51
|
Beaver JT, Mills LK, Swieboda D, Lelutiu N, Esser ES, Antao OQ, Scountzou E, Williams DT, Papaioannou N, Littauer EQ, Skountzou I. Zika virus-induced neuro-ocular pathology in immunocompetent mice correlates with anti-ganglioside autoantibodies. Hum Vaccin Immunother 2020; 16:2092-2108. [PMID: 32758108 PMCID: PMC7553712 DOI: 10.1080/21645515.2020.1775459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A severe consequence of adult Zika virus (ZIKV) infection is Guillain-Barré Syndrome (GBS), where autoreactive antibodies attack peripheral and central nervous systems (CNS) resulting in neuro-ocular pathology and fatal complications. During virally induced GBS, autoimmune brain demyelination and macular degeneration correlate with low virus neutralization and elevated antibody-mediated infection among Fcγ-R bearing cells. The use of interferon-deficient mice for ZIKV studies limits elucidation of antibody-dependent enhancement (ADE) and long-term pathology (≥120 days), due to high lethality post-infection. Here we used immunocompetent BALB/c mice, which generate robust humoral immune responses, to investigate long-term impacts of ZIKV infection. A high infectious dose (1x106 FFU per mouse) of ZIKV was administered intravenously. Control animals received a single dose of anti-IFNAR blocking monoclonal antibody and succumbed to lethal neurological pathology within 13 days. Immunocompetent mice exhibited motor impairment such as arthralgia, as well as ocular inflammation resulting in retinal vascular damage, and corneal edema. This pathology persisted 100 days after infection with evidence of chronic inflammation in immune-privileged tissues, demyelination in the hippocampus and motor cortex regions of the brain, and retinal/corneal hyperplasia. Anti-inflammatory transcriptional responses were tissue-specific, likely contributing to differential pathology in these organs. Pathology in immunocompetent animals coincided with weakly neutralizing antibodies and increased ADE among ZIKV strains (PRVABC59, FLR, and MR766) and all Dengue virus (DENV) serotypes. These antibodies were autoreactive to GBS-associated gangliosides. This study highlights the importance of longevity studies in ZIKV infection and confirms the role of anti-ganglioside antibodies in ZIKV-induced neuro-ocular disease.
Collapse
Affiliation(s)
- Jacob T Beaver
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Lisa K Mills
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Dominika Swieboda
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nadia Lelutiu
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Edward S Esser
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Olivia Q Antao
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | | | - Dahnide T Williams
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Nikolaos Papaioannou
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Elizabeth Q Littauer
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| | - Ioanna Skountzou
- Department of Microbiology & Immunology, Emory University School of Medicine , Atlanta, GA, USA
| |
Collapse
|
52
|
Abd-El-Basset EM, Rao MS, Alsaqobi A. Interferon-Gamma and Interleukin-1Beta Enhance the Secretion of Brain-Derived Neurotrophic Factor and Promotes the Survival of Cortical Neurons in Brain Injury. Neurosci Insights 2020; 15:2633105520947081. [PMID: 32776009 PMCID: PMC7391446 DOI: 10.1177/2633105520947081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/14/2020] [Indexed: 12/28/2022] Open
Abstract
Neuro-inflammation is associated with the production of cytokines, which influence neuronal and glial functions. Although the proinflammatory cytokines interferon-γ (IFN-γ) and interleukin-1Beta (IL-1β) are thought to be the major mediators of neuro-inflammation, their role in brain injury remains ill-defined. The objective of this study was to examine the effect of IFN-γ and IL-1β on survival of cortical neurons in stab wound injury in mice. A stab wound injury was made in the cortex of male BALB/c mice. Injured mice (I) were divide into IFN-γ and IL-1β treatment experiments. Mice in I + IFN-γ group were treated with IFN-γ (ip, 10 µg/kg/day) for 1, 3 and 7 days and mice in I + IL-1β group were treated with 5 IP injection of IL-1β (0.5 µg /12 h). Appropriate control mice were maintained for comparison. Immunostaining of frozen brain sections for astrocytes (GFAP), microglia (Iba-1) and Fluoro-Jade B staining for degenerating neurons were used. Western blotting and ELISA for brain-derived neurotrophic factor (BDNF) were done on the tissues isolated from the injured sites. Results showed a significant increase in the number of both astrocytes and microglia in I + IFN-γ and I + IL-1β groups. There were no significant changes in the number of astrocytes or microglia in noninjury groups (NI) treated with IFN-γ or IL-1β. The number of degenerating neurons significantly decreased in I + IFN-γ and I + IL-1β groups. GFAP and BDNF levels were significantly increased in I + IFN-γ and I + IL-1β groups. Interferon-γ and IL-1β induce astrogliosis, microgliosis, enhance the secretion of BDNF, one of the many neurotrophic factors after brain injury, and promote the survival of cortical neurons in stab wound brain injury.
Collapse
|
53
|
Siebold L, Krueger AC, Abdala JA, Figueroa JD, Bartnik-Olson B, Holshouser B, Wilson CG, Ashwal S. Cosyntropin Attenuates Neuroinflammation in a Mouse Model of Traumatic Brain Injury. Front Mol Neurosci 2020; 13:109. [PMID: 32670020 PMCID: PMC7332854 DOI: 10.3389/fnmol.2020.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: Traumatic brain injury (TBI) is a leading cause of mortality/morbidity and is associated with chronic neuroinflammation. Melanocortin receptor agonists including adrenocorticotropic hormone (ACTH) ameliorate inflammation and provide a novel therapeutic approach. We examined the effect of long-acting cosyntropin (CoSyn), a synthetic ACTH analog, on the early inflammatory response and functional outcome following experimental TBI. Methods: The controlled cortical impact model was used to induce TBI in mice. Mice were assigned to injury and treatment protocols resulting in four experimental groups including sham + saline, sham + CoSyn, TBI + saline, and TBI + CoSyn. Treatment was administered subcutaneously 3 h post-injury and daily injections were given for up to 7 days post-injury. The early inflammatory response was evaluated at 3 days post-injury through the evaluation of cytokine expression (IL1β and TNFα) and immune cell response. Quantification of immune cell response included cell counts of microglia/macrophages (Iba1+ cells) and neutrophils (MPO+ cells) in the cortex and hippocampus. Behavioral testing (n = 10–14 animals/group) included open field (OF) and novel object recognition (NOR) during the first week following injury and Morris water maze (MWM) at 10–15 days post-injury. Results: Immune cell quantification showed decreased accumulation of Iba1+ cells in the perilesional cortex and CA1 region of the hippocampus for CoSyn-treated TBI animals compared to saline-treated. Reduced numbers of MPO+ cells were also found in the perilesional cortex and hippocampus in CoSyn treated TBI mice compared to their saline-treated counterparts. Furthermore, CoSyn treatment reduced IL1β expression in the cortex of TBI mice. Behavioral testing showed a treatment effect of CoSyn for NOR with CoSyn increasing the discrimination ratio in both TBI and Sham groups, indicating increased memory performance. CoSyn also decreased latency to find platform during the early training period of the MWM when comparing CoSyn to saline-treated TBI mice suggesting moderate improvements in spatial memory following CoSyn treatment. Conclusion: Reduced microglia/macrophage accumulation and neutrophil infiltration in conjunction with moderate improvements in spatial learning in our CoSyn treated TBI mice suggests a beneficial anti-inflammatory effect of CoSyn following TBI.
