51
|
Rampoldi F, Bonrouhi M, Boehm ME, Lehmann WD, Popovic ZV, Kaden S, Federico G, Brunk F, Gröne HJ, Porubsky S. Immunosuppression and Aberrant T Cell Development in the Absence of N-Myristoylation. THE JOURNAL OF IMMUNOLOGY 2015; 195:4228-43. [DOI: 10.4049/jimmunol.1500622] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/01/2015] [Indexed: 01/01/2023]
|
52
|
Bauer E, Witalisz A, Strobl B, Stoiber D. Methods to study tumor surveillance using tumor cell transplantation into genetically engineered mice. Methods Mol Biol 2015; 1267:439-56. [PMID: 25636483 DOI: 10.1007/978-1-4939-2297-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
When a tumor evolves, there is constant crosstalk between the transformed cells and cells of the immune system. Transplantation of well-established tumor cell lines into genetically engineered mice is a valuable tool to study the contribution of a gene of interest to tumor surveillance. These methods bear several advantages: first, such cell lines are well characterized; second, much data for reference exist; and third, the impact of the immune system can be separated from tumor cell intrinsic effects. Here, we provide protocols for tumor cell transplantations to address the role of a specific gene product in tumor surveillance. We furthermore describe several approaches to define the impact of natural killer cells and T cells, such as cell depletion and adoptive transfer experiments or use of different genetically modified mice.
Collapse
Affiliation(s)
- Eva Bauer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | | | | | | |
Collapse
|
53
|
Nelson RK, Gould KA. An Lck-cre transgene accelerates autoantibody production and lupus development in (NZB × NZW)F1 mice. Lupus 2015; 25:137-54. [PMID: 26385218 DOI: 10.1177/0961203315603139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/29/2015] [Indexed: 11/16/2022]
Abstract
Lupus is an autoimmune disease characterized by the development of antinuclear autoantibodies and immune complex-mediated tissue damage. T cells in lupus patients appear to undergo apoptosis at an increased rate, and this enhanced T cell apoptosis has been postulated to contribute to lupus pathogenesis by increasing autoantigen load. However, there is no direct evidence to support this hypothesis. In this study, we show that an Lck-cre transgene, which increases T cell apoptosis as a result of T cell-specific expression of cre recombinase, accelerates the development of autoantibodies and nephritis in lupus-prone (NZB × NZW)F1 mice. Although the enhanced T cell apoptosis in Lck-cre transgenic mice resulted in an overall decrease in the relative abundance of splenic CD4(+) and CD8(+) T cells, the proportion of activated CD4(+) T cells was increased and no significant change was observed in the relative abundance of suppressive T cells. We postulate that the Lck-cre transgene promoted lupus by enhancing T cell apoptosis, which, in conjunction with the impaired clearance of apoptotic cells in lupus-prone mice, increased the nuclear antigen load and accelerated the development of anti-nuclear autoantibodies. Furthermore, our results also underscore the importance of including cre-only controls in studies using the cre-lox system.
Collapse
Affiliation(s)
- R K Nelson
- Department of Genetics, Cell Biology & Anatomy, Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - K A Gould
- Department of Genetics, Cell Biology & Anatomy, Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
54
|
DeMicco A, Naradikian MS, Sindhava VJ, Yoon JH, Gorospe M, Wertheim GB, Cancro MP, Bassing CH. B Cell-Intrinsic Expression of the HuR RNA-Binding Protein Is Required for the T Cell-Dependent Immune Response In Vivo. THE JOURNAL OF IMMUNOLOGY 2015; 195:3449-62. [PMID: 26320247 DOI: 10.4049/jimmunol.1500512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/03/2015] [Indexed: 11/19/2022]
Abstract
The HuR RNA-binding protein posttranscriptionally controls expression of genes involved in cellular survival, proliferation, and differentiation. To determine roles of HuR in B cell development and function, we analyzed mice with B lineage-specific deletion of the HuR gene. These HuRΔ/Δ mice have reduced numbers of immature bone marrow and mature splenic B cells, with only the former rescued by p53 inactivation, indicating that HuR supports B lineage cells through developmental stage-specific mechanisms. Upon in vitro activation, HuRΔ/Δ B cells have a mild proliferation defect and impaired ability to produce mRNAs that encode IgH chains of secreted Abs, but no deficiencies in survival, isotype switching, or expression of germinal center (GC) markers. In contrast, HuRΔ/Δ mice have minimal serum titers of all Ab isotypes, decreased numbers of GC and plasma B cells, and few peritoneal B-1 B cells. Moreover, HuRΔ/Δ mice have severely decreased GCs, T follicular helper cells, and high-affinity Abs after immunization with a T cell-dependent Ag. This failure of HuRΔ/Δ mice to mount a T cell-dependent Ab response contrasts with the ability of HuRΔ/Δ B cells to become GC-like in vitro, indicating that HuR is essential for aspects of B cell activation unique to the in vivo environment. Consistent with this notion, we find in vitro stimulated HuRΔ/Δ B cells exhibit modestly reduced surface expression of costimulatory molecules whose expression is similarly decreased in humans with common variable immunodeficiency. HuRΔ/Δ mice provide a model to identify B cell-intrinsic factors that promote T cell-dependent immune responses in vivo.
