51
|
Nätt D, Barchiesi R, Murad J, Feng J, Nestler EJ, Champagne FA, Thorsell A. Perinatal Malnutrition Leads to Sexually Dimorphic Behavioral Responses with Associated Epigenetic Changes in the Mouse Brain. Sci Rep 2017; 7:11082. [PMID: 28894112 PMCID: PMC5593991 DOI: 10.1038/s41598-017-10803-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/09/2017] [Indexed: 01/21/2023] Open
Abstract
Childhood malnutrition is a risk factor for mental disorders, such as major depression and anxiety. Evidence shows that similar early life adversities induce sex-dependent epigenetic reprogramming. However, little is known about how genes are specifically affected by early malnutrition and the implications for males and females respectively. One relevant target is neuropeptide Y (NPY), which regulates both stress and food-intake. We studied maternal low protein diet (LPD) during pregnancy/lactation in mice. Male, but not female, offspring of LPD mothers consistently displayed anxiety- and depression-like behaviors under acute stress. Transcriptome-wide analysis of the effects of acute stress in the amygdala, revealed a list of transcription factors affected by either sex or perinatal LPD. Among these immediate early genes (IEG), members of the Early growth response family (Egr1/2/4) were consistently upregulated by perinatal LPD in both sexes. EGR1 also bound the NPY receptor Y1 gene (Npy1r), which co-occurred with sex-specific effects of perinatal LPD on both Npy1r DNA-methylation and gene transcription. Our proposed pathway connecting early malnutrition, sex-independent regulatory changes in Egr1, and sex-specific epigenetic reprogramming of its effector gene, Npy1r, represents the first molecular evidence of how early life risk factors may generate sex-specific epigenetic effects relevant for mental disorders.
Collapse
Affiliation(s)
- Daniel Nätt
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
- Department of Psychology, Columbia University, New York, NY, USA.
| | - Riccardo Barchiesi
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Josef Murad
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jian Feng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Annika Thorsell
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
52
|
A role for the peripheral immune system in the development of alcohol use disorders? Neuropharmacology 2017; 122:148-160. [DOI: 10.1016/j.neuropharm.2017.04.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
|
53
|
Morud J, Ashouri A, Larsson E, Ericson M, Söderpalm B. Transcriptional profiling of the rat nucleus accumbens after modest or high alcohol exposure. PLoS One 2017; 12:e0181084. [PMID: 28715440 PMCID: PMC5513432 DOI: 10.1371/journal.pone.0181084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/26/2017] [Indexed: 11/18/2022] Open
Abstract
Alcohol use disorder is a chronic relapsing brain disorder and a global health issue. Prolonged high alcohol consumption increases the risk for dependence development, a complex state that includes progressive alterations in brain function. The molecular mechanisms behind these changes remain to be fully disclosed, but several genes show altered expression in various regions of the rat brain even after modest alcohol exposure. The present study utilizes whole-transcriptome sequencing (RNA-seq) to investigate expression changes in the brain nucleus accumbens (NAc), an area of particular interest in addictive disorders, of alcohol consuming rats. The impact on gene expression after eight weeks of moderate voluntary alcohol consumption or voluntary consumption combined with forced excessive exposure was explored in two separate experiments. The results point to a lack of strong and consistent expression alterations in the NAc after alcohol exposure, suggesting that transcriptional effects of alcohol are weak or transient, or occur primarily in brain regions other than NAc.
