51
|
Chen H, Dong F, Minteer SD. The progress and outlook of bioelectrocatalysis for the production of chemicals, fuels and materials. Nat Catal 2020. [DOI: 10.1038/s41929-019-0408-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
52
|
Miyaji A, Amao Y. Theoretical study on CO2 reduction catalyzed by formate dehydrogenase using the cation radical of a bipyridinium salt with an ionic substituent as a co-enzyme. Phys Chem Chem Phys 2020; 22:26987-26994. [DOI: 10.1039/d0cp05261b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mechanism for formate dehydrogenase from Candida boidinii catalyzed CO2 reduction to formate with the cation radical of a 4,4′-bipyridinium salt with an ionic substituent as a co-enzyme was clarified by theoretical studies.
Collapse
Affiliation(s)
- Akimitsu Miyaji
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
| | - Yutaka Amao
- Graduate School of Science
- Osaka City University
- Osaka 558-8585
- Japan
- Research Centre of Artificial Photosynthesis (ReCAP)
| |
Collapse
|
53
|
Miyaji A, Amao Y. Artificial co-enzyme based on carbamoyl-modified viologen derivative cation radical for formate dehydrogenase in the catalytic CO 2 reduction to formate. NEW J CHEM 2020. [DOI: 10.1039/d0nj04375c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The interaction between the single-electron reduced carbamoyl-modified-4,4-bipyridinium salt and CbFDH in the CO2 reduction to formate is elucidated by enzymatic kinetic analysis, the docking simulation and density functional theory calculation.
Collapse
Affiliation(s)
- Akimitsu Miyaji
- School of Materials and Chemical Technology
- Tokyo Institute of Technology
- Yokohama 226-8502
- Japan
| | - Yutaka Amao
- Graduate School of Science
- Osaka City University
- Osaka 558-8585
- Japan
- Research Centre of Artificial Photosynthesis (ReCAP)
| |
Collapse
|
54
|
Katagiri T, Amao Y. Trivalent metal ions promote the malic enzyme-catalyzed building of carbon–carbon bonds from CO2and pyruvate. NEW J CHEM 2020. [DOI: 10.1039/d0nj03449e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ME is an attractive biocatalyst for building carbon–carbon bonds through carboxylation of pyruvate with CO2. The carboxylation of pyruvate with CO2was promoted by adding a trivalent metal ion. In particular, Al3+accelerates ME-catalyzed carboxylation of pyruvate with CO2.
Collapse
Affiliation(s)
| | - Yutaka Amao
- Graduate School of Science
- Osaka City University
- Osaka 558-8585
- Japan
- Research Centre of Artificial Photosynthesis (ReCAP)
| |
Collapse
|
55
|
Song H, Ma C, Liu P, You C, Lin J, Zhu Z. A hybrid CO2 electroreduction system mediated by enzyme-cofactor conjugates coupled with Cu nanoparticle-catalyzed cofactor regeneration. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
56
|
Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol Adv 2019; 37:107408. [DOI: 10.1016/j.biotechadv.2019.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|
57
|
Yildirim D, Alagöz D, Toprak A, Tükel S, Fernandez-Lafuente R. Tuning dimeric formate dehydrogenases reduction/oxidation activities by immobilization. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
58
|
Kim D, Sathesh-Prabu C, JooYeon Y, Lee SK. High-Level Production of 4-Hydroxyvalerate from Levulinic Acid via Whole-Cell Biotransformation Decoupled from Cell Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10678-10684. [PMID: 31475535 DOI: 10.1021/acs.jafc.9b04304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
γ-Hydroxyvalerate (4HV) is an important monomer used to produce various valuable polymers and products. In this study, an engineered 3-hydroxybutyrate dehydrogenase that can convert levulinic acid (LA) into 4HV was co-expressed with a cofactor (NADH) regeneration system mediated by an NAD+-dependent formate dehydrogenase (CbFDH) in the Escherichia coli strain, MG1655. The resulting strain produced 23-fold more 4HV in a shake flask. The 4HV production was not dependent on ATP and required low aeration; all of these are considered beneficial characteristics for the production of target compounds, especially at an industrial scale. Under optimized conditions in a 5 L fermenter, the titer, productivity, and molar conversion efficiency for 4HV reached 100 g/L, 4.2 g/L/h, and 92%, respectively. Our system could prove to be a promising method for the large-scale production of 4HV from LA at low-cost and using a renewable biomass source.