Collapse
Affiliation(s)
- Lorraine Siebold
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States
| | - Amy C Krueger
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jonathan A Abdala
- The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States
| | - Johnny D Figueroa
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Christopher G Wilson
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States.,Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Stephen Ashwal
- Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
54
|
Qiu X, Ping S, Kyle M, Chin L, Zhao LR. Long-term beneficial effects of hematopoietic growth factors on brain repair in the chronic phase of severe traumatic brain injury. Exp Neurol 2020; 330:113335. [PMID: 32360282 DOI: 10.1016/j.expneurol.2020.113335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/17/2020] [Accepted: 04/27/2020] [Indexed: 11/19/2022]
Abstract
Severe traumatic brain injury (TBI) is the major cause of long-term, even life-long disability and cognitive impairments in young adults. The lack of therapeutic approaches to improve recovery in the chronic phase of severe TBI is a big challenge to the medical research field. Using a single severe TBI model in young adult mice, this study examined the restorative efficacy of two hematopoietic growth factors, stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF), on brain repair in the chronic phase of TBI. SCF and G-CSF alone or combination (SCF + G-CSF) treatment was administered at 3 months post-TBI. Functional recovery was evaluated by neurobehavioral tests during the period of 21 weeks after treatment. Neuropathology was examined 22 weeks after treatment. We observed that severe TBI caused persistent impairments in spatial learning/memory and somatosensory-motor function, long-term and widespread neuropathology, including dendritic reduction, decrease and overgrowth of axons, over-generated excitatory synapses, and demyelination in the cortex, hippocampus and striatum. SCF, G-CSF, and SCF + G-CSF treatments ameliorated severe TBI-induced widespread neuropathology. SCF + G-CSF treatment showed superior efficacy in improving long-term functional outcome, enhancing neural plasticity, rebalancing neural structure networks disturbed by severe TBI, and promoting remyelination. These novel findings demonstrate the therapeutic potential of SCF and G-CSF in enhancing recovery in the chronic phase of severe TBI .
Collapse
Affiliation(s)
- Xuecheng Qiu
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Suning Ping
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Michele Kyle
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Lawrence Chin
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | - Li-Ru Zhao
- Department of Neurosurgery, The State University of New York Upstate Medical University, Syracuse, NY 13210, USA; VA Health Care Upstate New York, Syracuse VA Medical Center, USA.
| |
Collapse
|
55
|
Gazdzinski LM, Mellerup M, Wang T, Adel SAA, Lerch JP, Sled JG, Nieman BJ, Wheeler AL. White Matter Changes Caused by Mild Traumatic Brain Injury in Mice Evaluated Using Neurite Orientation Dispersion and Density Imaging. J Neurotrauma 2020; 37:1818-1828. [PMID: 32242488 DOI: 10.1089/neu.2020.6992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is common and can lead to persistent cognitive and behavioral symptoms. Although diffusion tensor imaging (DTI) has demonstrated some sensitivity to changes in white matter following mTBI, recent studies have suggested that more complex geometric models of diffusion, including the neurite orientation dispersion and density imaging (NODDI) model, may be more sensitive and specific. Here, we evaluate microstructural changes in white matter following mTBI using DTI and NODDI in a mouse model, and compare the time course of these changes to behavioral impairment and recovery. We also assess volumetric changes for a comprehensive picture of the structural alterations in the brain and histological staining to identify cellular changes that may contribute to the differences detected in the imaging data. Increased orientation dispersion index (ODI) was observed in the optic tracts of mTBI mice compared with shams. Changes in fractional anisotropy (FA) were not statistically significant. Volume deficits were detected in the optic tract as well as in several gray matter regions: the lateral geniculate nuclei of the thalamus, the entorhinal cortex, and the superior colliculi. Glial fibrillary acidic protein (GFAP) and ionized calcium binding adaptor molecule 1 (Iba1) staining was increased in the optic tracts of mTBI brains, and this staining correlated with ODI values. A transient impairment in working memory was observed, which resolved by 6 weeks, whereas increased ODI, GFAP, and Iba1 persisted to 18 weeks post-injury. We conclude that the optic tracts are particularly vulnerable to damage from the closed-skull impact model used in this study, and that ODI may be a more sensitive metric to this damage than FA. Differences in ODI and in histological measures of astrogliosis, neuroinflammation, and axonal degeneration persist beyond behavioral impairment in this model.
Collapse
Affiliation(s)
- Lisa M Gazdzinski
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Miranda Mellerup
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology and University of Toronto, Toronto, Ontario, Canada
| | - Tong Wang
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology and University of Toronto, Toronto, Ontario, Canada
| | - Seyed Amir Ali Adel
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology and University of Toronto, Toronto, Ontario, Canada
| | - Jason P Lerch
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Wellcome Centre for Integrative Neuroimaging, Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - John G Sled
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Mouse Imaging Centre at The Centre for Phenogenomics, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Brian J Nieman
- Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada.,Mouse Imaging Centre at The Centre for Phenogenomics, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Anne L Wheeler
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Physiology and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
56
|
Diaz-Chávez A, Lajud N, Roque A, Cheng JP, Meléndez-Herrera E, Valdéz-Alarcón JJ, Bondi CO, Kline AE. Early life stress increases vulnerability to the sequelae of pediatric mild traumatic brain injury. Exp Neurol 2020; 329:113318. [PMID: 32305419 DOI: 10.1016/j.expneurol.2020.113318] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/09/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Early life stress (ELS) is a risk factor for many psychopathologies that happen later in life. Although stress can occur in cases of child abuse, studies on non-accidental brain injuries in pediatric populations do not consider the possible increase in vulnerability caused by ELS. Hence, we sought to determine whether ELS increases the effects of pediatric mild traumatic brain injury (mTBI) on cognition, hippocampal inflammation, and plasticity. Male rats were subjected to maternal separation for 180 min per day (MS180) or used as controls (CONT) during the first 21 post-natal (P) days. At P21 the rats were anesthetized with isoflurane and subjected to a mild controlled cortical impact or sham injury. At P32 the rats were injected with the cell proliferation marker bromodeoxyuridine (BrdU, 500 mg/kg), then evaluated for spatial learning and memory in a water maze (P35-40) and sacrificed for quantification of Ki67+, BrdU+ and Iba1+ (P42). Neither MS180 nor mTBI impacted cognitive outcome when provided alone but their combination (MS180 + mTBI) decreased spatial learning and memory relative to Sham controls (p < .01). mTBI increased microglial activation and affected BrdU+ cell survival in the ipsilateral hippocampus without affecting proliferation rates. However, only MS180 + mTBI increased microglial activation in the area adjacent to the injury and the contralateral CA1 hippocampal subfield, and decreased cell proliferation in the ipsilateral neurogenic niche. Overall, the data show that ELS increases the vulnerability to the sequelae of pediatric mTBI and may be mediated by increased neuroinflammation.
Collapse
Affiliation(s)
- Arturo Diaz-Chávez
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico; Instituto de Investigaciones sobre los Recursos Naturales - Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Naima Lajud
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Angélica Roque
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Jeffrey P Cheng
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Esperanza Meléndez-Herrera
- Instituto de Investigaciones sobre los Recursos Naturales - Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Juan José Valdéz-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Benemérita y Centenaria Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Corina O Bondi
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Anthony E Kline
- Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, United States of America; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States of America; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America; Psychology, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
57
|
Losurdo M, Davidsson J, Sköld MK. Diffuse Axonal Injury in the Rat Brain: Axonal Injury and Oligodendrocyte Activity Following Rotational Injury. Brain Sci 2020; 10:E229. [PMID: 32290212 PMCID: PMC7225974 DOI: 10.3390/brainsci10040229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) commonly results in primary diffuse axonal injury (DAI) and associated secondary injuries that evolve through a cascade of pathological mechanisms. We aim at assessing how myelin and oligodendrocytes react to head angular-acceleration-induced TBI in a previously described model. This model induces axonal injuries visible by amyloid precursor protein (APP) expression, predominantly in the corpus callosum and its borders. Brain tissue from a total of 27 adult rats was collected at 24 h, 72 h and 7 d post-injury. Coronal sections were prepared for immunohistochemistry and RNAscope® to investigate DAI and myelin changes (APP, MBP, Rip), oligodendrocyte lineage cell loss (Olig2), oligodendrocyte progenitor cells (OPCs) (NG2, PDGFRa) and neuronal stress (HSP70, ATF3). Oligodendrocytes and OPCs numbers (expressed as percentage of positive cells out of total number of cells) were measured in areas with high APP expression. Results showed non-statistically significant trends with a decrease in oligodendrocyte lineage cells and an increase in OPCs. Levels of myelination were mostly unaltered, although Rip expression differed significantly between sham and injured animals in the frontal brain. Neuronal stress markers were induced at the dorsal cortex and habenular nuclei. We conclude that rotational injury induces DAI and neuronal stress in specific areas. We noticed indications of oligodendrocyte death and regeneration without statistically significant changes at the timepoints measured, despite indications of axonal injuries and neuronal stress. This might suggest that oligodendrocytes are robust enough to withstand this kind of trauma, knowledge important for the understanding of thresholds for cell injury and post-traumatic recovery potential.