Collapse
Affiliation(s)
- Julia Morud
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Arghavan Ashouri
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
54
|
Behavioral Deficits Following Withdrawal from Chronic Ethanol Are Influenced by SLO Channel Function in Caenorhabditis elegans. Genetics 2017; 206:1445-1458. [PMID: 28546434 DOI: 10.1534/genetics.116.193102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/29/2017] [Indexed: 01/03/2023] Open
Abstract
Symptoms of withdrawal from chronic alcohol use are a driving force for relapse in alcohol dependence. Thus, uncovering molecular targets to lessen their severity is key to breaking the cycle of dependence. Using the nematode Caenorhabditis elegans, we tested whether one highly conserved ethanol target, the large-conductance, calcium-activated potassium channel (known as the BK channel or Slo1), modulates ethanol withdrawal. Consistent with a previous report, we found that C. elegans displays withdrawal-related behavioral impairments after cessation of chronic ethanol exposure. We found that the degree of impairment is exacerbated in worms lacking the worm BK channel, SLO-1, and is reduced by selective rescue of this channel in the nervous system. Enhanced SLO-1 function, via gain-of-function mutation or overexpression, also dramatically reduced behavioral impairment during withdrawal. Consistent with these results, we found that chronic ethanol exposure decreased SLO-1 expression in a subset of neurons. In addition, we found that the function of a distinct, conserved Slo family channel, SLO-2, showed an inverse relationship to withdrawal behavior, and this influence depended on SLO-1 function. Together, our findings show that modulation of either Slo family ion channel bidirectionally regulates withdrawal behaviors in worm, supporting further exploration of the Slo family as targets for normalizing behaviors during alcohol withdrawal.
Collapse
|
55
|
Warden AS, Mayfield RD. Gene expression profiling in the human alcoholic brain. Neuropharmacology 2017; 122:161-174. [PMID: 28254370 DOI: 10.1016/j.neuropharm.2017.02.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 01/12/2023]
Abstract
Long-term alcohol use causes widespread changes in gene expression in the human brain. Aberrant gene expression changes likely contribute to the progression from occasional alcohol use to alcohol use disorder (including alcohol dependence). Transcriptome studies have identified individual gene candidates that are linked to alcohol-dependence phenotypes. The use of bioinformatics techniques to examine expression datasets has provided novel systems-level approaches to transcriptome profiling in human postmortem brain. These analytical advances, along with recent developments in next-generation sequencing technology, have been instrumental in detecting both known and novel coding and non-coding RNAs, alternative splicing events, and cell-type specific changes that may contribute to alcohol-related pathologies. This review offers an integrated perspective on alcohol-responsive transcriptional changes in the human brain underlying the regulatory gene networks that contribute to alcohol dependence. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Anna S Warden
- Institute for Neuroscience, The University of Texas at Austin, 1 University Station, C7000, Austin, TX 78712, USA; Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 2500 Speedway, A4800, Austin, TX 78712, USA.
| |
Collapse
|
56
|
Analyses of differentially expressed genes after exposure to acute stress, acute ethanol, or a combination of both in mice. Alcohol 2017; 58:139-151. [PMID: 28027852 DOI: 10.1016/j.alcohol.2016.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022]
Abstract
Alcohol abuse is a complex disorder, which is confounded by other factors, including stress. In the present study, we examined gene expression in the hippocampus of BXD recombinant inbred mice after exposure to ethanol (NOE), stress (RSS), and the combination of both (RSE). Mice were given an intraperitoneal (i.p.) injection of 1.8 g/kg ethanol or saline, and subsets of both groups were exposed to acute restraint stress for 15 min or controls. Gene expression in the hippocampus was examined using microarray analysis. Genes that were significantly (p < 0.05, q < 0.1) differentially expressed were further evaluated. Bioinformatic analyses were predominantly performed using tools available at GeneNetwork.org, and included gene ontology, presence of cis-regulation or polymorphisms, phenotype correlations, and principal component analyses. Comparisons of differential gene expression between groups showed little overlap. Gene Ontology demonstrated distinct biological processes in each group with the combined exposure (RSE) being unique from either the ethanol (NOE) or stress (RSS) group, suggesting that the interaction between these variables is mediated through diverse molecular pathways. This supports the hypothesis that exposure to stress alters ethanol-induced gene expression changes and that exposure to alcohol alters stress-induced gene expression changes. Behavior was profiled in all groups following treatment, and many of the differentially expressed genes are correlated with behavioral variation within experimental groups. Interestingly, in each group several genes were correlated with the same phenotype, suggesting that these genes are the potential origins of significant genetic networks. The distinct sets of differentially expressed genes within each group provide the basis for identifying molecular networks that may aid in understanding the complex interactions between stress and ethanol, and potentially provide relevant therapeutic targets. Using Ptp4a1, a candidate gene underlying the quantitative trait locus for several of these phenotypes, and network analyses, we show that a large group of differentially expressed genes in the NOE group are highly interrelated, some of which have previously been linked to alcohol addiction or alcohol-related phenotypes.