Collapse
Affiliation(s)
| | | | - Young JooYeon
- Department of Biochemical Engineering , Gangneung-Wonju National University , Gangneung 25457 , Republic of Korea
| | | |
Collapse
|
59
|
Kuk SK, Gopinath K, Singh RK, Kim TD, Lee Y, Choi WS, Lee JK, Park CB. NADH-Free Electroenzymatic Reduction of CO2 by Conductive Hydrogel-Conjugated Formate Dehydrogenase. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00127] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Su Keun Kuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Krishnasamy Gopinath
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Raushan K. Singh
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Tae-Doo Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Youngjun Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Woo Seok Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|
60
|
Chen Y, Li P, Noh H, Kung C, Buru CT, Wang X, Zhang X, Farha OK. Stabilization of Formate Dehydrogenase in a Metal–Organic Framework for Bioelectrocatalytic Reduction of CO
2. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901981] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yijing Chen
- Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Peng Li
- Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Hyunho Noh
- Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Chung‐Wei Kung
- Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan City 70101 Taiwan
| | - Cassandra T. Buru
- Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Xingjie Wang
- Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Xuan Zhang
- Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208-3113 USA
| |
Collapse
|
61
|
Chen Y, Li P, Noh H, Kung CW, Buru CT, Wang X, Zhang X, Farha OK. Stabilization of Formate Dehydrogenase in a Metal-Organic Framework for Bioelectrocatalytic Reduction of CO 2. Angew Chem Int Ed Engl 2019; 58:7682-7686. [PMID: 30913356 DOI: 10.1002/anie.201901981] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/11/2019] [Indexed: 11/12/2022]
Abstract
The efficient fixation of excess CO2 from the atmosphere to yield value-added chemicals remains crucial in response to the increasing levels of carbon emission. Coupling enzymatic reactions with electrochemical regeneration of cofactors is a promising technique for fixing CO2 , while producing biomass which can be further transformed into biofuels. Herein, a bioelectrocatalytic system was established by depositing crystallites of a mesoporous metal-organic framework (MOF), termed NU-1006, containing formate dehydrogenase, on a fluorine-doped tin oxide glass electrode modified with Cp*Rh(2,2'-bipyridyl-5,5'-dicarboxylic acid)Cl2 complex. This system converts CO2 into formic acid at a rate of 79±3.4 mm h-1 with electrochemical regeneration of the nicotinamide adenine dinucleotide cofactor. The MOF-enzyme composite exhibited significantly higher catalyst stability when subjected to non-native conditions compared to the free enzyme, doubling the formic acid yield.
Collapse
Affiliation(s)
- Yijing Chen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Peng Li
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA.,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Hyunho Noh
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Chung-Wei Kung
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA.,Department of Chemical Engineering, National Cheng Kung University, 1 University Road, Tainan City, 70101, Taiwan
| | - Cassandra T Buru
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Xingjie Wang
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Xuan Zhang
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA.,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| |
Collapse
|
62
|
Yu X, Niks D, Ge X, Liu H, Hille R, Mulchandani A. Synthesis of Formate from CO 2 Gas Catalyzed by an O 2-Tolerant NAD-Dependent Formate Dehydrogenase and Glucose Dehydrogenase. Biochemistry 2019; 58:1861-1868. [PMID: 30839197 DOI: 10.1021/acs.biochem.8b01301] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct biocatalytic conversion of CO2 to formic acid is an attractive means of reversibly storing energy in chemical bonds. Formate dehydrogenases (FDHs) are a heterogeneous group of enzymes that catalyze the oxidation of formic acid to carbon dioxide, generating two protons and two electrons. Several FDHs have recently been reported to catalyze the reverse reaction, i.e., the reduction of carbon dioxide to formic acid, under appropriate conditions. The main challenges with these enzymes are relatively low rates of CO2 reduction and high oxygen sensitivity. Our earlier studies (Yu et al. (2017) J. Biol. Chem. 292, 16872-16879) have shown that the FdsABG formate dehydrogenase from Cupriavidus necator is able to effectively catalyze the reduction of CO2, using NADH as a source of reducing equivalents, with a good oxygen tolerance. On the basis of this result, we have developed a highly thermodynamically efficient and cost-effective biocatalytic process for the transformation of CO2 to formic acid using FdsABG. We have cloned the full-length soluble formate dehydrogenase (FdsABG) from C. necator and expressed it in Escherichia coli with a His-tag fused to the N terminus of the FdsG subunit; this overexpression system has greatly simplified the FdsABG purification process. Importantly, we have also combined this recombinant C. necator FdsABG with another enzyme, glucose dehydrogenase, for continuous regeneration of NADH for CO2 reduction and demonstrated that the combined system is highly effective in reducing CO2 to formate. The results indicate that this system shows significant promise for the future development of an enzyme-based system for the industrial reduction of CO2.
