51
|
Millar JE, Bartnikowski N, Passmore MR, Obonyo NG, Malfertheiner MV, von Bahr V, Redd MA, See Hoe L, Ki KK, Pedersen S, Boyle AJ, Baillie JK, Shekar K, Palpant N, Suen JY, Matthay MA, McAuley DF, Fraser JF. Combined Mesenchymal Stromal Cell Therapy and Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome. A Randomized Controlled Trial in Sheep. Am J Respir Crit Care Med 2020; 202:383-392. [PMID: 32293914 DOI: 10.1164/rccm.201911-2143oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rationale: Mesenchymal stromal cell (MSC) therapy is a promising intervention for acute respiratory distress syndrome (ARDS), although trials to date have not investigated its use alongside extracorporeal membrane oxygenation (ECMO). Recent preclinical studies have suggested that combining these interventions may attenuate the efficacy of ECMO.Objectives: To determine the safety and efficacy of MSC therapy in a model of ARDS and ECMO.Methods: ARDS was induced in 14 sheep, after which they were established on venovenous ECMO. Subsequently, they received either endobronchial induced pluripotent stem cell-derived human MSCs (hMSCs) (n = 7) or cell-free carrier vehicle (vehicle control; n = 7). During ECMO, a low Vt ventilation strategy was employed in addition to protocolized hemodynamic support. Animals were monitored and supported for 24 hours. Lung tissue, bronchoalveolar fluid, and plasma were analyzed, in addition to continuous respiratory and hemodynamic monitoring.Measurements and Main Results: The administration of hMSCs did not improve oxygenation (PaO2/FiO2 mean difference = -146 mm Hg; P = 0.076) or pulmonary function. However, histological evidence of lung injury (lung injury score mean difference = -0.07; P = 0.04) and BAL IL-8 were reduced. In addition, hMSC-treated animals had a significantly lower cumulative requirement for vasopressor. Despite endobronchial administration, animals treated with hMSCs had a significant elevation in transmembrane oxygenator pressure gradients. This was accompanied by more pulmonary artery thromboses and adherent hMSCs found on explanted oxygenator fibers.Conclusions: Endobronchial hMSC therapy in an ovine model of ARDS and ECMO can impair membrane oxygenator function and does not improve oxygenation. These data do not recommend the safe use of hMSCs during venovenous ECMO.
Collapse
Affiliation(s)
- Jonathan E Millar
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine and.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Nicole Bartnikowski
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Margaret R Passmore
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine and
| | - Nchafatso G Obonyo
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Wellcome Trust Centre for Global Health Research, Imperial College London, London, United Kingdom
| | - Maximillian V Malfertheiner
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Department of Internal Medicine II, Cardiology and Pneumology, University Medical Center Regensburg, Regensburg, Germany
| | - Viktor von Bahr
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Section for Anesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Meredith A Redd
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Louise See Hoe
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine and
| | - Katrina K Ki
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine and
| | - Sanne Pedersen
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Andrew J Boyle
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Kiran Shekar
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine and
| | - Nathan Palpant
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine and
| | - Michael A Matthay
- Department of Medicine and.,Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - John F Fraser
- Critical Care Research Group, the Prince Charles Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine and
| |
Collapse
|
52
|
Del Sorbo L, Fan E. Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome Supported with Extracorporeal Membrane Oxygenation. Lost in Translational Research? Am J Respir Crit Care Med 2020; 202:314-315. [PMID: 32356669 PMCID: PMC7397807 DOI: 10.1164/rccm.202004-1139ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Lorenzo Del Sorbo
- Interdepartmental Division of Critical Care MedicineUniversity of TorontoToronto, Ontario, Canadaand.,Extracorporeal Life Support (ECLS) ProgramToronto General HospitalToronto, Ontario, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care MedicineUniversity of TorontoToronto, Ontario, Canadaand.,Extracorporeal Life Support (ECLS) ProgramToronto General HospitalToronto, Ontario, Canada
| |
Collapse
|
53
|
Qin H, Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein Cell 2020; 11:707-722. [PMID: 32519302 PMCID: PMC7282699 DOI: 10.1007/s13238-020-00738-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Abstract
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Collapse
Affiliation(s)
- Hua Qin
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China.
| | - Andong Zhao
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
54
|
Lisi L, Lacal PM, Barbaccia ML, Graziani G. Approaching coronavirus disease 2019: Mechanisms of action of repurposed drugs with potential activity against SARS-CoV-2. Biochem Pharmacol 2020; 180:114169. [PMID: 32710969 PMCID: PMC7375972 DOI: 10.1016/j.bcp.2020.114169] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
On March 11, 2020, the World Health Organization (WHO) declared the severe acute respiratory syndrome caused by coronavirus 2 (SARS-CoV-2) a global pandemic. As of July 2020, SARS-CoV-2 has infected more than 14 million people and provoked more than 590,000 deaths, worldwide. From the beginning, a variety of pharmacological treatments has been empirically used to cope with the life-threatening complications associated with Corona Virus Disease 2019 (COVID-19). Thus far, only a couple of them and not consistently across reports have been shown to further decrease mortality, respect to what can be achieved with supportive care. In most cases, and due to the urgency imposed by the number and severity of the patients' clinical conditions, the choice of treatment has been limited to repurposed drugs, approved for other indications, or investigational agents used for other viral infections often rendered available on a compassionate-use basis. The rationale for drug selection was mainly, though not exclusively, based either i) on the activity against other coronaviruses or RNA viruses in order to potentially hamper viral entry and replication in the epithelial cells of the airways, and/or ii) on the ability to modulate the excessive inflammatory reaction deriving from dysregulated host immune responses against the SARS-CoV-2. In several months, an exceptionally large number of clinical trials have been designed to evaluate the safety and efficacy of anti-COVID-19 therapies in different clinical settings (treatment or pre- and post-exposure prophylaxis) and levels of disease severity, but only few of them have been completed so far. This review focuses on the molecular mechanisms of action that have provided the scientific rationale for the empirical use and evaluation in clinical trials of structurally different and often functionally unrelated drugs during the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Lucia Lisi
- Dipartimento di Bioetica e Sicurezza, Sezione di Farmacologia, Catholic University Medical School, 00168 Rome, Italy
| | | | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
55
|
Liu G, Zheng Q, Pan K, Xu X. Protective effect of Chrysanthemum morifolium Ramat. ethanol extract on lipopolysaccharide induced acute lung injury in mice. BMC Complement Med Ther 2020; 20:235. [PMID: 32711512 PMCID: PMC7381867 DOI: 10.1186/s12906-020-03017-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To evaluate the effect of Chrysanthemum morifolium Ramat. ethanol extract (CEE) on lipopolysaccharide induced acute lung injury in mice. METHODS The ninety C57BL/6 J male mice randomly divided into five groups: control, model and CEE (50, 100, 200 mg/kg) groups for 7 days oral administration. At the last administration, all mice except control were intratracheal instilled with lipopolysaccharide (LPS, 3 mg/kg) for establish the acute lung injury. Then lung histopathologic, lung wet/dry weight, white blood cells, lymphocytes, neutrophils were detected. The pro-inflammation cytokine tumor necrosis factor-α (TNF-α), interleukin (IL)-6, anti-inflammatory cytokine transforming growth factor-β1 (TGF-β1), IL-10 and the marker of antioxides ability total-antioxidant capacity (T-AOC), malondialdehyde (MDA) in lung tissue were measured. RESULTS The result showed that CEE could improve lung histopathological injury, reduce the ratio of wet/dry lung weight and lung index, inhibit the increased number of white blood cells, lymphocytes and neutrophils, and reduce the increased levels of TNF-α and IL-6. While CEE also significantly increased the levels of TGF-β1 and IL-10. Furthermore, CEE also markedly increased the activity of T-AOC, and decreased the contents of MDA with a dose-dependent manner. CONCLUSIONS The study exhibited that CEE has a potential protective effect on lipopolysaccharide induced acute lung injury in mice, the action mechanism of CEE may through balance of the pro-inflammatory and anti-inflammatory factors, and the oxygen free radicals inhibition.
Collapse
Affiliation(s)
- Gang Liu
- Respiratory Medicine, Wenzhou Chinese Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 9 Jiaowei Road, Wenzhou, 325000, China.
| | - Qingxiu Zheng
- Respiratory Medicine, Wenzhou Chinese Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 9 Jiaowei Road, Wenzhou, 325000, China
| | - Kunlei Pan
- Respiratory Medicine, Wenzhou Chinese Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 9 Jiaowei Road, Wenzhou, 325000, China
| | - Xiaoxiao Xu
- Respiratory Medicine, Wenzhou Chinese Hospital Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 9 Jiaowei Road, Wenzhou, 325000, China
| |
Collapse
|
56
|
Costa LA, Eiro N, Fraile M, Gonzalez LO, Saá J, Garcia-Portabella P, Vega B, Schneider J, Vizoso FJ. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: implications for further clinical uses. Cell Mol Life Sci 2020; 78:447-467. [PMID: 32699947 PMCID: PMC7375036 DOI: 10.1007/s00018-020-03600-0] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSC) are present in all organs and tissues. Several studies have shown the therapeutic potential effect of MSC or their derived products. However, the functional heterogeneity of MSC constitutes an important barrier for transferring these capabilities to the clinic. MSC heterogeneity depends on their origin (biological niche) or the conditions of potential donors (age, diseases or unknown factors). It is accepted that many culture conditions of the artificial niche to which they are subjected, such as O2 tension, substrate and extracellular matrix cues, inflammatory stimuli or genetic manipulations can influence their resulting phenotype. Therefore, to attain a more personalized and precise medicine, a correct selection of MSC is mandatory, based on their functional potential, as well as the need to integrate all the existing information to achieve an optimal improvement of MSC features in the artificial niche.
Collapse
Affiliation(s)
- Luis A Costa
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Noemi Eiro
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - María Fraile
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Luis O Gonzalez
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.,Department of Anatomical Pathology, Fundación Hospital de Jove, Gijón, Spain
| | - Jorge Saá
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Pablo Garcia-Portabella
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - Belén Vega
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain
| | - José Schneider
- Department of Obstetrics and Gynecology, University of Valladolid, Valladolid, Spain
| | - Francisco J Vizoso
- Unidad de Investigación, Fundación Hospital de Jove, Avda. Eduardo Castro 161, 33920, Gijón, Asturias, Spain.
| |
Collapse
|
57
|
Eiro N, Cabrera JR, Fraile M, Costa L, Vizoso FJ. The Coronavirus Pandemic (SARS-CoV-2): New Problems Demand New Solutions, the Alternative of Mesenchymal (Stem) Stromal Cells. Front Cell Dev Biol 2020; 8:645. [PMID: 32766251 PMCID: PMC7378818 DOI: 10.3389/fcell.2020.00645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal (stem) stromal cells (MSC) can be a therapeutic alternative for COVID-19 considering their anti-inflammatory, regenerative, angiogenic, and even antimicrobial capacity. Preliminary data point to therapeutic interest of MSC for patients with COVID-19, and their effect seems based on the MSC's ability to curb the cytokine storm caused by COVID-19. In fact, promising clinical studies using MSC to treat COVID-19, are currently underway. For this reason, now is the time to firmly consider new approaches to MSC research that addresses key issues, like selecting the most optimal type of MSC for each indication, assuming the heterogeneity of the donor-dependent MSC and the biological niche where MSC are located.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
- Foundation for Research With Uterine Stem Cells - FICEMU, Gijón, Spain
| | - Jorge Ruben Cabrera
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
- Foundation for Research With Uterine Stem Cells - FICEMU, Gijón, Spain
| | - Maria Fraile
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
- Foundation for Research With Uterine Stem Cells - FICEMU, Gijón, Spain
| | - Luis Costa
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
- Foundation for Research With Uterine Stem Cells - FICEMU, Gijón, Spain
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, Gijón, Spain
- Foundation for Research With Uterine Stem Cells - FICEMU, Gijón, Spain
| |
Collapse
|
58
|
Saldanha-Araujo F, Melgaço Garcez E, Silva-Carvalho AE, Carvalho JL. Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Front Immunol 2020; 11:1563. [PMID: 32719683 PMCID: PMC7347794 DOI: 10.3389/fimmu.2020.01563] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is a disease characterized by a strong inflammatory response in severe cases, which fails to respond to corticosteroid therapy. In the context of the current COVID-19 outbreak and the critical information gaps regarding the disease, several different therapeutic strategies are under investigation, including the use of stem cells. In the present manuscript, we provide an analysis of the rationale underlying the application of stem cells to manage COVID-19, and also a comprehensive compendium of the 69 clinical trials underway worldwide aiming to investigate the application of stem cells to treat COVID-19. Even though data are still scarce, it is already possible to observe the protagonism of China in testing mesenchymal stem cells (MSCs) for COVID-19. Furthermore, it is possible to determine that current efforts focus on the use of multiple infusions of high numbers of stem cells and derived products, as well as to acknowledge the positive results obtained by independent groups who publicized the therapeutic benefits provided by such therapies in 51 COVID-19 patients. In such a rapid-paced field, up-to-date systematic studies and meta-analysis will aid the scientific community to separate hype from hope and offer an unbiased position to the society and governments.