Collapse
Affiliation(s)
- Amy DeMicco
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Martin S Naradikian
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Vishal J Sindhava
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD 21224; and
| | - Gerald B Wertheim
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Michael P Cancro
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104; Cell and Molecular Biology Graduate Group, Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
| |
Collapse
|
55
|
Kim SH, Burton J, Yu CR, Sun L, He C, Wang H, Morse HC, Egwuagu CE. Dual Function of the IRF8 Transcription Factor in Autoimmune Uveitis: Loss of IRF8 in T Cells Exacerbates Uveitis, Whereas Irf8 Deletion in the Retina Confers Protection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1480-8. [PMID: 26163590 PMCID: PMC4530071 DOI: 10.4049/jimmunol.1500653] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/16/2015] [Indexed: 01/14/2023]
Abstract
IFN regulatory factor 8 (IRF8) is constitutively expressed in monocytes and B cells and plays a critical role in the functional maturation of microglia cells. It is induced in T cells following Ag stimulation, but its functions are less well understood. However, recent studies in mice with T cell-specific Irf8 disruption under direction of the Lck promoter (LCK-IRF8KO) suggest that IRF8 directs a silencing program for Th17 differentiation, and IL-17 production is markedly increased in IRF8-deficient T cells. Paradoxically, loss of IRF8 in T cells has no effect on the development or severity of experimental autoimmune encephalomyelitis (EAE), although exacerbating colitis in a mouse colitis model. In contrast, mice with a macrophage/microglia-specific Irf8 disruption are resistant to EAE, further confounding our understanding of the roles of IRF8 in host immunity and autoimmunity. To clarify the role of IRF8 in autoimmune diseases, we have generated two mouse strains with targeted deletion of Irf8 in retinal cells, including microglial cells and a third mouse strain with targeted Irf8 deletion in T cells under direction of the nonpromiscuous, CD4 promoter (CD4-IRF8KO). In contrast to the report that IRF8 deletion in T cells has no effect on EAE, experimental autoimmune uveitis is exacerbated in CD4-IRF8KO mice and disease enhancement correlates with significant expansion of Th17 cells and a reduction in T regulatory cells. In contrast to CD4-IRF8KO mice, Irf8 deletion in retinal cells confers protection from uveitis, underscoring divergent and tissue-specific roles of IRF8 in host immunity. These results raise a cautionary note in the context of therapeutic targeting of IRF8.
