51
|
Torres Castillo NE, Melchor-Martínez EM, Ochoa Sierra JS, Ramirez-Mendoza RA, Parra-Saldívar R, Iqbal HMN. Impact of climate change and early development of coffee rust - An overview of control strategies to preserve organic cultivars in Mexico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140225. [PMID: 32806380 DOI: 10.1016/j.scitotenv.2020.140225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023]
Abstract
Coffee is one of the most important commercial traded commodities in the international market, as well as the most popular beverage around the world. In Mexico, organic coffee cultivation (specifically, Arabica coffee crops) is a highly demanded that generates up to 500,000 employments in 14 federal entities. Among various coffee producers, Chiapas, Veracruz, and Oaxaca are responsible of 80% of the total coffee production in the country. Currently, Mexico is the leading producer of organic coffee in the world. However, there have been a slow recovery due to the large production losses since 2012, caused by earlier and highly aggressive outbreaks of coffee leaf rust (CLR), in the country, where the infectious agent is known as Hemileia vastatrix (HV). This phenomenon is becoming frequent, and climate change effects could be the main contributors. This spontaneous proliferation was generated in Mexico, due to the precipitation and temperature variability, during the last decade. As result, in Mexico, the biological interaction between coffee crops and their environment has been harmed and crucial characteristics, as crop yield and quality, are particularly being affected, directly by the negative effects of the greenhouse phenomenon, and indirectly, through diseases as CLR. Therefore, this review discusses the contribution of climate change effects in the early development of CLR in Mexico. The focus is also given on possible schemes and actions taken around the world as control measures to adapt the vulnerable coffee varieties to tackle this challenging issue.
Collapse
Affiliation(s)
- Nora E Torres Castillo
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Elda M Melchor-Martínez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Jhosseph S Ochoa Sierra
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Ricardo A Ramirez-Mendoza
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
52
|
Abstract
The coffee sector is working towards sector-wide commitments for sustainable production. Yet, knowledge of where coffee is cultivated and its environmental impact remains limited, in part due to the challenges of mapping coffee using satellite remote sensing. We recognize the urgency to capitalize on recent technological advances to improve remote sensing methods and generate more accurate, reliable, and scalable approaches to coffee mapping. In this study, we provide a systematic review of satellite-based approaches to mapping coffee extent, which produced 43 articles in the peer-reviewed and gray literature. We outline key considerations for employing effective approaches, focused on the need to balance data affordability and quality, classification complexity and accuracy, and generalizability and site-specificity. We discuss research opportunities for improved approaches by leveraging the recent expansion of diverse satellite sensors and constellations, optical/Synthetic Aperture Radar data fusion approaches, and advances in cloud computing and deep learning algorithms. We highlight the need for differentiating between production systems and the need for research in important coffee-growing geographies. By reviewing the range of techniques successfully used to map coffee extent, we provide technical recommendations and future directions to enable accurate and scalable coffee maps.
Collapse
|
53
|
Parvez Mosharaf M, Akond Z, Hadiul Kabir M, Nurul Haque Mollah M. Genome-wide identification, characterization and phylogenetic analysis of Dicer-like (DCL) gene family in Coffea arabica. Bioinformation 2019; 15:824-831. [PMID: 31902983 PMCID: PMC6936657 DOI: 10.6026/97320630015824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/23/2022] Open
Abstract
A fine-tuned RNA interference (RNAi) pathway has been developed by plants to restrain distinct biological processes in various life stages including stress responses, development and maintenance of genome integrity. The Dicer-Like (DCL) proteins starts the RNAi process by producing complementary double-stranded RNAs (dsRNAs) into small RNA duplexes (21-24 nucleotides) trigger the RNAi process. Nevertheless, these members of RNAi pathway have not been deciphered in one of the most economically important plant coffee (Coffea arabica). Therefore, it is of interest to report the identification and phylogenetic analysis of the DCL genes in C. arabica. We report 5 DCL genes and categorized them into three significant groups to interpret the evolutionary relationship with DCLs of the model plant Arabidopsis thaliana. Moreover, the subcellular location of the reported DCL proteins and the associated cis-acting regulatory elements were also identified and discussed in this report. The cis-regulatory elements indicated the biological and molecular functional diversity of the identified DCL genes related with plant growth and development. The present findings will provide a better basis for further experimental research on RNAi pathway genes in C. arabica.
Collapse
Affiliation(s)
- Md Parvez Mosharaf
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Zobaer Akond
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Hadiul Kabir
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| | - Md Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi-6205, Bangladesh
| |
Collapse
|
54
|
de Sousa K, van Zonneveld M, Holmgren M, Kindt R, Ordoñez JC. The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Sci Rep 2019; 9:8828. [PMID: 31222119 PMCID: PMC6586680 DOI: 10.1038/s41598-019-45491-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Climate change threatens coffee production and the livelihoods of thousands of families in Mesoamerica that depend on it. Replacing coffee with cocoa and integrating trees in combined agroforestry systems to ameliorate abiotic stress are among the proposed alternatives to overcome this challenge. These two alternatives do not consider the vulnerability of cocoa and tree species commonly used in agroforestry plantations to future climate conditions. We assessed the suitability of these alternatives by identifying the potential changes in the distribution of coffee, cocoa and the 100 most common agroforestry trees found in Mesoamerica. Here we show that cocoa could potentially become an alternative in most of coffee vulnerable areas. Agroforestry with currently preferred tree species is highly vulnerable to future climate change. Transforming agroforestry systems by changing tree species composition may be the best approach to adapt most of the coffee and cocoa production areas. Our results stress the urgency for land use planning considering climate change effects and to assess new combinations of agroforestry species in coffee and cocoa plantations in Mesoamerica.