Collapse
|
57
|
Mulligan MK, Mozhui K, Pandey AK, Smith ML, Gong S, Ingels J, Miles MF, Lopez MF, Lu L, Williams RW. Genetic divergence in the transcriptional engram of chronic alcohol abuse: A laser-capture RNA-seq study of the mouse mesocorticolimbic system. Alcohol 2017; 58:61-72. [PMID: 27894806 DOI: 10.1016/j.alcohol.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022]
Abstract
Genetic factors that influence the transition from initial drinking to dependence remain enigmatic. Recent studies have leveraged chronic intermittent ethanol (CIE) paradigms to measure changes in brain gene expression in a single strain at 0, 8, 72 h, and even 7 days following CIE. We extend these findings using LCM RNA-seq to profile expression in 11 brain regions in two inbred strains - C57BL/6J (B6) and DBA/2J (D2) - 72 h following multiple cycles of ethanol self-administration and CIE. Linear models identified differential expression based on treatment, region, strain, or interactions with treatment. Nearly 40% of genes showed a robust effect (FDR < 0.01) of region, and hippocampus CA1, cortex, bed nucleus stria terminalis, and nucleus accumbens core had the highest number of differentially expressed genes after treatment. Another 8% of differentially expressed genes demonstrated a robust effect of strain. As expected, based on similar studies in B6, treatment had a much smaller impact on expression; only 72 genes (p < 0.01) are modulated by treatment (independent of region or strain). Strikingly, many more genes (415) show a strain-specific and largely opposite response to treatment and are enriched in processes related to RNA metabolism, transcription factor activity, and mitochondrial function. Over 3 times as many changes in gene expression were detected in D2 compared to B6, and weighted gene co-expression network analysis (WGCNA) module comparison identified more modules enriched for treatment effects in D2. Substantial strain differences exist in the temporal pattern of transcriptional neuroadaptation to CIE, and these may drive individual differences in risk of addiction following excessive alcohol consumption.
Collapse
Affiliation(s)
- Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States.
| | - Khyobeni Mozhui
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Ashutosh K Pandey
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Maren L Smith
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Suzhen Gong
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Jesse Ingels
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Michael F Miles
- Department of Molecular Biology and Genetics, Virginia Commonwealth University, United States
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, United States
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, United States
| |
Collapse
|
58
|
Warden A, Erickson E, Robinson G, Harris RA, Mayfield RD. The neuroimmune transcriptome and alcohol dependence: potential for targeted therapies. Pharmacogenomics 2016; 17:2081-2096. [PMID: 27918243 DOI: 10.2217/pgs-2016-0062] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcriptome profiling enables discovery of gene networks that are altered in alcoholic brains. This technique has revealed involvement of the brain's neuroimmune system in regulating alcohol abuse and dependence, and has provided potential therapeutic targets. In this review, we discuss Toll-like-receptor pathways, hypothesized to be key players in many stages of the alcohol addiction cycle. The growing appreciation of the neuroimmune system's involvement in alcoholism has also led to consideration of crucial roles for glial cells, including astrocytes and microglia, in the brain's response to alcohol abuse. We discuss current knowledge and hypotheses on the roles that specific neuroimmune cell types may play in addiction. Current strategies for repurposing US FDA-approved drugs for the treatment of alcohol use disorders are also discussed.
