51
|
Mineharu Y, Nakamura Y, Sato N, Kamata T, Oichi Y, Fujitani T, Funaki T, Okuno Y, Miyamoto S, Koizumi A, Harada KH. Increased abundance of Ruminococcus gnavus in gut microbiota is associated with moyamoya disease and non-moyamoya intracranial large artery disease. Sci Rep 2022; 12:20244. [PMID: 36424438 PMCID: PMC9691692 DOI: 10.1038/s41598-022-24496-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Moyamoya disease (MMD) is a rare cerebrovascular disease endemic in East Asia. The p.R4810K mutation in RNF213 gene confers a risk of MMD, but other factors remain largely unknown. We tested the association of gut microbiota with MMD. Fecal samples were collected from 27 patients with MMD, 7 patients with non-moyamoya intracranial large artery disease (ICAD) and 15 control individuals with other disorders, and 16S rRNA were sequenced. Although there was no difference in alpha diversity or beta diversity between patients with MMD and controls, the cladogram showed Streptococcaceae was enriched in patient samples. The relative abundance analysis demonstrated that 23 species were differentially abundant between patients with MMD and controls. Among them, increased abundance of Ruminococcus gnavus > 0.003 and decreased abundance of Roseburia inulinivorans < 0.002 were associated with higher risks of MMD (odds ratio 9.6, P = 0.0024; odds ratio 11.1, P = 0.0051). Also, Ruminococcus gnavus was more abundant and Roseburia inulinivorans was less abundant in patients with ICAD than controls (P = 0.046, P = 0.012). The relative abundance of Ruminococcus gnavus or Roseburia inulinivorans was not different between the p.R4810K mutant and wildtype. Our data demonstrated that gut microbiota was associated with both MMD and ICAD.
Collapse
Affiliation(s)
- Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan.
| | - Yasuhisa Nakamura
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Noriaki Sato
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiko Kamata
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Oichi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Fujitani
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasushi Okuno
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo, Kyoto, 606-8507, Japan
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Koizumi
- Social Health Medicine Welfare Laboratory, Public Interest Incorporated Association Kyoto Hokenkai, Kyoto, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
52
|
Choroszy M, Litwinowicz K, Bednarz R, Roleder T, Lerman A, Toya T, Kamiński K, Sawicka-Śmiarowska E, Niemira M, Sobieszczańska B. Human Gut Microbiota in Coronary Artery Disease: A Systematic Review and Meta-Analysis. Metabolites 2022; 12:1165. [PMID: 36557203 PMCID: PMC9788186 DOI: 10.3390/metabo12121165] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the importance of the gut microbiome in human health and disease has increased. Growing evidence suggests that gut dysbiosis might be a crucial risk factor for coronary artery disease (CAD). Therefore, we conducted a systematic review and meta-analysis to determine whether or not CAD is associated with specific changes in the gut microbiome. The V3-V4 regions of the 16S rDNA from fecal samples were analyzed to compare the gut microbiome composition between CAD patients and controls. Our search yielded 1181 articles, of which 21 met inclusion criteria for systematic review and 7 for meta-analysis. The alpha-diversity, including observed OTUs, Shannon and Simpson indices, was significantly decreased in CAD, indicating the reduced richness of the gut microbiome. The most consistent results in a systematic review and meta-analysis pointed out the reduced abundance of Bacteroidetes and Lachnospiraceae in CAD patients. Moreover, Enterobacteriaceae, Lactobacillus, and Streptococcus taxa demonstrated an increased trend in CAD patients. The alterations in the gut microbiota composition are associated with qualitative and quantitative changes in bacterial metabolites, many of which have pro-atherogenic effects on endothelial cells, increasing the risk of developing and progressing CAD.
Collapse
Affiliation(s)
- Marcin Choroszy
- Department of Microbiology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Kamil Litwinowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Robert Bednarz
- Ninewells Hospital and Medical School, James Arrott Drive, Dundee DD1 9SY, UK
| | - Tomasz Roleder
- Research and Development Centre, Regional Specialist Hospital, 51-124 Wroclaw, Poland
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Takumi Toya
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Emilia Sawicka-Śmiarowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | |
Collapse
|
53
|
Yang XY, Yu H, Fu J, Guo HH, Han P, Ma SR, Pan LB, Zhang ZW, Xu H, Hu JC, Zhang HJ, Bu MM, Zhang XF, Yang W, Wang JY, Jin JY, Zhang HC, Li DR, Lu JY, Lin Y, Jiang JD, Tong Q, Wang Y. Hydroxyurea ameliorates atherosclerosis in ApoE -/- mice by potentially modulating Niemann-Pick C1-like 1 protein through the gut microbiota. Theranostics 2022; 12:7775-7787. [PMID: 36451858 PMCID: PMC9706578 DOI: 10.7150/thno.76805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/28/2022] [Indexed: 12/02/2022] Open
Abstract
Rationale: The efficacy and mechanism of hydroxyurea in the treatment of atherosclerosis have rarely been reported. The goal of this study was to investigate the efficacy of hydroxyurea in high-fat diet-fed ApoE-/- mice against atherosclerosis and examine the possible mechanism underlying treatment outcomes. Methods: ApoE-/- mice were fed a high-fat diet for 1 month and then administered hydroxyurea by gavage continuously for 2 months. Aortic root hematoxylin-eosin (H&E) staining and oil red O staining were used to verify the efficacy of hydroxyurea; biochemical methods and ELISA were used to detect changes in relevant metabolites in serum. 16S rRNA was used to detect composition changes in the intestinal bacterial community of animals after treatment with hydroxyurea. Metabolomics methods were used to identify fecal metabolites and their changes. Immunohistochemical staining and ELISA were used for the localization and quantification of intestinal NPC1L1. Results: We showed that aortic root HE staining and oil red O staining determined the therapeutic efficacy of hydroxyurea in the treatment of atherosclerosis in high-fat diet-fed ApoE-/- mice. Serological tests verified the ability of hydroxyurea to lower total serum cholesterol and LDL cholesterol. The gut microbiota was significantly altered after HU treatment and was significantly different from that after antiplatelet and statin therapy. Meanwhile, a metabolomic study revealed that metabolites, including stearic acid, palmitic acid and cholesterol, were significantly enriched in mouse feces. Further histological and ELISAs verified that the protein responsible for intestinal absorption of cholesterol in mice, NPC1L1, was significantly reduced after hydroxyurea treatment. Conclusions: In high-fat diet-fed ApoE-/- mice, hydroxyurea effectively treated atherosclerosis, lowered serum cholesterol, modulated the gut microbiota at multiple levels and affected cholesterol absorption by reducing NPC1L1 in small intestinal epithelial cells.