Collapse
Affiliation(s)
- Sung-Hye Kim
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Jenna Burton
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Cheng-Rong Yu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Lin Sun
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Chang He
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Hongsheng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Charles E Egwuagu
- Molecular Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
56
|
Sakaguchi S, Hainberger D, Tizian C, Tanaka H, Okuda T, Taniuchi I, Ellmeier W. MAZR and Runx Factors Synergistically Repress ThPOK during CD8+ T Cell Lineage Development. THE JOURNAL OF IMMUNOLOGY 2015; 195:2879-87. [PMID: 26254341 DOI: 10.4049/jimmunol.1500387] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 07/13/2015] [Indexed: 11/19/2022]
Abstract
Th-inducing Pox virus and zinc finger/Krüppel-like factor (ThPOK) is a key commitment factor for CD4(+) lineage T cells and is essential for the maintenance of CD4 lineage integrity; thus, the expression of ThPOK has to be tightly controlled. In this article, we demonstrate that Myc-associated zinc finger-related factor (MAZR) and Runt-related transcription factor 1 (Runx1) together repressed ThPOK in preselection double-positive thymocytes, whereas MAZR acted in synergy with Runx3 in the repression of ThPOK in CD8(+) T cells. Furthermore, MAZR-Runx1 and MAZR-Runx3 double-mutant mice showed enhanced derepression of Cd4 in double-negative thymocytes and in CD8(+) T cells in comparison with Runx1 or Runx3 single-deficient mice, respectively, indicating that MAZR modulates Cd4 silencing. Thus, our data demonstrate developmental stage-specific synergistic activities between MAZR and Runx/core-binding factor β (CBFβ) complexes. Finally, retroviral Cre-mediated conditional deletion of MAZR in peripheral CD8(+) T cells led to the derepression of ThPOK, thus showing that MAZR is also part of the molecular machinery that maintains a repressed state of ThPOK in CD8(+) T cells.
Collapse
Affiliation(s)
- Shinya Sakaguchi
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Daniela Hainberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Caroline Tizian
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Hirokazu Tanaka
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; and
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Kyoto Prefectural University of Medicine Kyoto, Kyoto 602-8566, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; and
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
57
|
Villanueva JE, Malle EK, Gardam S, Silveira PA, Zammit NW, Walters SN, Brink R, Grey ST. TRAF2 regulates peripheral CD8(+) T-cell and NKT-cell homeostasis by modulating sensitivity to IL-15. Eur J Immunol 2015; 45:1820-31. [PMID: 25931426 DOI: 10.1002/eji.201445416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 04/28/2015] [Indexed: 11/07/2022]
Abstract
In this study, a critical and novel role for TNF receptor (TNFR) associated factor 2 (TRAF2) is elucidated for peripheral CD8(+) T-cell and NKT-cell homeostasis. Mice deficient in TRAF2 only in their T cells (TRAF2TKO) show ∼40% reduction in effector memory and ∼50% reduction in naïve CD8(+) T-cell subsets. IL-15-dependent populations were reduced further, as TRAF2TKO mice displayed a marked ∼70% reduction in central memory CD8(+) CD44(hi) CD122(+) T cells and ∼80% decrease in NKT cells. TRAF2TKO CD8(+) CD44(hi) T cells exhibited impaired dose-dependent proliferation to exogenous IL-15. In contrast, TRAF2TKO CD8(+) T cells proliferated normally to anti-CD3 and TRAF2TKO CD8(+) CD44(hi) T cells exhibited normal proliferation to exogenous IL-2. TRAF2TKO CD8(+) T cells expressed normal levels of IL-15-associated receptors and possessed functional IL-15-mediated STAT5 phosphorylation, however TRAF2 deletion caused increased AKT activation. Loss of CD8(+) CD44(hi) CD122(+) and NKT cells was mechanistically linked to an inability to respond to IL-15. The reduced CD8(+) CD44(hi) CD122(+) T-cell and NKT-cell populations in TRAF2TKO mice were rescued in the presence of high dose IL-15 by IL-15/IL-15Rα complex administration. These studies demonstrate a critical role for TRAF2 in the maintenance of peripheral CD8(+) CD44(hi) CD122(+) T-cell and NKT-cell homeostasis by modulating sensitivity to T-cell intrinsic growth factors such as IL-15.