Collapse
Affiliation(s)
- Felipe Saldanha-Araujo
- Hematology and Stem Cells Laboratory, Health Sciences Department, University of Brasília, Brasilia, Brazil
- Molecular Pharmacology Laboratory, Health Sciences Department, University of Brasília, Brasilia, Brazil
| | - Emãnuella Melgaço Garcez
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
| | | | - Juliana Lott Carvalho
- Multidisciplinary Laboratory of Biosciences, Faculty of Medicine, University of Brasilia, Brasilia, Brazil
- Genomic Sciences and Biotechnology Program, Catholic University of Brasília, Brasilia, Brazil
| |
Collapse
|
59
|
Liao G, Zheng K, Lalu MM, Fergusson DA, Allan DS. A Scoping Review of Registered Clinical Trials of Cellular Therapy for COVID-19 and a Framework for Accelerated Synthesis of Trial Evidence-FAST Evidence. Transfus Med Rev 2020; 34:165-171. [PMID: 32684483 PMCID: PMC7320662 DOI: 10.1016/j.tmrv.2020.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023]
Abstract
The urgent need for safe and effective treatments for COVID-19 has fueled the launch of many parallel complex studies of cellular therapies with small to modest enrolment projections. By pooling data from multiple studies that are similar, we can increase the ability to achieve sufficient power to determine effectiveness more quickly through meta-analysis. A scoping review of registered clinical trials using cell-based interventions for COVID-19 was conducted to identify candidate studies for meta-analysis that could support an accelerated regulatory review. ClinicalTrials.gov and WHO International Clinical Trials Registry Platform were searched April 23, 2020. Trials were included if they utilized cell or cell-derived products to treat or prevent COVID-19. Fifty-four registered cellular therapy trials were identified and included for analysis. Studies of mesenchymal stromal cells (MSCs; 41 studies; 1129 subjects projected to receive cells) and natural killer (NK) cells (5 studies; 135 projected to received cells) were observed most commonly. A subset of studies are controlled (34 studies, or 63%), including 27 studies of MSCs and 3 of NK cells. While heterogeneity in study design exists, the cumulative projected enrolment of patients from similar studies appears sufficient to allow the detection of meaningful differences in clinically important outcomes such as mortality, admission to intensive care and need for mechanical ventilation by September 2020-sooner than any individual study could determine effectiveness. MSCs are the predominant cell type in registered trials for severe or critical COVID-19 and represent the most promising candidates for future meta-analysis. Sufficient pooled sample size to detect clinically important reductions in multiple outcomes, including mortality, is anticipated by September 2020, but may require accessing supplementary data to align outcome reporting. Regulatory approval, funding and implementation by cell manufacturing partners will be accelerated by our framework for rapid meta-analysis.
Collapse
Affiliation(s)
- Gary Liao
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katina Zheng
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Manoj M Lalu
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - David S Allan
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.
| |
Collapse
|
60
|
Younes N, Zhou L, Amatullah H, Mei SHJ, Herrero R, Lorente JA, Stewart DJ, Marsden P, Liles WC, Hu P, Dos Santos CC. Mesenchymal stromal/stem cells modulate response to experimental sepsis-induced lung injury via regulation of miR-27a-5p in recipient mice. Thorax 2020; 75:556-567. [PMID: 32546573 PMCID: PMC7361025 DOI: 10.1136/thoraxjnl-2019-213561] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 01/08/2020] [Accepted: 03/13/2020] [Indexed: 01/11/2023]
Abstract
Introduction Mesenchymal stromal cell (MSC) therapy mitigates lung injury and improves survival in murine models of sepsis. Precise mechanisms of therapeutic benefit remain poorly understood. Objectives To identify host-derived regulatory elements that may contribute to the therapeutic effects of MSCs, we profiled the microRNAome (miRNAome) and transcriptome of lungs from mice randomised to experimental polymicrobial sepsis-induced lung injury treated with either placebo or MSCs. Methods and results A total of 11 997 genes and 357 microRNAs (miRNAs) expressed in lungs were used to generate a statistical estimate of association between miRNAs and their putative mRNA targets; 1395 miRNA:mRNA significant association pairs were found to be differentially expressed (false discovery rate ≤0.05). MSC administration resulted in the downregulation of miR-27a-5p and upregulation of its putative target gene VAV3 (adjusted p=1.272E-161) in septic lungs. In human pulmonary microvascular endothelial cells, miR-27a-5p expression levels were increased while VAV3 was decreased following lipopolysaccharide (LPS) or tumour necrosis factor (TNF) stimulation. Transfection of miR-27a-5p mimic or inhibitor resulted in increased or decreased VAV3 message, respectively. Luciferase reporter assay demonstrated specific binding of miR-27a-5p to the 3′UTR of VAV3. miR27a-5p inhibition mitigated TNF-induced (1) delayed wound closure, increased (2) adhesion and (3) transendothelial migration but did not alter permeability. In vivo, cell infiltration was attenuated by intratracheal coinstillation of the miR-27a-5p inhibitor, but this did not protect against endotoxin-induced oedema formation. Conclusions Our data support involvement of miR-27a-5p and VAV3 in cellular adhesion and infiltration during acute lung injury and a potential role for miR-27a-based therapeutics for acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Nadim Younes
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada
| | - Louis Zhou
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hajera Amatullah
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shirley H J Mei
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Raquel Herrero
- Critical Care Service, Hospital Universitario de Getafe-CIBER de Enfermedades Respiratorias (CIBERES), Getafe, Spain
| | - Jose Angel Lorente
- Critical Care Service, Hospital Universitario de Getafe-CIBER de Enfermedades Respiratorias (CIBERES), Getafe, Spain
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Philip Marsden
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Claudia C Dos Santos
- Critical Care Medicine, The Keenan Research Centre for Biomedical Science of Saint Michael's Hospital, Toronto, Ontario, Canada .,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
61
|
Yen BL, Yen ML, Wang LT, Liu KJ, Sytwu HK. Current status of mesenchymal stem cell therapy for immune/inflammatory lung disorders: Gleaning insights for possible use in COVID-19. Stem Cells Transl Med 2020; 9:1163-1173. [PMID: 32526079 PMCID: PMC7300965 DOI: 10.1002/sctm.20-0186] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 01/08/2023] Open
Abstract
The broad immunomodulatory properties of human mesenchymal stem cells (MSCs) have allowed for wide application in regenerative medicine as well as immune/inflammatory diseases, including unmatched allogeneic use. The novel coronavirus disease COVID‐19 has unleashed a pandemic in record time accompanied by an alarming mortality rate mainly due to pulmonary injury and acute respiratory distress syndrome. Because there are no effective preventive or curative therapies currently, MSC therapy (MSCT) has emerged as a possible candidate despite the lack of preclinical data of MSCs for COVID‐19. Interestingly, MSCT preclinical data specifically on immune/inflammatory disorders of the lungs were among the earliest to be reported in 2003, with the first clinical use of MSCT for graft‐vs‐host disease reported in 2004. Since these first reports, preclinical data showing beneficial effects of MSC immunomodulation have accumulated substantially, and as a consequence, over a third of MSCT clinical trials now target immune/inflammatory diseases. There is much preclinical evidence for MSCT in noninfectious—including chronic obstructive pulmonary disease, asthma, and idiopathic pulmonary fibrosis—as well as infectious bacterial immune/inflammatory lung disorders, with data generally demonstrating therapeutic effects; however, for infectious viral pulmonary conditions, the preclinical evidence is more scarce with some inconsistent outcomes. In this article, we review the mechanistic evidence for clinical use of MSCs in pulmonary immune/inflammatory disorders, and survey the ongoing clinical trials—including for COVID‐19—of MSCT for these diseases, with some perspectives and comment on MSCT for COVID‐19.
Collapse
Affiliation(s)
- B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| | - Li-Tzu Wang
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, NTU, Taipei, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases & Vaccinology, NHRI, Zhunan, Taiwan.,Department & Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
62
|
Khoury M, Cuenca J, Cruz FF, Figueroa FE, Rocco PRM, Weiss DJ. Current status of cell-based therapies for respiratory virus infections: applicability to COVID-19. Eur Respir J 2020; 55:13993003.00858-2020. [PMID: 32265310 PMCID: PMC7144273 DOI: 10.1183/13993003.00858-2020] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/03/2020] [Indexed: 12/13/2022]
Abstract
The severe respiratory consequences of the coronavirus disease 2019 (COVID-19) pandemic have prompted urgent need for novel therapies. Cell-based approaches, primarily using mesenchymal stem (stromal) cells (MSCs), have demonstrated safety and possible efficacy in patients with acute respiratory distress syndrome (ARDS), although they are not yet well studied in respiratory virus-induced ARDS. Limited pre-clinical data suggest that systemic MSC administration can significantly reduce respiratory virus (influenza strains H5N1 and H9N2)-induced lung injury; however, there are no available data in models of coronavirus respiratory infection.There is a rapidly increasing number of clinical investigations of cell-based therapy approaches for COVID-19. These utilise a range of different cell sources, doses, dosing strategies and targeted patient populations. To provide a rational strategy to maximise potential therapeutic use, it is critically important to understand the relevant pre-clinical studies and postulated mechanisms of MSC actions in respiratory virus-induced lung injuries. This review presents these, along with consideration of current clinical investigations.