Collapse
Affiliation(s)
- Kauê de Sousa
- Department of Agricultural Sciences, Inland Norway University of Applied Sciences, 2322, Hamar, Norway.
- Bioversity International, 30501, Turrialba, Costa Rica.
| | - Maarten van Zonneveld
- Bioversity International, 30501, Turrialba, Costa Rica
- World Vegetable Center, 741, Shanhua, Taiwan
| | - Milena Holmgren
- Resource Ecology Group, Wageningen University, 6708, Wageningen, The Netherlands
| | | | - Jenny C Ordoñez
- Latin America Regional Office, World Agroforestry Centre, 1558, Lima, Peru
- Facultad de Ingenieria Agroindustrial, Universidad de las Américas, 170125, Quito, Ecuador
| |
Collapse
|
55
|
Lyon S, Mutersbaugh T, Worthen H. Constructing the female coffee farmer: Do corporate smart-economic initiatives promote gender equity within agricultural value chains? ECONOMIC ANTHROPOLOGY 2018. [DOI: 10.1002/sea2.12129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah Lyon
- Department of Anthropology; University of Kentucky; Lexington KY 40506-0027 USA
| | - Tad Mutersbaugh
- Department of Geography; University of Kentucky; Lexington KY 40506-0027 USA
| | - Holly Worthen
- Sociología, Universidad Autónoma Benito Juárez de Oaxaca, C.P, 68120; Oaxaca Mexico
| |
Collapse
|
56
|
Climate Change, Carbon Dioxide, and Pest Biology, Managing the Future: Coffee as a Case Study. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The challenge of maintaining sufficient food, feed, fiber, and forests, for a projected end of century population of between 9–10 billion in the context of a climate averaging 2–4 °C warmer, is a global imperative. However, climate change is likely to alter the geographic ranges and impacts for a variety of insect pests, plant pathogens, and weeds, and the consequences for managed systems, particularly agriculture, remain uncertain. That uncertainty is related, in part, to whether pest management practices (e.g., biological, chemical, cultural, etc.) can adapt to climate/CO2 induced changes in pest biology to minimize potential loss. The ongoing and projected changes in CO2, environment, managed plant systems, and pest interactions, necessitates an assessment of current management practices and, if warranted, development of viable alternative strategies to counter damage from invasive alien species and evolving native pest populations. We provide an overview of the interactions regarding pest biology and climate/CO2; assess these interactions currently using coffee as a case study; identify the potential vulnerabilities regarding future pest impacts; and discuss possible adaptive strategies, including early detection and rapid response via EDDMapS (Early Detection & Distribution Mapping System), and integrated pest management (IPM), as adaptive means to improve monitoring pest movements and minimizing biotic losses while improving the efficacy of pest control.
Collapse
|
57
|
Azrag AGA, Pirk CWW, Yusuf AA, Pinard F, Niassy S, Mosomtai G, Babin R. Prediction of insect pest distribution as influenced by elevation: Combining field observations and temperature-dependent development models for the coffee stink bug, Antestiopsis thunbergii (Gmelin). PLoS One 2018; 13:e0199569. [PMID: 29933391 PMCID: PMC6014636 DOI: 10.1371/journal.pone.0199569] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/09/2018] [Indexed: 11/19/2022] Open
Abstract
The antestia bug, Antestiopsis thunbergii (Gmelin 1790) is a major pest of Arabica coffee in Africa. The bug prefers coffee at the highest elevations, contrary to other major pests. The objectives of this study were to describe the relationship between A. thunbergii populations and elevation, to elucidate this relationship using our knowledge of the pest thermal biology and to predict the pest distribution under climate warming. Antestiopsis thunbergii population density was assessed in 24 coffee farms located along a transect delimited across an elevation gradient in the range 1000-1700 m asl, on Mt. Kilimanjaro, Tanzania. Density was assessed for three different climatic seasons, the cool dry season in June 2014 and 2015, the short rainy season in October 2014 and the warm dry season in January 2015. The pest distribution was predicted over the same transect using three risk indices: the establishment risk index (ERI), the generation index (GI) and the activity index (AI). These indices were computed using simulated life table parameters obtained from temperature-dependent development models and temperature data from 1) field records using data loggers deployed over the transect and 2) predictions for year 2055 extracted from AFRICLIM database. The observed population density was the highest during the cool dry season and increased significantly with increasing elevation. For current temperature, the ERI increased with an increase in elevation and was therefore distributed similarly to observed populations, contrary to the other indices. This result suggests that immature stage susceptibility to extreme temperatures was a key factor of population distribution as impacted by elevation. In the future, distribution of the risk indices globally indicated a decrease of the risk at low elevation and an increase of the risk at the highest elevations. Based on these results, we concluded with recommendations to mitigate the risk of A. thunbergii infestation.