Collapse
Affiliation(s)
- Xin-Yu Yang
- The First Hospital of Jilin University, Changchun, 130021, China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Pei Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hao-Jian Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Meng-Meng Bu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Xian-Feng Zhang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Yang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Yue Wang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Yu Jin
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Hui-Cong Zhang
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Dong-Rui Li
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jin-Yue Lu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yuan Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| | - Qian Tong
- The First Hospital of Jilin University, Changchun, 130021, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China.,✉ Corresponding authors: Y. Wang (+86-10-63165238, ) or, Q. Tong (+86-13074337289, ) or, J-D. Jiang (+86-10-63017906, ) or, L. Yuan (+86-13720009342, )
| |
Collapse
|
54
|
Ling W, Lu J, Zhao N, Lulla A, Plantinga AM, Fu W, Zhang A, Liu H, Song H, Li Z, Chen J, Randolph TW, Koay WLA, White JR, Launer LJ, Fodor AA, Meyer KA, Wu MC. Batch effects removal for microbiome data via conditional quantile regression. Nat Commun 2022; 13:5418. [PMID: 36109499 PMCID: PMC9477887 DOI: 10.1038/s41467-022-33071-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Batch effects in microbiome data arise from differential processing of specimens and can lead to spurious findings and obscure true signals. Strategies designed for genomic data to mitigate batch effects usually fail to address the zero-inflated and over-dispersed microbiome data. Most strategies tailored for microbiome data are restricted to association testing or specialized study designs, failing to allow other analytic goals or general designs. Here, we develop the Conditional Quantile Regression (ConQuR) approach to remove microbiome batch effects using a two-part quantile regression model. ConQuR is a comprehensive method that accommodates the complex distributions of microbial read counts by non-parametric modeling, and it generates batch-removed zero-inflated read counts that can be used in and benefit usual subsequent analyses. We apply ConQuR to simulated and real microbiome datasets and demonstrate its advantages in removing batch effects while preserving the signals of interest.
Collapse
Affiliation(s)
- Wodan Ling
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, 98109, Seattle, USA
| | - Jiuyao Lu
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, 21205, Baltimore, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N Wolfe St, 21205, Baltimore, USA.
| | - Anju Lulla
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, 500 Laureate Way, 28081, Kannapolis, USA
| | - Anna M Plantinga
- Department of Mathematics and Statistics, Williams College, 18 Hoxsey St, 01267, Williamstown, USA
| | - Weijia Fu
- Department of Biostatistics, School of Public Health, University of Washington, 1705 NE Pacific St, 98195, Seattle, USA
| | - Angela Zhang
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, 98109, Seattle, USA
- Department of Biostatistics, School of Public Health, University of Washington, 1705 NE Pacific St, 98195, Seattle, USA
| | - Hongjiao Liu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, 98109, Seattle, USA
- Department of Biostatistics, School of Public Health, University of Washington, 1705 NE Pacific St, 98195, Seattle, USA
| | - Hoseung Song
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, 98109, Seattle, USA
| | - Zhigang Li
- Department of Biostatistics, College of Public Health & Health Professions, College of Medicine, University of Florida, 2004 Mowry Rd, 32611, Gainesville, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First St SW, 55905, Rochester, USA
| | - Timothy W Randolph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, 98109, Seattle, USA
| | - Wei Li A Koay
- Children's National Hospital, 111 Michigan Ave NW, 20010, Washington DC, USA
- Department of Pediatrics, George Washington University, Ross Hall 2300 Eye St NW, 20037, Washington DC, USA
| | - James R White
- Resphera Biosciences, 1529 Lancaster St, 21231, Baltimore, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Science, NIA, NIH, 7201 Wisconsin Ave, 20814, Bethesda, USA
| | - Anthony A Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, 9201 University City Blvd, 28223, Charlotte, USA
| | - Katie A Meyer
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, 500 Laureate Way, 28081, Kannapolis, USA
| | - Michael C Wu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, 98109, Seattle, USA.
- Department of Biostatistics, School of Public Health, University of Washington, 1705 NE Pacific St, 98195, Seattle, USA.
| |
Collapse
|
55
|
Lv LJ, Li SH, Wen JY, Wang GY, Li H, He TW, Lv QB, Xiao MC, Duan HL, Chen MC, Yi ZT, Yan QL, Yin AH. Deep metagenomic characterization of gut microbial community and function in preeclampsia. Front Cell Infect Microbiol 2022; 12:933523. [PMID: 36189343 PMCID: PMC9515455 DOI: 10.3389/fcimb.2022.933523] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Preeclampsia (PE) is a pregnancy complication characterized by severe hypertension and multiple organ damage. Gut microbiota has been linked to PE by previous amplicon sequencing studies. To resolve the PE gut microbiota in a higher taxonomy resolution, we performed shotgun metagenomic sequencing on the fecal samples from 40 early-onset PE and 37 healthy pregnant women. We recovered 1,750 metagenome-assembled genomes (representing 406 species) from the metagenomic dataset and profiled their abundances. We found that PE gut microbiota had enriched in some species belonging to Blautia, Pauljensenia, Ruminococcus, and Collinsella and microbial functions such as the bacitracin/lantibiotics transport system, maltooligosaccharide transport system, multidrug efflux pump, and rhamnose transport system. Conversely, the gut microbiome of healthy pregnant women was enriched in species of Bacteroides and Phocaeicola and microbial functions including the porphyrin and chlorophyll metabolism, pyridoxal-P biosynthesis, riboflavin metabolism, and folate biosynthesis pathway. PE diagnostic potential of gut microbial biomarkers was developed using both species and function profile data. These results will help to explore the relationships between gut bacteria and PE and provide new insights into PE early warning.
Collapse
Affiliation(s)
- Li-Juan Lv
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | | | - Ji-Ying Wen
- Department of Obstetric, Guangdong Women and Children Hospital, Guangzhou, China
| | - Guang-Yang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui Li
- Department of Obstetric, Guangdong Women and Children Hospital, Guangzhou, China
| | - Tian-Wen He
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qing-Bo Lv
- Puensum Genetech Institute, Wuhan, China
| | - Man-Chun Xiao
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hong-Li Duan
- Department of Obstetric, Guangdong Women and Children Hospital, Guangzhou, China
| | - Min-Chai Chen
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Zhou-Ting Yi
- Department of Obstetric, Guangdong Women and Children Hospital, Guangzhou, China
| | - Qiu-Long Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Ai-Hua Yin, ; Qiu-Long Yan,
| | - Ai-Hua Yin
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, China
- *Correspondence: Ai-Hua Yin, ; Qiu-Long Yan,
| |
Collapse
|
56
|
Schulz S, Hofmann B, Grollmitz J, Friebe L, Kohnert M, Schaller HG, Reichert S. Campylobacter Species of the Oral Microbiota as Prognostic Factor for Cardiovascular Outcome after Coronary Artery Bypass Grafting Surgery. Biomedicines 2022; 10:biomedicines10081801. [PMID: 35892701 PMCID: PMC9332846 DOI: 10.3390/biomedicines10081801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background: The oral microbiota has been implicated in a variety of systemic diseases, including cardiovascular (CV) disease. The main objective of this study (DRKS-ID: DRKS00015776) was to evaluate the prognostic importance of the oral microbiota for further CV events in patients undergoing coronary artery bypass grafting surgery (3-year follow-up). Methods: In this longitudinal cohort study, 102 CV patients were enrolled, of whom 95 completed the 3-year follow-up. The CV outcome was assessed using the major adverse cardiac and cerebrovascular events criteria. To evaluate subgingival colonization, 16S rRNA genes were amplified, targeting the V3/V4 region (Illumina MiSeq). Results: Regarding the specific number of operational taxonomic units (OTUs), no significant differences in CV outcome were determined (alpha diversity, Shannon index). In linear discriminant analyses and t-tests, the disease-specific differences in the beta diversity of the microbiota composition were evaluated. It was evident that bacteria species of the genus Campylobacter were significantly more prevalent in patients with a secondary CV event (p = 0.015). This hierarchical order also includes Campylobacter rectus, which is considered to be of comprehensive importance in both periodontal and CV diseases. Conclusions: Here, we proved that subgingival occurrence of Campylobacter species has prognostic relevance for cardiovascular outcomes in CV patients undergoing coronary artery bypass grafting.