Collapse
Affiliation(s)
- Maroun Khoury
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile .,Cells for Cells and consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile.,M. Khoury and D.J. Weiss contributed equally as lead authors of the study
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells and consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Fernando E Figueroa
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Cells for Cells and consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Daniel J Weiss
- Dept of Medicine, University of Vermont, Burlington, VT, USA.,M. Khoury and D.J. Weiss contributed equally as lead authors of the study
| |
Collapse
|
63
|
Rogers CJ, Harman RJ, Bunnell BA, Schreiber MA, Xiang C, Wang FS, Santidrian AF, Minev BR. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J Transl Med 2020; 18:203. [PMID: 32423449 PMCID: PMC7232924 DOI: 10.1186/s12967-020-02380-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan, capital city of Hubei province in China. Cases of SARS-CoV-2 infection quickly grew by several thousand per day. Less than 100 days later, the World Health Organization declared that the rapidly spreading viral outbreak had become a global pandemic. Coronavirus disease 2019 (COVID-19) is typically associated with fever and respiratory symptoms. It often progresses to severe respiratory distress and multi-organ failure which carry a high mortality rate. Older patients or those with medical comorbidities are at greater risk for severe disease. Inflammation, pulmonary edema and an over-reactive immune response can lead to hypoxia, respiratory distress and lung damage. Mesenchymal stromal/stem cells (MSCs) possess potent and broad-ranging immunomodulatory activities. Multiple in vivo studies in animal models and ex vivo human lung models have demonstrated the MSC's impressive capacity to inhibit lung damage, reduce inflammation, dampen immune responses and aid with alveolar fluid clearance. Additionally, MSCs produce molecules that are antimicrobial and reduce pain. Upon administration by the intravenous route, the cells travel directly to the lungs where the majority are sequestered, a great benefit for the treatment of pulmonary disease. The in vivo safety of local and intravenous administration of MSCs has been demonstrated in multiple human clinical trials, including studies of acute respiratory distress syndrome (ARDS). Recently, the application of MSCs in the context of ongoing COVID-19 disease and other viral respiratory illnesses has demonstrated reduced patient mortality and, in some cases, improved long-term pulmonary function. Adipose-derived stem cells (ASC), an abundant type of MSC, are proposed as a therapeutic option for the treatment of COVID-19 in order to reduce morbidity and mortality. Additionally, when proven to be safe and effective, ASC treatments may reduce the demand on critical hospital resources. The ongoing COVID-19 outbreak has resulted in significant healthcare and socioeconomic burdens across the globe. There is a desperate need for safe and effective treatments. Cellular based therapies hold great promise for the treatment of COVID-19. This literature summary reviews the scientific rationale and need for clinical studies of adipose-derived stem cells and other types of mesenchymal stem cells in the treatment of patients who suffer with COVID-19.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Martin A. Schreiber
- Department of Surgery, Oregon Health and Science University, Portland, OR USA
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center, Beijing, 100039 China
| | | | - Boris R. Minev
- Calidi Biotherapeutics, Inc., San Diego, CA USA
- Department of Radiation Medicine and Applied Sciences, Moores UCSD Cancer Center, San Diego, CA USA
| |
Collapse
|
64
|
Sadeghian Chaleshtori S, Mokhber Dezfouli MR, Jabbari Fakhr M. Mesenchymal stem/stromal cells: the therapeutic effects in animal models of acute pulmonary diseases. Respir Res 2020; 21:110. [PMID: 32393278 PMCID: PMC7213547 DOI: 10.1186/s12931-020-01373-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
The pulmonary diseases are one of the most important causes of death in the world. The successful therapies in the field of lung diseases are very limited and the medical treatments available are ineffective in many of the lung diseases. Many studies have evaluated the new therapies in the acute pulmonary diseases, and the transplantation of mesenchymal stem/stromal cells (MSCs), which is a branch of cell therapy, has a special place among the new medical techniques. The MSCs are present throughout the body and are thought to play a role in tissue regeneration and inflammation control. In the event of injury, the local MSCs traverse the shortest possible distance from the tissue or blood vessels to reach the affected site. But, there are few undifferentiated cells in the tissues. The exogenous MSCs are used to immunity modify or regenerative treatments in preclinical models of acute pulmonary diseases. Several studies have shown the positive effects of MSCs replacement in the acute lung disorders. The effection mechanism of the MSCs include the differentiation ability and the secretion of paracrine agents such as the anti-inflammatory mediators. Many studies suggest that this treatment method is safe and is probably to be widely used in future clinical trials. This review will describe the therapeutic effects of the MSCs in the experimental models of the acute pulmonary diseases for use as a method of treatment in clinical trials in future.
Collapse
Affiliation(s)
- Sirous Sadeghian Chaleshtori
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Reza Mokhber Dezfouli
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. .,Institute of Biomedical Research, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Massoumeh Jabbari Fakhr
- Institute of Biomedical Research, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Department of Tissue Engineering, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
65
|
Ryan AL, Ikonomou L, Atarod S, Bölükbas DA, Collins J, Freishtat R, Hawkins F, Gilpin SE, Uhl FE, Uriarte JJ, Weiss DJ, Wagner DE. Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases 2017. An Official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 2020; 61:429-439. [PMID: 31573338 PMCID: PMC6775946 DOI: 10.1165/rcmb.2019-0286st] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The University of Vermont Larner College of Medicine, in collaboration with the National Heart, Lung, and Blood Institute (NHLBI), the Alpha-1 Foundation, the American Thoracic Society, the Cystic Fibrosis Foundation, the European Respiratory Society, the International Society for Cell & Gene Therapy, and the Pulmonary Fibrosis Foundation, convened a workshop titled "Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases" from July 24 through 27, 2017, at the University of Vermont, Burlington, Vermont. The conference objectives were to review and discuss current understanding of the following topics: 1) stem and progenitor cell biology and the role that they play in endogenous repair or as cell therapies after lung injury, 2) the emerging role of extracellular vesicles as potential therapies, 3) ex vivo bioengineering of lung and airway tissue, and 4) progress in induced pluripotent stem cell protocols for deriving lung cell types and applications in disease modeling. All of these topics are research areas in which significant and exciting progress has been made over the past few years. In addition, issues surrounding the ethics and regulation of cell therapies worldwide were discussed, with a special emphasis on combating the growing problem of unproven cell interventions being administered to patients with lung diseases. Finally, future research directions were discussed, and opportunities for both basic and translational research were identified.
Collapse
|
66
|
Smith S, Behrens B, McCully B, Murphy J, Bommiasamy A, Goodman A, Dewey E, Pati S, Schreiber M. Aggressive treatment of acute kidney injury and hyperkalemia improves survival in a combat relevant trauma model in swine. Am J Surg 2020; 219:860-864. [PMID: 32245610 DOI: 10.1016/j.amjsurg.2020.02.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Our swine model of pulmonary contusion (PC) and hemorrhagic shock (HS) was initially complicated by renal failure, hyperkalemia, and premature death. To study the effects of novel therapies on organ failure, improved survival was necessary requiring the design of an aggressive treatment regimen. METHODS Anesthetized swine sustained either PC or PC with grade V liver injury to induce HS (PC + HS). After injury, animals were resuscitated followed by either standard care (SC) with maintenance intravenous fluids (IVF) and treatment at potassium level of 6.0 mmol/L (n = 7; 3 PC, 4 PC + HS) or aggressive care (AC) with increased initial IVF, early and frequent potassium monitoring, and treatment at potassium level of 5.0 mmol/L (n = 15, 8 PC, 7 PC + HS). Hyperkalemia was treated with calcium, insulin, and glucose in both groups. RESULTS Survival to 48 h was achieved in 13/15 (87%) in the AC group and 2/7 (29%) in the SC group (p = 0.014). Compared to SC, AC improved median survival (48 vs. 18 h, p = 0.008) and lowered potassium (5.0 vs. 7.5 mmol/L), creatinine (2.4 vs. 4.0 mg/dL), BUN (27.5 vs. 39.0 mg/dL), and lactate (0.97 vs. 3.57 mmol/L) at the last observed time-point prior to death. For PC + HS animals, survival to 48 h was achieved in 6/7 in the AC group and 0/4 in the SC group with an improved median survival in the AC group (48 vs. 18 h, p = 0.011) DISCUSSION: Aggressive and early hyperkalemia treatment prolongs survival while reducing kidney injury and potassium levels in a combat relevant injury model in swine.
Collapse
Affiliation(s)
- Sawyer Smith
- Oregon Health & Science University, Portland, OR, USA.
| | | | | | - James Murphy
- Oregon Health & Science University, Portland, OR, USA
| | | | | | | | - Shibani Pati
- University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
67
|
Abstract
Acute respiratory distress syndrome is characterized by dyspnea at presentation, tachypnea on physical examination, findings of bilateral infiltration in chest radiography, refractory hypoxia, and high mortality. Although the main treatment approach is to address the underlying disease, there are also pharmacological and nonpharmacological options for supportive treatment. There is currently no pharmacological agent with proven efficacy in this syndrome, and many drugs are being studied for this purpose. One of these is the endothelin receptor antagonist bosentan.
Collapse
Affiliation(s)
- Omer Araz
- Department of Pulmonary Disease, Ataturk University School of Medicine, Erzurum, Turkey
| |
Collapse
|
68
|
Behnke J, Kremer S, Shahzad T, Chao CM, Böttcher-Friebertshäuser E, Morty RE, Bellusci S, Ehrhardt H. MSC Based Therapies-New Perspectives for the Injured Lung. J Clin Med 2020; 9:jcm9030682. [PMID: 32138309 PMCID: PMC7141210 DOI: 10.3390/jcm9030682] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic lung diseases pose a tremendous global burden. At least one in four people suffer from severe pulmonary sequelae over the course of a lifetime. Despite substantial improvements in therapeutic interventions, persistent alleviation of clinical symptoms cannot be offered to most patients affected to date. Despite broad discrepancies in origins and pathomechanisms, the important disease entities all have in common the pulmonary inflammatory response which is central to lung injury and structural abnormalities. Mesenchymal stem cells (MSC) attract particular attention due to their broadly acting anti-inflammatory and regenerative properties. Plenty of preclinical studies provided congruent and convincing evidence that MSC have the therapeutic potential to alleviate lung injuries across ages. These include the disease entities bronchopulmonary dysplasia, asthma and the different forms of acute lung injury and chronic pulmonary diseases in adulthood. While clinical trials are so far restricted to pioneering trials on safety and feasibility, preclinical results point out possibilities to boost the therapeutic efficacy of MSC application and to take advantage of the MSC secretome. The presented review summarizes the most recent advances and highlights joint mechanisms of MSC action across disease entities which provide the basis to timely tackle this global disease burden.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Sarah Kremer
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
| | - Cho-Ming Chao
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | | | - Rory E. Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, German Center for Lung Research (DZL), Ludwigstrasse 43, 61231 Bad Nauheim, Germany;
| | - Saverio Bellusci
- Department of Internal Medicine II, Universities of Giessen and Marburg Lung Center (UGMLC), Cardiopulmonary Institute (CPI), German Center for Lung Research (DZL), Aulweg 130, 35392 Giessen, Germany;
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Feulgenstrasse 12, 35392 Gießen, Germany; (J.B.); (S.K.); (T.S.); (C.-M.C.)
- Correspondence: ; Tel.: +49-985-43400; Fax: +49-985-43419
| |
Collapse
|
69
|
Feng Y, Wang L, Ma X, Yang X, Don O, Chen X, Qu J, Song Y. Effect of hCMSCs and liraglutide combination in ALI through cAMP/PKAc/β-catenin signaling pathway. Stem Cell Res Ther 2020; 11:2. [PMID: 31900217 PMCID: PMC6942368 DOI: 10.1186/s13287-019-1492-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND ALI/ARDS is the major cause of acute respiratory failure in critically ill patients. As human chorionic villi-derived MSCs (hCMSCs) could attenuate ALI in the airway injury model, and liraglutide, glucagon-like peptide 1 (GLP-1) agonist, possesses anti-inflammatory and proliferation promotion functions, we proposed to probe the potential combinatory effect of hCMSCs and liraglutide on ALI. METHODS We examined the time- and dose-dependent manner of GLP-1R, SPC, Ang-1, and FGF-10 with LPS via western blot and qRT-PCR. Western blot and chromatin immunoprecipitation assay detected the effects of liraglutide on GLP-1R, SPC, Ang-1, and FGF-10 through PKAc/β-catenin pathway and cAMP pathway. In the ALI animal model, we detected the effects of MSC and liraglutide combination on ALI symptoms by H&E staining, western blot, ELISA assays, calculating wet-to-dry ratio of the lung tissue, and counting neutrophils, leukocytes, and macrophages in mouse bronchoalveolar lavage fluid (BALF). RESULTS The data demonstrated that LPS reduced hCMSC proliferation and GLP-1R, SPC, Ang-1, and FGF-10 levels in a dose- and time-dependent manner. Liraglutide significantly dampened the reduction of GLP-1R, SPC, Ang-1, and FGF-10 and reversed the effect of LPS on hCMSCs, which could be regulated by GLP-1R and its downstream cAMP/PKAc/β-catenin-TCF4 signaling. Combination of hCMSCs with liraglutide showed more therapeutic efficacy than liraglutide alone in reducing LPS-induced ALI in the animal model. CONCLUSIONS These results reveal that the combination of hCMSCs and liraglutide might be an effective strategy for ALI treatment.
