015-1450-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/16/2015] [Indexed: 01/30/2023] Open
Abstract
Background The endocannabinoid system is involved in the regulation of stress and anxiety. In a recent study, it was reported that short-term changes in mood produced by a pleasant ambience were correlated with changes in the levels of plasma endocannabinoids and related N-acylethanolamines (Schrieks et al. PLoS One 10: e0126421, 2015). In the present study, we investigated whether stress reduction by touch massage (TM) affects blood plasma levels of endocannabinoids and related N-acylethanolamines. Results A randomized two-session crossover design for 20 healthy participants was utilised, with one condition that consisted of TM and a rest condition as control. TM increased the perceived pleasantness rating of the participants, and both TM and rest reduced the basal anxiety level as assessed by the State scale of the STAI-Y inventory. However, there were no significant effects of either time (pre- vs. post-treatment measures) as main effect or the interaction time x treatment for the plasma levels of the endocannabinoids anandamide and 2-arachidonoylglycerol or for eight other related lipids. Four lipids showed acceptable relative reliabilities, and for two of these (linoleoyl ethanolamide and palmitoleoyl ethanolamide) a significant correlation was seen between the TM-related change in levels, calculated as (post-TM value minus pre-TM value) − (post-rest value minus pre-rest value), and the corresponding TM-related change in perceived pleasantness. Conclusions It is concluded that in the participants studied here, there are no overt effects of TM upon plasma endocannabinoid levels. Possible associations of related N-acylethanolamines with the perceived pleasantness should be investigated further. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1450-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lenita Lindgren
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.
| | - Sandra Gouveia-Figueira
- Pharmacology Unit, Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden. .,Department of Chemistry, Umeå University, Umeå, Sweden.
| | | | - Christopher J Fowler
- Pharmacology Unit, Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden.
| |
Collapse
|
60
|
Schrieks IC, Ripken D, Stafleu A, Witkamp RF, Hendriks HFJ. Effects of mood inductions by meal ambiance and moderate alcohol consumption on endocannabinoids and N-acylethanolamines in humans: a randomized crossover trial. PLoS One 2015; 10:e0126421. [PMID: 25962070 PMCID: PMC4427437 DOI: 10.1371/journal.pone.0126421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/01/2015] [Indexed: 01/10/2023] Open
Abstract
Background The endocannabinoid system is suggested to play a regulatory role in mood. However, the response of circulating endocannabinoids (ECs) to mood changes has never been tested in humans. In the present study, we examined the effects of mood changes induced by ambiance and moderate alcohol consumption on plasma ECs 2-arachidonoylglycerol (2-AG), anandamide (AEA), and some N-acylethanolamine (NAE) congeners in humans. Methods Healthy women (n = 28) participated in a randomized cross-over study. They consumed sparkling white wine (340 mL; 30 g alcohol) or alcohol-free sparkling white wine (340 mL; <2 g alcohol) as part of a standard evening meal in a room with either a pleasant or an unpleasant ambiance. Results Plasma concentrations of palmitoylethanolamide (PEA) and stearoylethanolamide (SEA) increased after 30 min in the unpleasant ambiance, while they decreased in the pleasant ambiance. Changes in ECs and their NAE congeners correlated with mood states, such as happiness and fatigue, but in the pleasant ambiance without alcohol only. ECs and their NAE congeners were correlated with serum free fatty acids and cortisol. Conclusion This is the first human study to demonstrate that plasma NAEs are responsive to an unpleasant meal ambiance. Furthermore, associations between mood states and ECs and their NAE congeners were observed. Trial Registration Clinicaltrials.gov NCT01426022
Collapse
Affiliation(s)
- Ilse C. Schrieks
- The Netherlands Organization for Applied Scientific Research, TNO, Zeist, The Netherlands
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| | - Dina Ripken
- The Netherlands Organization for Applied Scientific Research, TNO, Zeist, The Netherlands
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Annette Stafleu
- The Netherlands Organization for Applied Scientific Research, TNO, Zeist, The Netherlands
| | - Renger F. Witkamp
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Henk F. J. Hendriks
- The Netherlands Organization for Applied Scientific Research, TNO, Zeist, The Netherlands
| |
Collapse
|
61
|
Differential Gene Expression Profile in the Rat Caudal Vestibular Nucleus is Associated with Individual Differences in Motion Sickness Susceptibility. PLoS One 2015; 10:e0124203. [PMID: 25910039 PMCID: PMC4409317 DOI: 10.1371/journal.pone.0124203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/10/2015] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To identify differentially expressed genes associated with motion sickness (MS) susceptibility in the rat caudal vestibular nucleus. METHODS We identified MS susceptible (MSS) and insusceptible (inMSS) rats by quantifying rotation-induced MS symptoms: defecation and spontaneous locomotion activity. Microarray analysis was used to screen differentially expressed genes in the caudal vestibular nucleus (CVN) after rotation. Plasma stress hormones were identified by radioimmunoassay. Candidate genes were selected by bioinformatics analysis and the microarray results were verified by real-time quantitative-PCR (RT-qPCR) methods. By using Elvax implantation, receptor antagonists or recombinant adenovirus targeting the candidate genes were applied to the CVN to evaluate their contribution to MS susceptibility variability. Validity of gene expression manipulation was verified by RT-qPCR and western blot analysis. RESULTS A total of 304 transcripts were differentially expressed in the MSS group compared with the inMSS group. RT-qPCR analysis verified the expression pattern of candidate genes, including nicotinic cholinergic receptor (nAchR) α3 subunit, 5-hydroxytryptamine receptor 4 (5-HT4R), tachykinin neurokinin-1 (NK1R), γ-aminobutyric acid A receptor (GABAAR) α6 subunit, olfactory receptor 81 (Olr81) and homology 2 domain-containing transforming protein 1 (Shc1). In MSS animals, the nAchR antagonist mecamylamine significantly alleviated rotation-induced MS symptoms and the plasma β-endorphin response. The NK1R antagonist CP99994 and Olr81 knock-down were effective for the defecation response, while the 5-HT4R antagonist RS39604 and Shc1 over-expression showed no therapeutic effect. In inMSS animals, rotation-induced changes in spontaneous locomotion activity and the plasma β-endorphin level occurred in the presence of the GABAAR antagonist gabazine. CONCLUSION Our findings suggested that the variability of the CVN gene expression profile after motion stimulation might be a putative molecular basis for individual differences in MS susceptibility and provide information for the development of new therapeutic strategies for MSS individuals.
Collapse
|
62
|
Santurtun E, Phillips CJC. The impact of vehicle motion during transport on animal welfare. Res Vet Sci 2015; 100:303-8. [PMID: 25847285 DOI: 10.1016/j.rvsc.2015.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 02/23/2015] [Accepted: 03/14/2015] [Indexed: 10/23/2022]
Abstract
Motion sickness is a common response in humans and some species of farm livestock during transport, but research on the impact of motion has been primarily focused on the use of animal models for humans. During livestock transportation, animals seek to minimise uncontrolled movements to reduce energy consumption and maintain posture. Road and sea transport of livestock can produce motion sickness and stress responses. Clinical signs are the result of autonomous nervous system activation. Studies conducted on road transportation effects in domestic animals showed several motion sickness behaviours including vomiting and, in ruminants, a reduction in rumination. However, there is a lack of knowledge on the impact of sea transport motion. Despite the paucity of data on livestock, there is sufficient evidence to believe that motion might affect animal welfare when animals are transported by road or sea.