Collapse
Affiliation(s)
| | | | - Sandra Gardam
- B cell Biology Group, Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | | | | | | | - Robert Brink
- B cell Biology Group, Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Australia
| | | |
Collapse
|
58
|
Siegemund S, Shepherd J, Xiao C, Sauer K. hCD2-iCre and Vav-iCre mediated gene recombination patterns in murine hematopoietic cells. PLoS One 2015; 10:e0124661. [PMID: 25884630 PMCID: PMC4401753 DOI: 10.1371/journal.pone.0124661] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022] Open
Abstract
Cre-recombinase mediated conditional deletion of Lox-P site flanked ("floxed") genes is widely used for functional gene annotation in mice. Many different Cre-transgenic mouse lines have been developed for cell-type specific gene disruption. But often, the precise tissue-patterns of Cre activity remain incompletely characterized. Two widely used transgenes for conditional gene recombination in hematopoietic cells are Vav-iCre driven from the murine Vav1 promotor, and hCD2-iCre driven from the human CD2 promotor. Vav-iCre expresses active Cre in fetal and adult hematopoietic stem cells and all descendants, hCD2-iCre in immature and mature B and T lymphocytes. To better characterize which hematopoietic cells contain hCD2-iCre activity, we compared EYFP fluorescence in hCD2-iCre+/- R26-stop-EYFP+/- and Vav-iCre+/- R26-stop-EYFP+/-mice. R26-stop-EYFP ubiquitously encodes EYFP preceded by a floxed stop cassette. By removing it, Cre activity induces measurable EYFP expression. Our results confirm the known activity patterns for both Cre transgenes and unveil additional hCD2-iCre mediated reporter gene recombination in common lymphoid progenitors, in natural killer cells and their progenitors, and in plasmacytoid and conventional dendritic cells. This supports previously proposed common lymphoid origins for natural killer cells and subsets of dendritic cells, and indicates the need to consider pleiotropic effects when studying hCD2-iCre mediated conditional knockout mice. Vav-iCre+/- R26-stop-EYFP+/-mice did not show the non-hematopoietic recombination in vascular endothelial cells seen in other Vav-Cre mouse lines, but displayed an unexpected Vav-iCre mediated recombination in a bone cell subset lacking hematopoietic markers. This pinpoints the need to consider stromal cell contributions to phenotypes of Vav-iCre mediated conditional knockout mice. Altogether, our data provide the first detailed assessment of hCD2-iCre and Vav-iCre mediated deletion of floxed genes during lymphocyte development from hematopoietic stem cells and open up novel applications for either Cre-transgenic mouse line.
Collapse
Affiliation(s)
- Sabine Siegemund
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jovan Shepherd
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Changchun Xiao
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Karsten Sauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
59
|
Buckley MW, Trampont PC, Arandjelovic S, Fond AM, Juncadella IJ, Ravichandran KS. ShcA regulates late stages of T cell development and peripheral CD4+ T cell numbers. THE JOURNAL OF IMMUNOLOGY 2015; 194:1665-76. [PMID: 25595778 DOI: 10.4049/jimmunol.1401728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell development in the thymus is a highly regulated process that critically depends upon productive signaling via the preTCR at the β-selection stage, as well as via the TCR for selection from the CD4(+)CD8(+) double-positive stage to the CD4 or CD8 single-positive stage. ShcA is an adapter protein expressed in thymocytes, and it is required for productive signaling through the preTCR, with impaired signaling via ShcA leading to a developmental block at the β-selection checkpoint. However, the role of ShcA in subsequent stages of T cell development has not been addressed. In this study, we generated transgenic mice (CD4-Cre/ShcFFF mice) that specifically express a phosphorylation-defective dominant-negative ShcA mutant (ShcFFF) in late T cell development. Thymocytes in CD4-Cre/ShcFFF mice progressed normally through the β-selection checkpoint, but displayed a significant reduction in the numbers of single-positive CD4(+) and CD8(+) thymocytes. Furthermore, CD4-Cre/ShcFFF mice, when bred with transgenic TCR mouse strains, had impaired signaling through the transgenic TCRs. Consistent with defective progression to the single-positive stage, CD4-Cre/ShcFFF mice also had significant peripheral lymphopenia. Moreover, these CD4-Cre/ShcFFF mice develop attenuated disease in CD4(+) T cell-dependent experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Collectively, these data identify an important role for the adapter protein ShcA in later stages of thymic T cell development and in peripheral T cell-dependent events.