Collapse
Affiliation(s)
- Susanne Schulz
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
- Correspondence:
| | - Britt Hofmann
- Department of Cardiothoracic Surgery, Heart Centre of the University Clinics Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany;
| | - Julia Grollmitz
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
| | - Lisa Friebe
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
| | - Michael Kohnert
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
- Department of Cardiothoracic Surgery, Heart Centre of the University Clinics Halle (Saale), Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany;
| | - Hans-Günter Schaller
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
| | - Stefan Reichert
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, 06112 Halle, Germany; (J.G.); (L.F.); (M.K.); (H.-G.S.); (S.R.)
| |
Collapse
|
57
|
Gut–Skin Axis: Unravelling the Connection between the Gut Microbiome and Psoriasis. Biomedicines 2022; 10:biomedicines10051037. [PMID: 35625774 PMCID: PMC9138548 DOI: 10.3390/biomedicines10051037] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
Evidence has shown that gut microbiome plays a role in modulating the development of diseases beyond the gastrointestinal tract, including skin disorders such as psoriasis. The gut–skin axis refers to the bidirectional relationship between the gut microbiome and skin health. This is regulated through several mechanisms such as inflammatory mediators and the immune system. Dysregulation of microbiota has been seen in numerous inflammatory skin conditions such as atopic dermatitis, rosacea, and psoriasis. Understanding how gut microbiome are involved in regulating skin health may lead to development of novel therapies for these skin disorders through microbiome modulation, in particularly psoriasis. In this review, we will compare the microbiota between psoriasis patients and healthy control, explain the concept of gut–skin axis and the effects of gut dysbiosis on skin physiology. We will also review the current evidence on modulating gut microbiome using probiotics in psoriasis.
Collapse
|
58
|
Bifidobacterium lactis Probio-M8 Adjuvant Treatment Confers Added Benefits to Patients with Coronary Artery Disease via Target Modulation of the Gut-Heart/-Brain Axes. mSystems 2022; 7:e0010022. [PMID: 35343796 PMCID: PMC9040731 DOI: 10.1128/msystems.00100-22] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that gut dysbiosis may play a role in cardiovascular problems like coronary artery disease (CAD). Thus, target steering the gut microbiota/metabolome via probiotic administration could be a promising way to protect against CAD. A 6-month randomized, double-blind, placebo-controlled clinical trial was conducted to investigate the added benefits and mechanism of the probiotic strain, Bifidobacterium lactis Probio-M8, in alleviating CAD when given together with a conventional regimen. Sixty patients with CAD were randomly divided into a probiotic group (n = 36; received Probio-M8, atorvastatin, and metoprolol) and placebo group (n = 24; placebo, atorvastatin, and metoprolol). Conventional treatment significantly improved the Seattle Angina Questionnaire (SAQ) scores of the placebo group after the intervention. However, the probiotic group achieved even better SAQ scores at day 180 compared with the placebo group (P < 0.0001). Moreover, Probio-M8 treatment was more conducive to alleviating depression and anxiety in patients (P < 0.0001 versus the placebo group, day 180), with significantly lower serum levels of interleukin-6 and low-density lipoprotein cholesterol (P < 0.005 and P < 0.001, respectively). In-depth metagenomic analysis showed that, at day 180, significantly more species-level genome bins (SGBs) of Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, and Butyricicoccus porcorum were detected in the probiotic group compared with the placebo group, while the abundances of SGBs representing Flavonifractor plautii and Parabacteroides johnsonii decreased significantly among the Probio-M8 receivers (P < 0.05). Furthermore, significantly more microbial bioactive metabolites (e.g., methylxanthine and malonate) but less trimethylamine-N-oxide and proatherogenic amino acids were detected in the probiotic group than placebo group during/after intervention (P < 0.05). Collectively, we showed that coadministering Probio-M8 synergized with a conventional regimen to improve the clinical efficacy in CAD management. The mechanism of the added benefits was likely achieved via probiotic-driven modulation of the host's gut microbiota and metabolome, consequently improving the microbial metabolic potential and serum metabolite profile. This study highlighted the significance of regulating the gut-heart/-brain axes in CAD treatment. IMPORTANCE Despite recent advances in therapeutic strategies and drug treatments (e.g., statins) for coronary artery disease (CAD), CAD-related mortality and morbidity remain high. Active bidirectional interactions between the gut microbiota and the heart implicate that probiotic application could be a novel therapeutic strategy for CAD. This study hypothesized that coadministration of atorvastatin and probiotics could synergistically protect against CAD. Our results demonstrated that coadministering Probio-M8 with a conventional regimen offered added benefits to patients with CAD compared with conventional treatment alone. Our findings have provided a wide and integrative view of the pathogenesis and novel management options for CAD and CAD-related diseases.
Collapse
|
59
|
The next generation beneficial actions of novel probiotics as potential therapeutic targets and prediction tool for metabolic diseases. J Food Drug Anal 2022; 30:1-10. [PMID: 35647717 PMCID: PMC9931004 DOI: 10.38212/2224-6614.3396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
The prevalence of metabolic disease has rising and affected over 1,000 million populations globally. Since the metabolic disease and its related complication are board, it has become the major health hazard of modern world. However, Long term medication of metabolic disease may cause serious side effects and risk for adverse health problems. Recently, emerging studies focus on exploring the mechanistic details of metabolic state in disease development and progression. Gut bacteria ecosystem was considered to play a pivotal role in regulating energy homeostasis and great associated with the development of metabolic disease. Accumulated evidences indicated that Akkermansia muciniphila, Faecalibacterium prausnitzii, and Roseburia hominis improve the balance of the microecology in the intestine of the host and have positive effects on enhancing nutrients absorption. Hence, the novel probiotics as therapeutic target to modify gut microbiota generally focus on improving microbiota dysbiosis, and offers new prospects for treating metabolic disease. In the present review, we discuss the significant roles and regulatory properties of specific bacterium in the context of intestinal microbial balance, explores the kinds of harmful/beneficial bacteria that were likely to act as indicator for metabolic disease. Further proposed a stepwise procedure in the basis of sequencing technology with that of innovative option to reestablish the microbial equilibrium and prevent metabolic disease.