Collapse
Affiliation(s)
- Abdelmutalab G. A. Azrag
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
- Department of Crop Protection, Faculty of Agricultural Sciences, University of Gezira, Wad Medani, Sudan
| | - Christian W. W. Pirk
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Abdullahi A. Yusuf
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Fabrice Pinard
- UPR Bioagresseurs, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Nairobi, Kenya
- Bioagresseurs, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Saliou Niassy
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Gladys Mosomtai
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Régis Babin
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- UPR Bioagresseurs, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Nairobi, Kenya
- Bioagresseurs, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| |
Collapse
|
58
|
Ramalho JC, Rodrigues AP, Lidon FC, Marques LMC, Leitão AE, Fortunato AS, Pais IP, Silva MJ, Scotti-Campos P, Lopes A, Reboredo FH, Ribeiro-Barros AI. Stress cross-response of the antioxidative system promoted by superimposed drought and cold conditions in Coffea spp. PLoS One 2018; 13:e0198694. [PMID: 29870563 PMCID: PMC5988331 DOI: 10.1371/journal.pone.0198694] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022] Open
Abstract
The understanding of acclimation strategies to low temperature and water availability is decisive to ensure coffee crop sustainability, since these environmental conditions determine the suitability of cultivation areas. In this context, the impacts of single and combined exposure to drought and cold were evaluated in three genotypes of the two major cropped species, Coffea arabica cv. Icatu, Coffea canephora cv. Apoatã, and the hybrid Obatã. Crucial traits of plant resilience to environmental stresses have been examined: photosynthesis, lipoperoxidation and the antioxidant response. Drought and/or cold promoted leaf dehydration, which was accompanied by stomatal and mesophyll limitations that impaired leaf C-assimilation in all genotypes. However, Icatu showed a lower impact upon stress exposure and a faster and complete photosynthetic recovery. Although lipoperoxidation was increased by drought (Icatu) and cold (all genotypes), it was greatly reduced by stress interaction, especially in Icatu. In fact, although the antioxidative system was reinforced under single drought and cold exposure (e.g., activity of enzymes as Cu,Zn-superoxide dismutase, ascorbate peroxidase, APX, glutathione reductase and catalase, CAT), the stronger increases were observed upon the simultaneous exposure to both stresses, which was accompanied with a transcriptional response of some genes, namely related to APX. Complementary, non-enzyme antioxidant molecules were promoted mostly by cold and the stress interaction, including α-tocopherol (in C. arabica plants), ascorbate (ASC), zeaxanthin, and phenolic compounds (all genotypes). In general, drought promoted antioxidant enzymes activity, whereas cold enhanced the synthesis of both enzyme and non-enzyme antioxidants, the latter likely related to a higher need of antioxidative capability when enzyme reactions were probably quite repressed by low temperature. Icatu showed the wider antioxidative capability, with the triggering of all studied antioxidative molecules by drought (except CAT), cold, and, particularly, stress interaction (except ASC), revealing a clear stress cross-tolerance. This justified the lower impacts on membrane lipoperoxidation and photosynthetic capacity under stress interaction conditions, related to a better ROS control. These findings are also relevant to coffee water management, showing that watering in the cold season should be largely avoided.
Collapse
Affiliation(s)
- José C. Ramalho
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana P. Rodrigues
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
| | - Fernando C. Lidon
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Luís M. C. Marques
- Colóides Polimeros e Superficies, Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa (UNL), Oeiras, Portugal
| | - A. Eduardo Leitão
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana S. Fortunato
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
| | - Isabel P. Pais
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - Maria J. Silva
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Paula Scotti-Campos
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Oeiras, Portugal
| | - António Lopes
- Colóides Polimeros e Superficies, Instituto de Tecnologia Química e Biológica (ITQB), Universidade NOVA de Lisboa (UNL), Oeiras, Portugal
| | - F. H. Reboredo
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| | - Ana I. Ribeiro-Barros
- Plant-Environment Interactions & Biodiversity Lab (PlantStress&Biodiversity), Linking Landscape, Environment, Agriculture and Food Unit (LEAF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Oeiras, Portugal
- Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Caparica, Portugal
| |
Collapse
|
59
|
DaMatta FM, Avila RT, Cardoso AA, Martins SCV, Ramalho JC. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018. [PMID: 29517900 DOI: 10.1021/acs.jafc.7b04537] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Coffee is one of the most important global crops and provides a livelihood to millions of people living in developing countries. Coffee species have been described as being highly sensitive to climate change, as largely deduced from modeling studies based on predictions of rising temperatures and changing rainfall patterns. Here, we discuss the physiological responses of the coffee tree in the context of present and ongoing climate changes, including drought, heat, and light stresses, and interactions between these factors. We also summarize recent insights on the physiological and agronomic performance of coffee at elevated atmospheric CO2 concentrations and highlight the key role of CO2 in mitigating the harmful effects of heat stress. Evidence is shown suggesting that warming, per se, may be less harmful to coffee suitability than previously estimated, at least under the conditions of an adequate water supply. Finally, we discuss several mitigation strategies to improve crop performance in a changing world.