Collapse
|
63
|
Liang S, Zong M, Lou W. Recent Advances in Enzymatic Catalysis for Preparation of High Value-Added Chemicals from Carbon Dioxide. ACTA CHIMICA SINICA 2019. [DOI: 10.6023/a19060240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
64
|
Matelska D, Shabalin IG, Jabłońska J, Domagalski MJ, Kutner J, Ginalski K, Minor W. Classification, substrate specificity and structural features of D-2-hydroxyacid dehydrogenases: 2HADH knowledgebase. BMC Evol Biol 2018; 18:199. [PMID: 30577795 PMCID: PMC6303947 DOI: 10.1186/s12862-018-1309-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/27/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The family of D-isomer specific 2-hydroxyacid dehydrogenases (2HADHs) contains a wide range of oxidoreductases with various metabolic roles as well as biotechnological applications. Despite a vast amount of biochemical and structural data for various representatives of the family, the long and complex evolution and broad sequence diversity hinder functional annotations for uncharacterized members. RESULTS We report an in-depth phylogenetic analysis, followed by mapping of available biochemical and structural data on the reconstructed phylogenetic tree. The analysis suggests that some subfamilies comprising enzymes with similar yet broad substrate specificity profiles diverged early in the evolution of 2HADHs. Based on the phylogenetic tree, we present a revised classification of the family that comprises 22 subfamilies, including 13 new subfamilies not studied biochemically. We summarize characteristics of the nine biochemically studied subfamilies by aggregating all available sequence, biochemical, and structural data, providing comprehensive descriptions of the active site, cofactor-binding residues, and potential roles of specific structural regions in substrate recognition. In addition, we concisely present our analysis as an online 2HADH enzymes knowledgebase. CONCLUSIONS The knowledgebase enables navigation over the 2HADHs classification, search through collected data, and functional predictions of uncharacterized 2HADHs. Future characterization of the new subfamilies may result in discoveries of enzymes with novel metabolic roles and with properties beneficial for biotechnological applications.
Collapse
Affiliation(s)
- Dorota Matelska
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Ivan G Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, 22908, USA
| | - Jagoda Jabłońska
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marcin J Domagalski
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, 22908, USA
| | - Jan Kutner
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA.,Laboratory for Structural and Biochemical Research, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02-089, Warsaw, Poland.
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA. .,Center for Structural Genomics of Infectious Diseases (CSGID), Charlottesville, VA, 22908, USA. .,Department of Chemistry, University of Warsaw, Ludwika Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
65
|
Barin R, Biria D, Rashid-Nadimi S, Asadollahi MA. Enzymatic CO2 reduction to formate by formate dehydrogenase from Candida boidinii coupling with direct electrochemical regeneration of NADH. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
66
|
Singh RK, Singh R, Sivakumar D, Kondaveeti S, Kim T, Li J, Sung BH, Cho BK, Kim DR, Kim SC, Kalia VC, Zhang YHPJ, Zhao H, Kang YC, Lee JK. Insights into Cell-Free Conversion of CO2 to Chemicals by a Multienzyme Cascade Reaction. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02646] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Raushan Kumar Singh
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Seoul 05029, Republic of Korea
| | - Ranjitha Singh
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Seoul 05029, Republic of Korea
| | - Dakshinamurthy Sivakumar
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Seoul 05029, Republic of Korea
| | - Sanath Kondaveeti
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Seoul 05029, Republic of Korea
| | - Taedoo Kim
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Seoul 05029, Republic of Korea
| | - Jinglin Li
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Seoul 05029, Republic of Korea
| | - Bong Hyun Sung
- Bioenergy and Biochemical Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Vipin C. Kalia
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Seoul 05029, Republic of Korea
| | - Yi-Heng P. Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 1 Hwayang-Dong, Seoul 05029, Republic of Korea
| |
Collapse
|
67
|
Ikeyama S, Abe R, Shiotani S, Amao Y. Effective Artificial Co-enzyme Based on Single-Electron Reduced Form of 2,2′-Bipyridinium Salt Derivatives for Formate Dehydrogenase in the Catalytic Conversion of CO2 to Formic Acid. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shusaku Ikeyama
- The Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Ryutaro Abe
- Department of Applied Chemistry, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Sachina Shiotani
- Department of Applied Chemistry, Oita University, 700 Dannoharu, Oita 870-1192, Japan
| | - Yutaka Amao
- The Advanced Research Institute for Natural Science and Technology, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Research Centre for Artificial Photosynthesis, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
68
|
Le QAT, Kim HG, Kim YH. Electrochemical synthesis of formic acid from CO2 catalyzed by Shewanella oneidensis MR-1 whole-cell biocatalyst. Enzyme Microb Technol 2018; 116:1-5. [DOI: 10.1016/j.enzmictec.2018.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 01/19/2023]
|
69
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiokatalyse: Aktivierung von Redoxenzymen durch direkten oder indirekten Transfer photoinduzierter Elektronen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710070] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Da Som Choi
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Su Keun Kuk
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| | - Chan Beum Park
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST) 335 Science Road Daejeon 305-701 Republik Korea
| |
Collapse
|
70
|
|
71
|
Yuan M, Sahin S, Cai R, Abdellaoui S, Hickey DP, Minteer SD, Milton RD. Creating a Low‐Potential Redox Polymer for Efficient Electroenzymatic CO
2
Reduction. Angew Chem Int Ed Engl 2018; 57:6582-6586. [DOI: 10.1002/anie.201803397] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/04/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Mengwei Yuan
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Selmihan Sahin
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
- Department of ChemistryFaculty of Arts and SciencesSuleyman Demirel University, Cunur Isparta 32260 Turkey
| | - Rong Cai
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Sofiene Abdellaoui
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - David P. Hickey
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Shelley D. Minteer
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Ross D. Milton
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
- Current address: Department of Civil & Environmental EngineeringStanford University, E-250 James H. Clark Center 318 Campus Drive Stanford CA 94305 USA
| |
Collapse
|
72
|
Lee SH, Choi DS, Kuk SK, Park CB. Photobiocatalysis: Activating Redox Enzymes by Direct or Indirect Transfer of Photoinduced Electrons. Angew Chem Int Ed Engl 2018; 57:7958-7985. [PMID: 29194901 DOI: 10.1002/anie.201710070] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/21/2017] [Indexed: 01/01/2023]
Abstract
Biocatalytic transformation has received increasing attention in the green synthesis of chemicals because of the diversity of enzymes, their high catalytic activities and specificities, and mild reaction conditions. The idea of solar energy utilization in chemical synthesis through the combination of photocatalysis and biocatalysis provides an opportunity to make the "green" process greener. Oxidoreductases catalyze redox transformation of substrates by exchanging electrons at the enzyme's active site, often with the aid of electron mediator(s) as a counterpart. Recent progress indicates that photoinduced electron transfer using organic (or inorganic) photosensitizers can activate a wide spectrum of redox enzymes to catalyze fuel-forming reactions (e.g., H2 evolution, CO2 reduction) and synthetically useful reductions (e.g., asymmetric reduction, oxygenation, hydroxylation, epoxidation, Baeyer-Villiger oxidation). This Review provides an overview of recent advances in light-driven activation of redox enzymes through direct or indirect transfer of photoinduced electrons.