Collapse
Affiliation(s)
- Eduardo Santurtun
- Centre for Animal Welfare and Ethics, School of Veterinary Science, University of Queensland, Gatton 4343, Queensland, Australia.
| | - Clive J C Phillips
- Centre for Animal Welfare and Ethics, School of Veterinary Science, University of Queensland, Gatton 4343, Queensland, Australia
| |
Collapse
|
63
|
Malik Z, Baik D, Schey R. The role of cannabinoids in regulation of nausea and vomiting, and visceral pain. Curr Gastroenterol Rep 2015; 17:429. [PMID: 25715910 DOI: 10.1007/s11894-015-0429-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Marijuana derived from the plant Cannabis sativa has been used for the treatment of many gastrointestinal (GI) disorders, including anorexia, emesis, abdominal pain, diarrhea, and others. However, its psychotropic side effects have often limited its use. Several cannabinoid receptors, which include the cannabinoid receptor 1 (CB1), CB2, and possibly GPR55, have been identified throughout the GI tract. These receptors may play a role in the regulation of food intake, nausea and emesis, gastric secretion and gastroprotection, GI motility, ion transport, visceral sensation, intestinal inflammation, and cell proliferation in the gut. However, the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system has shed new knowledge in this field. Thus far, despite evidence of visceral sensitivity inhibition in animal models, data in irritable bowel syndrome (IBS) patients is scarce and not supportive. Furthermore, many compounds that either act directly at the receptor or increase (or reduce) ligand availability have the potential to affect other brain functions and cause side effects. Novel drug targets such as FAAH and monoacylglycerol lipase (MAGL) inhibitors appear to be promising in animal models, but more studies are necessary to prove their efficiency. The promise of emerging drugs that are more selective and peripherally acting suggest that, in the near future, cannabinoids will play a major role in managing an array of GI diseases.
Collapse
Affiliation(s)
- Zubair Malik
- Section of Gastroenterology, Department of Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
64
|
Esposito M, Precenzano F, Sorrentino M, Avolio D, Carotenuto M. A Medical Food Formulation of Griffonia simplicifolia/Magnesium for Childhood Periodic Syndrome Therapy: An Open-Label Study on Motion Sickness. J Med Food 2015; 18:916-20. [PMID: 25590358 DOI: 10.1089/jmf.2014.0113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Motion sickness (MS) is a disabling condition dominated by disagreement between visually perceived movement and the vestibular system's sense of movement, with symptoms like dizziness, fatigue, and nausea, and other autonomic disabling symptoms. Preparations of Griffonia simplicifolia, containing high concentrations of 5-HTP, might be effective for serotonin-related disorders, including MS. Therefore, the aim of the present study is to assess the efficacy and safety of the G. simplicifolia/magnesium complex in a pediatric population with MS. The Griffonia/magnesium complex (50 and 200 mg, respectively) was orally administered as a prophylactic therapy for MS twice a day for 3 months to group A, and no therapy for MS was administered to group B. The MS clinical signs were recorded by parents or, where possible, directly from children by a specific module, which included validated questions for the diagnoses that were administered to all subjects and parents of both groups. Two study groups were matched for age (P=.224), sex (P=.801), and z-score body-mass index (P=.173). At T0, all recruited subjects in both groups complained about MS. After 3 months (T1), group A showed an MS prevalence of 36%, significantly lower than MS prevalence in group B (73%) (P<.001). The findings of the present study suggest the role of the Griffonia/magnesium complex as a potential treatment with middle-term efficacy even for MS.
Collapse
Affiliation(s)
- Maria Esposito
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Center for Childhood Headache, Second University of Naples , Naples, Italy
| | - Francesco Precenzano
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Center for Childhood Headache, Second University of Naples , Naples, Italy
| | - Michele Sorrentino
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Center for Childhood Headache, Second University of Naples , Naples, Italy
| | - Deborah Avolio
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Center for Childhood Headache, Second University of Naples , Naples, Italy
| | - Marco Carotenuto
- Department of Mental Health, Physical and Preventive Medicine, Clinic of Child and Adolescent Neuropsychiatry, Center for Childhood Headache, Second University of Naples , Naples, Italy
| |
Collapse
|
65
|
Luchting B, Rachinger-Adam B, Zeitler J, Egenberger L, Möhnle P, Kreth S, Azad SC. Disrupted TH17/Treg balance in patients with chronic low back pain. PLoS One 2014; 9:e104883. [PMID: 25122126 PMCID: PMC4133258 DOI: 10.1371/journal.pone.0104883] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/17/2014] [Indexed: 12/19/2022] Open
Abstract
Chronic low back pain (CLBP) is a leading cause of disability and costs in health care systems worldwide. Despite extensive research, the exact pathogenesis of CLBP, particularly the individual risk of chronification remains unclear. To investigate a possible role of the adaptive immune system in the pathophysiology of CLBP, we analyzed T cell related cytokine profiles, T cell related mRNA expression patterns and the distribution of T cell subsets in 37 patients suffering from nonspecific CLBP before and after multimodal therapy in comparison to 25 healthy controls. Serum patterns of marker cytokines were analyzed by Luminex technology, mRNA expression of cytokines and specific transcription factors was measured by real-time PCR, and distribution of TH1-, TH2-, TH17- and regulatory T cell (Tregs) subsets was determined by multicolor flow cytometry. We found that CLBP patients exhibit an increased number of anti-inflammatory Tregs, while pro-inflammatory TH17 cells are decreased, resulting in an altered TH17/Treg ratio. Accordingly, FoxP3 and TGF-β-mRNA expression was elevated, while expression of IL-23 was reduced. Serum cytokine analyses proved to be unsuitable to monitor the adaptive immune response in CLBP patients. We further show that even after successful therapy with lasting reduction of pain, T cell subset patterns remained altered after a follow-up period of 6 months. These findings suggest an involvement of TH17/Treg cells in the pathogenesis of CLBP and emphasize the importance of these cells in the crosstalk of pain and immune response. Trial Registration German Clinical Trial Register: Registration Trial DRKS00005954.
Collapse
Affiliation(s)
- Benjamin Luchting
- Department of Anesthesiology and Pain Medicine, Ludwig-Maximilians University Munich, Munich, Germany
- * E-mail:
| | - Banafscheh Rachinger-Adam
- Department of Anesthesiology and Pain Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Julia Zeitler
- Department of Anesthesiology and Pain Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Lisa Egenberger
- Department of Anesthesiology and Pain Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Patrick Möhnle
- Department of Anesthesiology and Pain Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Simone Kreth
- Department of Anesthesiology and Pain Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Shahnaz Christina Azad
- Department of Anesthesiology and Pain Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
66
|
Venkatesan T, Sengupta J, Lodhi A, Schroeder A, Adams K, Hogan WJ, Wang Y, Andrews C, Storr M. An Internet survey of marijuana and hot shower use in adults with cyclic vomiting syndrome (CVS). Exp Brain Res 2014; 232:2563-70. [PMID: 24792504 DOI: 10.1007/s00221-014-3967-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/15/2014] [Indexed: 12/28/2022]
Abstract
Cyclic vomiting syndrome (CVS) is a chronic disorder characterized by episodic nausea and vomiting. A large proportion of patients use marijuana to control their symptoms. Several case reports implicate marijuana as a cause of intractable vomiting with compulsive hot water bathing considered pathognomonic of "cannabinoid hyperemesis." We sought to examine the relationship between marijuana use and CVS. Patients >18 years of age diagnosed by a health care provider were invited to participate in an anonymous internet-based survey. A total of 514 patients participated and 437 completed questions about marijuana use. Mean age was 34 ± 12 years with patients being predominantly female (63%), Caucasian (92%) and from the USA (82%). Nineteen percent never used marijuana and 81% did. Fifty-four percent used marijuana for health issues and 43% for recreational purposes. Users stated that it improved nausea, appetite, general well-being, stress levels and vomiting. Users were more likely to be male and have an associated anxiety disorder. Sixty-seven percent of patients reported taking hot showers/baths for symptom relief, and this was associated with marijuana use. (OR 2.54, CI 1.50-4.31, P = 0.0006). Eighty-one percent of patients with CVS who completed an internet survey reported frequent use of marijuana. With marijuana use, patients noted the greatest improvement with stress levels, appetite and nausea. Marijuana users were more likely to be male and have associated anxiety. Hot showers were not pathognomonic of marijuana use though they were more likely to be associated with its use.