Collapse
|
60
|
Hou Y, Jin J, Duan H, Liu C, Chen L, Huang W, Gao Z, Jin M. Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer. Biomaterials 2022; 283:121440. [DOI: 10.1016/j.biomaterials.2022.121440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
|
61
|
Ouyang X, Duan H, Jin Q, Luo X, Han L, Zhao B, Li J, Chen Y, Lin Y, Liu Y, Huang Y, Shuang S, Huang C, He R, Yao Q, Xue Y, Guo S, Zhao J. Moxibustion may delay the aging process of Wistar rats by regulating intestinal microbiota. Biomed Pharmacother 2022; 146:112147. [PMID: 34810050 DOI: 10.1016/j.biopha.2021.112147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022] Open
Abstract
As one of the important treatments of health care and anti-aging in traditional Chinese medicine (TCM), moxibustion has been proved to have the effects of scavenging free radicals, anti-oxidation, reducing inflammatory reaction, regulating immunity and so on. Recent studies have shown that intestinal microbiota affect the process of aging. The relationship between aging, moxibustion and intestinal microbiota is still unclear. In this study, we explored the effects of moxibustion at Guanyuan (RN4) acupoint on intestinal microbiota, short-chain fatty acids and immunological characteristics of young and elder female Wistar rats to explore the relationship between aging, moxibustion and intestinal microbiota. Six 12-week-old female Wistar rats were young group (Y), and twelve 36-week-old female Wistar rats were randomly divided into elder group (C) and moxibustion group (M). The rats in M group were received mild moxibustion at Guanyuan (RN4) acupoint, 20 min/d for 40 days. The rats in Y group and C group were not given any therapeutic intervention. The results showed that moxibustion increased the abundance of intestinal probiotics (mainly Lactobacillus) and the level of short chain fatty acids, the microcirculation blood flow around Guanyuan (RN4) acupoint was also significantly improved in elder rats. In addition, the expression of MyD88, MAPK, TRAF6, NF-κB in intestinal tissue was down-regulated, and the levels of inflammatory cytokines in intestinal were decreased.
Collapse
Affiliation(s)
- Xiali Ouyang
- Beijing University of Chinese Medicine, Beijing, China
| | - Haoru Duan
- Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jin
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Luo
- Beijing University of Chinese Medicine, Beijing, China
| | - Li Han
- Beijing University of Chinese Medicine, Beijing, China.
| | - Baixiao Zhao
- Beijing University of Chinese Medicine, Beijing, China.
| | - Jiangtao Li
- Technical Institute of Physics and Chemistry, Beijing, China
| | - Yixiang Chen
- Technical Institute of Physics and Chemistry, Beijing, China
| | - Yao Lin
- Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Yueping Huang
- Beijing University of Chinese Medicine, Beijing, China
| | - Shuang Shuang
- Technical Institute of Physics and Chemistry, Beijing, China
| | - Chang Huang
- Beijing University of Chinese Medicine, Beijing, China
| | - Rui He
- Beijing University of Chinese Medicine, Beijing, China
| | - Qin Yao
- Beijing University of Chinese Medicine, Beijing, China
| | - Ying Xue
- Beijing University of Chinese Medicine, Beijing, China
| | - Shiqi Guo
- Beijing University of Chinese Medicine, Beijing, China
| | - Jing Zhao
- Inshine Health Care Services Management Co., Ltd, Beijing, China
| |
Collapse
|
62
|
Potentially Probiotic Limosilactobacillus fermentum Fruit-Derived Strains Alleviate Cardiometabolic Disorders and Gut Microbiota Impairment in Male Rats Fed a High-Fat Diet. Probiotics Antimicrob Proteins 2022; 14:349-359. [PMID: 35066820 DOI: 10.1007/s12602-021-09889-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
Abstract
High-fat diet (HFD) consumption is a risk factor for dyslipidemias, insulin resistance, and arterial hypertension linked with gut dysbiosis. Probiotic administration has been suggested as a safe therapeutic strategy for gut microbiota modulation and treatment and/or prevention of cardiometabolic disorders. Here, we assessed the effects of a potentially probiotic formulation containing strains of the Limosilactobacillus (L.) fermentum 139, 263, and 296 on the cardiometabolic disorders and gut microbiota derangements provoked by the HFD consumption. Male Wistar rats were allocated into control diet (CTL, n = 6), HFD (n = 6), and HFD receiving L. fermentum formulation (HFD-LF, n = 6) groups for 4 weeks. L. fermentum formulation (109 colony-forming unit (CFU)/ml of each strain) was daily administered by oral gavage. After 4-week follow-up, biochemical measurements, blood pressure (BP), heart rate (HR), sympathetic tone, and gut microbiota composition were evaluated. HFD consumption for 4 weeks increased lipid profile, insulin resistance, sympathetic tone, and blood pressure and impaired gut microbiota composition in male rats. Administration of L. fermentum formulation improved the gut microbiota composition, lipid profile, insulin resistance, autonomic dysfunction, and BP in rats fed with a HFD. Administration of a potentially fruit-derived probiotic formulation of L. fermentum strains improved gut microbiota composition and alleviated hyperlipidemia, insulin resistance, and sympathetic hyperactivity and increased BP in rats fed a HFD. Our findings may encourage the development of randomized controlled trials to assess the effects of L. fermentum treatment in subjects with cardiometabolic disorders.