Collapse
Affiliation(s)
- Yun Feng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 20003, China
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China
| | - Linlin Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 20003, China
- Shanghai Respiratory Research Institute, Shanghai, 20003, China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Xiaotong Yang
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ocholi Don
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China
| | - Jieming Qu
- Department of Respiration, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China.
- Institute of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 20025, China.
| | - Yuanlin Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 20003, China.
- Shanghai Respiratory Research Institute, Shanghai, 20003, China.
- Department of Pulmonary Medicine, Zhongshan Hospital, Qingpu Branch, Fudan University, Shanghai, 201700, China.
- National Clinical Research Center for Aging & Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
70
|
Jung YJ, Park YY, Huh JW, Hong SB. The effect of human adipose-derived stem cells on lipopolysaccharide-induced acute respiratory distress syndrome in mice. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:674. [PMID: 31930075 DOI: 10.21037/atm.2019.10.48] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Acute respiratory distress syndrome (ARDS) is a type of acute respiratory failure in critically ill patients. Recently, several treatment modalities have been proposed for ARDS, but it still has a high mortality rate. In general, the role of mesenchymal stem cells (MSCs) in controlling inflammatory responses has been studied in various immune-associated diseases in humans and animals. However, only a few studies reported adipose-derived stem cells (ASCs), which are easier to isolate, are currently emerging as an attractive treatment option in ARDS. Therefore, in this study, we investigated the therapeutic effects of human ASCs and the regulation of inflammatory responses in an ARDS mouse model. Methods In the ARDS model, lipopolysaccharide (LPS) (5 mg/kg) was administered via the intra tracheal injection method. The mice were divided into the following four groups: (I) saline + medium; (II) saline + ASCs (2×105); (III) LPS + medium; (IV) LPS + ASCs. The ARDS observation time was divided into short and long term. LPS administration increased the concentration of proinflammatory cytokines, which was a consistent systemic inflammatory response. Results LPS/ASC group showed less neutrophil infiltration and less alveolar hemorrhage or congestion than did the LPS group. The lung injury scores of the LPS/ASC group were lower than those of the LPS group (3.8±0.9 vs. 6.8±1.1; P=0.03) at day 2. Compared to the LPS group, LPS/ASC group showed reduced collagen deposition around the vessels and fibrosis accompanied by alveolar septal or interstitial thickening and lower MPO levels than did the LPS group (453.2±26.2 vs. 670.2±65.9 pg/mL; P<0.01) at day 7. Conclusions ASC therapy can inhibit neutrophil recruitment, which shows trend of reducing short term lung injury (day 2) and affecting fibrosis in long term (day 7). Further studies are warranted to understand the mechanism and improve the therapeutic effect of ASCs.
Collapse
Affiliation(s)
- Young Ju Jung
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Asan Life Institute, Seoul, Korea
| | - Yun Young Park
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Asan Life Institute, Seoul, Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Asan Life Institute, Seoul, Korea
| | - Sang-Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Asan Life Institute, Seoul, Korea
| |
Collapse
|
71
|
Lopes-Pacheco M, Robba C, Rocco PRM, Pelosi P. Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biol Toxicol 2019; 36:83-102. [PMID: 31485828 PMCID: PMC7222160 DOI: 10.1007/s10565-019-09493-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
The acute respiratory distress syndrome (ARDS) is a multifaceted lung disorder in which no specific therapeutic intervention is able to effectively improve clinical outcomes. Despite an improved understanding of molecular mechanisms and advances in supportive care strategies, ARDS remains associated with high mortality, and survivors usually face long-term morbidity. In recent years, preclinical studies have provided mounting evidence of the potential of mesenchymal stem cell (MSC)-based therapies in lung diseases and critical illnesses. In several models of ARDS, MSCs have been demonstrated to induce anti-inflammatory and anti-apoptotic effects, improve epithelial and endothelial cell recovery, and enhance microbial and alveolar fluid clearance, thus resulting in improved lung and distal organ function and survival. Early-stage clinical trials have also demonstrated the safety of MSC administration in patients with ARDS, but further, large-scale investigations are required to assess the safety and efficacy profile of these therapies. In this review, we summarize the main mechanisms whereby MSCs have been shown to exert therapeutic effects in experimental ARDS. We also highlight questions that need to be further elucidated and barriers that must be overcome in order to efficiently translate MSC research into clinical practice.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy. .,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
| |
Collapse
|
72
|
Eicosapentaenoic acid potentiates the therapeutic effects of adipose tissue-derived mesenchymal stromal cells on lung and distal organ injury in experimental sepsis. Stem Cell Res Ther 2019; 10:264. [PMID: 31443678 PMCID: PMC6708232 DOI: 10.1186/s13287-019-1365-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/07/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Background Even though mesenchymal stromal cells (MSCs) mitigate lung and distal organ damage in experimental polymicrobial sepsis, mortality remains high. We investigated whether preconditioning with eicosapentaenoic acid (EPA) would potentiate MSC actions in experimental sepsis by further decreasing lung and distal organ injury, thereby improving survival. Methods In C57BL/6 mice, sepsis was induced by cecal hligation and puncture (CLP); sham-operated animals were used as control. Twenty-four hours after surgery, CLP mice were further randomized to receive saline, adipose tissue-derived (AD)-MSCs (105, nonpreconditioned), or AD-MSCs preconditioned with EPA for 6 h (105, EPA-preconditioned MSCs) intravenously. After 24 h, survival rate, sepsis severity score, lung mechanics and histology, protein level of selected biomarkers in lung tissue, cellularity in blood, distal organ damage, and MSC distribution (by technetium-99m tagging) were analyzed. Additionally, the effects of EPA on the secretion of resolvin-D1 (RvD1), prostaglandin E2 (PGE2), interleukin (IL)-10, and transforming growth factor (TGF)-β1 by MSCs were evaluated in vitro. Results Nonpreconditioned and EPA-preconditioned AD-MSCs exhibited similar viability and differentiation capacity, accumulated mainly in the lungs and kidneys following systemic administration. Compared to nonpreconditioned AD-MSCs, EPA-preconditioned AD-MSCs further reduced static lung elastance, alveolar collapse, interstitial edema, alveolar septal inflammation, collagen fiber content, neutrophil cell count as well as protein levels of interleukin-1β and keratinocyte chemoattractant in lung tissue, and morphological abnormalities in the heart (cardiac myocyte architecture), liver (hepatocyte disarrangement and Kupffer cell hyperplasia), kidney (acute tubular necrosis), spleen (increased number of megakaryocytes and lymphocytes), and small bowel (villi architecture disorganization). EPA preconditioning of MSCs resulted in increased secretion of pro-resolution and anti-inflammatory mediators (RvD1, PGE2, IL-10, and TGF-β). Conclusions Compared to nonpreconditioned cells, EPA-preconditioned AD-MSCs yielded further reductions in the lung and distal organ injury, resulting in greater improvement in sepsis severity score and higher survival rate in CLP-induced experimental sepsis. This may be a promising therapeutic approach to improve outcome in septic patients. Electronic supplementary material The online version of this article (10.1186/s13287-019-1365-z) contains supplementary material, which is available to authorized users.
Collapse
|
73
|
Mesenchymal Stromal Cells Are More Effective Than Their Extracellular Vesicles at Reducing Lung Injury Regardless of Acute Respiratory Distress Syndrome Etiology. Stem Cells Int 2019; 2019:8262849. [PMID: 31531026 PMCID: PMC6720722 DOI: 10.1155/2019/8262849] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/01/2019] [Accepted: 07/21/2019] [Indexed: 02/07/2023] Open
Abstract
Although mesenchymal stromal cells (MSCs) have demonstrated beneficial effects on experimental acute respiratory distress syndrome (ARDS), preconditioning may be required to potentiate their therapeutic effects. Additionally, administration of cell-free products, such as extracellular vesicles (EVs) obtained from MSC-conditioned media, might be as effective as MSCs. In this study, we comparatively evaluated the effects of MSCs, preconditioned or not with serum collected from mice with pulmonary or extrapulmonary ARDS (ARDSp and ARDSexp, respectively), and the EVs derived from these cells on lung inflammation and remodeling in ARDSp and ARDSexp mice. Administration of MSCs (preconditioned or not), but not their EVs, reduced static lung elastance, interstitial edema, and collagen fiber content in both ARDSp and ARDSexp. Although MSCs and EVs reduced alveolar collapse and neutrophil cell counts in lung tissue, therapeutic responses were superior in mice receiving MSCs, regardless of preconditioning. Despite higher total cell, macrophage, and neutrophil counts in bronchoalveolar lavage fluid in ARDSp than ARDSexp, MSCs and EVs (preconditioned or not) led to a similar decrease. In ARDSp, both MSCs and EVs, regardless of preconditioning, reduced levels of tumor necrosis factor- (TNF-) α, interleukin-6, keratinocyte chemoattractant (KC), vascular endothelial growth factor (VEGF), and transforming growth factor- (TGF-) β in lung homogenates. In ARDSexp, TNF-α, interleukin-6, and KC levels were reduced by MSCs and EVs, preconditioned or not; only MSCs reduced VEGF levels, while TGF-β levels were similarly increased in ARDSexp treated either with saline, MSCs, or EVs, regardless of preconditioning. In conclusion, MSCs yielded greater overall improvement in ARDS in comparison to EVs derived from the same number of cells and regardless of the preconditioning status. However, the effects of MSCs and EVs differed according to ARDS etiology.
Collapse
|
74
|
Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome. Crit Care Med 2019; 46:e132-e140. [PMID: 29116998 DOI: 10.1097/ccm.0000000000002833] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. DESIGN Animal study and primary cell culture. SETTING Laboratory investigation. SUBJECTS Seventy-five Wistar rats. INTERVENTIONS Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). MEASUREMENTS AND MAIN RESULTS Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue. Additionally, mesenchymal stem cells differently modulated the secretion of biomarkers by macrophages depending on their source. CONCLUSIONS Mesenchymal stem cells from different sources led to variable responses in lungs and distal organs. Bone marrow and adipose tissue mesenchymal stem cells yielded greater beneficial effects than lung tissue mesenchymal stem cells. These findings may be regarded as promising in clinical trials.
Collapse
|
75
|
Hoogduijn MJ, Lombardo E. Mesenchymal Stromal Cells Anno 2019: Dawn of the Therapeutic Era? Concise Review. Stem Cells Transl Med 2019; 8:1126-1134. [PMID: 31282113 PMCID: PMC6811696 DOI: 10.1002/sctm.19-0073] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
2018 was the year of the first marketing authorization of an allogeneic stem cell therapy by the European Medicines Agency. The authorization concerns the use of allogeneic adipose tissue-derived mesenchymal stromal cells (MSCs) for treatment of complex perianal fistulas in Crohn's disease. This is a breakthrough in the field of MSC therapy. The last few years have, furthermore, seen some breakthroughs in the investigations into the mechanisms of action of MSC therapy. Although the therapeutic effects of MSCs have largely been attributed to their secretion of immunomodulatory and regenerative factors, it has now become clear that some of the effects are mediated through host phagocytic cells that clear administered MSCs and in the process adapt an immunoregulatory and regeneration supporting function. The increased interest in therapeutic use of MSCs and the ongoing elucidation of the mechanisms of action of MSCs are promising indicators that 2019 may be the dawn of the therapeutic era of MSCs and that there will be revived interest in research to more efficient, practical, and sustainable MSC-based therapies. Stem Cells Translational Medicine 2019;8:1126-1134.