Collapse
Affiliation(s)
- Thangam Venkatesan
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical College of Wisconsin, 9200, W. Wisconsin Ave., Milwaukee, WI, 53226, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
McPartland JM, Guy GW, Di Marzo V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLoS One 2014; 9:e89566. [PMID: 24622769 PMCID: PMC3951193 DOI: 10.1371/journal.pone.0089566] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background The “classic” endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. Methodology/Principal Findings We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Conclusions/Significance Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.
Collapse
Affiliation(s)
- John M. McPartland
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
- Department of Family Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Geoffrey W. Guy
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomoleculare, CNR, Via Campi Flegrei, Pozzuoli, Napoli, Italy
| |
Collapse
|
68
|
Zheng Y, Wang XL, Mo FF, Li M. Dexamethasone alleviates motion sickness in rats in part by enhancing the endocannabinoid system. Eur J Pharmacol 2014; 727:99-105. [PMID: 24508383 DOI: 10.1016/j.ejphar.2014.01.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/09/2023]
Abstract
Low-dose dexamethasone has been widely used for the prevention of nausea and vomiting after chemotherapy and surgical procedures and to treat motion sickness due to its minimal adverse effects, but the mechanisms underlying its anti-motion sickness effects are poorly understood. Previous studies have demonstrated that the endocannabinoid system is suppressed by motion sickness but stimulated by dexamethasone. The aim of the present study was to determine whether dexamethasone has an anti-motion sickness effect in rats and to elucidate the mechanism of this action. We used HPLC-MS/MS to measure the plasma concentrations of anandamide and 2-arachidonoylglycerol+1-arachidonoylglycerol, and we employed real-time quantitative PCR (qRT-PCR) and/or Western blot analysis to assay the expression of N-acylphosphatidyl-ethanolamine hydrolyzing phospholipase D, sn-1-selective diacylglycerol lipase, fatty acid hydrolase, monoacylglycerol lipase and endocannabinoid CB1 receptor in the dorsal vagal complex and stomach of rats exposed to a motion sickness protocol. The results showed that dexamethasone lowered the motion sickness index and restored the levels of endogenous cannabinoids and the expression of the endocannabinoid CB1 receptor, which declined after the induction of motion sickness, in the dorsal vagal complex and stomach.
Collapse
Affiliation(s)
- Yan Zheng
- Department of Military Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiang Yin Road, Shanghai, China; Department of Nutrition, Tong Ren Hospital Affiliated to Shanghai JiaoTong University School of Medicine, 1111 Xian Xia Road, Shanghai, China.
| | - Xiao-Li Wang
- Department of Military Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiang Yin Road, Shanghai, China.
| | - Feng-Feng Mo
- Department of Military Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiang Yin Road, Shanghai, China.
| | - Min Li
- Department of Military Hygiene, Faculty of Naval Medicine, Second Military Medical University, 800 Xiang Yin Road, Shanghai, China.
| |
Collapse
|
69
|
Abstract
BACKGROUND Charles Darwin (CD), "father of modern biology," suffered from multisystem illness from early adulthood. The most disabling manifestation was cyclic vomiting syndrome (CVS). This study aims at finding the possible cause of CVS in CD. METHODS A literature search using the PubMed database was carried out, and CD's complaints, as reported in his personal writings and those of his relatives, friends, colleagues, biographers, were compared with various manifestations of mitochondrial disorders (MIDs), known to cause CVS, described in the literature. RESULTS Organ tissues involved in CD's disease were brain, nerves, muscles, vestibular apparatus, heart, gut, and skin. Cerebral manifestations included episodic headache, visual disturbance, episodic memory loss, periodic paralysis, hysterical crying, panic attacks, and episodes of depression. Manifestations of polyneuropathy included numbness, paresthesias, increased sweating, temperature sensitivity, and arterial hypotension. Muscular manifestations included periods of exhaustion, easy fatigability, myalgia, and muscle twitching. Cardiac manifestations included episodes of palpitations and chest pain. Gastrointestinal manifestations were CVS, dental problems, abnormal seasickness, eructation, belching, and flatulence. Dermatological manifestations included painful lips, dermatitis, eczema, and facial edema. Treatments with beneficial effects to his complaints were rest, relaxation, heat, and hydrotherapy. CONCLUSION CVS in CD was most likely due to a multisystem, nonsyndromic MID. This diagnosis is based upon the multisystem nature of his disease, the fact that CVS is most frequently the manifestation of a MID, the family history, the variable phenotypic expression between affected family members, the fact that symptoms were triggered by stress, and that only few symptoms could not be explained by a MID.
Collapse
Affiliation(s)
| | - John Hayman
- Department of pathology, University of Melbourne, Victoria, Australia
| |
Collapse
|
70
|
Sharkey KA, Darmani NA, Parker LA. Regulation of nausea and vomiting by cannabinoids and the endocannabinoid system. Eur J Pharmacol 2014; 722:134-46. [PMID: 24184696 PMCID: PMC3883513 DOI: 10.1016/j.ejphar.2013.09.068] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/22/2013] [Accepted: 09/27/2013] [Indexed: 12/13/2022]
Abstract
Nausea and vomiting (emesis) are important elements in defensive or protective responses that animals use to avoid ingestion or digestion of potentially harmful substances. However, these neurally-mediated responses are at times manifested as symptoms of disease and they are frequently observed as side-effects of a variety of medications, notably those used to treat cancer. Cannabis has long been known to limit or prevent nausea and vomiting from a variety of causes. This has led to extensive investigations that have revealed an important role for cannabinoids and their receptors in the regulation of nausea and emesis. With the discovery of the endocannabinoid system, novel ways to regulate both nausea and vomiting have been discovered that involve the production of endogenous cannabinoids acting centrally. Here we review recent progress in understanding the regulation of nausea and vomiting by cannabinoids and the endocannabinoid system, and we discuss the potential to utilize the endocannabinoid system in the treatment of these frequently debilitating conditions.
Collapse
Affiliation(s)
- Keith A Sharkey
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| | - Nissar A Darmani
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Linda A Parker
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
71
|
Hillard CJ, Liu QS. Endocannabinoid signaling in the etiology and treatment of major depressive illness. Curr Pharm Des 2014; 20:3795-811. [PMID: 24180398 PMCID: PMC4002665 DOI: 10.2174/13816128113196660735] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/23/2013] [Indexed: 12/28/2022]
Abstract
The purpose of this review is to examine human and preclinical data that are relevant to the following hypotheses. The first hypothesis is that deficient CB1R-mediated signaling results in symptoms that mimic those seen in depression. The second hypothesis is that activation of CB1R-mediated signaling results in behavioral, endocrine and other effects that are similar to those produced by currently used antidepressants. The third hypothesis is that conventional antidepressant therapies act through enhanced CB1R mediated signaling. Together the available data indicate that activators of CB1R signaling, particularly inhibitors of fatty acid amide hydrolase, should be considered for clinical trials for the treatment of depression.