Collapse
Affiliation(s)
- Anna Warden
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - Emma Erickson
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - Gizelle Robinson
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - R Adron Harris
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - R Dayne Mayfield
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| |
Collapse
|
59
|
Inhibition of IKKβ Reduces Ethanol Consumption in C57BL/6J Mice. eNeuro 2016; 3:eN-NWR-0256-16. [PMID: 27822501 PMCID: PMC5086799 DOI: 10.1523/eneuro.0256-16.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/01/2022] Open
Abstract
Proinflammatory pathways in neuronal and non-neuronal cells are implicated in the acute and chronic effects of alcohol exposure in animal models and humans. The nuclear factor-κB (NF-κB) family of DNA transcription factors plays important roles in inflammatory diseases. The kinase IKKβ mediates the phosphorylation and subsequent proteasomal degradation of cytosolic protein inhibitors of NF-κB, leading to activation of NF-κB. The role of IKKβ as a potential regulator of excessive alcohol drinking had not previously been investigated. Based on previous findings that the overactivation of innate immune/inflammatory signaling promotes ethanol consumption, we hypothesized that inhibiting IKKβ would limit/decrease drinking by preventing the activation of NF-κB. We studied the systemic effects of two pharmacological inhibitors of IKKβ, TPCA-1 and sulfasalazine, on ethanol intake using continuous- and limited-access, two-bottle choice drinking tests in C57BL/6J mice. In both tests, TPCA-1 and sulfasalazine reduced ethanol intake and preference without changing total fluid intake or sweet taste preference. A virus expressing Cre recombinase was injected into the nucleus accumbens and central amygdala to selectively knock down IKKβ in mice genetically engineered with a conditional Ikkb deletion (IkkbF/F). Although IKKβ was inhibited to some extent in astrocytes and microglia, neurons were a primary cellular target. Deletion of IKKβ in either brain region reduced ethanol intake and preference in the continuous access two-bottle choice test without altering the preference for sucrose. Pharmacological and genetic inhibition of IKKβ decreased voluntary ethanol consumption, providing initial support for IKKβ as a potential therapeutic target for alcohol abuse.
Collapse
|
60
|
Warden A, Truitt J, Merriman M, Ponomareva O, Jameson K, Ferguson LB, Mayfield RD, Harris RA. Localization of PPAR isotypes in the adult mouse and human brain. Sci Rep 2016; 6:27618. [PMID: 27283430 PMCID: PMC4901333 DOI: 10.1038/srep27618] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain.
Collapse
Affiliation(s)
- Anna Warden
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States.,The Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
| | - Jay Truitt
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| | - Morgan Merriman
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| | - Olga Ponomareva
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| | - Kelly Jameson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| | - Laura B Ferguson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States.,The Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, United States
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712, United States
| |
Collapse
|
61
|
Hu AM, Zhu T, Dong L, Luo NF, Du GZ. Ethanol alters the expression of ion channel genes in Daphnia pulex. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2016; 42:325-32. [PMID: 27158938 DOI: 10.3109/00952990.2016.1162168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Heavy drinking can increase heart rate and blood glucose, induce hypoxic tolerance, impair brain cognitive functions, and alter gene expressions. These phenomena may occur even in response to small dose of ethanol exposure or during its withdrawal. OBJECTIVES To evaluate whether persistent low concentrations of ethanol exposure affect organism function and the gene expressions of ion channels. METHODS Daphnids were randomized to receive placebo 300 min, 2 mM ethanol 300 min, or 2 mM ethanol 240 min and then placebo 60 min. Heart rate, glucose levels, phototactic behavior, and hypoxic tolerance were recorded during experiment. At the end of the study, changes in the mRNA levels of ion channel genes were assessed in response to exposure to ethanol using quantitative polymerase chain reaction (PCR) techniques. RESULTS Heart rate was reversibly increased by ethanol withdrawal and returned to basal levels upon re-exposure to ethanol. Fifteen of 120 ion channel transcripts were affected by persistent ethanol exposure. Neither ethanol withdrawal nor persistent exposures showed an effect on blood glucose, phototactic behavior, or hypoxic tolerance. CONCLUSIONS Small doses of ethanol can increase heart rate and alter gene expression of multiple ion channels in Daphnia pulex. Affected ion channel genes may assist in understanding the mechanism of ethanol adaptation and tolerance.