Collapse
Affiliation(s)
- Michela Losurdo
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden;
- Department of Molecular Medicine, Università degli Studi di Pavia, 27100 Pavia, Italy
| | - Johan Davidsson
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden;
| | - Mattias K. Sköld
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden;
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, 751 85 Uppsala, Sweden
| |
Collapse
|
58
|
Soni N, Vegh V, To XV, Mohamed AZ, Borges K, Nasrallah FA. Combined Diffusion Tensor Imaging and Quantitative Susceptibility Mapping Discern Discrete Facets of White Matter Pathology Post-injury in the Rodent Brain. Front Neurol 2020; 11:153. [PMID: 32210907 PMCID: PMC7067826 DOI: 10.3389/fneur.2020.00153] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Early loss of white matter microstructure integrity is a significant cause of long-term neurological disorders following traumatic brain injury (TBI). White matter abnormalities typically involve axonal loss and demyelination. In-vivo imaging tools to detect and differentiate such microstructural changes are not well-explored. This work utilizes the conjoint potential offered by advanced magnetic resonance imaging techniques, including quantitative susceptibility mapping (QSM) and diffusion tensor imaging (DTI), to discern the underlying white matter pathology at specific time points (5 h, 1, 3, 7, 14, and 30 days) post-injury in the controlled cortical impact mouse model. A total of 42 animals were randomized into six TBI groups (n = 6 per group) and one sham group (n = 6). Histopathology was performed to validate in-vivo findings by performing myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP) immunostaining for the assessment of changes to myelin and astrocytes. After 5 h of injury radial diffusivity (RD) was increased in white matter without a significant change in axial diffusivity (AxD) and susceptibility values. After 1 day post-injury RD was decreased. AxD and susceptibility changes were seen after 3 days post-injury. Susceptibility increases in white matter were observed in both ipsilateral and contralateral regions and persisted for 30 days. In histology, an increase in GFAP immunoreactivity was observed after 3 days post-injury and remained high for 30 days in both ipsilateral and contralateral white matter regions. A loss in MBP signal was noted after 3 days post-injury that continued up to 30 days. In conclusion, these results demonstrate the complementary ability of DTI and QSM in discerning the micro-pathological processes triggered following TBI. While DTI revealed acute and focal white matter changes, QSM mirrored the temporal demyelination in the white matter tracts and diffuse regions at the chronic state.
Collapse
Affiliation(s)
- Neha Soni
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Viktor Vegh
- Center for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Xuan Vinh To
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Abdalla Z Mohamed
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Karin Borges
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
59
|
Altamentova S, Rumajogee P, Hong J, Beldick SR, Park SJ, Yee A, Fehlings MG. Methylprednisolone Reduces Persistent Post-ischemic Inflammation in a Rat Hypoxia-Ischemia Model of Perinatal Stroke. Transl Stroke Res 2020; 11:1117-1136. [PMID: 32140998 DOI: 10.1007/s12975-020-00792-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/12/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
Abstract
In perinatal stroke, the initial injury results in a chronic inflammatory response caused by the release of proinflammatory cytokines, gliosis and microglia activation. This chronic and ongoing inflammatory response exacerbates the brain injury, often resulting in encephalopathy and cerebral palsy (CP). Using a neonatal rat model of hypoxia-ischemia (HI) at postnatal day (P)7, we demonstrated that chronic inflammation is persistent and continues into the tertiary phase of perinatal stroke and can be attenuated by the administration of methylprednisolone sodium-succinate (MPSS, 30 mg/kg), a US Food and Drug Administration (FDA) approved anti-inflammatory agent. The inflammatory response was assessed by real-time quantitative PCR and ELISA for markers of inflammation (CCL3, CCL5, IL18 and TNFα). Structural changes were evaluated by histology (LFB/H&E), while cellular changes were assessed by Iba-1, ED1, GFAP, NeuN, Olig2 and CC1 immunostaining. Functional deficits were assessed with the Cylinder test and Ladder Rung Walking test. MPSS was injected 14 days after HI insult to attenuate chronic inflammation. In neonatal conditions such as CP, P21 is a clinically relevant time-point in rodents, corresponding developmentally to a 2-year-old human. Administration of MPSS resulted in reduced structural damage (corpus callosum, cortex, hippocampus, striatum), gliosis and reactive microglia and partial restoration of the oligodendrocyte population. Furthermore, significant behavioural recovery was observed. In conclusion, we demonstrated that administration of MPSS during the tertiary phase of perinatal stroke results in attenuation of the chronic inflammatory response, leading to pathophysiological and functional recovery. This work validates the high clinical impact of MPSS to treat neonatal conditions linked to chronic inflammation.
Collapse
Affiliation(s)
- Svetlana Altamentova
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Prakasham Rumajogee
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie R Beldick
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sei Joon Park
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Albert Yee
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada. .,Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada. .,Division of Neurosurgery, Toronto Western Hospital, University Health Network, 399 Bathurst St. Suite 4WW-449, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
60
|
Hartnell D, Gillespie-Jones K, Ciornei C, Hollings A, Thomas A, Harrild E, Reinhardt J, Paterson DJ, Alwis D, Rajan R, Hackett MJ. Characterization of Ionic and Lipid Gradients within Corpus Callosum White Matter after Diffuse Traumatic Brain Injury in the Rat. ACS Chem Neurosci 2020; 11:248-257. [PMID: 31850738 DOI: 10.1021/acschemneuro.9b00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increased recognition of the effects of diffuse traumatic brain injury (dTBI), which can initiate yet unknown biochemical cascades, resulting in delayed secondary brain degeneration and long-term neurological sequela. There is limited availability of therapies that minimize the effect of secondary brain damage on the quality of life of people who have suffered TBI, many of which were otherwise healthy adults. Understanding the cascade of biochemical events initiated in specific brain regions in the acute phase of dTBI and how this spreads into adjacent brain structures may provide the necessary insight into drive development of improved therapies. In this study, we have used direct biochemical imaging techniques (Fourier transform infrared spectroscopic imaging) and elemental mapping (X-ray fluorescence microscopy) to characterize biochemical and elemental alterations that occur in corpus callosum white matter in the acute phase of dTBI. The results provide direct visualization of differential biochemical and ionic changes that occur in the highly vulnerable medial corpus callosum white matter relative to the less vulnerable lateral regions of the corpus callosum. Specifically, the results suggest that altered ionic gradients manifest within mechanically damaged medial corpus callosum, potentially spreading to and inducing lipid alterations to white matter structures in lateral brain regions.