Collapse
|
63
|
Hu X, Zhou R, Li H, Zhao X, Sun Y, Fan Y, Zhang S. Alterations of Gut Microbiome and Serum Metabolome in Coronary Artery Disease Patients Complicated With Non-alcoholic Fatty Liver Disease Are Associated With Adverse Cardiovascular Outcomes. Front Cardiovasc Med 2022; 8:805812. [PMID: 35047580 PMCID: PMC8761954 DOI: 10.3389/fcvm.2021.805812] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Rationale: Patients suffering from coronary artery disease (CAD) complicated with nonalcoholic fatty liver disease (NAFLD) present worse cardiovascular outcomes than CAD patients without NAFLD. The progression of CAD is recently reported to be associated with gut microbiota and microbe-derived metabolites. However, it remains unclear how the complication of NAFLD will affect gut microbiota and microbe-derived metabolites in CAD patients, and whether or not this interplay is related to the worse cardiovascular outcomes in CAD-NAFLD patients. Methods: We performed 16S rRNA sequencing and serum metabolomic analysis in 27 CAD patients with NAFLD, 81 CAD patients without NAFLD, and 24 matched healthy volunteers. Predicted functional profiling was achieved using PICRUSt2. The occurrence of cardiovascular events was assessed by a follow-up study. The association of alterations in the gut microbiome and metabolome with adverse cardiovascular events and clinical indicators was revealed by Spearman correlation analysis. Results: We discovered that the complication of NAFLD was associated with worse clinical outcomes in CAD patients and critical serum metabolome shifts. We identified 25 metabolite modules that were correlated with poor clinical outcome in CAD-NAFLD patients compared with non-NAFLD patients, represented by increased cardiac-toxic metabolites including prochloraz, brofaromine, aristolochic acid, triethanolamine, and reduced potentially beneficial metabolites including estradiol, chitotriose, palmitelaidic acid, and moxisylyte. In addition, the gut microbiome of individuals with CAD-NAFLD was changed and characterized by increased abundances of Oscillibacter ruminantium and Dialister invisus, and decreased abundances of Fusicatenibacter saccharivorans, Bacteroides ovatus and Prevotella copri. PICRUSt2 further confirmed an increase of potential pathogenic bacteria in CAD-NAFLD. Moreover, we found that variations of gut microbiota were critically correlated with changed circulating metabolites and clinical outcomes, which revealed that aberrant gut microbiota in CAD-NAFLD patients may sculpt a detrimental metabolome which results in adverse cardiovascular outcomes. Conclusions: Our findings suggest that CAD patients complicated with NAFLD result in worse clinical outcomes possibly by modulating the features of the gut microbiota and circulating metabolites. We introduce “liver-gut microbiota-heart axis” as a possible mechanism underlying this interrelationship. Our study provides new insights on the contribution of gut microbiota heterogeneity to CAD-NAFLD progression and suggests novel strategies for disease therapy.
Collapse
Affiliation(s)
- Xiaomin Hu
- Department of Cardiology, Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ruilin Zhou
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hanyu Li
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xinyue Zhao
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yueshen Sun
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yue Fan
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Cardiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
64
|
Longo L, Rampelotto PH, Filippi-Chiela E, de Souza VEG, Salvati F, Cerski CT, da Silveira TR, Oliveira CP, Uribe-Cruz C, Álvares-da-Silva MR. Gut dysbiosis and systemic inflammation promote cardiomyocyte abnormalities in an experimental model of steatohepatitis. World J Hepatol 2021; 13:2052-2070. [PMID: 35070008 PMCID: PMC8727214 DOI: 10.4254/wjh.v13.i12.2052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/20/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cardiovascular disease is the main cause of death in metabolic-associated fatty liver disease, and gut microbiota dysbiosis is associated with both of them. AIM To assess the relationship between gut dysbiosis and cardiovascular risk (CVR) in an experimental model of steatohepatitis. METHODS Adult male Sprague-Dawley rats were randomized to a control group (n = 10) fed a standard diet and an intervention group (n = 10) fed a high-fat choline-deficient diet for 16 wk. Biochemical, molecular, hepatic, and cardiac histopathology. Gut microbiota variables were evaluated. RESULTS The intervention group had a significantly higher atherogenic coefficient, Castelli's risk index (CRI)-I and CRI-II, interleukin-1β, tissue inhibitor of metalloproteinase-1 (all P < 0.001), monocyte chemoattractant protein-1 (P = 0.005), and plasminogen activator inhibitor-1 (P = 0.037) than the control group. Gene expression of miR-33a increased (P = 0.001) and miR-126 (P < 0.001) decreased in the intervention group. Steatohepatitis with fibrosis was seen in the intervention group, and heart computerized histological imaging analysis showed a significant decrease in the percentage of cardiomyocytes with a normal morphometric appearance (P = 0.007), reduction in the mean area of cardiomyocytes (P = 0.037), and an increase of atrophic cardiomyocytes (P = 0.007). There were significant correlations between the cardiomyocyte morphometry markers and those of progression and severity of liver disease and CVR. The intervention group had a lower Shannon diversity index and fewer changes in the structural pattern of gut microbiota (both P < 0.001) than controls. Nine microbial families that are involved in lipid metabolism were differentially abundant in intervention group and were significantly correlated with markers of liver injury and CVR. CONCLUSION The study found a link between gut dysbiosis and significant cardiomyocyte abnormalities in animals with steatohepatitis.
Collapse
Affiliation(s)
- Larisse Longo
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil.
| | - Pabulo Henrique Rampelotto
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Eduardo Filippi-Chiela
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Rio Grande do Sul, Brazil
- Department of Morphological Sciences, Universidade Federal do Rio Grande do SulPorto Alegre 90050-170, Rio Grande do Sul, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Valessa Emanoele Gabriel de Souza
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Fernando Salvati
- School of Medicine, Instituto Meridional de Educação-IMED, Passo Fundo 99070-220, Rio Grande do Sul, Brazil
| | - Carlos Thadeu Cerski
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Unit of Surgical Pathology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Themis Reverbel da Silveira
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| | - Cláudia P Oliveira
- Department of Gastroenterology (LIM07), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246903, Brazil
| | - Carolina Uribe-Cruz
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
| | - Mário Reis Álvares-da-Silva
- Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
- Graduate Program in Gastroenterology and Hepatology, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Rio Grande do Sul, Brazil
- Division of Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil
| |
Collapse
|
65
|
Lutsiv T, Weir TL, McGinley JN, Neil ES, Wei Y, Thompson HJ. Compositional Changes of the High-Fat Diet-Induced Gut Microbiota upon Consumption of Common Pulses. Nutrients 2021; 13:3992. [PMID: 34836246 PMCID: PMC8625176 DOI: 10.3390/nu13113992] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome is involved in the host's metabolism, development, and immunity, which translates to measurable impacts on disease risk and overall health. Emerging evidence supports pulses, i.e., grain legumes, as underutilized nutrient-dense, culinarily versatile, and sustainable staple foods that promote health benefits through modulating the gut microbiota. Herein, the effects of pulse consumption on microbial composition in the cecal content of mice were assessed. Male mice were fed an obesogenic diet formulation with or without 35% of the protein component comprised by each of four commonly consumed pulses-lentil (Lens culinaris L.), chickpea (Cicer arietinum L.), common bean (Phaseolus vulgaris L.), or dry pea (Pisum sativum L.). Mice consuming pulses had distinct microbial communities from animals on the pulse-free diet, as evidenced by β-diversity ordinations. At the phylum level, animals consuming pulses showed an increase in Bacteroidetes and decreases in Proteobacteria and Firmicutes. Furthermore, α-diversity was significantly higher in pulse-fed animals. An ecosystem of the common bacteria that were enhanced, suppressed, or unaffected by most of the pulses was identified. These compositional changes are accompanied by shifts in predicted metagenome functions and are concurrent with previously reported anti-obesogenic physiologic outcomes, suggestive of microbiota-associated benefits of pulse consumption.