Collapse
Affiliation(s)
- Martin J Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
76
|
Kaku S, Nguyen CD, Htet NN, Tutera D, Barr J, Paintal HS, Kuschner WG. Acute Respiratory Distress Syndrome: Etiology, Pathogenesis, and Summary on Management. J Intensive Care Med 2019; 35:723-737. [DOI: 10.1177/0885066619855021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The acute respiratory distress syndrome (ARDS) has multiple causes and is characterized by acute lung inflammation and increased pulmonary vascular permeability, leading to hypoxemic respiratory failure and bilateral pulmonary radiographic opacities. The acute respiratory distress syndrome is associated with substantial morbidity and mortality, and effective treatment strategies are limited. This review presents the current state of the literature regarding the etiology, pathogenesis, and management strategies for ARDS.
Collapse
Affiliation(s)
- Shawn Kaku
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Authors have contributed equally
| | - Christopher D. Nguyen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Authors have contributed equally
| | - Natalie N. Htet
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Authors have contributed equally
| | - Dominic Tutera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliana Barr
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Harman S. Paintal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ware G. Kuschner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
77
|
Ullah M, Liu DD, Thakor AS. Mesenchymal Stromal Cell Homing: Mechanisms and Strategies for Improvement. iScience 2019; 15:421-438. [PMID: 31121468 PMCID: PMC6529790 DOI: 10.1016/j.isci.2019.05.004] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/30/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have been widely investigated for their therapeutic potential in regenerative medicine, owing to their ability to home damaged tissue and serve as a reservoir of growth factors and regenerative molecules. As such, clinical applications of MSCs are reliant on these cells successfully migrating to the desired tissue following their administration. Unfortunately, MSC homing is inefficient, with only a small percentage of cells reaching the target tissue following systemic administration. This attrition represents a major bottleneck in realizing the full therapeutic potential of MSC-based therapies. Accordingly, a variety of strategies have been employed in the hope of improving this process. Here, we review the molecular mechanisms underlying MSC homing, based on a multistep model involving (1) initial tethering by selectins, (2) activation by cytokines, (3) arrest by integrins, (4) diapedesis or transmigration using matrix remodelers, and (5) extravascular migration toward chemokine gradients. We then review the various strategies that have been investigated for improving MSC homing, including genetic modification, cell surface engineering, in vitro priming of MSCs, and in particular, ultrasound techniques, which have recently gained significant interest. Contextualizing these strategies within the multistep homing model emphasizes that our ability to optimize this process hinges on our understanding of its molecular mechanisms. Moving forward, it is only with a combined effort of basic biology and translational work that the potential of MSC-based therapies can be realized.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Daniel D Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, Palo Alto, CA 94304, USA.
| |
Collapse
|
78
|
McVey MJ, Maishan M, Blokland KEC, Bartlett N, Kuebler WM. Extracellular vesicles in lung health, disease, and therapy. Am J Physiol Lung Cell Mol Physiol 2019; 316:L977-L989. [PMID: 30892076 DOI: 10.1152/ajplung.00546.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Both physiological homeostasis and pathological disease processes in the lung typically result from complex, yet coordinated multicellular responses that are synchronized via paracrine and endocrine intercellular communication pathways. Of late, extracellular vesicles have emerged as important information shuttles that can coordinate and disseminate homeostatic and disease signals. In parallel, extracellular vesicles in biological fluids such as sputum, mucus, epithelial lining fluid, edema fluid, the pulmonary circulation, pleural fluid, and lymphatics have emerged as promising candidate biomarkers for diagnosis and prognosis in lung disease. Extracellular vesicles are small, subcellular, membrane-bound vesicles containing cargos from parent cells such as lipids, proteins, genetic information, or entire organelles. These cargos endow extracellular vesicles with biologically active information or functions by which they can reprogram their respective target cells. Recent studies show that extracellular vesicles found in lung-associated biological fluids play key roles as biomarkers and effectors of disease. Conversely, administration of naïve or engineered extracellular vesicles with homeostatic or reparative effects may provide a promising novel protective and regenerative strategy to treat lung disease. To highlight this rapidly developing field, the American Journal of Physiology-Lung Cellular and Molecular Physiology is now launching a special Call for Papers on extracellular vesicles in lung health, disease, and therapy. This review aims to set the stage for this call by introducing extracellular vesicles and their emerging roles in lung physiology and pathobiology.
Collapse
Affiliation(s)
- Mark J McVey
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto, Ontario , Canada.,Department of Physiology, University of Toronto , Toronto, Ontario , Canada.,Department of Anesthesia, University of Toronto , Toronto, Ontario , Canada.,SickKids Department of Anesthesia and Pain Medicine , Toronto, Ontario , Canada
| | - Mazharul Maishan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto, Ontario , Canada
| | - Kaj E C Blokland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis , Sydney, New South Wales , Australia.,Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Nathan Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia
| | - Wolfgang M Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital , Toronto, Ontario , Canada.,Department of Physiology, University of Toronto , Toronto, Ontario , Canada.,Department of Surgery, University of Toronto , Toronto, Ontario , Canada.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| |
Collapse
|
79
|
Li L, Dong L, Zhang J, Gao F, Hui J, Yan J. Mesenchymal stem cells with downregulated Hippo signaling attenuate lung injury in mice with lipopolysaccharide‑induced acute respiratory distress syndrome. Int J Mol Med 2018; 43:1241-1252. [PMID: 30628652 PMCID: PMC6365074 DOI: 10.3892/ijmm.2018.4047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 12/27/2018] [Indexed: 12/30/2022] Open
Abstract
Mesenchymal stem cell (MSC)-mediated repair of injured alveolar epithelial cells is a promising potential cure for acute respiratory distress syndrome (ARDS); however, the repairing effect of MSCs is limited by poor homing and differentiation. Our previous study revealed that the inhibition of the Hippo signaling pathway promotes the proliferation, migration and differentiation of MSCs in vitro, leading to the hypothesis that MSCs with downregulated Hippo signaling could further ameliorate lipopolysaccharide (LPS)-induced ARDS in vivo. In the current study, mouse bone marrow-derived MSCs (mMSCs) with downregulated Hippo signaling were constructed by shRNA-mediated knockdown of large tumor suppressor kinase 1 (Lats1) and were intratracheally administered to LPS-induced mouse models of ARDS. The inhibition of Hippo signaling increased the retention of mMSC in ARDS lung tissue and their differentiation toward alveolar type II epithelial cells. Furthermore, mMSCs with downregulated Hippo signaling led to a decreased lung wet weight/body weight ratio, decreased total protein and albumin concentrations in bronchoalveolar lavage fluid, decreased levels of proinflammatory factors and increased levels of anti-inflammatory factors. Finally, mMSCs with downregulated Hippo signaling improved pathological changes and decreased pulmonary fibrosis in lungs of mice with ARDS. These results suggest that the inhibition of the Hippo signaling pathway in mouse mMSCs by knockdown of Lats1 could further improve the protective effects of mMSCs against epithelial damage and the therapeutic potential of mMSCs on mice with ARDS.
Collapse
Affiliation(s)
- Lang Li
- Department of Critical Care Medicine, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Liang Dong
- Department of Critical Care Medicine, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jiangqian Zhang
- Department of Critical Care Medicine, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Fei Gao
- Department of Critical Care Medicine, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jiaojie Hui
- Department of Critical Care Medicine, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jie Yan
- Department of Critical Care Medicine, Wuxi People's Hospital, Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
80
|
Lats1/2-Mediated Alteration of Hippo Signaling Pathway Regulates the Fate of Bone Marrow-Derived Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4387932. [PMID: 30671453 PMCID: PMC6323436 DOI: 10.1155/2018/4387932] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 11/26/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) can be used to enhance lung repair in acute respiratory distress syndrome (ARDS); however, the repairing effect is limited by poor homing and retention of BMSCs. The purpose of this study was to investigate whether Lats1 and Lats2-mediated alteration of Hippo signaling pathway could promote the differentiation, proliferation, and migration of BMSCs. BMSCs were transduced by lentiviral vectors for high and low expression of Lats1 and Lats2. The expression levels of Lats1, Lats2, YAP, and 14-3-3, respectively, were assessed to clarify the regulatory effects of Lats1 and Lats2 on Hippo signaling. Osteogenic (Runx2 and OSX) and adipogenic (C/EBPα and PPAR-γ) transcription factors were determined to clarify the effects of Hippo signaling on BMSCs differentiation. The effects of Hippo signaling on BMSCs proliferation and horizontal and vertical migration were also measured by CCK-8, scratch assay, and Transwell migration assay, respectively. Lentiviral transduction efficiency could reach 93.11%-97.14%. High and low expression of Lats1 and Lats2 could activate and inhibit the Hippo signaling pathway, respectively. High and low expression of Lats1 and Lats2 could inhibit and promote BMSCs differentiation into osteoblasts and adipocytes. High and low expression of Lats1 and Lats2 could inhibit and promote BMSCs proliferation and horizontal and vertical migration, respectively. Our studies suggest that Lats1/2-meidiated inhibition of Hippo signaling in BMSCs may optimize their effects of tissue repair in ARDS, suggesting a novel strategy for enhancing disease therapeutics.