Collapse
Affiliation(s)
- David Hartnell
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Kate Gillespie-Jones
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Cristina Ciornei
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Ashley Hollings
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Alexander Thomas
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Elizabeth Harrild
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| | - Juliane Reinhardt
- Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia 3168
- Department of Chemistry and Physics, ARC Centre of Excellence for Advanced Molecular Imaging, Institute for Molecular Sciences, La Trobe University, Melbourne, Victoria, Australia 3086
| | - David J. Paterson
- Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, Victoria, Australia 3168
| | - Dasuni Alwis
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Ramesh Rajan
- Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia 3168
| | - Mark J. Hackett
- Curtin Institute for Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, Western Australia, Australia 6845
- Curtin Health Innovation Research Institute, Curtin University, Perth, AUS 6102
| |
Collapse
|
61
|
Leconte C, Benedetto C, Lentini F, Simon K, Ouaazizi C, Taib T, Cho A, Plotkine M, Mongeau R, Marchand-Leroux C, Besson VC. Histological and Behavioral Evaluation after Traumatic Brain Injury in Mice: A Ten Months Follow-Up Study. J Neurotrauma 2020; 37:1342-1357. [PMID: 31830858 DOI: 10.1089/neu.2019.6679] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a chronic pathology, inducing long-term deficits that remain understudied in pre-clinical studies. In this context, exploration, anxiety-like behavior, cognitive flexibility, and motor coordination were assessed until 5 and 10 months after an experimental TBI in the adult mouse, using two cohorts. In order to differentiate age, surgery, and remote gray and white matter lesions, three groups (unoperated, sham-operated, and TBI) were studied. TBI induced delayed motor coordination deficits at the pole test, 4.5 months after injury, that could be explained by gray and white matter damages in ipsilateral nigrostriatal structures (striatum, internal capsule) that were spreading to new structures between cohorts, at 5 versus 10 months after the injury. Further, TBI induced an enhanced exploratory behavior during stressful situations (active phase during actimetry test, object exploration in an open field), risk-taking behaviors in the elevated plus maze 5 months after injury, and a cognitive inflexibility in the Barnes maze that persisted until 9 months after the injury. These behavioral modifications could be related to the white and gray matter lesions observed in ipsi- and contralateral limbic structures (amygdala, hilus/cornu ammonis 4, hypothalamus, external capsule, corpus callosum, and cingular cortex) that were spreading to new structures between cohorts, at 5 months versus 10 months after the injury. The present study corroborates clinical findings on TBI and provides a relevant rodent chronic model which could help in validating pharmacological strategies against the chronic consequences of TBI.
Collapse
Affiliation(s)
- Claire Leconte
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chiara Benedetto
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Federica Lentini
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Kristin Simon
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chahid Ouaazizi
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Toufik Taib
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Angelo Cho
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Michel Plotkine
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Raymond Mongeau
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Catherine Marchand-Leroux
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Valérie C Besson
- EA 4475, "Pharmacologie de la Circulation Cérébrale," Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
62
|
Zhang Y, Shi Q, Li X, Xia C. Fasciculation and Elongation Protein Zeta-1 Expression in Reactive Astrocytes in a Rat Model of Frontal Lobe Injury. J Neuropathol Exp Neurol 2020; 79:194-208. [PMID: 31774489 DOI: 10.1093/jnen/nlz113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/05/2019] [Indexed: 11/12/2022] Open
Abstract
There are reports that depression induced by frontal lobe injury (FLI) has a devastating effect on human mental health. We previously reported that fasciculation and elongation protein zeta-1 (FEZ1) was essential for astrocytic protection of dopamine neurons. Studies of glutamate-glutamine cycle in mental illness have been reported, whereas not from the perspective of astrocytes. This study was designed to investigate the roles of astrocytic FEZ1 and glutamate-glutamine cycle after FLI. A model of FLI was established by inserting a blade into the right frontal lobe of rats. Behavioral tests were used to observe the behavioral changes of FLI rats. Neuropathologic examinations, including immunohistochemistry, were conducted. Behavioral tests showed that FLI decreased exploratory activity. Western blot analysis revealed that the expression of astroglial proteins overall decreased in the initial injury stage, as well as FEZ1. Immunohistochemistry showed a shift of FEZ1 localization from neurons in sham-lesioned rats to astrocytes in FLI rats, and showed the expression profile of glutamate transporter 1 and glutamine synthetase (GS) was consistent with Western blot observation. Our results indicate that astrocytic FEZ1 and glutamate-glutamine cycle dysfunction may be involved in the pathogenesis of depression after FLI.
Collapse
Affiliation(s)
- Ye Zhang
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Qing Shi
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiwen Li
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Chunlin Xia
- From the Cytoneurobiology Unit, Department of Anatomy, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
63
|
Illouz T, Madar R, Okun E. A modified Barnes maze for an accurate assessment of spatial learning in mice. J Neurosci Methods 2020; 334:108579. [PMID: 31926999 DOI: 10.1016/j.jneumeth.2020.108579] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/17/2019] [Accepted: 01/05/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The Morris water maze (MWM) and the Barnes maze (BM) are among the most widely-used paradigms for assessing spatial learning in rodents, with specific advantages and disadvantages for each apparatus. Compared with the intense water-related stress exerted during the MWM, the BM exhibits a milder light-induced stress, while suffering from biasing animals towards non-spatial strategies such as serial search, a heuristic non-spatial search strategy. To overcome this problem, we have developed a modified Barnes maze (MBM) apparatus that recapitulates natural environments more accurately without inducing undesirable exploration strategy bias. NEW METHOD Apparatus. A circular 122 cm-wide table with 40 randomly placed holes. One target hole is leading to an escape chamber. Task. Three target locations were examined, varying in their distance from the center. C57BL6/j male mice were given three trials per day to find the target. Following acquisition, a probe test was performed by removing the escape chamber. RESULTS Spatial-encoding-depended reduction in latency to reach the target was observed, along with improvement in path efficiency with test progress. Mice tested with peripheral and distal targets outperformed mice tested with a central target. A robust exploration pattern was identified in the probe test. COMPARISON WITH EXISTING METHOD The MBM mimics natural environment to a higher degree of accuracy than the BM, without eliciting bias towards non-spatial searching strategies. CONCLUSIONS Spatial learning in the MBM is a target-location sensitive process, providing flexibility in task difficulty. Along with overcoming biases towards non-spatial strategies, the MBM represents an improvement over the well-validated BM.
Collapse
Affiliation(s)
- Tomer Illouz
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Ravit Madar
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel; The Paul Feder Laboratory on Alzheimer's Disease Research, Bar-Ilan University, Ramat Gan, 5290002, Israel.
| |
Collapse
|
64
|
Mohamed AZ, Corrigan F, Collins-Praino LE, Plummer SL, Soni N, Nasrallah FA. Evaluating spatiotemporal microstructural alterations following diffuse traumatic brain injury. Neuroimage Clin 2019; 25:102136. [PMID: 31865019 PMCID: PMC6931220 DOI: 10.1016/j.nicl.2019.102136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diffuse traumatic brain injury (TBI) is known to lead to microstructural changes within both white and grey matter detected in vivo with diffusion tensor imaging (DTI). Numerous studies have shown alterations in fractional anisotropy (FA) and mean diffusivity (MD) within prominent white matter tracts, but few have linked these to changes within the grey matter with confirmation via histological assessment. This is especially important as alterations in the grey matter may be predictive of long-term functional deficits. METHODS A total of 33 male Sprague Dawley rats underwent severe closed-head TBI. Eight animals underwent tensor-based morphometry (TBM) and DTI at baseline (pre-TBI), 24 hours (24 h), 7, 14, and 30 days post-TBI. Immunohistochemical analysis for the detection of ionised calcium-binding adaptor molecule 1 (IBA1) to assess microglia number and percentage of activated cells, β-amyloid precursor protein (APP) as a marker of axonal injury, and myelin basic protein (MBP) to investigate myelination was performed at each time-point. RESULTS DTI showed significant alterations in FA and RD in numerous white matter tracts including the corpus callosum, internal and external capsule, and optic tract and in the grey-matter in the cortex, thalamus, and hippocampus, with the most significant effects observed at 14 D post-TBI. TBM confirmed volumetric changes within the hippocampus and thalamus. Changes in DTI were in line with significant axonal injury noted at 24 h post-injury via immunohistochemical analysis of APP, with widespread microglial activation seen within prominent white matter tracts and the grey matter, which persisted to 30 D within the hippocampus and thalamus. Microstructural alterations in MBP+ve fibres were also noted within the hippocampus and thalamus, as well as the cortex. CONCLUSION This study confirms the widespread effects of diffuse TBI on white matter tracts which could be detected via DTI and extends these findings to key grey matter regions, with a comprehensive investigation of the whole brain. In particular, the hippocampus and thalamus appear to be vulnerable to ongoing pathology post-TBI, with DTI able to detect these alterations supporting the clinical utility in evaluating these regions post-TBI.