Collapse
Affiliation(s)
- Tymofiy Lutsiv
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (J.N.M.); (E.S.N.)
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Tiffany L. Weir
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA;
| | - John N. McGinley
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (J.N.M.); (E.S.N.)
| | - Elizabeth S. Neil
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (J.N.M.); (E.S.N.)
| | - Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA;
| | - Henry J. Thompson
- Cancer Prevention Laboratory, Colorado State University, Fort Collins, CO 80523, USA; (T.L.); (J.N.M.); (E.S.N.)
- Graduate Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA;
| |
Collapse
|
66
|
Sawicka-Smiarowska E, Bondarczuk K, Bauer W, Niemira M, Szalkowska A, Raczkowska J, Kwasniewski M, Tarasiuk E, Dubatowka M, Lapinska M, Szpakowicz M, Stachurska Z, Szpakowicz A, Sowa P, Raczkowski A, Kondraciuk M, Gierej M, Motyka J, Jamiolkowski J, Bondarczuk M, Chlabicz M, Bucko J, Kozuch M, Dobrzycki S, Bychowski J, Musial WJ, Godlewski A, Ciborowski M, Gyenesei A, Kretowski A, Kaminski KA. Gut Microbiome in Chronic Coronary Syndrome Patients. J Clin Med 2021; 10:jcm10215074. [PMID: 34768594 PMCID: PMC8584954 DOI: 10.3390/jcm10215074] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Despite knowledge of classical coronary artery disease (CAD) risk factors, the morbidity and mortality associated with this disease remain high. Therefore, new factors that may affect the development of CAD, such as the gut microbiome, are extensively investigated. This study aimed to evaluate gut microbiome composition in CAD patients in relation to the control group. We examined 169 CAD patients and 166 people in the control group, without CAD, matched in terms of age and sex to the study group. Both populations underwent a detailed health assessment. The microbiome analysis was based on the V3-V4 region of the 16S rRNA gene (NGS method). Among 4074 identified taxonomic units in the whole population, 1070 differed between study groups. The most common bacterial types were Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Furthermore, a higher Firmicutes/Bacteroidetes ratio in the CAD group compared with the control was demonstrated. Firmicutes/Bacteroidetes ratio, independent of age, sex, CAD status, LDL cholesterol concentration, and statins treatment, was related to altered phosphatidylcholine concentrations obtained in targeted metabolomics. Altered alpha-biodiversity (Kruskal-Wallis test, p = 0.001) and beta-biodiversity (Bray-Curtis metric, p < 0.001) in the CAD group were observed. Moreover, a predicted functional analysis revealed some taxonomic units, metabolic pathways, and proteins that might be characteristic of the CAD patients' microbiome, such as increased expressions of 6-phospho-β-glucosidase and protein-N(pi)-phosphohistidine-sugar phosphotransferase and decreased expressions of DNA topoisomerase, oxaloacetate decarboxylase, and 6-beta-glucosidase. In summary, CAD is associated with altered gut microbiome composition and function.
Collapse
Affiliation(s)
- Emilia Sawicka-Smiarowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Kinga Bondarczuk
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.B.); (M.K.); (M.B.)
| | - Witold Bauer
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Anna Szalkowska
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Justyna Raczkowska
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Miroslaw Kwasniewski
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.B.); (M.K.); (M.B.)
| | - Ewa Tarasiuk
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Marlena Dubatowka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Magda Lapinska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Malgorzata Szpakowicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Zofia Stachurska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Pawel Sowa
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Andrzej Raczkowski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Marcin Kondraciuk
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Magdalena Gierej
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Jacek Jamiolkowski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
| | - Mateusz Bondarczuk
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, 15-269 Bialystok, Poland; (K.B.); (M.K.); (M.B.)
| | - Malgorzata Chlabicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
- Department of Invasive Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.K.); (S.D.)
| | - Jolanta Bucko
- Department of Cardiology, Bialystok Regional Hospital, 15-950 Bialystok, Poland; (J.B.); (J.B.)
| | - Marcin Kozuch
- Department of Invasive Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.K.); (S.D.)
| | - Slawomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (M.K.); (S.D.)
| | - Jerzy Bychowski
- Department of Cardiology, Bialystok Regional Hospital, 15-950 Bialystok, Poland; (J.B.); (J.B.)
| | - Wlodzimierz Jerzy Musial
- Department of Cardiology, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.T.); (A.S.); (W.J.M.)
| | - Adrian Godlewski
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Michal Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Attila Gyenesei
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-269 Bialystok, Poland; (W.B.); (M.N.); (A.S.); (J.R.); (A.G.); (M.C.); (A.G.); (A.K.)
| | - Karol Adam Kaminski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland; (E.S.-S.); (M.D.); (M.L.); (M.S.); (Z.S.); (P.S.); (A.R.); (M.K.); (M.G.); (J.M.); (J.J.); (M.C.)
- Correspondence: ; Tel.: +48-85-8318-656
| |
Collapse
|
67
|
Verheggen RJHM, Konstanti P, Smidt H, Hermus ARMM, Thijssen DHJ, Hopman MTE. Eight-week exercise training in humans with obesity: Marked improvements in insulin sensitivity and modest changes in gut microbiome. Obesity (Silver Spring) 2021; 29:1615-1624. [PMID: 34467673 PMCID: PMC9291576 DOI: 10.1002/oby.23252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/15/2021] [Accepted: 06/06/2021] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Obesity is associated with impaired gut microbiota diversity, which has been linked to the development of type 2 diabetes. This study aims to examine the effects of an 8-week aerobic exercise intervention on insulin sensitivity, visceral adiposity, and gut microbiota diversity and composition in participants with obesity. METHODS Fourteen participants (mean [SD], age 51 [11] years; BMI 34.9 [4.9] kg/m2 ) performed an 8-week exercise intervention (2 to 4 times/week on 65% to 85% of heart rate reserve). Insulin sensitivity (hyperinsulemic euglycemic clamp), cardiorespiratory fitness (maximal oxygen uptake), visceral adiposity (dual-energy X-ray absorptiometry scan) and gut microbiota composition (16S rRNA gene sequencing) were measured before and after the intervention. RESULTS Insulin sensitivity showed a significant increase (pre: 3.8 [1.9] mg/min/kg; post: 4.5 [1.7] mg/min/kg; p = 0.007) after training, whereas visceral adiposity decreased (pre: 959 [361] cm3 ; post: 897 [364] cm3 ; p = 0.02). No change in gut microbiota α- or β-diversity was found. At the genus level, the abundance of Ruminococcus gauvreauii (p = 0.02); Lachnospiraceae FCS020 group (p = 0.04), and Anaerostipes (p = 0.04) significantly increased after exercise training. Significant positive correlations were present for M-value (R. gauvreauii) and VO2 max (R. gauvreauii and Anaerostipes). CONCLUSIONS Eight-week exercise training in humans with obesity leads to marked improvements in insulin sensitivity and body composition and is accompanied by modest changes in 3 gut microbiome genera, all belonging to the Firmicutes phylum.