Collapse
Affiliation(s)
- Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Da Som Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Su Keun Kuk
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
73
|
Yuan M, Sahin S, Cai R, Abdellaoui S, Hickey DP, Minteer SD, Milton RD. Creating a Low‐Potential Redox Polymer for Efficient Electroenzymatic CO
2
Reduction. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803397] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mengwei Yuan
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Selmihan Sahin
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
- Department of ChemistryFaculty of Arts and SciencesSuleyman Demirel University, Cunur Isparta 32260 Turkey
| | - Rong Cai
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Sofiene Abdellaoui
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - David P. Hickey
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Shelley D. Minteer
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Ross D. Milton
- Department of ChemistryUniversity of Utah 315 S 1400 E Salt Lake City UT 84112 USA
- Current address: Department of Civil & Environmental EngineeringStanford University, E-250 James H. Clark Center 318 Campus Drive Stanford CA 94305 USA
| |
Collapse
|
74
|
Çakar MM, Mangas-Sanchez J, Birmingham WR, Turner NJ, Binay B. Discovery of a new metal and NAD +-dependent formate dehydrogenase from Clostridium ljungdahlii. Prep Biochem Biotechnol 2018; 48:327-334. [PMID: 29504829 DOI: 10.1080/10826068.2018.1446150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Over the next decades, with the growing concern of rising atmospheric carbon dioxide (CO2) levels, the importance of investigating new approaches for its reduction becomes crucial. Reclamation of CO2 for conversion into biofuels represents an alternative and attractive production method that has been studied in recent years, now with enzymatic methods gaining more attention. Formate dehydrogenases (FDHs) are NAD(P)H-dependent oxidoreductases that catalyze the conversion of formate into CO2 and have been extensively used for cofactor recycling in chemoenzymatic processes. A new FDH from Clostridium ljungdahlii (ClFDH) has been recently shown to possess activity in the reverse reaction: the mineralization of CO2 into formate. In this study, we show the successful homologous expression of ClFDH in Escherichia coli. Biochemical and kinetic characterization of the enzyme revealed that this homologue also demonstrates activity toward CO2 reduction. Structural analysis of the enzyme through homology modeling is also presented.
Collapse
Affiliation(s)
- M Mervan Çakar
- a Department of Chemistry , Gebze Technical University , Gebze , Kocaeli , Turkey
| | | | | | - Nicholas J Turner
- b School of Chemistry & MIB , University of Manchester , Manchester , UK
| | - Barış Binay
- c Department of Bioengineering , Gebze Technical University , Gebze , Kocaeli , Turkey
| |
Collapse
|
75
|
Emerging platforms for co-utilization of one-carbon substrates by photosynthetic organisms. Curr Opin Biotechnol 2018; 53:201-208. [PMID: 29510332 DOI: 10.1016/j.copbio.2018.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 11/21/2022]
Abstract
One-carbon substrates have generated increasing attention as long-term sustainable feedstocks for biobased production of fuels and chemicals. However, their physicochemical properties present significant biological and operational challenges for commercial bioprocesses including kinetically slower substrate activation, high energetic cost of assimilation, low mass transfer, substrate toxicity, and low productivity titers. Several different routes including optimization of native pathways, synthetic pathways, and hybrid methods are being explored to overcome these challenges. Integration of emerging biological solutions with process improvements is enabling faster bioprocess development for cost-effective conversion of one-carbon substrates into fuels and chemicals.