Collapse
Affiliation(s)
- Fábio M DaMatta
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - Rodrigo T Avila
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - Amanda A Cardoso
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - Samuel C V Martins
- Departamento de Biologia Vegetal , Universidade Federal Viçosa , 36570-900 Viçosa , Minas Gerais , Brazil
| | - José C Ramalho
- Interações Planta-Ambiente & Biodiversidade Lab (Plant Stress & Biodiversity), Linking Landscape, Environment, Agriculture and Food, (LEAF), Departamento de Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA) , Universidade de Lisboa (ULisboa) , Av. República , 2784-505 Oeiras , Portugal
- GeoBioTec, Faculdade de Ciências Tecnologia , Universidade NOVA de Lisboa , 2829-516 Caparica , Portugal
| |
Collapse
|
60
|
Rahn E, Vaast P, Läderach P, van Asten P, Jassogne L, Ghazoul J. Exploring adaptation strategies of coffee production to climate change using a process-based model. Ecol Modell 2018. [DOI: 10.1016/j.ecolmodel.2018.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
61
|
Chang CH, Karanth KK, Robbins P. Birds and beans: Comparing avian richness and endemism in arabica and robusta agroforests in India's Western Ghats. Sci Rep 2018; 8:3143. [PMID: 29453390 PMCID: PMC5816607 DOI: 10.1038/s41598-018-21401-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/29/2018] [Indexed: 11/29/2022] Open
Abstract
Coffee is a major tropical commodity crop that can provide supplementary habitat for native wildlife. In Asia, coffee production is an increasingly important driver of landscape transformation and shifts between different coffee species is a major dimension of agroforestry trends. Yet few studies have compared the ecological impacts of conversion between different coffee species. We evaluated whether or not the two species of coffee grown globally-Coffea arabica and C. canephora (denoted "robusta")-had equivalent avian conservation value in the Western Ghats, India, where robusta production has become increasingly dominant. We found that habitat specialist and functional guild diversity was higher in arabica, and that arabica was more profitable. However, robusta farms generally supported the same or slightly higher abundances of habitat specialists and functional guilds, largely due to dense canopy and landscape-level forest cover. Farming practices, chiefly pesticide use, may affect the suitability of coffee agroforests as habitat for avian specialists, and at present, robusta farmers tended to use less pesticide. Given future projections for arabica to robusta conversion in tropical Asia, our study indicates that certification efforts should prioritize maintaining native canopy shade trees and forest cover to ensure that coffee landscapes can continue providing biodiversity benefits.
Collapse
Affiliation(s)
- Charlotte H Chang
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Krithi K Karanth
- Wildlife Conservation Society, 2300 Bronx Blvd, New York, USA.
- Centre for Wildlife Studies, 551, 7th Main Road Rajiv Gandhi Nagar, 2nd Phase, Kodigehalli, Bengaluru, 560097, India.
- Duke University, Durham, North Carolina, USA.
| | - Paul Robbins
- Nelson Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
62
|
Coupling of pollination services and coffee suitability under climate change. Proc Natl Acad Sci U S A 2017; 114:10438-10442. [PMID: 28893985 DOI: 10.1073/pnas.1617940114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Climate change will cause geographic range shifts for pollinators and major crops, with global implications for food security and rural livelihoods. However, little is known about the potential for coupled impacts of climate change on pollinators and crops. Coffee production exemplifies this issue, because large losses in areas suitable for coffee production have been projected due to climate change and because coffee production is dependent on bee pollination. We modeled the potential distributions of coffee and coffee pollinators under current and future climates in Latin America to understand whether future coffee-suitable areas will also be suitable for pollinators. Our results suggest that coffee-suitable areas will be reduced 73-88% by 2050 across warming scenarios, a decline 46-76% greater than estimated by global assessments. Mean bee richness will decline 8-18% within future coffee-suitable areas, but all are predicted to contain at least 5 bee species, and 46-59% of future coffee-suitable areas will contain 10 or more species. In our models, coffee suitability and bee richness each increase (i.e., positive coupling) in 10-22% of future coffee-suitable areas. Diminished coffee suitability and bee richness (i.e., negative coupling), however, occur in 34-51% of other areas. Finally, in 31-33% of the future coffee distribution areas, bee richness decreases and coffee suitability increases. Assessing coupled effects of climate change on crop suitability and pollination can help target appropriate management practices, including forest conservation, shade adjustment, crop rotation, or status quo, in different regions.
Collapse
|
63
|
Finley JW, Dimick D, Marshall E, Nelson GC, Mein JR, Gustafson DI. Nutritional Sustainability: Aligning Priorities in Nutrition and Public Health with Agricultural Production. Adv Nutr 2017; 8:780-788. [PMID: 28916578 PMCID: PMC5593112 DOI: 10.3945/an.116.013995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nutrition science-based dietary advice urges changes that may have a great impact on agricultural systems. For example, the 2016 Dietary Guidelines for Americans (DGA) recommends greatly increased fruit and vegetable consumption, but the present domestic production is insufficient to accommodate large-scale adoption of these guidelines. Increasing production to the extent needed to meet the DGA will necessitate changes in an already stressed agriculture and food system and will require nutrition and agriculture professionals to come together in open and collegial discourse. All involved need to understand the stress placed on the food system by increasing populations, changing diets, and changing environments, and recognize the major diet-based public health challenges. Furthermore, there is a need to understand the intricate interplay of the myriad parts of the food system and the vast amount of work necessary to make even small changes. New systems approaches are needed, especially at the research level, where nutrition, public health, agriculture, and the food industry work together to solve interconnected problems. Future well-being depends on a sustainable food system that continues to deliver optimal health with minimal impact on the environment.