Collapse
MESH Headings
- Animals
- Antidepressive Agents/pharmacology
- Antidepressive Agents/therapeutic use
- Brain/drug effects
- Brain/enzymology
- Brain/metabolism
- Brain/pathology
- Cannabis
- Depressive Disorder, Major/drug therapy
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/pathology
- Disease Models, Animal
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Humans
- Magnetic Resonance Imaging
- Neurogenesis/drug effects
- Polymorphism, Genetic
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
| | - Qing-song Liu
- Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226.
| |
Collapse
|
72
|
Hill MN, Bierer LM, Makotkine I, Golier JA, Galea S, McEwen BS, Hillard CJ, Yehuda R. Reductions in circulating endocannabinoid levels in individuals with post-traumatic stress disorder following exposure to the World Trade Center attacks. Psychoneuroendocrinology 2013; 38:2952-61. [PMID: 24035186 PMCID: PMC3870889 DOI: 10.1016/j.psyneuen.2013.08.004] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/03/2013] [Accepted: 08/18/2013] [Indexed: 12/19/2022]
Abstract
Endocannabinoid (eCB) signaling has been identified as a modulator of adaptation to stress, and is integral to basal and stress-induced glucocorticoid regulation. Furthermore, interactions between eCBs and glucocorticoids have been shown to be necessary for the regulation of emotional memories, suggesting that eCB function may relate to the development of post-traumatic stress disorder (PTSD). To examine this, plasma eCBs were measured in a sample (n=46) drawn from a population-based cohort selected for physical proximity to the World Trade Center (WTC) at the time of the 9/11 attacks. Participants received a structured diagnostic interview and were grouped according to whether they met diagnostic criteria for PTSD (no PTSD, n=22; lifetime diagnosis of PTSD=24). eCB content (2-arachidonoylglycerol (2-AG) and anandamide (AEA)) and cortisol were measured from 8 a.m. plasma samples. Circulating 2-AG content was significantly reduced among individuals meeting diagnostic criteria for PTSD. The effect of reduced 2-AG content in PTSD remained significant after controlling for the stress of exposure to the WTC collapse, gender, depression and alcohol abuse. There were no significant group differences for AEA or cortisol levels; however, across the whole sample AEA levels positively correlated with circulating cortisol, and AEA levels exhibited a negative relationship with the degree of intrusive symptoms within the PTSD sample. This report shows that PTSD is associated with a reduction in circulating levels of the eCB 2-AG. Given the role of 2-AG in the regulation of the stress response, these data support the hypothesis that deficient eCB signaling may be a component of the glucocorticoid dysregulation associated with PTSD. The negative association between AEA levels and intrusive symptoms is consistent with animal data indicating that reductions in AEA promote retention of aversive emotional memories. Future work will aim to replicate these findings and extend their relevance to clinical pathophysiology, as well as to neuroendocrine and molecular markers of PTSD.
Collapse
Affiliation(s)
- Matthew N. Hill
- The Hotchkiss Brain Institute and Departments of Cell Biology & Anatomy and Psychiatry, University of Calgary, Calgary AB, Canada,Laboratory of Neuroendocrinology, The Rockefeller University, New York NY USA,Direct correspondence to: Matthew N. Hill, Ph.D., Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB Canada T2N4N1, ; Tel.: 403-220-8466
| | - Linda M. Bierer
- Traumatic Stress Studies Division, Mount Sinai School of Medicine and James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA,Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee WI USA
| | - Iouri Makotkine
- Traumatic Stress Studies Division, Mount Sinai School of Medicine and James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Julia A. Golier
- Traumatic Stress Studies Division, Mount Sinai School of Medicine and James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Sandro Galea
- Department of Epidemiology, Columbia Mailman School of Public Health, New York, NY, USA
| | - Bruce S. McEwen
- Laboratory of Neuroendocrinology, The Rockefeller University, New York NY USA
| | - Cecilia J. Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee WI USA
| | - Rachel Yehuda
- Traumatic Stress Studies Division, Mount Sinai School of Medicine and James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| |
Collapse
|
73
|
Horn CC, Meyers K, Oberlies N. Musk shrews selectively bred for motion sickness display increased anesthesia-induced vomiting. Physiol Behav 2013; 124:129-37. [PMID: 24239993 DOI: 10.1016/j.physbeh.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Susceptibility to motion sickness is a predictor of postoperative nausea and vomiting, and studies in humans suggest that genetic factors determine sensitivity to motion sickness. The aim of the current study was to determine if a preclinical model could be selectively bred for motion-induced emesis and to assess a potential relationship to anesthesia-induced emesis. Musk shrews were tested for motion-induced emesis using a shaker plate (10min, 1Hz, and 4cm of lateral displacement). Animals were rank ordered for motion-induced emesis and selectively bred to produce high and low response strains. Shrews were also tested with nicotine (5mg/kg, sc), copper sulfate (CuSO4; 120mg/kg, ig), and isoflurane anesthesia (10min; 3%) to measure responses to a panel of emetic stimuli. High response strain shrews demonstrated significantly more emetic episodes to motion exposure compared to low response strain animals in the F1 and F2 generations. In F2 animals, there were no significant differences in total emetic responses or emetic latency between strains after nicotine injection or CuSO4 gavage. However, isoflurane exposure stimulated more emesis in F1 and F2 high versus low strain animals, which suggests a relationship between vestibular- and inhalational anesthesia-induced emesis. Overall, these results indicate genetic determinants of motion sickness in a preclinical model and a potential common mechanism for motion sickness and inhalational anesthesia-induced emesis. Future work may include genetic mapping of potential "emetic sensitivity genes" to develop novel therapies or diagnostics for patients with high risk of nausea and vomiting.
Collapse
Affiliation(s)
- Charles C Horn
- Biobehavioral Medicine in Oncology Program, Univ. of Pittsburgh Cancer Institute, Pittsburgh, PA, USA; Dept. of Medicine, Div. of Gastroenterology, Hepatology, and Nutrition, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Dept. of Anesthesiology, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Neuroscience, Univ. of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
74
|
Thieme U, Schelling G, Hauer D, Greif R, Dame T, Laubender RP, Bernhard W, Thieme D, Campolongo P, Theiler L. Quantification of anandamide and 2-arachidonoylglycerol plasma levels to examine potential influences of tetrahydrocannabinol application on the endocannabinoid system in humans. Drug Test Anal 2013; 6:17-23. [PMID: 24424856 DOI: 10.1002/dta.1561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/28/2013] [Accepted: 09/03/2013] [Indexed: 01/05/2023]
Abstract
The effects of tetrahydrocannabinol (THC) and endogenous cannabinoids (endocannabinoids, ECs) are both mediated by activation of the cannabinoid receptors CB1 and CB2. Exogenous activation of these receptors by THC could therefore alter EC levels. We tested this hypothesis in healthy volunteers (n = 25) who received a large intravenous dose of THC (0.10 mg/kg). Effects on the EC system were quantified by serial measurements of plasma ECs after THC administration. Eleven blood samples were drawn during the first 5 h after THC administration and two more samples after 24 and 48 h. THC, its metabolites THC-OH (biologically active) and THC-COOH (non-active), and the ECs anandamide and 2-arachidonoylglycerol (2-AG) were quantified by liquid chromatography-mass spectrometry. EC-plasma levels showed a biphasic response after THC injection reaching maximal values at 30 min. Anandamide increased slightly from 0.58 ± 0.21 ng/ml at baseline to 0.64 ± 0.24 ng/ml (p < 0.05) and 2-AG from 7.60 ± 4.30 ng/ml to 9.50 ± 5.90 ng/ml (p < 0.05). After reaching maximal concentrations, EC plasma levels decreased markedly to a nadir of 300 min after THC administration (to 0.32 ± 0.15 ng/ml for anandamide and to 5.50 ± 3.01 ng/ml for 2-AG, p < 0.05). EC plasma concentrations returned to near baseline levels until 48 h after the experiment. THC (0.76 ± 0.16 ng/ml) and THC-OH (0.36 ± 0.17 ng/ml) were still measurable at 24 h and remained detectible until 48 h after THC administration. Although the underlying mechanism is not clear, high doses of intravenous THC appear to influence endogenous cannabinoid concentrations and presumably EC-signalling.