Collapse
|
76
|
Kurt-Gür G, Ordu E. Characterization of a novel thermotolerant NAD +-dependent formate dehydrogenase from hot climate plant cotton ( Gossypium hirsutum L.). 3 Biotech 2018; 8:175. [PMID: 29556429 PMCID: PMC5845482 DOI: 10.1007/s13205-018-1200-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 03/05/2018] [Indexed: 11/26/2022] Open
Abstract
NAD+-dependent formate dehydrogenases (FDH, EC 1.2.1.2), providing energy to the cell in methylotrophic microorganisms, are stress proteins in higher plants and the level of FDH expression increases under several abiotic and biotic stress conditions. They are biotechnologically important enzymes in NAD(P)H regeneration as well as CO2 reduction. Here, the truncated form of the Gossypium hirsutum fdh1 cDNA was cloned into pQE-2 vector, and overexpressed in Escherichia coli DH5α-T1 cells. Recombinant GhFDH1 was purified 26.3-fold with a yield of 87.3%. Optimum activity was observed at pH 7.0, when substrate is formate. Kinetic analyses suggest that GhFDH1 has considerably high affinity to formate (0.76 ± 0.07 mM) and NAD+ (0.06 ± 0.01 mM). At the same time, the affinity (1.98 ± 0.4 mM) and catalytic efficiency (0.0041) values of the enzyme for NADP+ show that GhFDH1 is a valuable enzyme for protein engineering studies that is trying to change the coenzyme preference from NAD to NADP which has a much higher cost than that of NAD. Improving the NADP specificity is important for NADPH regeneration which is an important coenzyme used in many biotechnological production processes. The Tm value of GhFDH1 is 53.3 °C and the highest enzyme activity is measured at 30 °C with a half-life of 61 h. Whilst further improvements are still required, the obtained results show that GhFDH1 is a promising enzyme for NAD(P)H regeneration for its prominent thermostability and NADP+ specificity.
Collapse
Affiliation(s)
- Günseli Kurt-Gür
- Yildiz Technical University, Faculty of Art and Science, Department of Molecular Biology and Genetics, Davutpasa Campus Esenler, 34220 Istanbul, Turkey
| | - Emel Ordu
- Yildiz Technical University, Faculty of Art and Science, Department of Molecular Biology and Genetics, Davutpasa Campus Esenler, 34220 Istanbul, Turkey
| |
Collapse
|
77
|
Ishibashi T, Ikeyama S, Amao Y. Activation of the catalytic function of formaldehyde dehydrogenase for formate reduction by single-electron reduced methylviologen. NEW J CHEM 2018. [DOI: 10.1039/c8nj02211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetic properties of formate reduction to formaldehyde with formaldehyde dehydrogenase (FldDH) using single-electron reduced methylviologen (MV˙) as a co-enzyme were clarified.
Collapse
Affiliation(s)
- T. Ishibashi
- Graduate School of Science
- Osaka City University
- Osaka 558-8585
- Japan
| | - S. Ikeyama
- The Advanced Research Institute for Natural Science and Technology
- Osaka City University
- Osaka 558-8585
- Japan
| | - Y. Amao
- Graduate School of Science
- Osaka City University
- Osaka 558-8585
- Japan
- The Advanced Research Institute for Natural Science and Technology
| |
Collapse
|
78
|
Enzymatic conversion of CO 2 to CH 3 OH via reverse dehydrogenase cascade biocatalysis: Quantitative comparison of efficiencies of immobilized enzyme systems. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
79
|
Heterologous production of extreme alkaline thermostable NAD + -dependent formate dehydrogenase with wide-range pH activity from Myceliophthora thermophila. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
80
|
Kwon I, Yang B. Bioconjugation and Active Site Design of Enzymes Using Non-natural Amino Acids. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Inchan Kwon
- School
of Materials Science and Engineering (SMSE) and ‡Department of Biomedical Science
and Engineering (BMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Byungseop Yang
- School
of Materials Science and Engineering (SMSE) and ‡Department of Biomedical Science
and Engineering (BMSE), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
81
|
Lim SI, Yang B, Jung Y, Cha J, Cho J, Choi ES, Kim YH, Kwon I. Controlled Orientation of Active Sites in a Nanostructured Multienzyme Complex. Sci Rep 2016; 6:39587. [PMID: 28004799 PMCID: PMC5177890 DOI: 10.1038/srep39587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 11/24/2016] [Indexed: 01/17/2023] Open
Abstract
Multistep cascade reactions in nature maximize reaction efficiency by co-assembling related enzymes. Such organization facilitates the processing of intermediates by downstream enzymes. Previously, the studies on multienzyme nanocomplexes assembled on DNA scaffolds demonstrated that closer interenzyme distance enhances the overall reaction efficiency. However, it remains unknown how the active site orientation controlled at nanoscale can have an effect on multienzyme reaction. Here, we show that controlled alignment of active sites promotes the multienzyme reaction efficiency. By genetic incorporation of a non-natural amino acid and two compatible bioorthogonal chemistries, we conjugated mannitol dehydrogenase to formate dehydrogenase with the defined active site arrangement with the residue-level accuracy. The study revealed that the multienzyme complex with the active sites directed towards each other exhibits four-fold higher relative efficiency enhancement in the cascade reaction and produces 60% more D-mannitol than the other complex with active sites directed away from each other.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, University of Virginia, VA 22904, United States
| | - Byungseop Yang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Younghan Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jaehyun Cha
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jinhwan Cho
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Eun-Sil Choi