Collapse
|
81
|
Mokhber Dezfouli MR, Jabbari Fakhr M, Sadeghian Chaleshtori S, Dehghan MM, Vajhi A, Mokhtari R. Intrapulmonary autologous transplant of bone marrow-derived mesenchymal stromal cells improves lipopolysaccharide-induced acute respiratory distress syndrome in rabbit. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:353. [PMID: 30572913 PMCID: PMC6302408 DOI: 10.1186/s13054-018-2272-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Background Lung diseases such as acute respiratory distress syndrome (ARDS) have a high incidence worldwide. The current drug therapies for ARDS have supportive effects, making them inefficient. New methods such as stromal cell therapy are needed for this problem. Methods This research was performed with ten New Zealand rabbits in two groups. Bone marrow aspiration was performed on the treated group, and mesenchymal stem cells were isolated and cultured. The experimental model of ARDS was induced using LPS from Escherichia coli strain O55:B5. Then, 1010 bone marrow mesenchymal stem cells (BM-MSCs) were autologously transplanted intrapulmonary in the treatment group, and 1–2 ml of PBS in the control group. The clinical signs, computed tomographic (CT) scans, echocardiography, blood gas analysis, complete blood count, and cytokine levels were measured before and at 3, 6, 12, 24, 48, 72, and 168 h after BM-MSC transplant. Finally, the rabbits were killed, and histopathological examination was performed. Results The results showed that BM-MSCs decreased the severity of clinical symptoms, the number of white blood cells and heterophils in the blood, the total cell count, and number of heterophils and macrophages in bronchoalveolar lavage, and balanced the values of arterial blood gases (increase in partial pressure of oxygen and O2 saturation and decrease in the partial pressure of carbon dioxide). They also downregulated the tumor necrosis factor (TNF)-α and interleukin (IL)-6 concentrations and increased the IL-10 concentrations at different times compared with time 0 and in the control group, significantly. In the CT scan, a significant decrease in the Hounsfield units and total lung volume was found by echocardiography, and in comparing the two groups, a significant difference in the parameters was noticed. The histopathology demonstrated that the BM-MSCs were able to reduce the infiltration of inflammatory cells and pulmonary hemorrhage and edema. Conclusions This study indicated that BM-MSCs play a significant role in the repair of lung injury. Electronic supplementary material The online version of this article (10.1186/s13054-018-2272-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohammad Reza Mokhber Dezfouli
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | | | - Sirous Sadeghian Chaleshtori
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. .,Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| | - Mohammad Mehdi Dehghan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Alireza Vajhi
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.,Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Roshanak Mokhtari
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
82
|
Alencar AKN, Pimentel-Coelho PM, Montes GC, da Silva MDMC, Mendes LVP, Montagnoli TL, Silva AMS, Vasques JF, Rosado-de-Castro PH, Gutfilen B, Cunha VDMN, Fraga AGM, Silva PMRE, Martins MA, Ferreira TPT, Mendes-Otero R, Trachez MM, Sudo RT, Zapata-Sudo G. Human Mesenchymal Stem Cell Therapy Reverses Su5416/Hypoxia-Induced Pulmonary Arterial Hypertension in Mice. Front Pharmacol 2018; 9:1395. [PMID: 30574088 PMCID: PMC6291748 DOI: 10.3389/fphar.2018.01395] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/12/2018] [Indexed: 12/21/2022] Open
Abstract
Aims: Pulmonary arterial hypertension (PAH) is a disease characterized by an increase in pulmonary vascular resistance and right ventricular (RV) failure. We aimed to determine the effects of human mesenchymal stem cell (hMSC) therapy in a SU5416/hypoxia (SuH) mice model of PAH. Methods and Results: C57BL/6 mice (20-25 g) were exposure to 4 weeks of hypoxia combined vascular endothelial growth factor receptor antagonism (20 mg/kg SU5416; weekly s.c. injections; PAH mice). Control mice were housed in room air. Following 2 weeks of SuH exposure, we injected 5 × 105 hMSCs cells suspended in 50 μL of vehicle (0.6 U/mL DNaseI in PBS) through intravenous injection in the caudal vein. PAH mice were treated only with vehicle. Ratio between pulmonary artery acceleration time and RV ejection time (PAAT/RVET), measure by echocardiography, was significantly reduced in the PAH mice, compared with controls, and therapy with hMSCs normalized this. Significant muscularization of the PA was observed in the PAH mice and hMSC reduced the number of fully muscularized vessels. RV free wall thickness was higher in PAH animals than in the controls, and a single injection of hMSCs reversed RV hypertrophy. Levels of markers of exacerbated apoptosis, tissue inflammation and damage, cell proliferation and oxidative stress were significantly greater in both lungs and RV tissues from PAH group, compared to controls. hMSC injection in PAH animals normalized the expression of these molecules which are involved with PAH and RV dysfunction development and the state of chronicity. Conclusion: These results indicate that hMSCs therapy represents a novel strategy for the treatment of PAH in the future.
Collapse
Affiliation(s)
- Allan K N Alencar
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro M Pimentel-Coelho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme C Montes
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina de M C da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiza V P Mendes
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tadeu L Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ananssa M S Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Ferreira Vasques
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bianca Gutfilen
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valéria do M N Cunha
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline G M Fraga
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, Brazil
| | | | | | | | - Rosalia Mendes-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Margarete M Trachez
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto T Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
83
|
A combat relevant model for the creation of acute lung injury in swine. J Trauma Acute Care Surg 2018; 85:S39-S43. [DOI: 10.1097/ta.0000000000001788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
84
|
Gupta N, Nizet V. Stabilization of Hypoxia-Inducible Factor-1 Alpha Augments the Therapeutic Capacity of Bone Marrow-Derived Mesenchymal Stem Cells in Experimental Pneumonia. Front Med (Lausanne) 2018; 5:131. [PMID: 29780805 PMCID: PMC5945808 DOI: 10.3389/fmed.2018.00131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have therapeutic effects in experimental models of lung injury. Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcriptional regulator that influences cellular metabolism, energetics, and survival under hypoxic conditions. The current study investigated the effects of stabilizing HIF-1α on the therapeutic capacity of MSCs in an experimental mouse model of bacterial pneumonia. HIF-1α stabilization was achieved by the small molecule prolyl-hydroxlase inhibitor, AKB-4924 (Aerpio Therapeutics, Inc.), which blocks the pathway for HIF-1α degradation in the proteosome. In vitro, pre-treatment with AKB-4924 increased HIF-1α levels in MSCs, reduced the kinetics of their cell death when exposed to cytotoxic stimuli, and increased their antibacterial capacity. In vivo, AKB-4924 enhanced MSC therapeutic capacity in experimental pneumonia as quantified by a sustainable survival benefit, greater bacterial clearance from the lung, decreased lung injury, and reduced inflammatory indices. These results suggest that HIF-1α stabilization in MSCs, achieved ex vivo, may represent a promising approach to augment the therapeutic benefit of these cells in severe pneumonia complicated by acute lung injury.
Collapse
Affiliation(s)
- Naveen Gupta
- Division of Pulmonary and Critical Care, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States.,Skaggs School of Pharmacy and Pharmaceutical Sciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
85
|
Gupta N, Sinha R, Krasnodembskaya A, Xu X, Nizet V, Matthay MA, Griffin JH. The TLR4-PAR1 Axis Regulates Bone Marrow Mesenchymal Stromal Cell Survival and Therapeutic Capacity in Experimental Bacterial Pneumonia. Stem Cells 2018; 36:796-806. [PMID: 29396891 PMCID: PMC5918231 DOI: 10.1002/stem.2796] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/19/2017] [Accepted: 12/31/2017] [Indexed: 01/01/2023]
Abstract
Bone marrow derived mesenchymal stromal cells have been shown to have significant therapeutic effects in experimental models of pneumonia and lung injury. The current study examined the roles of the toll like receptor 4 (TLR4) and protease activated receptor 1 (PAR1) pathways on mesenchymal stromal cell (MSC) survival and therapeutic activity in a murine model of pneumonia. MSCs from TLR4 -/- and R41Q-PAR1 mutated mice were isolated to test the effect of mutating these specific pathways on MSC survival when exposed to cytotoxic stimuli in vitro. An Escherichia coli pneumonia model was used to assess the effect of these specific pathways on MSC therapeutic activity in vivo. Our results showed that mutation of either the TLR4 or PAR1 pathways in MSCs impaired cell survival under conditions of inflammatory stress in vitro, and eliminated their therapeutic efficacy in vivo. Also, stimulation of the TLR4 pathway on MSCs led to secretion of low levels of prothrombin by MSCs, while disrupting the TLR4 pathway impaired canonical signaling through PAR1 in response to thrombin. Therefore, this study demonstrates that both TLR4 and PAR1 are required for MSC survival under inflammatory conditions in vitro and therapeutic capacity in vivo, and that the TLR4 pathway regulates signaling through PAR1 on MSCs. Stem Cells 2018;36:796-806.
Collapse
Affiliation(s)
- N Gupta
- University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093,The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037,Corresponding Author: Naveen Gupta, MD, Assistant Professor of Medicine, Pulmonary and Critical Care, University of California, San Diego, Assistant Adjunct Professor of Molecular Medicine, The Scripps Research Institute, ; , Phone: (415) 717-6136
| | - R Sinha
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - A Krasnodembskaya
- Queen’s University, School of Medicine, Dentistry and Biomedical Sciences, Centre for Experimental Medicine, Belfast, UK
| | - X Xu
- The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - V Nizet
- University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093
| | - MA Matthay
- University of California, San Francisco School of Medicine, 505 Parnassus Ave, San Francisco, CA 94143
| | - JH Griffin
- University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093,The Scripps Research Institute, Department of Molecular Medicine, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
86
|
Li JH, Fan WS, Wang MM, Wang YH, Ren ZG. Effects of mesenchymal stem cells on solid tumor metastasis in experimental cancer models: a systematic review and meta-analysis. J Transl Med 2018; 16:113. [PMID: 29703232 PMCID: PMC5924448 DOI: 10.1186/s12967-018-1484-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/17/2018] [Indexed: 12/09/2022] Open
Abstract
Background It has been reported mesenchymal stem cells (MSCs) are recruited to and become integral parts of the tumor microenvironment. MSCs might have an active role in solid tumor progression, especially cancer metastasis. However, the contribution of MSCs in the process of cancer metastasis is still controversial. In this review, we performed a meta-analysis on the effects of MSCs administration on cancer metastasis based on published preclinical studies. Methods The PRISMA guidelines were used. A total of 42 publications met the inclusion criteria. Outcome data on the incidence and the number of cancer metastasis as well as study characteristics were extracted. Quality of the studies was assessed according to SYRCLE Risk of Bias tool. Random-effects meta-analysis was used to pool estimates. Results Of the 42 studies included, 32 reported that MSCs administration promoted outcome events (numbers or incidences of cancer metastasis), and 39 reported data suitable for meta-analysis. The median effect size (RR) was 2.04 for the incidence of cancer metastasis (95% CI 1.57–2.65, I2 = 21%), and the median effect size (SMD) was 1.23 for the number of cancer metastasis (95% CI 0.43–2.03, I2 = 89%). Heterogeneity was observed, with the greater impact based on study length and different ways of metastasis measurement and MSCs administration. Conclusion Our results suggested MSCs administration increased the number and the incidence of cancer metastasis in experimental cancer models. High heterogeneity and poor reported risk of bias limit the quality of these findings. Further preclinical studies with better design and adequate reporting are still needed. Electronic supplementary material The online version of this article (10.1186/s12967-018-1484-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing-Huan Li
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wen-Shuai Fan
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Mi-Mi Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan-Hong Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China.,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng-Gang Ren
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China. .,Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
87
|
Very Small Embryonic-like Stem Cells Are Mobilized in Human Peripheral Blood during Hypoxemic COPD Exacerbations and Pulmonary Hypertension. Stem Cell Rev Rep 2018; 13:561-566. [PMID: 28285391 DOI: 10.1007/s12015-017-9732-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Very small embryonic-like stem cells (VSELs) are major pluripotent stem cells involved in vascular and tissue regeneration and constitute a recruitable pool of stem/progenitor cells with putative instrumental role in organ repair. Here, we hypothesized that VSELs might be mobilized from the bone marrow (BM) to peripheral blood (PB) in patients with hypoxic lung disease or pulmonary hypertension (PH). The objective of the present study was then to investigate the changes in VSELs number in peripheral blood of patients with hypoxic lung disease and PH. We enrolled 26 patients with Chronic Obstructive Pulmonary Disease (COPD) with or without hypoxemia, 13 patients with PH and 20 controls without any respiratory or cardiovascular diseases. In PH patients, VSELs levels have been determined during right heart catheterization in pulmonary blood and PB. For this purpose, mononuclear cells were separated by density gradient and VSELs have been quantified by using a multiparametric flow cytometry approach. The number of PB-VSELs in hypoxic COPD patients was significantly increased compared with non-hypoxic COPD patients or controls (p = 0.0055). In patients with PH, we did not find any difference in VSELs numbers between arterial pulmonary blood and venous PB (p = 0.93). However, we found an increase in VSELs in the peripheral blood of patients with PH (p = 0.03). In conclusion, we unraveled that circulating VSELs were increased in peripheral blood of patients with hypoxic COPD or with PH. Thus, VSELs may serve as a reservoir of pluripotent stem cells that can be recruited into PB and may play an important role in promoting lung repair.