Collapse
Affiliation(s)
- Monica W Buckley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| | - Paul C Trampont
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| | - Sanja Arandjelovic
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| | - Aaron M Fond
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| | - Ignacio J Juncadella
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| | - Kodi S Ravichandran
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908; Carter Immunology Center, University of Virginia, Charlottesville, VA 22908; and Center for Cell Clearance, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
60
|
Yuan X, Garrett-Sinha LA, Sarkar D, Yang S. Deletion of IFT20 in early stage T lymphocyte differentiation inhibits the development of collagen-induced arthritis. Bone Res 2014; 2:14038. [PMID: 26097753 PMCID: PMC4470568 DOI: 10.1038/boneres.2014.38] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 09/26/2014] [Accepted: 09/28/2014] [Indexed: 12/13/2022] Open
Abstract
IFT20 is the smallest member of the intraflagellar transport protein (IFT) complex B. It is involved in cilia formation. Studies of IFT20 have been confined to ciliated cells. Recently, IFT20 was found to be also expressed in non-ciliated T cells and have functions in immune synapse formation and signaling in vitro. However, how IFT20 regulates T-cell development and activation in vivo is still unknown. We deleted the IFT20 gene in early and later stages of T-cell development by crossing IFT20(flox/flox) (IFT20(f/f) ) mice with Lck-Cre and CD4-Cre transgenic mice, and investigated the role of IFT20 in T-cell maturation and in the development of T cell-mediated collagen-induced arthritis (CIA). We found that both Lck-Cre/IFT20(f/f) and CD4-Cre/IFT20(f/f) mice were indistinguishable from their wild-type littermates in body size, as well as in the morphology and weight of the spleen and thymus. However, the number of CD4- and CD8-positive cells was significantly lower in thymus and spleen in Lck-Cre/IFT20(f/f) mice. Meanwhile, the incidence and severity of CIA symptoms were significantly decreased, and inflammation in the paw was significantly inhibited in Lck-Cre/IFT20(f/f) mice compared to Lck-Cre/IFT20(+/+) littermates. Deletion IFT20 in more mature T cells of CD4-Cre/IFT20(f/f) mice had only mild effects on the development of T cells and CIA. The expression of IL-1β, IL-6 and TGF-β1 were significantly downregulated in the paw of Lck-Cre/IFT20(f/f) mice, but just slight decreased in CD4-Cre/IFT20(f/f) mice. These results demonstrate that deletion of IFT20 in the early stage of T-cell development inhibited CIA development through regulating T-cell development and the expression of critical cytokines.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
| | - Debanjan Sarkar
- Laboratory for Biomaterials and Regenerative Therapeutics, Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-2050, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
61
|
Chaix J, Nish SA, Lin WHW, Rothman NJ, Ding L, Wherry EJ, Reiner SL. Cutting edge: CXCR4 is critical for CD8+ memory T cell homeostatic self-renewal but not rechallenge self-renewal. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:1013-6. [PMID: 24973450 PMCID: PMC4108510 DOI: 10.4049/jimmunol.1400488] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Central memory (CM) CD8(+) T cells "remember" prior encounters because they maintain themselves through cell division in the absence of ongoing challenge (homeostatic self-renewal), as well as reproduce the CM fate while manufacturing effector cells during secondary Ag encounters (rechallenge self-renewal). We tested the consequence of conditional deletion of the bone marrow homing receptor CXCR4 on antiviral T cell responses. CXCR4-deficient CD8(+) T cells have impaired memory cell maintenance due to defective homeostatic proliferation. Upon rechallenge, however, CXCR4-deficient T cells can re-expand and renew the CM pool while producing secondary effector cells. The critical bone marrow-derived signals essential for CD8(+) T cell homeostatic self-renewal appear to be dispensable to yield self-renewing, functionally asymmetric cell fates during rechallenge.
Collapse
Affiliation(s)
- Julie Chaix
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Simone A Nish
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Wen-Hsuan W Lin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Nyanza J Rothman
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Lei Ding
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Rehabilitation and Regenerative Medicine, Columbia University, New York, NY 10032; and
| | - E John Wherry
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Steven L Reiner
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032;
| |
Collapse
|
62
|
Vielnascher RM, Hainzl E, Leitner NR, Rammerstorfer M, Popp D, Witalisz A, Rom R, Karaghiosoff M, Kolbe T, Müller S, Rülicke T, Lassnig C, Strobl B, Müller M. Conditional ablation of TYK2 in immunity to viral infection and tumor surveillance. Transgenic Res 2014; 23:519-29. [PMID: 24696087 DOI: 10.1007/s11248-014-9795-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/25/2014] [Indexed: 12/19/2022]
Abstract
Tyrosine kinase 2 (TYK2) has a pivotal role in immunity to infection and tumor surveillance. It is associated with several cytokine receptor chains including type I interferon (IFN) receptor 1 (IFNAR1), interleukin- (IL-) 12 receptor beta 1 (IL-12Rb1) and IL-10R2. We have generated a mouse with a conditional Tyk2 null allele and proved integrity of the conditional Tyk2 locus. TYK2 was successfully removed by the use of ubiquitous and tissue-specific Cre-expressing mouse strains. Myeloid TYK2 was found to critically contribute to the defense against murine cytomegalovirus. Ubiquitous TYK2 ablation severely impaired tumor immunosurveillance, while deletion in myeloid, dendritic or T cells alone showed no effect. The conditional Tyk2 mouse strain will be instrumental to further dissect TYK2 functions in infection, inflammation and cancer.