Collapse
Affiliation(s)
- Abdalla Z Mohamed
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD 4072, Australia
| | - Frances Corrigan
- Head Injury Laboratory, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Lyndsey E Collins-Praino
- Cognition, Aging and Neurodegenerative Disease Laboratory (CANDL), Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Stephanie L Plummer
- Translational Neuropathology Laboratory, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Neha Soni
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD 4072, Australia
| | - Fatima A Nasrallah
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
65
|
Jha KA, Pentecost M, Lenin R, Gentry J, Klaic L, Del Mar N, Reiner A, Yang CH, Pfeffer LM, Sohl N, Gangaraju R. TSG-6 in conditioned media from adipose mesenchymal stem cells protects against visual deficits in mild traumatic brain injury model through neurovascular modulation. Stem Cell Res Ther 2019; 10:318. [PMID: 31690344 PMCID: PMC6833275 DOI: 10.1186/s13287-019-1436-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Retinal inflammation affecting the neurovascular unit may play a role in the development of visual deficits following mild traumatic brain injury (mTBI). We have shown that concentrated conditioned media from adipose tissue-derived mesenchymal stem cells (ASC-CCM) can limit retinal damage from blast injury and improve visual function. In this study, we addressed the hypothesis that TNFα-stimulated gene-6 (TSG-6), an anti-inflammatory protein released by mesenchymal cells, mediates the observed therapeutic potential of ASCs via neurovascular modulation. METHODS About 12-week-old C57Bl/6 mice were subjected to 50-psi air pulse on the left side of the head overlying the forebrain resulting in an mTBI. Age-matched sham blast mice served as control. About 1 μl of ASC-CCM (siControl-ASC-CCM) or TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) was delivered intravitreally into both eyes. One month following injection, the ocular function was assessed followed by molecular and immunohistological analysis. In vitro, mouse microglial cells were used to evaluate the anti-inflammatory effect of ASC-CCM. Efficacy of ASC-CCM in normalizing retinal vascular permeability was assessed using trans-endothelial resistance (TER) and VE-cadherin expression in the presence of TNFα (1 ng/ml). RESULTS We show that intravitreal injection of ASC-CCM (siControl-ASC-CCM) but not the TSG-6 knockdown ASC-CCM (siTSG-6-ASC-CCM) mitigates the loss of visual acuity and contrast sensitivity, retinal expression of genes associated with microglial and endothelial activation, and retinal GFAP immunoreactivity at 4 weeks after blast injury. In vitro, siControl-ASC-CCM but not the siTSG-6-ASC-CCM not only suppressed microglial activation and STAT3 phosphorylation but also protected against TNFα-induced endothelial permeability as measured by transendothelial electrical resistance and decreased STAT3 phosphorylation. CONCLUSIONS Our findings suggest that ASCs respond to an inflammatory milieu by secreting higher levels of TSG-6 that mediates the resolution of the inflammatory cascade on multiple cell types and correlates with the therapeutic potency of the ASC-CCM. These results expand our understanding of innate mesenchymal cell function and confirm the importance of considering methods to increase the production of key analytes such as TSG-6 if mesenchymal stem cell secretome-derived biologics are to be developed as a treatment solution against the traumatic effects of blast injuries and other neurovascular inflammatory conditions of the retina.
Collapse
Affiliation(s)
- Kumar Abhiram Jha
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA
| | - Mickey Pentecost
- Cell Care Therapeutics, Inc., Los Angeles, CA, USA.,Present Address: Pathways to Stem Cell Science, Monrovia, CA, USA
| | - Raji Lenin
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA
| | - Jordy Gentry
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA
| | - Lada Klaic
- Cell Care Therapeutics, Inc., Los Angeles, CA, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite#515, Memphis, TN, 38163, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite#515, Memphis, TN, 38163, USA
| | - Chuan He Yang
- Department of Pathology, University of Tennessee Health Science Center, College of Medicine, 19 South Manassas Street, Suite#214, Memphis, TN, 38163, USA
| | - Lawrence M Pfeffer
- Department of Pathology, University of Tennessee Health Science Center, College of Medicine, 19 South Manassas Street, Suite#214, Memphis, TN, 38163, USA
| | - Nicolas Sohl
- Cell Care Therapeutics, Inc., Los Angeles, CA, USA
| | - Rajashekhar Gangaraju
- Department of Ophthalmology, University of Tennessee Health Science Center, College of Medicine, 930 Madison Ave, Suite#768, Memphis, TN, 38163, USA. .,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Suite#515, Memphis, TN, 38163, USA.
| |
Collapse
|
66
|
Trongnetrpunya A, Rapp P, Wang C, Darmon D, Costanzo ME, Nathan DE, Roy MJ, Cellucci CJ, Keyser D. Single-Trial Mechanisms Underlying Changes in Averaged P300 ERP Amplitude and Latency in Military Service Members After Combat Deployment. Front Hum Neurosci 2019; 13:377. [PMID: 31708761 PMCID: PMC6824216 DOI: 10.3389/fnhum.2019.00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Attenuation in P300 amplitude has been characterized in a wide range of neurological and psychiatric disorders such as dementia, schizophrenia, and posttraumatic stress disorder (PTSD). However, it is unclear whether the attenuation observed in the averaged event-related potential (ERP) is due to the reduction of neural resources available for cognitive processing, the decreased consistency of cognitive resource allocation, or the increased instability of cognitive processing speed. In this study, we investigated this problem by estimating single-trial P300 amplitude and latency using a modified Woody filter and examined the relation between amplitudes and latencies from the single-trial level to the averaged ERP level. ERPs were recorded from 30 military service members returning from combat deployment at two time points separated by 6 or 12 months. A conventional visual oddball task was used to elicit P300. We observed that the extent of changes in the within-subject average P300 amplitude over time was significantly correlated with the amount of change in three single-trial measures: (1) the latency variance of the single-trial P300 (r = -0.440, p = 0.0102); (2) the percentage of P300-absent trials (r = -0.488, p = 0.005); and (3) the consistent variation of the single-trial amplitude (r = 0.571, p = 0.0022). These findings suggest that there are multiple underlying mechanisms on the single-trial level that contribute to the changes in amplitudes seen at the averaged ERP level. The changes between the first and second assessments were quantified with the intraclass correlation coefficient, the standard error of measurement and the minimal detectable difference. The unique population, the small sample size and the large fraction of participants lost to follow up precludes generalizations of these measures of change to other populations.
Collapse
Affiliation(s)
- Amy Trongnetrpunya
- Henry M. Jackson Foundation, Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Paul Rapp
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, United States,*Correspondence: Paul Rapp
| | - Chao Wang
- Henry M. Jackson Foundation, Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, United States
| | - David Darmon
- Department of Mathematics, Monmouth University, West Long Branch, NJ, United States
| | - Michelle E. Costanzo
- Department of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Dominic E. Nathan
- Henry M. Jackson Foundation, Center for Neuroscience and Regenerative Medicine, Uniformed Services University, Bethesda, MD, United States,Graduate School of Nursing, Uniformed Services University, Bethesda, MD, United States
| | - Michael J. Roy
- Department of Medicine, Uniformed Services University, Bethesda, MD, United States
| | | | - David Keyser
- Department of Military and Emergency Medicine, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
67
|
Wei L, Zhang J, Zhang B, Geng J, Tan Q, Wang L, Chen Z, Feng H, Zhu G. Complement C3 participates in the function and mechanism of traumatic brain injury at simulated high altitude. Brain Res 2019; 1726:146423. [PMID: 31654641 DOI: 10.1016/j.brainres.2019.146423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) leads to severe mortality and disability, in which secondary injury induced by complement activation plays an important role. TBI tends to be associated with more severe cerebral edema and worse neurological functional recovery if it occurs in high-altitude areas than in low-altitude areas. However, the underlying mechanism of this difference is unknown. Thus, we used cobra venom factor (CVF) to deplete complement C3 in simulated high-altitude areas to explore whether the differences in outcome at different altitudes are related to secondary injury caused by complement C3. METHODS The weight-drop model was adopted to induce TBI in rats. Rats were randomly divided into the following groups: sham + saline (sham), high altitude + TBI + saline (HAT), high altitude + TBI + CVF (H-CVF), low altitude + TBI + saline (LAT), and low altitude + TBI + CVF (L-CVF). Brain contusion and edema volumes, brain water content, myelin basic protein (MBP) expression, tumor necrosis factor alpha (TNF-a) expression, interleukin 1 beta (IL1B) expression, mortality rate, neurological function, and complement component 3 (C3) mRNA expression were measured by techniques such as Evans blue fluorescence, Perls staining, TUNEL staining, ELISA, immunohistochemistry and Western blotting to evaluate correlations between complement activation and secondary injury. RESULTS The activation of complement after TBI was significantly higher at high altitude than at low altitude. High-altitude TBI resulted in a leakier blood-brain barrier, more severe cerebral edema and higher mortality than low-altitude TBI did. In addition, high-altitude TBI tended to be associated with more MBP degradation, ferric iron deposition, neuronal apoptosis, and inflammatory factor deposition than low-altitude TBI. All of these effects of TBI were partially reversed by inhibiting complement activation using CVF. CONCLUSION Our study provided evidence that TBI at high altitude leads to severe edema and high mortality and disability rates. Complement C3 activation is one of the important factors contributing to secondary brain injury.