Collapse
Affiliation(s)
- Ulrike Thieme
- Department of Anaesthesiology, Ludwig - Maximilians University of Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Gebeh AK, Willets JM, Marczylo TH, Konje JC. Plasma anandamide and relatedn-acylethanolamide levels are not elevated in pregnancies complicated by hyperemesis gravidarum. J Matern Fetal Neonatal Med 2013; 27:954-9. [DOI: 10.3109/14767058.2013.847413] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
76
|
Hill MN, Patel S. Translational evidence for the involvement of the endocannabinoid system in stress-related psychiatric illnesses. BIOLOGY OF MOOD & ANXIETY DISORDERS 2013; 3:19. [PMID: 24286185 PMCID: PMC3817535 DOI: 10.1186/2045-5380-3-19] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/04/2013] [Indexed: 12/30/2022]
Abstract
Accumulating evidence over the past decade has highlighted an important role of the endocannabinoid (eCB) system in the regulation of stress and emotional behavior across divergent species, from rodents to humans. The general findings from this work indicate that the eCB system plays an important role in gating and buffering the stress response, dampening anxiety and regulating mood. Work in rodents has allowed researchers to determine the neural mechanisms mediating this relationship while work in human populations has demonstrated the possible importance of this system in stress-related psychiatric diseases, such as post-traumatic stress disorder, generalized anxiety and major depression. These stress-protective effects of eCB signaling appear to be primarily mediated by their actions within corticolimbic structures, particularly the amygdala and the prefrontal cortex. The aim of this review is to provide an up-to-date discussion of the current level of knowledge in this field, as well as address the current gaps in knowledge and specific areas of research that require attention.
Collapse
Affiliation(s)
- Matthew N Hill
- Hotchkiss Brain Institute, Departments of Cell Biology & Anatomy and Psychiatry, University of Calgary, 3330 Hospital Drive NW, Calgary AB T2N4N1, Canada.
| | | |
Collapse
|
77
|
Hauer D, Kaufmann I, Strewe C, Briegel I, Campolongo P, Schelling G. The role of glucocorticoids, catecholamines and endocannabinoids in the development of traumatic memories and posttraumatic stress symptoms in survivors of critical illness. Neurobiol Learn Mem 2013; 112:68-74. [PMID: 24125890 DOI: 10.1016/j.nlm.2013.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 12/23/2022]
Abstract
Critically ill patients are at an increased risk for traumatic memories and post-traumatic stress disorder (PTSD). Memories of one or more traumatic events play an important part in the symptom pattern of PTSD. Studies in long-term survivors of intensive care unit (ICU) treatment demonstrated a clear and vivid recall of traumatic experiences and the incidence and intensity of PTSD symptoms increased with the number of traumatic memories present. Preclinical evidence has clearly shown that the consolidation and retrieval of traumatic memories is regulated by an interaction between the noradrenergic, the glucocorticoid and the endocannabinoid system. Critically ill patients in the ICU frequently require treatment with adrenenergic or glucocorticoid drugs and often receive sedative medications; among them propofol is known to influence endocannabinoid signaling. Critical illness could therefore represent a useful model for investigating adrenergic, glucocorticoid as well as endocannabinoid effects on traumatic memory and PTSD development in stressed humans. The endocannabinoid system is an important regulator of HPA-axis activity during stress, an effect which has also been demonstrated in humans. Likewise, a single nucleotide polymorphism (SNP) of the glucocorticoid receptor (GR) gene (the BclI-SNP), which enhances the sensitivity of the glucocorticoid receptors to cortisol and possibly HPA-axis feedback function, was associated with enhanced emotional memory performance in healthy volunteers. The presence of the BclI-SNP increased the risk for traumatic memories and PTSD symptoms in patients after ICU therapy and was linked to lower basal cortisol levels. A number of small studies have demonstrated that the administration of cortisol to critically ill or injured patients results in a significant reduction of PTSD symptoms after recovery without influencing the number of traumatic memories. These glucocorticoid effects can possibly be explained by a cortisol-induced temporary impairment in traumatic memory retrieval which has previously been demonstrated in both rats and humans. The hypothesis that stress doses of glucocorticoids or the pharmacologic manipulation of glucocorticoid-endocannabinoid interaction during traumatic memory consolidation and retrieval could be useful for prophylaxis and treatment of PTSD after critical illness should be tested in larger controlled studies.
Collapse
Affiliation(s)
- Daniela Hauer
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany
| | - Ines Kaufmann
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany
| | - Claudia Strewe
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany
| | - Isabel Briegel
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany
| | - Patrizia Campolongo
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany; Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Gustav Schelling
- Department of Anaesthesiology, University of Munich, Campus Grosshadern, 81377 Munich, Germany.
| |
Collapse
|
78
|
Diagnostic Value of Concentration Profiles of Glucocorticosteroids and Endocannabinoids in Hair. Ther Drug Monit 2013; 35:600-7. [DOI: 10.1097/ftd.0b013e3182953e43] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
79
|
Pellkofer HL, Havla J, Hauer D, Schelling G, Azad SC, Kuempfel T, Magerl W, Huge V. The major brain endocannabinoid 2-AG controls neuropathic pain and mechanical hyperalgesia in patients with neuromyelitis optica. PLoS One 2013; 8:e71500. [PMID: 23951176 PMCID: PMC3739748 DOI: 10.1371/journal.pone.0071500] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
Recurrent myelitis is one of the predominant characteristics in patients with neuromyelitis optica (NMO). While paresis, visual loss, sensory deficits, and bladder dysfunction are well known symptoms in NMO patients, pain has been recognized only recently as another key symptom of the disease. Although spinal cord inflammation is a defining aspect of neuromyelitis, there is an almost complete lack of data on altered somatosensory function, including pain. Therefore, eleven consecutive patients with NMO were investigated regarding the presence and clinical characteristics of pain. All patients were examined clinically as well as by Quantitative Sensory Testing (QST) following the protocol of the German Research Network on Neuropathic Pain (DFNS). Additionally, plasma endocannabinoid levels and signs of chronic stress and depression were determined. Almost all patients (10/11) suffered from NMO-associated neuropathic pain for the last three months, and 8 out of 11 patients indicated relevant pain at the time of examination. Symptoms of neuropathic pain were reported in the vast majority of patients with NMO. Psychological testing revealed signs of marked depression. Compared to age and gender-matched healthy controls, QST revealed pronounced mechanical and thermal sensory loss, strongly correlated to ongoing pain suggesting the presence of deafferentation-induced neuropathic pain. Thermal hyperalgesia correlated to MRI-verified signs of spinal cord lesion. Heat hyperalgesia was highly correlated to the time since last relapse of NMO. Patients with NMO exhibited significant mechanical and thermal dysesthesia, namely dynamic mechanical allodynia and paradoxical heat sensation. Moreover, they presented frequently with either abnormal mechanical hypoalgesia or hyperalgesia, which depended significantly on plasma levels of the endogenous cannabinoid 2-arachidonoylglycerole (2-AG). These data emphasize the high prevalence of neuropathic pain and hyperalgesia in patients with NMO. The degree of mechanical hyperalgesia reflecting central sensitization of nociceptive pathways seems to be controlled by the major brain endocannabinoid 2-AG.