Collapse
Affiliation(s)
- Raimund M Vielnascher
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Sonsteng KM, Prigge JR, Talago EA, June RK, Schmidt EE. Hydrodynamic delivery of Cre protein to lineage-mark or time-stamp mouse hepatocytes in situ. PLoS One 2014; 9:e91219. [PMID: 24626158 PMCID: PMC3953374 DOI: 10.1371/journal.pone.0091219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/10/2014] [Indexed: 12/01/2022] Open
Abstract
Cre-responsive fluorescent marker alleles are powerful tools for cell lineage tracing in mice; however their utility is limited by regulation of Cre activity. When targeting hepatocytes, hydrodynamic delivery of a Cre-expression plasmid can convert Cre-responsive alleles without inducing the intracellular or systemic antiviral responses often associated with viral-derived Cre-expression vectors. In this method, rapid high-volume intravenous inoculation induces hepatocyte-targeted uptake of extracellular molecules. Here we tested whether hydrodynamic delivery of Cre protein or Cre fused to the HIV-TAT cell-penetrating peptide could convert Cre-responsive reporters in hepatocytes of mice. Hydrodynamic delivery of 2 nmol of either Cre or TAT-Cre protein converted the reporter allele in 5 to 20% of hepatocytes. Neither protein gave detectable Cre activity in endothelia, non-liver organs, or non-hepatocyte cells in liver. Using mice homozygous for a Cre-responsive marker that directs red- (Cre-naïve) or green- (Cre-converted) fluorescent proteins to the nucleus, we assessed sub-saturation Cre-activity. One month after hydrodynamic inoculation with Cre protein, 58% of hepatocyte nuclei that were green were also red, indicating that less than half of the hepatocytes that had obtained enough Cre to convert one marker allele to green were able to convert all alleles. For comparison, one month after hydrodynamic delivery of a Cre-expression plasmid with a weak promoter, only 26% of the green nuclei were also red. Our results show that hydrodynamic delivery of Cre protein allows rapid allelic conversion in hepatocytes, but Cre-activity is sub-saturating so many cells will not convert multiple Cre-responsive alleles.
Collapse
Affiliation(s)
- Katherine M. Sonsteng
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Justin R. Prigge
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Emily A. Talago
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
| | - Ronald K. June
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, Montana, United States of America
| | - Edward E. Schmidt
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
64
|
Lee JK, Won C, Yi EH, Seok SH, Kim MH, Kim SJ, Chung MH, Lee HG, Ikuta K, Ye SK. Signal transducer and activator of transcription 3 (Stat3) contributes to T-cell homeostasis by regulating pro-survival Bcl-2 family genes. Immunology 2013; 140:288-300. [PMID: 23746113 DOI: 10.1111/imm.12133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/20/2013] [Accepted: 06/03/2013] [Indexed: 12/13/2022] Open
Abstract
The naive T-cell pool in peripheral lymphoid tissues is fairly stable in terms of number, diversity and functional capabilities in spite of the absence of prominent stimuli. This stability is attributed to continuous tuning of the composition of the T-cell pool by various homeostatic signals. Despite extensive research into the link between signal transducer and activator of transcription 3 (Stat3) and T-cell survival, little is known about how Stat3 regulates homeostasis by maintaining the required naive T-cell population in peripheral lymphoid organs. We assessed whether the elimination of Stat3 in T cells limits T-cell survival. We demonstrated that the proportion and number of single-positive thymocytes as well as T cells in the spleen and lymph nodes were significantly decreased in the Stat3-deficient group as a result of the enhanced susceptibility of Stat3-deleted T lymphocytes to apoptosis. Importantly, expression of the anti-apoptotic Bcl-2 and Bcl-xL was markedly decreased in Stat3-deleted single-positive thymocytes and T lymphocytes, suggesting that Stat3 helps to maintain the T-cell pool in the resting condition by promoting the expression of Bcl-2 family genes. These findings suggest the importance of Stat3 in the integration of homeostatic cues for the maintenance and functional tuning of the T-cell pool.