Collapse
Affiliation(s)
- Linjie Wei
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Jianbo Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Bo Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Junjun Geng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Qiang Tan
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Ling Wang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Zhi Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China
| | - Gang Zhu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.
| |
Collapse
|
68
|
Staib-Lasarzik I, Nagel N, Sebastiani A, Griemert EV, Thal SC. Analgesic treatment limits surrogate parameters for early stress and pain response after experimental subarachnoid hemorrhage. BMC Neurosci 2019; 20:49. [PMID: 31533626 PMCID: PMC6751841 DOI: 10.1186/s12868-019-0531-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
Background In animal research, authorities require a classification of anticipated pain levels and a perioperative analgesia protocol prior to approval of the experiments. However, data on this topic is rare and so is the reported use of analgesics. We determined surrogate parameters of pain and general well-being after subarachnoid hemorrhage (SAH), as well as the potential for improvement by different systemic analgesia paradigms. Brain injury was induced by filament perforation to mimic SAH. Sham-operated mice were included as surgical control groups with either neck or no-neck preparation. Mice with controlled cortical impact (CCI) injury were included as a control group with traumatic brain injury (TBI), but without neck preparation. Mice were randomized to buprenorphine, carprofen, meloxicam, or vehicle treatment. 24 h after SAH, CCI or sham surgery, pain and stress levels were assessed with a visual assessment score and the amount of food intake was recorded. Results Neck preparation, which is required to expose the surgical field for SAH induction, already increased pain/stress levels and sham surgeries for both CCI and SAH reduced food intake. Pain/stress levels were higher and food intake was lower after SAH compared with CCI. Pain/stress levels after CCI without analgesic treatment were similar to levels after SAH sham surgery. Pain treatment with buprenorphine was effective to reduce pain after SAH, whereas lower pain/stress intensity levels after CCI were not improved. Conclusion This study emphasizes the importance of pain and stress assessment after surgeries and the efficacy of buprenorphine to improve pain and comfort levels after experimental SAH.
Collapse
Affiliation(s)
- Irina Staib-Lasarzik
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Nadine Nagel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Eva-Verena Griemert
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
69
|
Megalencephalic Leukoencephalopathy with Subcortical Cysts Protein-1 (MLC1) Counteracts Astrocyte Activation in Response to Inflammatory Signals. Mol Neurobiol 2019; 56:8237-8254. [DOI: 10.1007/s12035-019-01657-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023]
|
70
|
Chierto E, Simon A, Castoldi F, Meffre D, Cristinziano G, Sapone F, Carrete A, Borderie D, Etienne F, Rannou F, Morrison B, Massaad C, Jafarian-Tehrani M. Mechanical Stretch of High Magnitude Provokes Axonal Injury, Elongation of Paranodal Junctions, and Signaling Alterations in Oligodendrocytes. Mol Neurobiol 2019; 56:4231-4248. [PMID: 30298339 PMCID: PMC6505516 DOI: 10.1007/s12035-018-1372-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
Increasing findings suggest that demyelination may play an important role in the pathophysiology of brain injury, but the exact mechanisms underlying such damage are not well known. Mechanical tensile strain of brain tissue occurs during traumatic brain injury. Several studies have investigated the cellular and molecular events following a static tensile strain of physiological magnitude on individual cells such as oligodendrocytes. However, the pathobiological impact of high-magnitude mechanical strain on oligodendrocytes and myelinated fibers remains under investigated. In this study, we reported that an applied mechanical tensile strain of 30% on mouse organotypic culture of cerebellar slices induced axonal injury and elongation of paranodal junctions, two hallmarks of brain trauma. It was also able to activate MAPK-ERK1/2 signaling, a stretch-induced responsive pathway. The same tensile strain applied to mouse oligodendrocytes in primary culture induced a profound damage to cell morphology, partial cell loss, and a decrease of myelin protein expression. The lower tensile strain of 20% also caused cell loss and the remaining oligodendrocytes appeared retracted with decreased myelin protein expression. Finally, high-magnitude tensile strain applied to 158N oligodendroglial cells altered myelin protein expression, dampened MAPK-ERK1/2 and MAPK-p38 signaling, and enhanced the production of reactive oxygen species. The latter was accompanied by increased protein oxidation and an alteration of anti-oxidant defense that was strain magnitude-dependent. In conclusion, mechanical stretch of high magnitude provokes axonal injury with significant alterations in oligodendrocyte biology that could initiate demyelination.
Collapse
Affiliation(s)
- Elena Chierto
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Anne Simon
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Francesca Castoldi
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Delphine Meffre
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Giulia Cristinziano
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Francesca Sapone
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Alex Carrete
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Didier Borderie
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
- Service de Diagnostic Biologique Automatisé, Hôpitaux Universitaires Paris Centre - Groupe Hospitalier Cochin (AP-HP), 27 rue du faubourg saint Jacques, 75679, Paris Cedex 14, France
| | - François Etienne
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
- Plateforme de mécanobiologie, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
| | - François Rannou
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
- Plateforme de mécanobiologie, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Descartes, 45 rue des Saints-Pères, 75006, Paris, France
- Service de Rééducation et de Réadaptation de l'Appareil Locomoteur et des Pathologies du Rachis, Hôpitaux Universitaires Paris Centre - Groupe Hospitalier Cochin (AP-HP), 27 rue du faubourg saint Jacques, 75679, Paris Cedex 14, France
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Ave, 351 Engineering Terrace, MC8904, New York, NY, 10027, USA
| | - Charbel Massaad
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France
| | - Mehrnaz Jafarian-Tehrani
- INSERM UMR-S 1124, Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Fondamentales et Biomédicales, 45 rue des Saints-Pères, 75006, Paris, France.
| |
Collapse
|
71
|
Interleukin-1 in cerebrospinal fluid for evaluating the neurological outcome in traumatic brain injury. Biosci Rep 2019; 39:BSR20181966. [PMID: 30898979 PMCID: PMC6465413 DOI: 10.1042/bsr20181966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022] Open
Abstract
Objective Severe traumatic brain injury (TBI) is associated with unfavorable outcomes secondary to injury from activation of the inflammatory cascade, the release of excitotoxic neurotransmitters, and changes in the reactivity of cerebral vessels, causing ischemia. Inflammation induced by TBI is complex, individual-specific, and associated with morbidity and mortality. The aim of the present study was to discover the differentially expressed cerebrospinal fluid (CSF) proteins and identify which can improve the clinical outcomes in TBI patients. Methods In the present study, we reported 145 patients with TBI and found the change in patients’ leukocytes in serum and interleukin-1 (IL-1) in CSF, which strongly correlated with the neurological outcome. In terms of results of leukocytes in blood and IL-1 in CSF, we retained the patient’s CSF specimens and conducted a proteomic analysis. Results A total of 119 differentially expressed proteins were detected between samples of TBI and the normal, which were commonly expressed in all samples, indicating the differentially expressed proteins. When the patients’ Glasgow outcome score (GOS) improved, IL-1 was down-regulated, and when the patients’ GCS score deteriorated, IL-1 was up-regulated accompanied with the progression in TBI. Conclusion The differentially expressed proteins in CSF may be the novel therapeutic targets for TBI treatment. The leukocytes in blood samples and the IL-1 in CSF may be two important indicators for predicting the prognosis of TBI patients.