Collapse
Affiliation(s)
- An-Min Hu
- a Laboratory of Anesthesia and Critical Care Medicine , West China Hospital of Sichuan University , Chengdu , Sichuan , China
| | - Tao Zhu
- a Laboratory of Anesthesia and Critical Care Medicine , West China Hospital of Sichuan University , Chengdu , Sichuan , China
| | - Li Dong
- a Laboratory of Anesthesia and Critical Care Medicine , West China Hospital of Sichuan University , Chengdu , Sichuan , China.,b Department of Anesthesiology , the Affiliated Hospital of Guiyang Medical College , Guiyang , Guizhou , China
| | - Nan-Fu Luo
- a Laboratory of Anesthesia and Critical Care Medicine , West China Hospital of Sichuan University , Chengdu , Sichuan , China
| | - Gui-Zhi Du
- a Laboratory of Anesthesia and Critical Care Medicine , West China Hospital of Sichuan University , Chengdu , Sichuan , China
| |
Collapse
|
62
|
Ayers-Ringler JR, Oliveros A, Qiu Y, Lindberg DM, Hinton DJ, Moore RM, Dasari S, Choi DS. Label-Free Proteomic Analysis of Protein Changes in the Striatum during Chronic Ethanol Use and Early Withdrawal. Front Behav Neurosci 2016; 10:46. [PMID: 27014007 PMCID: PMC4786553 DOI: 10.3389/fnbeh.2016.00046] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/26/2016] [Indexed: 01/03/2023] Open
Abstract
The molecular mechanisms underlying the neuronal signaling changes in alcohol addiction and withdrawal are complex and multifaceted. The cortico-striatal circuit is highly implicated in these processes, and the striatum plays a significant role not only in the early stages of addiction, but in the developed-addictive state as well, including withdrawal symptoms. Transcriptional analysis is a useful method for determining changes in gene expression, however, the results do not always accurately correlate with protein levels. In this study, we employ label-free proteomic analysis to determine changes in protein expression within the striatum during chronic ethanol use and early withdrawal. The striatum, composed primarily of medium spiny GABAergic neurons, glutamatergic and dopaminergic nerve terminals and astrocytes, is relatively homogeneous for proteomic analysis. We were able to analyze more than 5000 proteins from both the dorsal (caudate and putamen) and ventral (nucleus accumbens) striatum and identified significant changes following chronic intermittent ethanol exposure and acute (8 h) withdrawal compared to ethanol naïve and ethanol exposure groups respectively. Our results showed significant changes in proteins involved in glutamate and opioid peptide signaling, and also uncovered novel pathways including mitochondrial function and lipid/cholesterol metabolism, as revealed by changes in electron transport chain proteins and RXR activation pathways. These results will be useful in the development of novel treatments for alcohol withdrawal and thereby aid in recovery from alcohol use disorder.
Collapse
Affiliation(s)
| | - Alfredo Oliveros
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Yanyan Qiu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Daniel M Lindberg
- Neurobiology of Disease PhD Program, Mayo Graduate School, Mayo Clinic Rochester, MN, USA
| | - David J Hinton
- Neurobiology of Disease PhD Program, Mayo Graduate School, Mayo Clinic Rochester, MN, USA
| | - Raymond M Moore
- Department of Biochemistry and Molecular Biology, Center for Individualized Medicine, Mayo Clinic Rochester, MN, USA
| | - Surendra Dasari
- Department of Health Sciences Research, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Neurobiology of Disease PhD Program, Mayo Graduate School, Mayo ClinicRochester, MN, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Graduate School, Mayo Clinic College of MedicineRochester, MN, USA; Department of Psychiatry and Psychology, Mayo Clinic College of MedicineRochester, MN, USA
| |
Collapse
|
63
|
Jacobsen JHW, Hutchinson MR, Mustafa S. Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy. Curr Opin Pharmacol 2016; 26:131-7. [DOI: 10.1016/j.coph.2015.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 01/29/2023]
|
64
|
Marshall SA, Casachahua JD, Rinker JA, Blose AK, Lysle DT, Thiele TE. IL-1 receptor signaling in the basolateral amygdala modulates binge-like ethanol consumption in male C57BL/6J mice. Brain Behav Immun 2016; 51:258-267. [PMID: 26365025 PMCID: PMC4679505 DOI: 10.1016/j.bbi.2015.09.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/26/2015] [Accepted: 09/09/2015] [Indexed: 12/26/2022] Open
Abstract