Collapse
Affiliation(s)
- Rebecca J. H. M. Verheggen
- Department of PhysiologyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenthe Netherlands
| | - Prokopis Konstanti
- Laboratory of MicrobiologyWageningen UniversityWageningenthe Netherlands
| | - Hauke Smidt
- Laboratory of MicrobiologyWageningen UniversityWageningenthe Netherlands
| | - Ad R. M. M. Hermus
- Department of Internal MedicineDivision of EndocrinologyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenthe Netherlands
| | - Dick H. J. Thijssen
- Department of PhysiologyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenthe Netherlands
- Research Institute for Sport and Exercise SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Maria T. E. Hopman
- Department of PhysiologyRadboud University Medical CenterRadboud Institute for Health SciencesNijmegenthe Netherlands
| |
Collapse
|
68
|
Ahrens AP, Culpepper T, Saldivar B, Anton S, Stoll S, Handberg EM, Xu K, Pepine C, Triplett EW, Aggarwal M. A Six-Day, Lifestyle-Based Immersion Program Mitigates Cardiovascular Risk Factors and Induces Shifts in Gut Microbiota, Specifically Lachnospiraceae, Ruminococcaceae, Faecalibacterium prausnitzii: A Pilot Study. Nutrients 2021; 13:3459. [PMID: 34684459 PMCID: PMC8539164 DOI: 10.3390/nu13103459] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) prevalence remains elevated globally. We have previously shown that a one-week lifestyle "immersion program" leads to clinical improvements and sustained improvements in quality of life in moderate to high atherosclerotic CVD (ASCVD) risk individuals. In a subsequent year of this similarly modeled immersion program, we again collected markers of cardiovascular health and, additionally, evaluated intestinal microbiome composition. ASCVD risk volunteers (n = 73) completed the one-week "immersion program" involving nutrition (100% plant-based foods), stress management education, and exercise. Anthropometric measurements and CVD risk factors were compared at baseline and post intervention. A subgroup (n = 22) provided stool, which we analyzed with 16S rRNA sequencing. We assessed abundance changes within-person, correlated the abundance shifts with clinical changes, and inferred functional pathways using PICRUSt. Reductions in blood pressure, total cholesterol, and triglycerides, were observed without reduction in weight. Significant increases in butyrate producers were detected, including Lachnospiraceae and Oscillospirales. Within-person, significant shifts in relative abundance (RA) occurred, e.g., increased Lachnospiraceae (+58.8% RA, p = 0.0002), Ruminococcaceae (+82.1%, p = 0.0003), Faecalibacterium prausnitzii (+54.5%, p = 0.002), and diversification and richness. Microbiota changes significantly correlated with body mass index (BMI), blood pressure (BP), cholesterol, high-sensitivity C-reactive protein (hsCRP), glucose, and trimethylamine N-oxide (TMAO) changes. Pairwise decreases were inferred in microbial genes corresponding to cancer, metabolic disease, and amino acid metabolism. This brief lifestyle-based intervention improved lipids and BP and enhanced known butyrate producers, without significant weight loss. These results demonstrate a promising non-pharmacological preventative strategy for improving cardiovascular health.
Collapse
Affiliation(s)
- Angelica P. Ahrens
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, 1355 Museum Dr, Gainesville, FL 32603, USA; (A.P.A.); (E.W.T.)
| | - Tyler Culpepper
- Department of Medicine, College of Medicine, University of Florida, P.O. Box 100277, Gainesville, FL 32610, USA; (T.C.); (B.S.)
| | - Brittany Saldivar
- Department of Medicine, College of Medicine, University of Florida, P.O. Box 100277, Gainesville, FL 32610, USA; (T.C.); (B.S.)
| | - Stephen Anton
- Department of Aging and Geriatric Research, University of Florida, 210 E. Mowry Rd, Gainesville, FL 32611, USA;
| | - Scott Stoll
- Total Health Immersions, P.O. Box 741596, Boynton Beach, FL 33474, USA;
| | - Eileen M. Handberg
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; (E.M.H.); (C.P.)
| | - Ke Xu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, 2004 Mowry Rd, Gainesville, FL 32610, USA;
| | - Carl Pepine
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; (E.M.H.); (C.P.)
| | - Eric W. Triplett
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, 1355 Museum Dr, Gainesville, FL 32603, USA; (A.P.A.); (E.W.T.)
| | - Monica Aggarwal
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, 1600 SW Archer Rd, Gainesville, FL 32610, USA; (E.M.H.); (C.P.)
| |
Collapse
|
69
|
Chen L, Ishigami T, Doi H, Arakawa K, Tamura K. The Types and Proportions of Commensal Microbiota Have a Predictive Value in Coronary Heart Disease. J Clin Med 2021; 10:3120. [PMID: 34300286 PMCID: PMC8303676 DOI: 10.3390/jcm10143120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/12/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
Previous clinical studies have suggested that commensal microbiota play an important role in atherosclerotic cardiovascular disease; however, a synthetic analysis of coronary heart disease (CHD) has yet to be performed. Therefore, we aimed to investigate the specific types of commensal microbiota associated with CHD by performing a systematic review of prospective observational studies that have assessed associations between commensal microbiota and CHD. Of the 544 published articles identified in the initial search, 16 publications with data from 16 cohort studies (2210 patients) were included in the analysis. The combined data showed that Bacteroides and Prevotella were commonly identified among nine articles (n = 13) in the fecal samples of patients with CHD, while seven articles commonly identified Firmicutes. Moreover, several types of commensal microbiota were common to atherosclerotic plaque and blood or gut samples in 16 cohort studies. For example, Veillonella, Proteobacteria, and Streptococcus were identified among the plaque and fecal samples, whereas Clostridium was commonly identified among blood and fecal samples of patients with CHD. Collectively, our findings suggest that several types of commensal microbiota are associated with CHD, and their presence may correlate with disease markers of CHD.
Collapse
Affiliation(s)
- Lin Chen
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Kanagawa 236-0027, Japan; (L.C.); (H.D.); (K.A.); (K.T.)