Collapse
Affiliation(s)
- Hannah L. Pellkofer
- Institute for Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
- Department of Neurology, Ludwig-Maximilians University, Munich, Germany
- Department of Psychiatry and Psychotherapy, Georg August University, Göttingen, Germany
| | - Joachim Havla
- Institute for Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
| | - Daniela Hauer
- Department of Anaesthesiology, Ludwig Maximilians University, Munich, Germany
| | - Gustav Schelling
- Department of Anaesthesiology, Ludwig Maximilians University, Munich, Germany
| | - Shahnaz C. Azad
- Department of Anaesthesiology, Ludwig Maximilians University, Munich, Germany
| | - Tania Kuempfel
- Institute for Clinical Neuroimmunology, Ludwig-Maximilians University, Munich, Germany
| | - Walter Magerl
- Chair of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM), Ruprecht Karls University Heidelberg, Mannheim, Germany
| | - Volker Huge
- Department of Anaesthesiology, Ludwig Maximilians University, Munich, Germany
- * E-mail:
| |
Collapse
|
80
|
Hauer D, Schelling G, Gola H, Campolongo P, Morath J, Roozendaal B, Hamuni G, Karabatsiakis A, Atsak P, Vogeser M, Kolassa IT. Plasma concentrations of endocannabinoids and related primary fatty acid amides in patients with post-traumatic stress disorder. PLoS One 2013; 8:e62741. [PMID: 23667516 PMCID: PMC3647054 DOI: 10.1371/journal.pone.0062741] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/25/2013] [Indexed: 01/12/2023] Open
Abstract
Background Endocannabinoids (ECs) and related N-acyl-ethanolamides (NAEs) play important roles in stress response regulation, anxiety and traumatic memories. In view of the evidence that circulating EC levels are elevated under acute mild stressful conditions in humans, we hypothesized that individuals with traumatic stress exposure and post-traumatic stress disorder (PTSD), an anxiety disorder characterized by the inappropriate persistence and uncontrolled retrieval of traumatic memories, show measurable alterations in plasma EC and NAE concentrations. Methods We determined plasma concentrations of the ECs anandamide (ANA) and 2-arachidonoylglycerol (2-AG) and the NAEs palmitoylethanolamide (PEA), oleoylethanolamide (OEA), stearoylethanolamine (SEA), and N-oleoyldopamine (OLDA) by HPLC-MS-MS in patients with PTSD (n = 10), trauma-exposed individuals without evidence of PTSD (n = 9) and in healthy control subjects (n = 29). PTSD was diagnosed according to DSM-IV criteria by administering the Clinician Administered PTSD Scale (CAPS), which also assesses traumatic events. Results Individuals with PTSD showed significantly higher plasma concentrations of ANA (0.48±0.11 vs. 0.36±0.14 ng/ml, p = 0.01), 2-AG (8.93±3.20 vs. 6.26±2.10 ng/ml, p<0.01), OEA (5.90±2.10 vs. 3.88±1.85 ng/ml, p<0.01), SEA (2.70±3.37 vs. 0.83±0.47, ng/ml, p<0.05) and significantly lower plasma levels of OLDA (0.12±0.05 vs. 0.45±0.59 ng/ml, p<0.05) than healthy controls. Moreover, PTSD patients had higher 2-AG plasma levels (8.93±3.20 vs. 6.01±1.32 ng/ml, p = 0.03) and also higher plasma concentrations of PEA (4.06±1.87 vs. 2.63±1.34 ng/ml, p<0.05) than trauma-exposed individuals without evidence of PTSD. CAPS scores in trauma-exposed individuals with and without PTSD (n = 19) correlated positively with PEA (r = 0.55, p = 0.02) and negatively with OLDA plasma levels (r = −0.68, p<0.01). CAPS subscores for intrusions (r = −0.65, p<0.01), avoidance (r = −0.60, p<0.01) and hyperarousal (r = −0.66, p<0.01) were all negatively related to OLDA plasma concentrations. Conclusions PTSD appears to be associated with changes in plasma EC/NAE concentrations. This may have pathophysiological and diagnostic consequences but will need to be reproduced in larger cohorts.
Collapse
Affiliation(s)
- Daniela Hauer
- Department of Anaesthesiology, Ludwig-Maximilians-University, Munich, Germany
| | - Gustav Schelling
- Department of Anaesthesiology, Ludwig-Maximilians-University, Munich, Germany
- * E-mail:
| | - Hannah Gola
- Department of Clinical and Neuropsychology, Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Julia Morath
- Department of Clinical and Neuropsychology, Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Gilava Hamuni
- Department of Clinical and Neuropsychology, Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Alexander Karabatsiakis
- Department of Clinical and Biological Psychology, Institute of Psychology and Education, University of Ulm, Ulm, Germany
| | - Piray Atsak
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Michael Vogeser
- Department of Clinical Chemistry, Ludwig-Maximilians-University, Munich, Germany
| | - Iris-Tatjana Kolassa
- Department of Clinical and Neuropsychology, Department of Psychology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
81
|
Psychoneuroendocrine alterations during 5 days of head-down tilt bed rest and artificial gravity interventions. Eur J Appl Physiol 2013; 113:2057-65. [DOI: 10.1007/s00421-013-2640-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 04/02/2013] [Indexed: 10/27/2022]
|
82
|
Apfel CC, Turan A, Souza K, Pergolizzi J, Hornuss C. Intravenous acetaminophen reduces postoperative nausea and vomiting: a systematic review and meta-analysis. Pain 2013; 154:677-689. [PMID: 23433945 DOI: 10.1016/j.pain.2012.12.025] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2012] [Revised: 12/21/2012] [Accepted: 12/31/2012] [Indexed: 12/24/2022]
Abstract
Opioids are a key risk factor for postoperative nausea and vomiting (PONV). As intravenous (i.v.) acetaminophen reduces postoperative pain and opioid requirements, one would expect i.v. acetaminophen to be associated with a lower incidence of opioid-induced side effects, including PONV. We conducted a systematic search using Medline and Cochrane databases supplemented with hand search of abstract proceedings to identify randomized-controlled trials of i.v. acetaminophen. Inclusion criteria were (a) randomized for i.v. acetaminophen vs a placebo control, (b) general anesthesia, and (c) reported or obtainable PONV outcomes. Primary outcome was postoperative nausea and secondary outcome was postoperative vomiting. We included 30 studies with 2364 patients (1223 in the acetaminophen group, 1141 in the placebo group). The relative risk (95% confidence interval) was 0.73 (0.60-0.88) for nausea and 0.63 (0.45-0.88) for vomiting. Data showed significant heterogeneity for both nausea (P=0.02, I(2)=38%) and vomiting (P=0.006, I(2)=47%), but were homogeneous when studies were grouped according to timing of first administration: i.v. acetaminophen reduced nausea when given prophylactically either before surgery, 0.54 (0.40-0.74), or before arrival in the postanesthesia care unit, 0.67 (0.55-0.83); but not when given after the onset of pain, 1.12 (0.85-1.48). When i.v. acetaminophen was given prophylactically, the reduction of nausea correlated with the reduction of pain (odds ratio 0.66, 0.47-0.93), but not with reduction in postoperative opioids (odds ratio 0.89, 0.64-1.22). Prophylactically administered i.v. acetaminophen reduced PONV, mainly mediated through superior pain control.