Proinflammatory cytokines have been implicated in alcohol-induced neurodegeneration, but the role of the neuroimmune system in alcohol related behaviors has only recently come to the forefront. Herein, the effects of binge-like drinking on IL-1β mRNA and immunoreactivity within the amygdala were measured following the "drinking in the dark" (DID) paradigm, a model of binge-like ethanol drinking in C57BL/6J mice. Moreover, the role of IL-1 receptor signaling in the amygdala on ethanol consumption was assessed. Results indicated that a history of binge-like ethanol drinking promoted a significant increase of IL-1β mRNA expression within the amygdala, and immunohistochemistry analyses revealed that the basolateral amygdala (BLA), but not central amygdala (CeA), exhibited significantly increased IL-1β immunoreactivity. However, Fluoro-Jade® C labeling indicated that multiple cycles of the DID paradigm were not sufficient to elicit neuronal death. Bilateral infusions of IL-1 receptor antagonist (IL-1Ra) reduced ethanol consumption when infused into the BLA but not the CeA. These observations were specific to ethanol drinking as the IL-1Ra did not alter either sucrose drinking or open-field locomotor activity. The current findings highlight a specific role for IL-1 receptor signaling in modulating binge-like ethanol consumption and indicate that proinflammatory cytokines can be induced prior to dependence or any evidence of neuronal cell death. These findings provide a framework in which to understand how neuroimmune adaptations may alter ethanol consumption and therein contribute to alcohol abuse.
Collapse
Affiliation(s)
- S Alex Marshall
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - John D Casachahua
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jennifer A Rinker
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Allyson K Blose
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Donald T Lysle
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599, USA; Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
65
|
Follesa P, Floris G, Asuni GP, Ibba A, Tocco MG, Zicca L, Mercante B, Deriu F, Gorini G. Chronic Intermittent Ethanol Regulates Hippocampal GABA(A) Receptor Delta Subunit Gene Expression. Front Cell Neurosci 2015; 9:445. [PMID: 26617492 PMCID: PMC4637418 DOI: 10.3389/fncel.2015.00445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/26/2015] [Indexed: 12/26/2022] Open
Abstract
Chronic ethanol consumption causes structural and functional reorganization in the hippocampus and induces alterations in the gene expression of gamma-aminobutyric acid type A receptors (GABAARs). Distinct forced intermittent exposure models have been used previously to investigate changes in GABAAR expression, with contrasting results. Here, we used repeated cycles of a Chronic Intermittent Ethanol paradigm to examine the relationship between voluntary, dependence-associated ethanol consumption, and GABAAR gene expression in mouse hippocampus. Adult male C57BL/6J mice were exposed to four 16-h ethanol vapor (or air) cycles in inhalation chambers alternated with limited-access two-bottle choice between ethanol (15%) and water consumption. The mice exposed to ethanol vapor showed significant increases in ethanol consumption compared to their air-matched controls. GABAAR alpha4 and delta subunit gene expression were measured by qRT-PCR at different stages. There were significant changes in GABAAR delta subunit transcript levels at different time points in ethanol-vapor exposed mice, while the alpha4 subunit levels remained unchanged. Correlated concurrent blood ethanol concentrations suggested that GABAAR delta subunit mRNA levels fluctuate depending on ethanol intoxication, dependence, and withdrawal state. Using a vapor-based Chronic Intermittent Ethanol procedure with combined two-bottle choice consumption, we corroborated previous evidences showing that discontinuous ethanol exposure affects GABAAR delta subunit expression but we did not observe changes in alpha4 subunit. These findings indicate that hippocampal GABAAR delta subunit expression changes transiently over the course of a Chronic Intermittent Ethanol paradigm associated with voluntary intake, in response to ethanol-mediated disturbance of GABAergic neurotransmission.
Collapse
Affiliation(s)
- Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Gabriele Floris
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Gino P Asuni
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| | - Antonio Ibba
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari Cagliari, Italy
| | - Maria G Tocco
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari Cagliari, Italy
| | - Luca Zicca
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari Cagliari, Italy
| | | | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari Sassari, Italy
| | - Giorgio Gorini
- Department of Life and Environmental Sciences, University of Cagliari Cagliari, Italy
| |
Collapse
|