Collapse
Affiliation(s)
- Jin-Ku Lee
- Department of Pharmacology and Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea; Ischaemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuro-Immune Information Storage Network Research Centre, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Huang C, Jackson M, Samuel K, Taylor AH, Lowell S, Forrester LM. Haematopoietic differentiation is inhibited when Notch activity is enhanced in FLK1(+) mesoderm progenitors. Stem Cell Res 2013; 11:1273-87. [PMID: 24064354 DOI: 10.1016/j.scr.2013.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/08/2013] [Accepted: 08/26/2013] [Indexed: 12/16/2022] Open
Abstract
Notch signalling has been implicated during haematopoietic development in vivo and in the differentiation of haematopoietic cells from pluripotent cells in vitro. However interpretation of data from many of these studies has been complicated by the heterogeneous nature of cell populations under study and by the fact that the Notch pathway is active during embryogenesis prior to the development of the haematopoietic system. To define the role of Notch signalling in more precise cell populations during the early stages of haematopoietic development within the aorta-gonad-mesonephros (AGM) microenvironment we co-cultured differentiating ESCs on a stromal cell line derived from this region of the embryo. Our co-culture system had no effect on the production of FLK1(+) mesoderm progenitor cells but promoted their subsequent haematopoietic differentiation. We assessed the role of Notch signalling on haematopoietic differentiation of isolated FLK1(+) cells. Notch activity is dynamic and drops to basal levels as FLK1(+) cells commit to a haematopoietic fate. Further reduction of Notch activity by the inducible expression of dominant negative MAML had no functional consequences. In contrast, induction of Notch activity using an inducible NotchIC expression system had an inhibitory effect on haematopoietic differentiation. We used a Cre-mediated recombination strategy whereby NotchIC-expressing cells were marked with the hCD2 receptor and observed a reduction in the number of multi-lineage and myeloid colonies derived from NotchIC(+) compared to NotchIC(-) FLK1(+) cells isolated from the same culture. We believe that our culture system represents a good model for haematopoietic development within the AGM microenvironment and our data suggest that haematopoietic commitment of FLK1(+) cells in this setting occurs when Notch activity is below a specific threshold.
Collapse
Affiliation(s)
- Caoxin Huang
- MRC Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | | | | | | | | | | |
Collapse
|
66
|
Luche H, Nageswara Rao T, Kumar S, Tasdogan A, Beckel F, Blum C, Martins VC, Rodewald HR, Fehling HJ. In vivo fate mapping identifies pre-TCRα expression as an intra- and extrathymic, but not prethymic, marker of T lymphopoiesis. ACTA ACUST UNITED AC 2013; 210:699-714. [PMID: 23509324 PMCID: PMC3620354 DOI: 10.1084/jem.20122609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel pre-TCRα (pTα) reporter mouse reveals that expression of pTα is confined to the T lineage and does not occur on prethymic progenitors. Expression of the pre–T cell receptor α (pTα) gene has been exploited in previous studies as a molecular marker to identify tiny cell populations in bone marrow (BM) and blood that were suggested to contain physiologically relevant thymus settling progenitors (TSPs). But to what extent these cells genuinely contribute to thymopoiesis has remained obscure. We have generated a novel pTαiCre knockin mouse line and performed lineage-tracing experiments to precisely quantitate the contribution of pTα-expressing progenitors to distinct differentiation pathways and to the genealogy of mature hematopoietic cells under physiological in vivo conditions. Using these mice in combination with fluorescent reporter strains, we observe highly consistent labeling patterns that identify pTα expression as a faithful molecular marker of T lineage commitment. Specifically, the fate of pTα-expressing progenitors was found to include all αβ and most γδ T cells but, in contrast to previous assumptions, to exclude B, NK, and thymic dendritic cells. Although we could detect small numbers of T cell progenitors with a history of pTα expression in BM and blood, our data clearly exclude these populations as physiologically important precursors of thymopoiesis and indicate that they instead belong to a pathway of T cell maturation previously defined as extrathymic.
Collapse
Affiliation(s)
- Hervé Luche
- Institute of Immunology, University Clinics Ulm, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|