Collapse
Affiliation(s)
- Christian C Apfel
- Department of Anesthesia and Perioperative Care, UCSF Medical Center at Mt Zion, San Francisco, CA, USA Department of Epidemiology and Biostatistics, UCSF Medical Center at Mt Zion, San Francisco, CA, USA Institute of Anesthesiology and Outcomes Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA Department of Anaesthesiology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | |
Collapse
|
83
|
Jarzimski C, Karst M, Zoerner AA, Rakers C, May M, Suchy MT, Tsikas D, Krauss JK, Scheinichen D, Jordan J, Engeli S. Changes of blood endocannabinoids during anaesthesia: a special case for fatty acid amide hydrolase inhibition by propofol? Br J Clin Pharmacol 2012; 74:54-9. [PMID: 22242687 DOI: 10.1111/j.1365-2125.2012.04175.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Available data from animal studies suggest that the narcotic drug propofol interacts with the endocannabinoid system. Inhibition of enzymatic degradation of anandamide could explain some of the characteristics of propofol. Direct measurements have not been reported yet in humans. WHAT THIS STUDY ADDS • Propofol does not change the time course of anandamide plasma concentrations during anaesthesia. Furthermore, propofol does not inhibit fatty acid amide hydrolase activity ex vivo or in vitro. Thus, specific characteristics of the narcotic drug propofol cannot be explained by peripheral inhibition of anandamide degradation in humans. AIMS The aim of our study was to describe the time course of endocannabinoids during different anaesthesia protocols in more detail, and to challenge the hypothesis that propofol acts as a FAAH inhibitor. METHODS Endocannabinoids were measured during the first hour of anaesthesia in 14 women and 14 men undergoing general anaesthesia with propofol and in 14 women and 14 men receiving thiopental/sevoflurane. We also incubated whole human blood samples ex vivo with propofol and the known FAAH inhibitor oloxa and determined FAAH enzyme kinetics. RESULTS Plasma anandamide decreased similarly with propofol and thiopental/sevoflurane anaesthesia, and reached a nadir after 10 min. Areas under the curve for anandamide (mean and 95% CI) were 53.3 (47.4, 59.2) nmol l(-1) 60 min with propofol and 48.5 (43.1, 53.8) nmol l(-1) 60 min with thiopental/sevoflurane (P= NS). Anandamide and propofol plasma concentrations were not correlated at any time point. Ex vivo FAAH activity was not inhibited by propofol. Enzyme kinetics (mean ± SD) of recombinant human FAAH were K(m) = 16.9 ± 8.8 µmol l(-1) and V(max) = 44.6 ± 15.8 nmol mg(-1) min(-1) FAAH without, and K(m) = 16.6 ± 4.0 µmol l(-1) and V(max) = 44.0 ± 7.6 nmol mg( 1 ) min(-1) FAAH with 50 µmol l(-1) propofol (P= NS for both). CONCLUSIONS Our findings challenge the idea that propofol anaesthesia and also propofol addiction are directly mediated by FAAH inhibition, but we cannot exclude other indirect actions on cannabinoid receptors.
Collapse
Affiliation(s)
- Carina Jarzimski
- Institute of Clinical Pharmacology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Abstract
Stress plays an important role in psychiatric disorders, and preclinical evidence indicates that the central endocannabinoid system modulates endocrine and neuronal responses to stress. This study aimed to investigate the effect of acute stress on circulating concentrations of endocannabinoids (eCBs) in healthy humans. A total of 71 adults participated in two sessions in which they were exposed to either a standardized psychosocial stress procedure (Trier Social Stress Test) or a control task. Blood samples for eCB and cortisol assays and cardiovascular and subjective measures were obtained before and at regular intervals after the tasks. Serum concentrations of the eCBs, N-arachidonylethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), as well as of the N-acylethanolamides (NAEs), N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA), and of the O-acylglycerol, 2-oleoylglycerol (2-OG), were determined. Compared with the control condition, stress increased serum concentrations of AEA and the other NAEs immediately after the stress period. Increases in PEA were positively correlated with increases in serum cortisol after stress. Furthermore, anxiety ratings at baseline were negatively correlated with baseline concentrations of AEA. The sex and menstrual cycle status of the subject affected the NAE responses to stress. Interestingly, subjects of Asian and African-American races exhibited different patterns of stress responses compared with the Caucasian subjects. These results indicate that stress increases circulating NAEs in healthy human volunteers. This finding supports a protective role for eCBs in anxiety. Further research is needed to elucidate the function of these lipid mediators, and to determine the mechanisms that regulate their appearance in the circulation.
Collapse
|
85
|
Higuchi S, Irie K, Yamaguchi R, Katsuki M, Araki M, Ohji M, Hayakawa K, Mishima S, Akitake Y, Matsuyama K, Mishima K, Mishima K, Iwasaki K, Fujiwara M. Hypothalamic 2-arachidonoylglycerol regulates multistage process of high-fat diet preferences. PLoS One 2012; 7:e38609. [PMID: 22737214 PMCID: PMC3380864 DOI: 10.1371/journal.pone.0038609] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Background In this study, we examined alterations in the hypothalamic reward system related to high-fat diet (HFD) preferences. We previously reported that hypothalamic 2-arachidonoylglycerol (2-AG) and glial fibrillary acid protein (GFAP) were increased after conditioning to the rewarding properties of a HFD. Here, we hypothesized that increased 2-AG influences the hypothalamic reward system. Methods The conditioned place preference test (CPP test) was used to evaluate HFD preferences. Hypothalamic 2-AG was quantified by gas chromatography-mass spectrometry. The expression of GFAP was examined by immunostaining and western blotting. Results Consumption of a HFD over either 3 or 7 days increased HFD preferences and transiently increased hypothalamic 2-AG levels. HFD consumption over 14 days similarly increased HFD preferences but elicited a long-lasting increase in hypothalamic 2-AG and GFAP levels. The cannabinoid 1 receptor antagonist O-2050 reduced preferences for HFDs after 3, 7, or 14 days of HFD consumption and reduced expression of GFAP after 14 days of HFD consumption. The astrocyte metabolic inhibitor Fluorocitrate blocked HFD preferences after 14 days of HFD consumption. Conclusions High levels of 2-AG appear to induce HFD preferences, and activate hypothalamic astrocytes via the cannabinoid system. We propose that there may be two distinct stages in the development of HFD preferences. The induction stage involves a transient increase in 2-AG, whereas the maintenance stage involves a long lasting increase in 2-AG levels and activation of astrocytes. Accordingly, hypothalamic 2-AG may influence the development of HFD preferences.