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.,Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, VA 22904, United States.,School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| |
Collapse
|
82
|
Zhang L, Liu J, Ong J, Li SFY. Specific and sustainable bioelectro-reduction of carbon dioxide to formate on a novel enzymatic cathode. CHEMOSPHERE 2016; 162:228-34. [PMID: 27501309 DOI: 10.1016/j.chemosphere.2016.07.102] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 05/19/2023]
Abstract
To specifically convert waste CO2 into renewable chemicals, enzymatic electrosynthesis (EES) of formate from CO2 reduction was investigated in a bioelectrochemical system (BES). A novel cathode with immobilized enzyme and electropolymerized mediator-regenerator was fabricated for such bioelectrocatalytic EES. Formate dehydrogenase from Candida boidinii (CbFDH) was set as a new model enzyme in BES. Modified Nafion micelles with appropriate pore size were found to be suitable for immobilization of CbFDH and protection of its enzymatic activity and lifetime at optimal pH of 6.0. The enzymatic electrosynthesis activity of immobilized CbFDH was characterized systematically. Quite a small overpotential was required in the bioelectrochemical EES reaction. A two-electron transfer process was confirmed in the CbFDH-catalyzed reduction of bicarbonate to formate. With electro-polymerized neutral red (PolyNR) as a NADH (mediator)-regenerator, efficient formate production could be achieved at a maximum rate of 159.89 mg L(-1) h(-1) under poised potential of -0.80 V (vs. SHE). The immobilized CbFDH and electropolymerized PolyNR on an enzymatic cathode contributed greatly to sustainable EES, giving energy-rich formate as the only catalysis product.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Junyi Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Jacky Ong
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Sam Fong Yau Li
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
83
|
Kim SH, Chung GY, Kim SH, Vinothkumar G, Yoon SH, Jung KD. Electrochemical NADH regeneration and electroenzymatic CO2 reduction on Cu nanorods/glassy carbon electrode prepared by cyclic deposition. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
84
|
Covalent immobilization of Candida methylica formate dehydrogenase on short spacer arm aldehyde group containing supports. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
85
|
Son EJ, Ko JW, Kuk SK, Choe H, Lee S, Kim JH, Nam DH, Ryu GM, Kim YH, Park CB. Sunlight-assisted, biocatalytic formate synthesis from CO2 and water using silicon-based photoelectrochemical cells. Chem Commun (Camb) 2016; 52:9723-6. [DOI: 10.1039/c6cc04661d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A silicon-based photoelectrochemical cell is developed to convert CO2 to formate with water as an electron donor by using formate dehydrogenase from Thiobacillus sp.
Collapse
Affiliation(s)
- Eun Jin Son
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Jong Wan Ko
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Su Keun Kuk
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Hyunjun Choe
- Department of Chemical Engineering
- Kwangwoon University
- Seoul
- Republic of Korea
| | - Sumi Lee
- Department of Chemical Engineering
- Kwangwoon University
- Seoul
- Republic of Korea
| | - Jae Hong Kim
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Dong Heon Nam
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Gyeong Min Ryu
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| | - Yong Hwan Kim
- Department of Chemical Engineering
- Kwangwoon University
- Seoul
- Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
86
|
Sultana S, Chandra Sahoo P, Martha S, Parida K. A review of harvesting clean fuels from enzymatic CO2 reduction. RSC Adv 2016. [DOI: 10.1039/c6ra05472b] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This review has summarised single enzyme, multi enzymatic and semiconducting nanomaterial integrated enzymatic systems for CO2 conversion to clean fuels.
Collapse
Affiliation(s)
- Sabiha Sultana
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| | - Prakash Chandra Sahoo
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| | - Satyabadi Martha
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology
- ITER
- Siksha ‘O’ Anusandhan University
- Bhubaneswar – 751030
- India
| |
Collapse
|
87
|
Alissandratos A, Easton CJ. Biocatalysis for the application of CO2 as a chemical feedstock. Beilstein J Org Chem 2015; 11:2370-87. [PMID: 26734087 PMCID: PMC4685893 DOI: 10.3762/bjoc.11.259] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/20/2015] [Indexed: 11/23/2022] Open
Abstract
Biocatalysts, capable of efficiently transforming CO2 into other more reduced forms of carbon, offer sustainable alternatives to current oxidative technologies that rely on diminishing natural fossil-fuel deposits. Enzymes that catalyse CO2 fixation steps in carbon assimilation pathways are promising catalysts for the sustainable transformation of this safe and renewable feedstock into central metabolites. These may be further converted into a wide range of fuels and commodity chemicals, through the multitude of known enzymatic reactions. The required reducing equivalents for the net carbon reductions may be drawn from solar energy, electricity or chemical oxidation, and delivered in vitro or through cellular mechanisms, while enzyme catalysis lowers the activation barriers of the CO2 transformations to make them more energy efficient. The development of technologies that treat CO2-transforming enzymes and other cellular components as modules that may be assembled into synthetic reaction circuits will facilitate the use of CO2 as a renewable chemical feedstock, greatly enabling a sustainable carbon bio-economy.