Collapse
|
88
|
Wohlrab P, Kraft F, Tretter V, Ullrich R, Markstaller K, Klein KU. Recent advances in understanding acute respiratory distress syndrome. F1000Res 2018; 7. [PMID: 29568488 PMCID: PMC5840611 DOI: 10.12688/f1000research.11148.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse lung injury, which results in increased pulmonary vascular permeability and loss of aerated lung tissue. This causes bilateral opacity consistent with pulmonary edema, hypoxemia, increased venous admixture, and decreased lung compliance such that patients with ARDS need supportive care in the intensive care unit to maintain oxygenation and prevent adverse outcomes. Recently, advances in understanding the underlying pathophysiology of ARDS led to new approaches in managing these patients. In this review, we want to focus on recent scientific evidence in the field of ARDS research and discuss promising new developments in the treatment of this disease.
Collapse
Affiliation(s)
- Peter Wohlrab
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Felix Kraft
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Verena Tretter
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Roman Ullrich
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Markstaller
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
89
|
Zhao R, Su Z, Wu J, Ji HL. Serious adverse events of cell therapy for respiratory diseases: a systematic review and meta-analysis. Oncotarget 2018; 8:30511-30523. [PMID: 28430622 PMCID: PMC5444761 DOI: 10.18632/oncotarget.15426] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/08/2017] [Indexed: 02/07/2023] Open
Abstract
Background Cell therapy holds the most promising for acute and chronic deleterious respiratory diseases. However, the safety and tolerance for lung disorders are controversy. Methods We undertook a systematic review and meta-analyses of all 23 clinical studies of cell therapy. The outcomes were odds ratio (OR), risk difference (RD), Peto OR, relative risk, and mean difference of serious adverse events. Results 342 systemic infusions and 57 bronchial instillations (204 recipients) of cells were analyzed for acute respiratory distress syndrome (ARDS), bronchopulmonary dysplasia, pulmonary arterial hypertension, silicosis, sarcoidosis, extensively drug-resistant tuberculosis, chronic obstructive pulmonary diseases (COPD), and idiopathic pulmonary fibrosis. The frequency of death in adults from any causes was 71 and 177 per 1,000 for cell therapy and controls, respectively, with an OR of 0.31 (95% CI: 0.03, 3.76) and RD of -0.22 (95% CI: -0.53, 0.09). No significant difference was found for ARDS and COPD. The frequency of deaths and non-fatal serious adverse events of 17 open studies were similar to those of randomized controlled trials. Moreover, serious adverse events of allogenic cells were greater than autologous preparations, as shown by frequency, OR and RD. Conclusions We conclude that either infusion or instillation of mesenchymal stem stromal or progenitor cells are well tolerated without serious adverse events causally related to cell treatment. Cell therapy has not been associated with significant changes in spirometry, immune function, cardiovascular activity, and the quality of life.
Collapse
Affiliation(s)
- Runzhen Zhao
- Texas Lung Injury Institute, University of Texas Health Northeast, Tyler, Texas, USA
| | - Zhenlei Su
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jing Wu
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hong-Long Ji
- Texas Lung Injury Institute, University of Texas Health Northeast, Tyler, Texas, USA
| |
Collapse
|
90
|
Chen X, Wang H, Jia K, Wang H, Ren T. Anti-Semaphorin-7A single chain antibody demonstrates beneficial effects on pulmonary inflammation during acute lung injury. Exp Ther Med 2018; 15:2356-2364. [PMID: 29456642 PMCID: PMC5795465 DOI: 10.3892/etm.2018.5724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
Pulmonary inflammation is a primary characteristic of lung injury initiated by the accession of immune cells into the alveolar space. Neutrophil migration serves an important role in pulmonary inflammation mediated by the migration of neutrophils into hypoxic tissue sites. The elimination of pulmonary inflammation is directly associated with rehabilitation in patients with lung injury. Anti-inflammatory treatment is essential following lung injury and ultimately determines patient outcomes. Semaphorin-7A (SEMA-7A) is a member of the Semaphorin family that influences the migration of neutrophils into hypoxic tissue sites, thus promoting inflammation. However, understanding of the role of SEMA-7A serves during lung injury is limited and the immunological function of SEMA-7A during the migration of neutrophils into acute injury sites remains unknown. The present study investigated SEMA-7A expression and constructed a single chain antibody for SEMA-7A (Anti-SEMA-7A) to study its therapeutic efficacy against pulmonary inflammation in a mouse model of acute injury sites. The data indicated that the expression of SEMA-7A was upregulated due to induction by pro-inflammatory cytokines and demonstrated that Anti-SEMA-7A inhibited SEMA-7A expression in vitro and in vivo. The current study also indicated that the production of pro-inflammatory cytokines induced by SEMA-7A in endothelial and epithelial cells enhanced pulmonary inflammation. Anti-SEMA-7A suppressed the transendothelial migration of neutrophils mediated by SEMA-7A. Anti-SEMA-7A treatment neutralized SEMA-7A expression and reduced signs of pulmonary inflammation, leading to the elimination of pulmonary inflammation in rat with acute lung injury. The current study identified Anti-SEMA-7A as a potential agent to interfere with the inflammatory pathway during acute lung injury, which may be the basis for anti-inflammatory strategies to treat lung injuries in the future.
Collapse
Affiliation(s)
- Xiao Chen
- Department of ICU, The First Affiliated Hospital, Nanyang Medicine College, Nanyang, Henan 473058, P.R. China
| | - Hailing Wang
- Department of ICU, The First Affiliated Hospital, Nanyang Medicine College, Nanyang, Henan 473058, P.R. China
| | - Kui Jia
- Department of ICU, The First Affiliated Hospital, Nanyang Medicine College, Nanyang, Henan 473058, P.R. China
| | - Hao Wang
- Department of ICU, The First Affiliated Hospital, Nanyang Medicine College, Nanyang, Henan 473058, P.R. China
| | - Tao Ren
- Department of ICU, The First Affiliated Hospital, Nanyang Medicine College, Nanyang, Henan 473058, P.R. China
| |
Collapse
|
91
|
Silva LHA, Antunes MA, Dos Santos CC, Weiss DJ, Cruz FF, Rocco PRM. Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Res Ther 2018; 9:45. [PMID: 29482654 PMCID: PMC5828113 DOI: 10.1186/s13287-018-0802-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Due to their anti-inflammatory, antiapoptotic, antimicrobial, and antifibrotic properties, mesenchymal stromal cells (MSCs) have been considered a promising alternative for treatment of respiratory diseases. Nevertheless, even though MSC administration has been demonstrated to be safe in clinical trials, to date, few studies have shown evidence of MSC efficacy in respiratory diseases. The present review describes strategies to enhance the beneficial effects of MSCs, including preconditioning (under hypoxia, oxidative stress, heat shock, serum deprivation, and exposure to inflammatory biological samples) and genetic manipulation. These strategies can variably promote increases in MSC survival rates, by inducing expression of cytoprotective genes, as well as increase MSC potency by improving secretion of reparative factors. Furthermore, these strategies have been demonstrated to enhance the beneficial effects of MSCs in preclinical lung disease models. However, there is still a long way to go before such strategies can be translated from bench to bedside.
Collapse
Affiliation(s)
- Luisa H A Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão-, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão-, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Claudia C Dos Santos
- The Keenan Research Centre for Biomedical Science of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Toronto, ON, Canada
| | - Daniel J Weiss
- Department of Medicine, Vermont Lung Center, College of Medicine, University of Vermont, Burlington, USA
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão-, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão-, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
92
|
Wang Y, Pati S, Schreiber M. Cellular therapies and stem cell applications in trauma. Am J Surg 2018; 215:963-972. [PMID: 29502858 DOI: 10.1016/j.amjsurg.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND As the leading cause of mortality in the United States, trauma management have improved drastically over the past few decades with improved resuscitation and hemorrhage control. Stem cells are being used in an attempt to augment healing from trauma. DATA SOURCES PubMed and ClinicalTrials.gov were searched for published and registered pre-clinical and clinical trials for the application of stem cells to AKI, ARDS, shock, infection, TBI, wound healing, and bone healing. CONCLUSIONS Stem cell therapy for augmentation of healing traumatic injuries appears safe, as demonstrated by completed phase I/II trials. Further large scale studies are needed to assess the clinical efficacy.
Collapse
Affiliation(s)
- Yuxuan Wang
- Oregon Health and Science University, Department of Trauma, Surgical Critical Care, and Acute Care Surgery, USA.
| | - Shibani Pati
- University of California, San Francisco, Department of Laboratory Medicine, USA
| | - Martin Schreiber
- Oregon Health and Science University, Department of Trauma, Surgical Critical Care, and Acute Care Surgery, USA
| |
Collapse
|
93
|
The promise of mesenchymal stem cell therapy for acute respiratory distress syndrome. J Trauma Acute Care Surg 2018; 84:183-191. [PMID: 29019797 DOI: 10.1097/ta.0000000000001713] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review describes the current state of the science on mesenchymal stem cell (MSC) treatment for acute lung injury (ALI). The general characteristics, regenerative potential, and mechanism of action of MSCs are first presented. Next, particular emphasis is placed on the application of MSCs for the treatment of acute respiratory distress syndrome (ARDS) in preclinical and clinical studies. Finally, we discuss current challenges and future directions in the field presented from a clinician-researcher perspective. The objective of this work is to provide the readership with a current review of the literature discussing the hurdles and overall promise of MSCs as therapeutic interventions for the treatment of ARDS.
Collapse
|
94
|
Westover A, Melville JM, McDonald C, Lim R, Jenkin G, Wallace EM, Moss TJ. Effect of Human Amnion Epithelial Cells on the Acute Inflammatory Response in Fetal Sheep. Front Physiol 2017; 8:871. [PMID: 29163213 PMCID: PMC5672144 DOI: 10.3389/fphys.2017.00871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Intra-amniotic (IA) lipopolysaccharide (LPS) injection in sheep induces inflammation in the fetus. Human amnion epithelial cells (hAECs) moderate the effect of IA LPS on fetal development, but their influence on the acute inflammatory response to IA LPS is unknown. We aimed to determine the effects of hAECs on the acute fetal inflammatory response to IA LPS. After surgical instrumentation at 116 days' gestation (d) ewes were randomized to 1 of 4 groups at 123 d: IA LPS (10 mg) and intravenous (IV) saline (n = 8), IA LPS and IV hAECs (n = 6), IA saline and IV saline (n = 5) or IA saline and IV hAECs (n = 5). IV injections were administered immediately after IA injections. Serial fetal blood samples were collected. At 125 d, placental, fetal lung and liver samples were collected. IA LPS increased inflammatory cell recruitment in the placenta and lungs, increased IL-1β and IL-8 mRNA levels in the lungs and increased serum amyloid A3 (SAA3) and C-reactive protein (CRP) mRNA levels in the liver. IV hAECs reduced fetal lung inflammatory cell recruitment but did not otherwise alter indices of placental, fetal lung or liver inflammation. The acute fetal inflammatory response to IA LPS is not substantially altered by IV hAEC treatment.