Collapse
Affiliation(s)
- Sei Higuchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Keiichi Irie
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Ryuji Yamaguchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Mai Katsuki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Maiko Araki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Makiko Ohji
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazuhide Hayakawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shohei Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yoshiharu Akitake
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Kiyoshi Matsuyama
- Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, Fukuoka, Japan
| | - Kenji Mishima
- Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, Fukuoka, Japan
| | - Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
- * E-mail:
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Michihiro Fujiwara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
86
|
Hillard CJ, Weinlander KM, Stuhr KL. Contributions of endocannabinoid signaling to psychiatric disorders in humans: genetic and biochemical evidence. Neuroscience 2011; 204:207-29. [PMID: 22123166 DOI: 10.1016/j.neuroscience.2011.11.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/05/2011] [Accepted: 11/08/2011] [Indexed: 11/28/2022]
Abstract
The endocannabinoid signaling system is a widespread, neuromodulatory system in brain and is also widely utilized in the periphery to modulate metabolic functions and the immune system. Preclinical data demonstrate that endocannabinoid signaling is an important stress buffer and modulates emotional and cognitive functions. These data suggest the hypothesis that endocannabinoid signaling could be dysfunctional in a number of mental disorders. Genetic polymorphisms in the human genes for two important proteins of the endocannabinoid signaling system, the CB1 cannabinoid receptor (CB1R) and fatty acid amide hydrolase (FAAH), have been explored in the context of normal and pathological conditions. In the case of the gene for FAAH, the mechanistic relationships among the common genetic polymorphism, the expression of the FAAH protein, and its likely impact on endocannabinoid signaling are understood. However, multiple polymorphisms in the gene for the CB1R occur and are associated with human phenotypic differences without an understanding of the functional relationships among the gene, mRNA, protein, and protein function. The endocannabinoid ligands are found in the circulation, and several studies have identified changes in their concentrations under various conditions. These data are reviewed for the purpose of generating hypotheses and to encourage further studies in this very interesting and important area.
Collapse
Affiliation(s)
- C J Hillard
- Department of Pharmacology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | | | |
Collapse
|
87
|
Acute hyperglycemia is related to gastrointestinal symptoms in motion sickness: an experimental study. Physiol Behav 2011; 105:394-401. [PMID: 21907224 DOI: 10.1016/j.physbeh.2011.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 08/11/2011] [Accepted: 08/23/2011] [Indexed: 11/22/2022]
Abstract
Motion sickness is caused by exposure to unfamiliar motions and typical symptoms of motion sickness include nausea and vomiting. To observe the metabolic and hormonal differences between nausea/vomiting (NAV) subjects and non-nausea/vomiting (NNV) ones, and to understand how the differences in metabolites and hormones affect the tolerance of organism to acceleration, 60 volunteers were exposed to repetitive acceleration using a 6-degree-of-freedom ship motion simulator. Meanwhile, 36 rats were randomly divided into three groups: an acceleration model group (n=14, exposed to acceleration), insulin group (n=14, intraperitoneal injection of insulin 30 min before exposure to acceleration), and control group (n=8). Gas chromatography coupled to time-of-flight mass spectrometry (GC-TOF/MS) was applied to analyze the serum metabolites in human subjects. Serum glucocorticoid, insulin, and glucagon levels were determined by radioimmunoassay in the NAV and NNV subjects as well as in rats, and serum epinephrine level was determined by ELISA. After acceleration exposure, 9 metabolites, including L-histidine, L-ornithine, L-serine, L-tyrosine, pyroglutamic acid, fumaric acid, urea, n-dodecanoic acid and n-tetradecanoic acid, had different changes in the NAV and NNV groups. The serum levels of 4-hydroxy-L-proline, glucose, oleic acid and urea were significantly higher in the NAV group than in the NNV group after exposure; however, only the elevation degree of serum glucose was significantly greater in the NAV group than in the NNV group (P<0.05). Serum cortisol and epinephrine were increased in both groups. Before exposure, insulin level in the NAV group was significantly lower than that in the NNV group (P<0.05). After rotation exposure, rat serum glucose in the insulin group was significantly lower than that in the acceleration model group (P<0.001), and the motion sickness index was significantly lower than that in the acceleration model group (P<0.05). Our study provides the first evidence that stable glucose level can help to relieve gastrointestinal symptoms in motion sickness, and suggests that acute hyperglycemia is related to gastrointestinal symptoms in motion sickness.
Collapse
|
88
|
Sciolino NR, Zhou W, Hohmann AG. Enhancement of endocannabinoid signaling with JZL184, an inhibitor of the 2-arachidonoylglycerol hydrolyzing enzyme monoacylglycerol lipase, produces anxiolytic effects under conditions of high environmental aversiveness in rats. Pharmacol Res 2011; 64:226-34. [PMID: 21600985 DOI: 10.1016/j.phrs.2011.04.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 04/21/2011] [Accepted: 04/25/2011] [Indexed: 12/29/2022]
Abstract
Dysregulation in signaling of the endocannabinoid 2-arachidonoylglycerol (2-AG) is implicated in hyperresponsiveness to stress. We hypothesized that blockade of monoacylglycerol lipase (MGL), the primary enzyme responsible for 2-AG deactivation in vivo, would produce context-dependent anxiolytic effects in rats. Environmental aversiveness was manipulated by varying illumination of an elevated plus maze. Percentage open arm time and numbers of open and closed arm entries were measured in rats receiving a single intraperitoneal (i.p.) injection of either vehicle, the MGL inhibitor JZL184 (1-8mg/kg), the benzodiazepine diazepam (1mg/kg), the cannabinoid CB(1) receptor antagonist rimonabant (1mg/kg), or JZL184 (8mg/kg) coadministered with rimonabant (1mg/kg). JZL184 (8mg/kg) produced anxiolytic-like effects (i.e., increased percentage open arm time and number of open arm entries) under high, but not low, levels of environmental aversiveness. Diazepam produced anxiolytic effects in either context. Rimonabant blocked the anxiolytic-like effects of JZL184, consistent with mediation by CB(1). Anxiolytic effects of JZL184 were preserved following chronic (8mg/kg per day×6 days) administration. Chronic and acute JZL184 treatment similarly enhanced behavioral sensitivity to an exogenous cannabinoid (WIN55,212-2; 2.5mg/kg i.p.) 24 or 72h following the terminal injection, suggesting a pervasive effect of MGL inhibition on the endocannabinoid system. We attribute our results to alterations in emotion rather than locomotor activity as JZL184 did not alter the number of closed arm entries in the plus maze or produce motor ataxia in the bar test. Our results demonstrate that JZL184 has beneficial, context-dependent effects on anxiety in rats, presumably via inhibition of MGL-mediated hydrolysis of 2-AG. These data warrant further testing of MGL inhibitors to elucidate the functional role of 2-AG in controlling anxiety and stress responsiveness. Our data further implicate a role for 2-AG in the regulation of emotion and validate MGL as a therapeutic target.
Collapse
Affiliation(s)
- Natale R Sciolino
- Department of Psychology, Neuroscience and Behavior Program, University of Georgia, Athens, GA, United States
| | | | | |
Collapse
|
89
|
[Esthetic-preventive conservation of first molars in mixed dentition]. Handb Exp Pharmacol 1990; 231:423-47. [PMID: 2640817 DOI: 10.1007/978-3-319-20825-1_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|