Collapse
|
72
|
Konan LM, Song H, Pentecost G, Fogwe D, Ndam T, Cui J, Johnson CE, Grant D, White T, Chen M, Xia W, Cernak I, DePalma RG, Gu Z. Multi-Focal Neuronal Ultrastructural Abnormalities and Synaptic Alterations in Mice after Low-Intensity Blast Exposure. J Neurotrauma 2019; 36:2117-2128. [PMID: 30667346 DOI: 10.1089/neu.2018.6260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Service members during military actions or combat training are exposed frequently to primary blast generated by explosive weaponry. The majority of military-related neurotrauma are classified as mild and designated as "invisible injuries" that are prevalent during current conflicts. While the previous experimental blast injury studies using moderate- to high-intensity exposures focused mainly on gross and microscopic neuropathology, our previous studies have shown that low-intensity blast (LIB) exposures resulted in nanoscale subcellular myelin and mitochondrial damages and subsequent behavioral disorders in the absence of gross or detectable cellular damage. In this study, we used transmission electron microscopy to delineate the LIB effects at the ultrastructural level specifically focusing on the neuron perikaryon, axons, and synapses in the cortex and hippocampus of mice at seven and 30 days post-injury (DPI). We found dysmorphic dark neuronal perikaryon and "cytoplasmic aeration" of dendritic processes, as well as increased microtubular fragmentation of the myelinated axons along with biochemically measured elevated tau/phosphorylated tau/Aβ levels. The number of cortical excitatory synapses decreased along with a compensatory increase of the post-synaptic density (PSD) thickness both at seven and 30 DPI, while the amount of hippocampal CA1 synapses increased with the reduced PSD thickness. In addition, we observed a significant increase in protein levels of PSD95 and synaptophysin mainly at seven DPI indicating potential synaptic reorganization. These results demonstrated that a single LIB exposure can lead to ultrastructural brain injury with accompanying multi-focal neuronal organelle alterations. This pre-clinical study provides key insights into disease pathogenesis related to primary blast exposure.
Collapse
Affiliation(s)
- Landry M Konan
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Hailong Song
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Genevieve Pentecost
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Delvise Fogwe
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Tina Ndam
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri
| | - Jiankun Cui
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri.,7 Truman VA Hospital Research Service, Columbia, Missouri
| | - Catherine E Johnson
- 2 Department of Mining and Nuclear Engineering, Missouri University of Science and Technology, Rolla, Missouri
| | - DeAna Grant
- 3 Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri
| | - Tommi White
- 3 Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri
| | - Mei Chen
- 4 Bedford VA Medical Center, Bedford, Massachusetts; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Weiming Xia
- 4 Bedford VA Medical Center, Bedford, Massachusetts; Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Ibolja Cernak
- 5 STARR-C (Stress, Trauma and Resilience Research Consulting) LLC, Philadelphia, Pennsylvania
| | - Ralph G DePalma
- 6 Norman Rich Department of Surgery, Uniformed University of the Health Sciences, Bethesda, Maryland; Office of Research and Development, Department of Veterans Affairs, Washington, DC
| | - Zezong Gu
- 1 Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri.,7 Truman VA Hospital Research Service, Columbia, Missouri
| |
Collapse
|
73
|
Corne R, Leconte C, Ouradou M, Fassina V, Zhu Y, Déou E, Besson V, Plotkine M, Marchand-Leroux C, Mongeau R. Spontaneous resurgence of conditioned fear weeks after successful extinction in brain injured mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:276-286. [PMID: 30096331 DOI: 10.1016/j.pnpbp.2018.07.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/28/2018] [Accepted: 07/29/2018] [Indexed: 12/25/2022]
Abstract
Mild traumatic brain injury (TBI) is a major risk factor for post-traumatic stress disorder (PTSD), and both disorders share common symptoms and neurobiological defects. Relapse after successful treatment, known as long-term fear resurgence, is common in PTSD patients and a major therapeutic hurdle. We induced a mild focal TBI by controlled cortical impact (CCI) in male C57BL/6 J mice and used fear conditioning to assess PTSD-like behaviors and concomitant alterations in the fear circuitry. We found for the first time that mild TBI, and to a lesser extent sham (craniotomy), mice displayed a spontaneous resurgence of conditioned fear when tested for fear extinction memory recall, despite having effectively acquired and extinguished conditioned fear 6 weeks earlier in the same context. Other characteristic symptoms of PTSD are risk-taking behaviors and cognitive deficits. CCI mice displayed risk-taking behaviors, behavioral inflexibility and reductions in processing speed compared to naïve mice. In conjunction with these changes there were alterations in amygdala morphology 3 months post-trauma, and decreased myelin basic protein density at the primary lesion site and in distant secondary sites such as the hippocampus, thalamus, and amygdala, compared to sham mice. Furthermore, activity-dependent brain-derived neurotrophic factor (BDNF) transcripts were decreased in the prefrontal cortex, a key region for fear extinction consolidation, following fear extinction training in both TBI and, to a lesser extent, sham mice. This study shows for the first time that a mild brain injury can generate a spontaneous resurgence of conditioned fear associated with defective BDNF signalling in the prefrontal cortex, PTSD-like behaviors, and have enduring effects on the brain.
Collapse
Affiliation(s)
- R Corne
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - C Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - M Ouradou
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - V Fassina
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - Y Zhu
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - E Déou
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - V Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - M Plotkine
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - C Marchand-Leroux
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - R Mongeau
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.
| |
Collapse
|
74
|
Barua S, Kim JY, Lee JE. Role of Agmatine on Neuroglia in Central Nervous System Injury. BRAIN & NEUROREHABILITATION 2019. [DOI: 10.12786/bn.2019.12.e2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
75
|
Llufriu-Dabén G, Meffre D, Massaad C, Jafarian-Tehrani M. A novel model of trauma-induced cerebellar injury and myelin loss in mouse organotypic cerebellar slice cultures using live imaging. J Neurosci Methods 2019; 311:385-393. [DOI: 10.1016/j.jneumeth.2018.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022]
|
76
|
Charriaut-Marlangue C, Leconte C, Csaba Z, Chafa L, Pansiot J, Talatizi M, Simon K, Moretti R, Marchand-Leroux C, Baud O, Besson VC. Sex differences in the effects of PARP inhibition on microglial phenotypes following neonatal stroke. Brain Behav Immun 2018; 73:375-389. [PMID: 29852289 DOI: 10.1016/j.bbi.2018.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 12/13/2022] Open
Abstract
Neonatal acute ischemic stroke is a cause of neonatal brain injury that occurs more frequently in males, resulting in associated neurobehavioral disorders. The bases for these sex differences are poorly understood but might include the number, morphology and activation of microglia in the developing brain when subjected to stroke. Interestingly, poly (ADP-ribose) polymerase (PARP) inhibition preferentially protects males against neonatal ischemia. This study aims to examine the effects of PJ34, a PARP inhibitor, on microglial phenotypes at 3 and 8 days and on neurobehavioral disorders in adulthood for both male and female P9 mice subjected to permanent middle cerebral artery occlusion (pMCAo). PJ34 significantly reduced the lesion size by 78% and reduced the density of CX3CR1gfp-labeled microglial cells by 46% when examined 3 days after pMCAo in male but not in female mice. Eight days after pMCAo, the number of Iba1+/Cox-2+ cells did not differ between male and female mice in the cortical peri-infarct region. In the amygdala, Iba1+/Cox-2+ (M1-like) cell numbers were significantly decreased in PJ34-treated males but not in females. Conversely, Iba1+/Arg-1+ (M2-like) and Arg-1+/Cox-2+ (Mtransitional) cell numbers were significantly increased in PJ34-treated females. Regarding neurobehavioral disorders during adulthood, pMCAo induced a motor coordination deficit and a spatial learning deficit in female mice only. PJ34 prevented MBP fibers, motor coordination and learning disorders during adulthood in female mice. Our data show significant sex differences in the effects of PARP inhibition on microglia phenotypes following neonatal ischemia, associated with improved behavior and myelination during adulthood in females only. Our findings suggest that modulating microglial phenotypes may play key roles in behavior disorders and white matter injury following neonatal stroke.