Collapse
Affiliation(s)
- Alana Westover
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | | | - Courtney McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Euan M Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Timothy J Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
95
|
Zhang S, Jiang W, Ma L, Liu Y, Zhang X, Wang S. Nrf2 transfection enhances the efficacy of human amniotic mesenchymal stem cells to repair lung injury induced by lipopolysaccharide. J Cell Biochem 2017; 119:1627-1636. [PMID: 28905450 DOI: 10.1002/jcb.26322] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are clinical emergencies with no effective pharmaceutical treatment. This study aims to determine the protective effects of Nrf2-transfected human amniotic mesenchymal stem cells (hAMSCs) against lipopolysaccharide (LPS)-induced lung injury in mice. hAMSCs stably transfected with Nrf2 or green fluorescent protein control were transplanted into male C57BL/6 mice via the tail vein 4 h after intratracheal instillation of LPS. At 3, 7, and 14 days after cell transplantation, total lung injury score (the Smith score) was determined by hematoxylin and eosin staining. Lung fibrosis was assessed by Masson's trichrome staining. Alveolar epithelial apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The plasma levels of interleukin (IL)-1β, IL-6, and IL-10 were determined by enzyme-linked immunosorbent assays (ELISA). The homing and differentiation of hAMSCs into type II alveolar epithelial (AT II) cells were examined by immunofluorescent staining and/or western blot analysis. Nrf2, mRNA, and protein expression in lungs were examined by qRT-PCR and western blot analysis, and DNA-binding activity of Nrf2 was detected by ELISA. We found that, compared with control hAMSCs, treatment with Nrf2-overexpressing hAMSCs led to further reduced lung injury, lung fibrosis, and inflammation in LPS-challenged mice. Nrf2-overexpressing hAMSCs also exhibited increased cell retention in the lung, more efficient differentiation into AT II cells, and more prominent effects on the increased mRNA and protein expression as well as DNA-binding activity of Nrf2 than control. These results support Nrf2-overexpressing hAMSCs as a potential cell-based therapy for clinical ALI/ARDS.
Collapse
Affiliation(s)
- Shouqin Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Jiang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lijie Ma
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuhao Liu
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiangyu Zhang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng Wang
- Department of Critical Care Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
96
|
Mei SHJ, Dos Santos CC, Stewart DJ. Advances in Stem Cell and Cell-Based Gene Therapy Approaches for Experimental Acute Lung Injury: A Review of Preclinical Studies. Hum Gene Ther 2017; 27:802-812. [PMID: 27531647 DOI: 10.1089/hum.2016.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Given the failure of pharmacological interventions in acute respiratory distress syndrome (ARDS), researchers have been actively pursuing novel strategies to treat this devastating, life-threatening condition commonly seen in the intensive care unit. There has been considerable research on harnessing the reparative properties of stem and progenitor cells to develop more effective therapeutic approaches for respiratory diseases with limited treatment options, such as ARDS. This review discusses the preclinical literature on the use of stem and progenitor cell therapy and cell-based gene therapy for the treatment of preclinical animal models of acute lung injury (ALI). A variety of cell types that have been used in preclinical models of ALI, such as mesenchymal stem cells, endothelial progenitor cells, and induced pluripotent stem cells, were evaluated. At present, two phase I trials have been completed and one phase I/II clinical trial is well underway in order to translate the therapeutic benefit gleaned from preclinical studies in complex animal models of ALI to patients with ARDS, paving the way for what could potentially develop into transformative therapy for critically ill patients. As we await the results of these early cell therapy trials, future success of stem cell therapy for ARDS will depend on selection of the most appropriate cell type, route and timing of cell delivery, enhancing effectiveness of cells (i.e., potency), and potentially combining beneficial cells and genes (cell-based gene therapy) to maximize therapeutic efficacy. The experimental models and scientific methods exploited to date have provided researchers with invaluable knowledge that will be leveraged to engineer cells with enhanced therapeutic capabilities for use in the next generation of clinical trials.
Collapse
Affiliation(s)
- Shirley H J Mei
- 1 Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Claudia C Dos Santos
- 2 The Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada.,3 Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Duncan J Stewart
- 1 Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,4 Department of Medicine, University of Ottawa , Ottawa, Ontario, Canada
| |
Collapse
|
97
|
Quantitative Assessment of Optimal Bone Marrow Site for the Isolation of Porcine Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:1836960. [PMID: 28539939 PMCID: PMC5429955 DOI: 10.1155/2017/1836960] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background. One of the most plentiful sources for MSCs is the bone marrow; however, it is unknown whether MSC yield differs among different bone marrow sites. In this study, we quantified cellular yield and evaluated resident MSC population from five bone marrow sites in the porcine model. In addition, we assessed the feasibility of a commercially available platelet concentrator (Magellan® MAR01™ Arteriocyte Medical Systems, Hopkinton, MA) as a bedside stem cell concentration device. Methods. Analyses of bone marrow aspirate (BMA) and concentrated bone marrow aspirate (cBMA) included bone marrow volume, platelet and nucleated cell yield, colony-forming unit fibroblast (CFU-F) number, flow cytometry, and assessment of differentiation potential. Results. Following processing, the concentration of platelets and nucleated cells significantly increased but was not significantly different between sites. The iliac crest had significantly less bone marrow volume; however, it yielded significantly more CFUs compared to the other bone marrow sites. Culture-expanded cells from all tested sites expressed high levels of MSC surface markers and demonstrated adipogenic and osteogenic differentiation potential. Conclusions. All anatomical bone marrow sites contained MSCs, but the iliac crest was the most abundant source of MSCs. Additionally, the Magellan can function effectively as a bedside stem cell concentrator.
Collapse
|
98
|
Developmental pathways in lung regeneration. Cell Tissue Res 2016; 367:677-685. [PMID: 27957616 DOI: 10.1007/s00441-016-2537-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/13/2016] [Indexed: 01/10/2023]
Abstract
The key processes of lung development have been elucidated in the past several decades, helping to identify and characterize the resident progenitor cells that ultimately generate the mature organ. The adult lung is a complex organ consisting in scores of different cell lineages that are remarkably quiescent in the absence of injury. Despite low cellular turnover, the lung can respond quickly and dramatically to acute damage, with spatially restricted stem and progenitor cells re-entering the cell cycle and differentiating to promote repair. The findings from lung developmental biology are now being used to examine the mechanisms that underlie lung regeneration. The use of in vitro models such as pluripotent stem cells and new methods of gene editing have provided models for understanding lung disease and exploring the mechanisms of lung regeneration and have raised the prospect of correcting lung dysfunction. We outline the way that basic studies into lung developmental biology are now being applied to lung regeneration, opening up new avenues of research that may ultimately be harnessed for treatments of lung disease.
Collapse
|
99
|
de Oliveira HG, Cruz FF, Antunes MA, de Macedo Neto AV, Oliveira GA, Svartman FM, Borgonovo T, Rebelatto CLK, Weiss DJ, Brofman PRS, Morales MM, Lapa E Silva JR, Rocco PRM. Combined Bone Marrow-Derived Mesenchymal Stromal Cell Therapy and One-Way Endobronchial Valve Placement in Patients with Pulmonary Emphysema: A Phase I Clinical Trial. Stem Cells Transl Med 2016; 6:962-969. [PMID: 28186686 PMCID: PMC5442791 DOI: 10.1002/sctm.16-0315] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 01/31/2023] Open
Abstract
One-way endobronchial valves (EBV) insertion to reduce pulmonary air trapping has been used as therapy for chronic obstructive pulmonary disease (COPD) patients. However, local inflammation may result and can contribute to worsening of clinical status in these patients. We hypothesized that combined EBV insertion and intrabronchial administration of mesenchymal stromal cells (MSCs) would decrease the inflammatory process, thus mitigating EBV complications in severe COPD patients. This initial study sought to investigate the safety of this approach. For this purpose, a phase I, prospective, patient-blinded, randomized, placebo-controlled design was used. Heterogeneous advanced emphysema (Global Initiative for Chronic Lung Disease [GOLD] III or IV) patients randomly received either allogeneic bone marrow-derived MSCs (108 cells, EBV+MSC) or 0.9% saline solution (EBV) (n = 5 per group), bronchoscopically, just before insertion of one-way EBVs. Patients were evaluated 1, 7, 30, and 90 days after therapy. All patients completed the study protocol and 90-day follow-up. MSC delivery did not result in acute administration-related toxicity, serious adverse events, or death. No significant between-group differences were observed in overall number of adverse events, frequency of COPD exacerbations, or worsening of disease. Additionally, there were no significant differences in blood tests, lung function, or radiological outcomes. However, quality-of-life indicators were higher in EBV + MSC compared with EBV. EBV + MSC patients presented decreased levels of circulating C-reactive protein at 30 and 90 days, as well as BODE (Body mass index, airway Obstruction, Dyspnea, and Exercise index) and MMRC (Modified Medical Research Council) scores. Thus, combined use of EBV and MSCs appears to be safe in patients with severe COPD, providing a basis for subsequent investigations using MSCs as concomitant therapy. Stem Cells Translational Medicine 2017;6:962-969.
Collapse
Affiliation(s)
- Hugo Goulart de Oliveira
- Hospital Moinhos de Vento (HMV), Porto Alegre, Rio Grande do Sul, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernanda Ferreira Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, Brazil
| | - Mariana Alves Antunes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, Brazil
| | - Amarilio Vieira de Macedo Neto
- Hospital Moinhos de Vento (HMV), Porto Alegre, Rio Grande do Sul, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Fabio Munhoz Svartman
- Hospital Moinhos de Vento (HMV), Porto Alegre, Rio Grande do Sul, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Tamara Borgonovo
- Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | | | - Daniel J Weiss
- Vermont Lung Center, College of Medicine, University of Vermont, Burlington, Vermont, USA
| | | | - Marcelo Marcos Morales
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, Brazil
| | | | - Patricia Rieken Macedo Rocco
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, Brazil
| |
Collapse
|
100
|
Avey MT, Moher D, Sullivan KJ, Fergusson D, Griffin G, Grimshaw JM, Hutton B, Lalu MM, Macleod M, Marshall J, Mei SHJ, Rudnicki M, Stewart DJ, Turgeon AF, McIntyre L, Canadian Critical Care Translational Biology Group. The Devil Is in the Details: Incomplete Reporting in Preclinical Animal Research. PLoS One 2016; 11:e0166733. [PMID: 27855228 PMCID: PMC5113978 DOI: 10.1371/journal.pone.0166733] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022] Open
Abstract
Incomplete reporting of study methods and results has become a focal point for failures in the reproducibility and translation of findings from preclinical research. Here we demonstrate that incomplete reporting of preclinical research is not limited to a few elements of research design, but rather is a broader problem that extends to the reporting of the methods and results. We evaluated 47 preclinical research studies from a systematic review of acute lung injury that use mesenchymal stem cells (MSCs) as a treatment. We operationalized the ARRIVE (Animal Research: Reporting of In Vivo Experiments) reporting guidelines for pre-clinical studies into 109 discrete reporting sub-items and extracted 5,123 data elements. Overall, studies reported less than half (47%) of all sub-items (median 51 items; range 37-64). Across all studies, the Methods Section reported less than half (45%) and the Results Section reported less than a third (29%). There was no association between journal impact factor and completeness of reporting, which suggests that incomplete reporting of preclinical research occurs across all journals regardless of their perceived prestige. Incomplete reporting of methods and results will impede attempts to replicate research findings and maximize the value of preclinical studies.
Collapse
Affiliation(s)
- Marc T. Avey
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| | - David Moher
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- School of Epidemiology Public Health and Preventive Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katrina J. Sullivan
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Dean Fergusson
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Gilly Griffin
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jeremy M. Grimshaw
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Brian Hutton
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- School of Epidemiology Public Health and Preventive Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Manoj M. Lalu
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Malcolm Macleod
- Division of Clinical Neurosciences, University of Edinburgh, Edinburgh, United Kingdom
| | - John Marshall
- Department of Surgery (Critical Care), University of Toronto, Toronto, Ontario, Canada
| | - Shirley H. J. Mei
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Michael Rudnicki
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Duncan J. Stewart
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alexis F. Turgeon
- Population Health and Optimal Health Practices Unit (Trauma – Emergency – Critical Care Medicine), Centre de Recherche du CHU de Québec (Enfant-JésusHospital), Université Laval, Québec City, Québec, Canada
- Division of Critical Care Medicine, Department of Anesthesiology, Université Laval, Québec City, Québec, Canada
| | - Lauralyn McIntyre
- Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Medicine (Division of Critical Care), University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|