Collapse
Affiliation(s)
| | | | | | - Gerald Charles Nelson
- Department of Agricultural and Consumer Economics, University of Illinois, Urbana-Champaign, IL
| | - Jonathan R Mein
- Vegetable Seeds Division, Monsanto Company, St. Louis, MO; and
| | | |
Collapse
|
64
|
Charbonnier F, Roupsard O, le Maire G, Guillemot J, Casanoves F, Lacointe A, Vaast P, Allinne C, Audebert L, Cambou A, Clément-Vidal A, Defrenet E, Duursma RA, Jarri L, Jourdan C, Khac E, Leandro P, Medlyn BE, Saint-André L, Thaler P, Van Den Meersche K, Barquero Aguilar A, Lehner P, Dreyer E. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system. PLANT, CELL & ENVIRONMENT 2017; 40:1592-1608. [PMID: 28382683 DOI: 10.1111/pce.12964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/19/2017] [Indexed: 06/07/2023]
Abstract
In agroforestry systems, shade trees strongly affect the physiology of the undergrown crop. However, a major paradigm is that the reduction in absorbed photosynthetically active radiation is, to a certain extent, compensated by an increase in light-use efficiency, thereby reducing the difference in net primary productivity between shaded and non-shaded plants. Due to the large spatial heterogeneity in agroforestry systems and the lack of appropriate tools, the combined effects of such variables have seldom been analysed, even though they may help understand physiological processes underlying yield dynamics. In this study, we monitored net primary productivity, during two years, on scales ranging from individual coffee plants to the entire plot. Absorbed radiation was mapped with a 3D model (MAESPA). Light-use efficiency and net assimilation rate were derived for each coffee plant individually. We found that although irradiance was reduced by 60% below crowns of shade trees, coffee light-use efficiency increased by 50%, leaving net primary productivity fairly stable across all shade levels. Variability of aboveground net primary productivity of coffee plants was caused primarily by the age of the plants and by intraspecific competition among them (drivers usually overlooked in the agroforestry literature) rather than by the presence of shade trees.
Collapse
Affiliation(s)
- Fabien Charbonnier
- CONACyT research fellow, El Colegio de la Frontera Sur, San Cristóbal de las Casas, 29290, Chiapas, Mexico
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
| | - Olivier Roupsard
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), 7170, Turrialba, Costa Rica
| | | | | | - Fernando Casanoves
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), 7170, Turrialba, Costa Rica
| | - André Lacointe
- Inra, Université Blaise Pascal, UMR 547 PIAF, F-63100, Clermont-Ferrand, France
| | - Philippe Vaast
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
- World Agroforestry Centre (ICRAF), United Nations Avenue, PO Box 30677, 00100, Nairobi, Kenya
| | - Clémentine Allinne
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), 7170, Turrialba, Costa Rica
- CIRAD, Inra, SupAgro-Montpellier, UMR System, 34060, Montpellier, France
| | | | | | | | | | - Remko A Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, New South West, Australia
| | - Laura Jarri
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
| | | | | | - Patricia Leandro
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), 7170, Turrialba, Costa Rica
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, New South West, Australia
| | - Laurent Saint-André
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
- Inra, Biogéochimie des Ecosystèmes Forestiers, F-54280, Champenoux, France
| | | | - Karel Van Den Meersche
- CIRAD, UMR Eco&Sols, F-34398, Montpellier, France
- CATIE (Centro Agronómico Tropical de Investigación y Enseñanza), 7170, Turrialba, Costa Rica
| | | | - Peter Lehner
- Cafetalera Aquiares S.A., PO Box 362-7150, Turrialba, 7150, Costa Rica
| | - Erwin Dreyer
- Inra, Université de Lorraine, UMR 1137 'Ecologie et Ecophysiologie Forestières', F54280, Champenoux, France
| |
Collapse
|
65
|
Kaur H, Huggins DR, Rupp RA, Abatzoglou JT, Stöckle CO, Reganold JP. Agro-Ecological Class Stability Decreases in Response to Climate Change Projections for the Pacific Northwest, USA. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
66
|
Problems with Firm-Led Voluntary Sustainability Schemes: The Case of Direct Trade Coffee. SUSTAINABILITY 2017. [DOI: 10.3390/su9040651] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
67
|
Abstract
Mexico is hosting the 13th Conference of the Parts (COP-13) on the Convention on Biological Diversity. Participants will have another opportunity to "integrate biodiversity for wellbeing." Considering that food production is a major driver for the loss of biological diversity, despite the fact that ample genetic reservoirs are crucial for the persistence of agriculture in a changing world, food can be a conduit for bringing biodiversity into people's minds and government agendas. If this generation is going to "live in harmony with nature," as the Aichi Biodiversity Targets indicate, such an integration needs to be developed between the agricultural and environmental sectors throughout the world, especially as an increasingly urban civilization severs its cultural connections to food origin.