Collapse
Affiliation(s)
- Christiane Charriaut-Marlangue
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Claire Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Zsolt Csaba
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Linda Chafa
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Julien Pansiot
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Mustapha Talatizi
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Kristin Simon
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Raffaella Moretti
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France
| | - Catherine Marchand-Leroux
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Olivier Baud
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France; Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva and University of Geneva, Geneva, Switzerland
| | - Valérie C Besson
- U1141 PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, 48 boulevard Sérurier, 75019 Paris, France; EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
77
|
Raikes AC, Bajaj S, Dailey NS, Smith RS, Alkozei A, Satterfield BC, Killgore WDS. Diffusion Tensor Imaging (DTI) Correlates of Self-Reported Sleep Quality and Depression Following Mild Traumatic Brain Injury. Front Neurol 2018; 9:468. [PMID: 29973910 PMCID: PMC6019466 DOI: 10.3389/fneur.2018.00468] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Background: Mild traumatic brain injuries (mTBIs) are a significant social, sport, and military health issue. In spite of advances in the clinical management of these injuries, the underlying pathophysiology is not well-understood. There is a critical need to advance objective biomarkers, allowing the identification and tracking of the long-term evolution of changes resulting from mTBI. Diffusion-weighted imaging (DWI) allows for the assessment of white-matter properties in the brain and shows promise as a suitable biomarker of mTBI pathophysiology. Methods: 34 individuals within a year of an mTBI (age: 24.4 ± 7.4) and 18 individuals with no history of mTBI (age: 23.2 ± 3.4) participated in this study. Participants completed self-report measures related to functional outcomes, psychological health, post-injury symptoms, and sleep, and underwent a neuroimaging session that included DWI. Whole-brain white matter was skeletonized using tract-based spatial statistics (TBSS) and compared between groups as well as correlated within-group with the self-report measures. Results: There were no statistically significant anatomical differences between the two groups. After controlling for time since injury, fractional anisotropy (FA) demonstrated a negative correlation with sleep quality scores (higher FA was associated with better sleep quality) and increasing depressive symptoms in the mTBI participants. Conversely, mean (MD) and radial diffusivity (RD) demonstrated positive correlations with sleep quality scores (higher RD was associated with worse sleep quality) and increasing depressive symptoms. These correlations were observed bilaterally in the internal capsule (anterior and posterior limbs), corona radiata (anterior and superior), fornix, and superior fronto-occipital fasciculi. Conclusion: The results of this study indicate that the clinical presentation of mTBI, particularly with respect to depression and sleep, is associated with reduced white-matter integrity in multiple areas of the brain, even after controlling for time since injury. These areas are generally associated not only with sleep and emotion regulation but also cognition. Consequently, the onset of depression and sleep dysfunction as well as cognitive impairments following mTBI may be closely related to each other and to white-matter integrity throughout the brain.
Collapse
Affiliation(s)
- Adam C Raikes
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Sahil Bajaj
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Natalie S Dailey
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Ryan S Smith
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Anna Alkozei
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Brieann C Satterfield
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - William D S Killgore
- Social, Cognitive, and Affective Neuroscience Laboratory, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
78
|
Thrombin Inhibition Reduces the Expression of Brain Inflammation Markers upon Systemic LPS Treatment. Neural Plast 2018; 2018:7692182. [PMID: 30018633 PMCID: PMC6029482 DOI: 10.1155/2018/7692182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/02/2018] [Indexed: 12/17/2022] Open
Abstract
Systemic inflammation and brain pathologies are known to be linked. In the periphery, the inflammation and coagulation systems are simultaneously activated upon diseases and infections. Whether this well-established interrelation also counts for neuroinflammation and coagulation factor expression in the brain is still an open question. Our aim was to study whether the interrelationship between coagulation and inflammation factors may occur in the brain in the setting of systemic inflammation. The results indicate that systemic injections of lipopolysaccharide (LPS) upregulate the expression of both inflammatory and coagulation factors in the brain. The activity of the central coagulation factor thrombin was tested by a fluorescent method and found to be significantly elevated in the hippocampus following systemic LPS injection (0.5 ± 0.15 mU/mg versus 0.2 ± 0.03 mU/mg in the control). A panel of coagulation factors and effectors (such as thrombin, FX, PAR1, EPCR, and PC) was tested in the hippocampus, isolated microglia, and N9 microglia cell by Western blot and real-time PCR and found to be modulated by LPS. One central finding is a significant increase in FX expression level following LPS induction both in vivo in the hippocampus and in vitro in N9 microglia cell line (5.5 ± 0.6- and 2.3 ± 0.1-fold of increase, resp.). Surprisingly, inhibition of thrombin activity (by a specific inhibitor NAPAP) immediately after LPS injection results in a reduction of both the inflammatory (TNFα, CXL9, and CCL1; p < 0.006) and coagulation responses (FX and PAR1; p < 0.004) in the brain. We believe that these results may have a profound clinical impact as they might indicate that reducing coagulation activity in the setting of neurological diseases involving neuroinflammation may improve disease outcome and survival.
Collapse
|
79
|
Developmental Changes in Oligodendrocyte Genesis, Myelination, and Associated Behavioral Dysfunction in a Rat Model of Intra-generational Protein Malnutrition. Mol Neurobiol 2018; 56:595-610. [PMID: 29752656 DOI: 10.1007/s12035-018-1065-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/05/2018] [Indexed: 10/16/2022]
Abstract
Impairments in oligodendrocyte development and resultant myelination deficits appear as a common denominator to all neurological diseases. An optimal in utero environment is obligatory for normal fetal brain development and later life brain functioning. Late embryonic and early postnatal brains from F1 rat born to protein malnourished mothers were studied through a combination of immunocytochemical and quantitative PCR assay for analyzing the relative expression of platelet-derived growth factor receptor-α (PDGFRα), myelin-associated glycoprotein (MAG), proteolipid protein (PLP), and myelin oligodendrocyte glycoprotein (MOG) to determine oligodendrocyte genesis, differentiation, maturation, and myelination. Myelin integrity and corpus callosum caliber was assessed by Luxol fast blue (LFB) staining, whereas grip strength test and open field activity monitoring for behavioral evaluation in F1 rats. We demonstrate that intra-generational protein deprivation results in drastically low PDGFRα+ oligodendrocyte precursor (OPC) population and significantly reduced expression of myelin protein genes resulting in poor pre-myelinating and mature myelinating oligodendrocyte number, hypo-myelination, and misaligned myelinated fibers. LFB staining and MOG immunolabeling precisely revealed long-term changes in corpus callosum (CC) caliber and demyelination lesions in LP brain supporting the behavioral and cognitive changes at early adolescence and adulthood following maternal protein malnutrition (PMN). Thus, intra-generational PMN negatively affects the oligodendrocyte development and maturation resulting in myelination impairments and associated with behavioral deficits typically mimicking clinical hallmarks of neuropsychiatric disorders. Our results further strengthen and augment the hypothesis "Impaired gliogenesis is a big hit for neuropsychiatric phenotype."
Collapse
|
80
|
Skaper SD, Facci L, Zusso M, Giusti P. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron. Front Cell Neurosci 2018; 12:72. [PMID: 29618972 PMCID: PMC5871676 DOI: 10.3389/fncel.2018.00072] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation.
Collapse
Affiliation(s)
- Stephen D Skaper
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Laura Facci
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Morena Zusso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Pietro Giusti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| |
Collapse
|