Collapse
Affiliation(s)
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
88
|
Hwang H, Yeon YJ, Lee S, Choe H, Jang MG, Cho DH, Park S, Kim YH. Electro-biocatalytic production of formate from carbon dioxide using an oxygen-stable whole cell biocatalyst. BIORESOURCE TECHNOLOGY 2015; 185:35-9. [PMID: 25746476 DOI: 10.1016/j.biortech.2015.02.086] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 02/20/2015] [Accepted: 02/21/2015] [Indexed: 05/28/2023]
Abstract
The use of biocatalysts to convert CO2 into useful chemicals is a promising alternative to chemical conversion. In this study, the electro-biocatalytic conversion of CO2 to formate was attempted with a whole cell biocatalyst. Eight species of Methylobacteria were tested for CO2 reduction, and one of them, Methylobacterium extorquens AM1, exhibited an exceptionally higher capability to synthesize formate from CO2 by supplying electrons with electrodes, which produced formate concentrations of up to 60mM. The oxygen stability of the biocatalyst was investigated, and the results indicated that the whole cell catalyst still exhibited CO2 reduction activity even after being exposed to oxygen gas. From the results, we could demonstrate the electro-biocatalytic conversion of CO2 to formate using an obligate aerobe, M. extorquens AM1, as a whole cell biocatalyst without providing extra cofactors or hydrogen gas. This electro-biocatalytic process suggests a promising approach toward feasible way of CO2 conversion to formate.
Collapse
Affiliation(s)
- Hyojin Hwang
- Department of Chemical Engineering, Kwangwoon University, 139-701 Seoul, Republic of Korea
| | - Young Joo Yeon
- The Institute of Molecular Biology and Genetics, Seoul National University, 151-742 Seoul, Republic of Korea
| | - Sumi Lee
- Department of Chemical Engineering, Kwangwoon University, 139-701 Seoul, Republic of Korea
| | - Hyunjun Choe
- Department of Chemical Engineering, Kwangwoon University, 139-701 Seoul, Republic of Korea
| | - Min Gee Jang
- Department of Chemical Engineering, Kwangwoon University, 139-701 Seoul, Republic of Korea
| | - Dae Haeng Cho
- Department of Chemical Engineering, Kwangwoon University, 139-701 Seoul, Republic of Korea
| | - Sehkyu Park
- Department of Chemical Engineering, Kwangwoon University, 139-701 Seoul, Republic of Korea
| | - Yong Hwan Kim
- Department of Chemical Engineering, Kwangwoon University, 139-701 Seoul, Republic of Korea.
| |
Collapse
|
89
|
Lim SI, Yoon S, Kim YH, Kwon I. Site-specific bioconjugation of an organometallic electron mediator to an enzyme with retained photocatalytic cofactor regenerating capacity and enzymatic activity. Molecules 2015; 20:5975-86. [PMID: 25853315 PMCID: PMC6272604 DOI: 10.3390/molecules20045975] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/20/2015] [Accepted: 03/25/2015] [Indexed: 02/02/2023] Open
Abstract
Photosynthesis consists of a series of reactions catalyzed by redox enzymes to synthesize carbohydrates using solar energy. In order to take the advantage of solar energy, many researchers have investigated artificial photosynthesis systems mimicking the natural photosynthetic enzymatic redox reactions. These redox reactions usually require cofactors, which due to their high cost become a key issue when constructing an artificial photosynthesis system. Combining a photosensitizer and an Rh-based electron mediator (RhM) has been shown to photocatalytically regenerate cofactors. However, maintaining the high concentration of cofactors available for efficient enzymatic reactions requires a high concentration of the expensive RhM; making this process cost prohibitive. We hypothesized that conjugation of an electron mediator to a redox enzyme will reduce the amount of electron mediators necessary for efficient enzymatic reactions. This is due to photocatalytically regenerated NAD(P)H being readily available to a redox enzyme, when the local NAD(P)H concentration near the enzyme becomes higher. However, conventional random conjugation of RhM to a redox enzyme will likely lead to a substantial loss of cofactor regenerating capacity and enzymatic activity. In order to avoid this issue, we investigated whether bioconjugation of RhM to a permissive site of a redox enzyme retains cofactor regenerating capacity and enzymatic activity. As a model system, a RhM was conjugated to a redox enzyme, formate dehydrogenase obtained from Thiobacillus sp. KNK65MA (TsFDH). A RhM-containing azide group was site-specifically conjugated to p-azidophenylalanine introduced to a permissive site of TsFDH via a bioorthogonal strain-promoted azide-alkyne cycloaddition and an appropriate linker. The TsFDH-RhM conjugate exhibited retained cofactor regenerating capacity and enzymatic activity.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
| | - Sungho Yoon
- Department of Bio & Nano Chemistry, Kookmin University, 861-1 Jeoungnung-dong, Seongbuk-gu, Seoul 136-702, Korea.
| | - Yong Hwan Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Korea.
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22904, USA.