Collapse
Affiliation(s)
- Erick de la Barrera
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán 58190, Mexico
| |
Collapse
|
68
|
Poltronieri P, Rossi F. Challenges in Specialty Coffee Processing and Quality Assurance. CHALLENGES 2016; 7:19. [DOI: 10.3390/challe7020019] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Coffee is an important crop that assures a sustainable economy to farmers in tropical regions. A dramatic concern for coffee production is currently represented by climate change, which threatens the survival of Coffea arabica cultivation worldwide and imposes modifications of the agronomic practices to prevent this risk. The quality of coffee beans depends on optimized protocols of cultivation, ripe berries collection, and removal of the outer fruit layers by dry or wet processes and moisture reduction. Storage and shipment represent two steps where bean quality needs to be preserved by preventing fungal contamination that may impact the final product and form mycotoxins, mainly ochratoxin A. In this review, we describe the challenges faced by the coffee industry to guarantee quality from production to roasting and brewing. An overview of novel technologies, such as the application of starter cultures in fermentation and the exploitation of industrial enzymes in accelerating the process of flavour development in coffee beans, is given. Moreover, the results of studies on microbial populations on coffee and the differences found in fungi, yeasts and bacteria composition among the investigations, are summarized. In particular, this review describes new attempts to contain the development of mycotoxigenic fungi, through the application of antagonistic microorganisms such as S. cerevisiae. The new wave of specialty coffees, i.e., those with a cupping score higher than 85/100, is also presented. It is shown how, through careful coffee production methods and controlled fermentation processes, coffee producers may increase their income by assuring high standards of quality and high added value for the coffee experience sector.
Collapse
Affiliation(s)
| | - Franca Rossi
- Biotechnology Department, University of Verona, street Le Grazie 15, Verona 37134, Italy
| |
Collapse
|
69
|
Liebig T, Jassogne L, Rahn E, Läderach P, Poehling HM, Kucel P, Van Asten P, Avelino J. Towards a Collaborative Research: A Case Study on Linking Science to Farmers' Perceptions and Knowledge on Arabica Coffee Pests and Diseases and Its Management. PLoS One 2016; 11:e0159392. [PMID: 27504826 PMCID: PMC4978507 DOI: 10.1371/journal.pone.0159392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/03/2016] [Indexed: 11/18/2022] Open
Abstract
The scientific community has recognized the importance of integrating farmer's perceptions and knowledge (FPK) for the development of sustainable pest and disease management strategies. However, the knowledge gap between indigenous and scientific knowledge still contributes to misidentification of plant health constraints and poor adoption of management solutions. This is particularly the case in the context of smallholder farming in developing countries. In this paper, we present a case study on coffee production in Uganda, a sector depending mostly on smallholder farming facing a simultaneous and increasing number of socio-ecological pressures. The objectives of this study were (i) to examine and relate FPK on Arabica Coffee Pests and Diseases (CPaD) to altitude and the vegetation structure of the production systems; (ii) to contrast results with perceptions from experts and (iii) to compare results with field observations, in order to identify constraints for improving the information flow between scientists and farmers. Data were acquired by means of interviews and workshops. One hundred and fifty farmer households managing coffee either at sun exposure, under shade trees or inter-cropped with bananas and spread across an altitudinal gradient were selected. Field sampling of the two most important CPaD was conducted on a subset of 34 plots. The study revealed the following findings: (i) Perceptions on CPaD with respect to their distribution across altitudes and perceived impact are partially concordant among farmers, experts and field observations (ii) There are discrepancies among farmers and experts regarding management practices and the development of CPaD issues of the previous years. (iii) Field observations comparing CPaD in different altitudes and production systems indicate ambiguity of the role of shade trees. According to the locality-specific variability in CPaD pressure as well as in FPK, the importance of developing spatially variable and relevant CPaD control practices is proposed.
Collapse
Affiliation(s)
- Theresa Liebig
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
- Institute of Horticultural Production Systems - Section Phytomedicine, Leibniz University of Hanover, Hanover, Germany
| | - Laurence Jassogne
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - Eric Rahn
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Peter Läderach
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Hans-Michael Poehling
- Institute of Horticultural Production Systems - Section Phytomedicine, Leibniz University of Hanover, Hanover, Germany
| | - Patrick Kucel
- National Coffee Research Institute (NaCORRI), National Agricultural Research Organisation (NARO), Mukono, Uganda
| | - Piet Van Asten
- International Institute of Tropical Agriculture (IITA), Kampala, Uganda
| | - Jacques Avelino
- Centre for International Cooperation in Agricultural Research for Development (CIRAD), UPR Bioagresseurs, Montpellier, France
- Department of Research and Development, Tropical Agricultural Research and Higher Education Center (CATIE), Turrialba, Costa Rica
- Inter-American Institute for Cooperation on Agriculture (IICA), San José, Costa Rica
- Regional Cooperative Program for Technological Development and Modernization of Coffee Production (PROMECAFE), Guatemala City, Guatemala
| |
Collapse
|
70
|
Climate Change Adaptation Strategy in the Food Industry—Insights from Product Carbon and Water Footprints. CLIMATE 2016. [DOI: 10.3390/cli4020026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
71
|
Schroth G, Läderach P, Martinez-Valle AI, Bunn C. From site-level to regional adaptation planning for tropical commodities: cocoa in West Africa. MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE 2016; 22:903-927. [PMID: 30093821 PMCID: PMC6054004 DOI: 10.1007/s11027-016-9707-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/18/2016] [Indexed: 06/07/2023]
Abstract
The production of tropical agricultural commodities, such as cocoa (Theobroma cacao) and coffee (Coffea spp.), the countries and communities engaged in it, and the industries dependent on these commodities, are vulnerable to climate change. This is especially so where a large percentage of the global supply is grown in a single geographical region. Fortunately, there is often considerable spatial heterogeneity in the vulnerability to climate change within affected regions, implying that local production losses could be compensated through intensification and expansion of production elsewhere. However, this requires that site-level actions are integrated into a regional approach to climate change adaptation. We discuss here such a regional approach for cocoa in West Africa, where 70 % of global cocoa supply originates. On the basis of a statistical model of relative climatic suitability calibrated on West African cocoa farming areas and average climate projections for the 2030s and 2050s of, respectively, 15 and 19 Global Circulation Models, we divide the region into three adaptation zones: (i) a little affected zone permitting intensification and/or expansion of cocoa farming; (ii) a moderately affected zone requiring diversification and agronomic adjustments of farming practices; and (iii) a severely affected zone with need for progressive crop change. We argue that for tropical agricultural commodities, larger-scale adaptation planning that attempts to balance production trends across countries and regions could help reduce negative impacts of climate change on regional economies and global commodity supplies, despite the institutional challenges that this integration may pose.