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Korea.
| |
Collapse
|
90
|
Choe H, Ha JM, Joo JC, Kim H, Yoon HJ, Kim S, Son SH, Gengan RM, Jeon ST, Chang R, Jung KD, Kim YH, Lee HH. Structural insights into the efficient CO2-reducing activity of an NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA. ACTA ACUST UNITED AC 2015; 71:313-23. [PMID: 25664741 DOI: 10.1107/s1399004714025474] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/20/2014] [Indexed: 11/11/2022]
Abstract
CO2 fixation is thought to be one of the key factors in mitigating global warming. Of the various methods for removing CO2, the NAD-dependent formate dehydrogenase from Candida boidinii (CbFDH) has been widely used in various biological CO2-reduction systems; however, practical applications of CbFDH have often been impeded owing to its low CO2-reducing activity. It has recently been demonstrated that the NAD-dependent formate dehydrogenase from Thiobacillus sp. KNK65MA (TsFDH) has a higher CO2-reducing activity compared with CbFDH. The crystal structure of TsFDH revealed that the biological unit in the asymmetric unit has two conformations, i.e. open (NAD(+)-unbound) and closed (NAD(+)-bound) forms. Three major differences are observed in the crystal structures of TsFDH and CbFDH. Firstly, hole 2 in TsFDH is blocked by helix α20, whereas it is not blocked in CbFDH. Secondly, the sizes of holes 1 and 2 are larger in TsFDH than in CbFDH. Thirdly, Lys287 in TsFDH, which is crucial for the capture of formate and its subsequent delivery to the active site, is an alanine in CbFDH. A computational simulation suggested that the higher CO2-reducing activity of TsFDH is owing to its lower free-energy barrier to CO2 reduction than in CbFDH.
Collapse
Affiliation(s)
- Hyunjun Choe
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Jung Min Ha
- Department of Bio and Nano Chemistry, Kookmin University, Seoul 136-702, Republic of Korea
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Hyunook Kim
- Department of Chemistry, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Seonghoon Kim
- Department of Chemistry, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Sang Hyeon Son
- Department of Bio and Nano Chemistry, Kookmin University, Seoul 136-702, Republic of Korea
| | - Robert M Gengan
- Department of Chemistry, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Seung Taeg Jeon
- Department of Bio and Nano Chemistry, Kookmin University, Seoul 136-702, Republic of Korea
| | - Rakwoo Chang
- Department of Chemistry, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Kwang Deog Jung
- Energy Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yong Hwan Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 139-701, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
91
|
Yoshimoto M, Kozono R, Tsubomura N. Liposomes as chaperone mimics with controllable affinity toward heat-denatured formate dehydrogenase from Candida boidinii. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:762-770. [PMID: 25513889 DOI: 10.1021/la504126b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chaperone machinery in living systems can catch denatured enzymes and induce their reactivation. Chaperone mimics are beneficial for applying enzymatic reactions in vitro. In this work, the affinity between liposomes and thermally denatured enzymes was controlled to stabilize the enzyme activity. The model enzyme is formate dehydrogenase from Candida boidinii (CbFDH) which is a homodimer and negatively charged in the phosphate buffer solution (pH 7.2) used. The activity of free CbFDH readily decreased at 58 °C following the first-order kinetics with the half-life t1/2 of 27 min. The turbidity measurements showed that the denatured enzyme molecules formed aggregates. The liposomes composed of zwitterionic phosphatidylcholines (PCs) stabilized the CbFDH activity at 58 °C, as revealed with six different PCs. The PC liposomes were indicated to bind to the aggregate-prone enzyme molecules, allowing reactivation at 25 °C. The cofactor β-reduced nicotinamide adenine dinucleotide (NADH) also stabilized the enzyme activity. The affinity between liposomes and denatured CbFDH could be modulated by incorporating cationic 1,2-dioleoyloxy-3-trimethylammonium propane chloride (DOTAP) in PC membranes. The t1/2 values significantly increased in the presence of liposomes ([lipid] = 1.5 mM) composed of PC and DOTAP at the mole fraction f(D) of 0.1. On the other hand, the DOTAP-rich liposomes (f(D) ≥ 0.7) showed strong affinity toward denatured CbFDH, accelerating its deactivation. The liposomes with low charge density function as chaperone mimics that can efficiently catch the denatured enzymes without interfering with their intramolecular interaction for reactivation.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department of Applied Molecular Bioscience, Yamaguchi University , 2-16-1 Tokiwadai, Ube 755-8611, Japan
| | | | | |
Collapse
|
92
|
Lim SI, Cho J, Kwon I. Double clicking for site-specific coupling of multiple enzymes. Chem Commun (Camb) 2015; 51:13607-10. [DOI: 10.1039/c5cc04611d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Herein, we report a novel strategy to site-specifically couple multiple enzymes using two compatible click chemistries and site-specific incorporation of a clickable non-natural amino acid.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering
- University of Virginia
- Charlottesville
- USA
| | - Jinhwan Cho
- School of Materials Science and Engineering
- Gwangju Institute of Science and Technology (GIST)
- Gwangju
- Republic of Korea
| | - Inchan Kwon
- Department of Chemical Engineering
- University of Virginia
- Charlottesville
- USA
- School of Materials Science and Engineering
| |
Collapse
|