Collapse
Affiliation(s)
| | - Peter Läderach
- International Center for Tropical Agriculture (CIAT), Managua, Nicaragua
| | | | - Christian Bunn
- International Center for Tropical Agriculture (CIAT), Managua, Nicaragua
- Department of Agricultural Economics, Humboldt University, 10115 Berlin, Germany
| |
Collapse
|
72
|
Rodrigues WP, Martins MQ, Fortunato AS, Rodrigues AP, Semedo JN, Simões-Costa MC, Pais IP, Leitão AE, Colwell F, Goulao L, Máguas C, Maia R, Partelli FL, Campostrini E, Scotti-Campos P, Ribeiro-Barros AI, Lidon FC, DaMatta FM, Ramalho JC. Long-term elevated air [CO2 ] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. GLOBAL CHANGE BIOLOGY 2016; 22:415-31. [PMID: 26363182 DOI: 10.1111/gcb.13088] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 05/05/2023]
Abstract
The tropical coffee crop has been predicted to be threatened by future climate changes and global warming. However, the real biological effects of such changes remain unknown. Therefore, this work aims to link the physiological and biochemical responses of photosynthesis to elevated air [CO2 ] and temperature in cultivated genotypes of Coffea arabica L. (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown for ca. 10 months at 25/20°C (day/night) and 380 or 700 μl CO2 l(-1) and then subjected to temperature increase (0.5°C day(-1) ) to 42/34°C. Leaf impacts related to stomatal traits, gas exchanges, C isotope composition, fluorescence parameters, thylakoid electron transport and enzyme activities were assessed at 25/20, 31/25, 37/30 and 42/34°C. The results showed that (1) both species were remarkably heat tolerant up to 37/30°C, but at 42/34°C a threshold for irreversible nonstomatal deleterious effects was reached. Impairments were greater in C. arabica (especially in Icatu) and under normal [CO2 ]. Photosystems and thylakoid electron transport were shown to be quite heat tolerant, contrasting to the enzymes related to energy metabolism, including RuBisCO, which were the most sensitive components. (2) Significant stomatal trait modifications were promoted almost exclusively by temperature and were species dependent. Elevated [CO2 ], (3) strongly mitigated the impact of temperature on both species, particularly at 42/34°C, modifying the response to supra-optimal temperatures, (4) promoted higher water-use efficiency under moderately higher temperature (31/25°C) and (5) did not provoke photosynthetic downregulation. Instead, enhancements in [CO2 ] strengthened photosynthetic photochemical efficiency, energy use and biochemical functioning at all temperatures. Our novel findings demonstrate a relevant heat resilience of coffee species and that elevated [CO2 ] remarkably mitigated the impact of heat on coffee physiology, therefore playing a key role in this crop sustainability under future climate change scenarios.
Collapse
Affiliation(s)
- Weverton P Rodrigues
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, RJ, Brazil
| | - Madlles Q Martins
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil
| | - Ana S Fortunato
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Ana P Rodrigues
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - José N Semedo
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Maria C Simões-Costa
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Isabel P Pais
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - António E Leitão
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Filipe Colwell
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Luis Goulao
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Cristina Máguas
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty Sciences, Univ. Lisbon, Campo Grande, Lisboa, 1749-016, Portugal
| | - Rodrigo Maia
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculty Sciences, Univ. Lisbon, Campo Grande, Lisboa, 1749-016, Portugal
| | - Fábio L Partelli
- Centro Univ. Norte do Espírito Santo (CEUNES), Dept. Ciências Agrárias e Biológicas (DCAB), Univ. Federal Espírito Santo (UFES), Rod. BR 101 Norte, Km. 60, Bairro Litorâneo, CEP: 29932-540, São Mateus, ES, Brazil
| | - Eliemar Campostrini
- Setor Fisiologia Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Univ. Estadual Norte Fluminense (UENF), Darcy Ribeiro, RJ, Brazil
| | - Paula Scotti-Campos
- Unid. Investigação em Biotecnologia e Recursos Genéticos, Instituto Nacional de Investigação Agrária e Veterinária, I.P. (INIAV), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
| | - Ana I Ribeiro-Barros
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Fernando C Lidon
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| | - Fábio M DaMatta
- Dept. Biologia Vegetal, Univ. Federal Viçosa (UFV), Viçosa, 36570-000, MG, Brazil
| | - José C Ramalho
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity), Instituto Investigação Científica Tropical, I.P. (IICT), Qta. Marquês, Av. República, Oeiras, 2784-505, Portugal
- Grupo Interações Planta-Ambiente & Biodiversidade (PlantStress&Biodiversity) and Centro de Estudos Florestais, Instituto Superior Agronomia, Univ. Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
- GeoBioTec, Fac. Ciências Tecnologia, Univ. Nova Lisboa, Caparica, 2829-516, Portugal
| |
Collapse
|
73
|
Green PWC, Davis AP, Cossé AA, Vega FE. Can Coffee Chemical Compounds and Insecticidal Plants Be Harnessed for Control of Major Coffee Pests? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9427-9434. [PMID: 26458882 DOI: 10.1021/acs.jafc.5b03914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pests and pathogens threaten coffee production worldwide and are difficult to control using conventional methods, such as insecticides. We review the literature on the chemistry of coffee, concentrating on compounds most commonly reported from Coffea arabica and Coffea canephora. Differences in chemistry can distinguish coffee species and varieties, and plants grown under different biogeographic conditions exhibit different chemotypes. A number of chemical groups, such as alkaloids and caffeoylquinic acids, are known to be insecticidal, but most studies have investigated their effects on coffee quality and flavor. More research is required to bridge this gap in knowledge, so that coffee can be bred to be more resistant to pests. Furthermore, we report on some pesticidal plants that have been used for control of coffee pests. Locally sourced pesticidal plants have been underutilized and offer a sustainable alternative to conventional insecticides and could be used to augment breeding for resilience of coffee plants.
Collapse
Affiliation(s)
- Paul W C Green
- Royal Botanic Gardens , Kew, Richmond, Surrey TW9 3AB, United Kingdom
| | - Aaron P Davis
- Royal Botanic Gardens , Kew, Richmond, Surrey TW9 3AB, United Kingdom
| | - Allard A Cossé
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, ARS, U.S. Department of Agriculture , 1815 North University Street, Peoria, Illinois 61604, United States
| | - Fernando E Vega
- Sustainable Perennial Crops Laboratory, ARS, U.S. Department of Agriculture , Beltsville, Maryland 20705, United States
| |
Collapse
|
74
|
Bunn C, Läderach P, Pérez Jimenez JG, Montagnon C, Schilling T. Multiclass Classification of Agro-Ecological Zones for Arabica Coffee: An Improved Understanding of the Impacts of Climate Change. PLoS One 2015; 10:e0140490. [PMID: 26505637 PMCID: PMC4624759 DOI: 10.1371/journal.pone.0140490] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/25/2015] [Indexed: 11/28/2022] Open
Abstract
Cultivation of Coffea arabica is highly sensitive to and has been shown to be negatively impacted by progressive climatic changes. Previous research contributed little to support forward-looking adaptation. Agro-ecological zoning is a common tool to identify homologous environments and prioritize research. We demonstrate here a pragmatic approach to describe spatial changes in agro-climatic zones suitable for coffee under current and future climates. We defined agro-ecological zones suitable to produce arabica coffee by clustering geo-referenced coffee occurrence locations based on bio-climatic variables. We used random forest classification of climate data layers to model the spatial distribution of these agro-ecological zones. We used these zones to identify spatially explicit impact scenarios and to choose locations for the long-term evaluation of adaptation measures as climate changes. We found that in zones currently classified as hot and dry, climate change will impact arabica more than those that are better suited to it. Research in these zones should therefore focus on expanding arabica's environmental limits. Zones that currently have climates better suited for arabica will migrate upwards by about 500m in elevation. In these zones the up-slope migration will be gradual, but will likely have negative ecosystem impacts. Additionally, we identified locations that with high probability will not change their climatic characteristics and are suitable to evaluate C. arabica germplasm in the face of climate change. These locations should be used to investigate long term adaptation strategies to production systems.
Collapse
Affiliation(s)
- Christian Bunn
- International Center for Tropical Agriculture (CIAT), Km 17, Recta Cali-Palmira, Apartado Aéreo, 6713, Cali, Colombia
- * E-mail:
| | - Peter Läderach
- International Center for Tropical Agriculture (CIAT), Hotel Seminole, 2 Cuadras al Sur, Managua, Nicaragua
| | - Juan Guillermo Pérez Jimenez
- International Center for Tropical Agriculture (CIAT), Km 17, Recta Cali-Palmira, Apartado Aéreo, 6713, Cali, Colombia
| | - Christophe Montagnon
- World Coffee Research, 578 John Kimbrough Blvd, College Station, Texas, 77843–2477, United States of America
| | - Timothy Schilling
- World Coffee Research, 578 John Kimbrough Blvd, College Station, Texas, 77843–2477, United States of America
| |
Collapse
|