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Tomoaki Ishigami
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Kanagawa 236-0027, Japan; (L.C.); (H.D.); (K.A.); (K.T.)
| | - Hiroshi Doi
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Kanagawa 236-0027, Japan; (L.C.); (H.D.); (K.A.); (K.T.)
| | - Kentaro Arakawa
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Kanagawa 236-0027, Japan; (L.C.); (H.D.); (K.A.); (K.T.)
| | - Kouichi Tamura
- Department of Medical Science and Cardio-Renal Medicine, Graduate School of Medicine, Yokohama City University, Kanagawa 236-0027, Japan; (L.C.); (H.D.); (K.A.); (K.T.)
| |
Collapse
|
70
|
Du X, Liu J, Xue Y, Kong X, Lv C, Li Z, Huang Y, Wang B. Alteration of gut microbial profile in patients with diabetic nephropathy. Endocrine 2021; 73:71-84. [PMID: 33905112 DOI: 10.1007/s12020-021-02721-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
AIMS Investigations show that 30-40% of patients with diabetes develop diabetic nephropathy (DN). The gut microbiome has become lively field research in diabetes mellitus and chronic kidney disease. The gut microbial profile in DN (stage-3 or 4) patients and healthy controls were systematically analyzed, the discrepancies on microbial profiles in different disease stages, gender, and BMI in DN were also described. METHODS Fecal samples from 37 healthy volunteers (HG) and 43 DN patients (PG) were recruited to gut microbiota 16S rDNA V3-V4 regions analysis. In consideration of disease stage, gender, and BMI, PG, and HG were further divided into three subgroups. To predict the DN stage, a random forest model was carried out, using the most discrepant genera selected from the PG and HG samples. RESULTS Gut bacterial richness and diversity in PG were far less than HG. The gut microbiota composition in PG-III was at the middle level between HG and PG-IV. The gender and BMI had some impact on the gut microbiota profile but the major difference still came from the disease. The random forest model was constructed from 25 most discrepant microbe genera. The area under curve (AUC) of receiving operational curve (ROC) was 0.972, indicated a high discriminatory power to predict DN. CONCLUSIONS DN patients showed dysbiosis and a decrease in gut bacterial richness and diversity compared with HG. Several characterized genera like Megasphaera, Veillonella, Escherichia-Shigella, Anaerostipes, and Haemophilus might be the new potential microbial biomarkers of DN.
Collapse
Affiliation(s)
- Xi Du
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China
| | - Jia Liu
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China
| | - Yu Xue
- Tianjin University of Traditional Chinese Medicine, Jinghai District, 301617, Tianjin, PR China
| | - Xiangyun Kong
- Tianjin University of Traditional Chinese Medicine, Jinghai District, 301617, Tianjin, PR China
- Cangzhou Hospital of Integrated TCM-WM Hebei, Cangzhou, 061001, Hebei Province, PR China
| | - Chunxiao Lv
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China
| | - Ziqiang Li
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China
| | - Yuhong Huang
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China.
| | - Baohe Wang
- Second Affiliated Hospital of Tianjin University of TCM, Hebei District, 300250, Tianjin, PR China.
| |
Collapse
|
71
|
Feng T, Ding H, Wang J, Xu W, Liu Y, Kenéz Á. Alterations of Serum Metabolites and Fecal Microbiota Involved in Ewe Follicular Cyst. Front Microbiol 2021; 12:675480. [PMID: 34054784 PMCID: PMC8149755 DOI: 10.3389/fmicb.2021.675480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
While the interactions of the gut microbiome and blood metabolome have been widely studied in polycystic ovary disease in women, follicular cysts of ewes have been scarcely investigated using these methods. In this study, the fecal microbiome and serum metabolome were used to compare between ewes diagnosed with ovarian cystic follicles and ewes with normal follicles, to investigate alterations of the fecal bacterial community composition and metabolic parameters in relation to follicular cystogenesis. Ewes from the same feeding and management system were diagnosed with a follicular cyst (n = 6) or confirmed to have normal follicles (n = 6) by using a B-mode ultrasound scanner. Blood serum and fresh fecal samples of all ewes were collected and analyzed. The α-diversity of fecal microbiome did not differ significantly between follicular cyst ewes and normal follicle ewes. Three genera (Bacteroides, Anaerosporobacter, and Angelakisella) were identified and their balance differentiated between follicular cyst and normal follicle ewes. Alterations of several serum metabolite concentrations, belonging to lipids and lipid-like molecules, organic acids and derivatives, organic oxygen compounds, benzenoids, phenylpropanoids and polyketides, and organoheterocyclic compounds, were associated with the presence of a follicular cyst. Correlation analysis between fecal bacterial communities and serum metabolites indicated a positive correlation between Anaerosporobacter and several fatty acids, and a negative correlation between Bacteroides and L-proline. These observations provide new insights for the complex interactions of the gut microbiota and the host serum lipid profiles, and support gut microbiota as a potential strategy to treat and prevent follicular cysts in sheep.
Collapse
Affiliation(s)
- Tao Feng
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource, Oklahoma State University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hongxiang Ding
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource, Oklahoma State University, Beijing, China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Jing Wang
- College of Animal Science and Technology, Hebei North University, Zhangjiakou, China
| | - Wei Xu
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine (IAHVM), Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China.,Joint Laboratory of Animal Science Between IAHVM of BAAFS and Division of Agricultural Science and Natural Resource, Oklahoma State University, Beijing, China
| | - Ákos Kenéz
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
72
|
Gut Microbiota and Environment in Coronary Artery Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084242. [PMID: 33923612 PMCID: PMC8073779 DOI: 10.3390/ijerph18084242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022]
Abstract
In recent years, studies evaluated the associations between coronary artery disease (CAD) and fecal gut microbiota composition. This opens new perspectives on therapeutic strategies to prevent CAD representing the leading cause of mortality in Western societies. We have conducted a review of the literature regarding the characteristics of the gut microbiota of CAD patients, its underlying mechanisms and their associations with pollution and the Western diet. The latest evidence confirms that an abnormal microbiota predisposes to the development of CAD and differs in composition compared to the microbiota of healthy patients; the results are, however, heterogeneous. The most studied underlying mechanisms involve the production of trimethylamine-N-oxide (TMAO), the synthesis of short-chain fatty acids (SCFAs) and the immune system activation mediated by lipopolysaccharides (LPS). Despite a large amount of available data, there is no evidence about the role of a specific type of gut microbiota in the risk of developing acute coronary syndrome (ACS). Moreover, no relationship has been assessed between the gut microbiota and the characteristics of coronary plaques in humans. However, a close association has been found between both pollution and the Western diet and gut microbiota and CAD. Further studies are needed to clarify the associations between gut microbiota, CAD, and ACS to find efficient therapeutic strategies.
Collapse
|
73
|
Toya T, Ozcan I, Corban MT, Sara JD, Marietta EV, Ahmad A, Horwath IE, Loeffler DL, Murray JA, Lerman LO, Lerman A. Compositional change of gut microbiome and osteocalcin expressing endothelial progenitor cells in patients with coronary artery disease. PLoS One 2021; 16:e0249187. [PMID: 33765061 PMCID: PMC7993831 DOI: 10.1371/journal.pone.0249187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Osteogenic endothelial progenitor cells (EPCs) contribute to impaired endothelial repair and promote coronary artery disease (CAD) and vascular calcification. Immature EPCs expressing osteocalcin (OCN) has been linked to unstable CAD; however, phenotypic regulation of OCN-expressing EPCs is not understood. We hypothesized that gut-microbiome derived pro-inflammatory substance, trimethylamine N-oxide (TMAO) might be associated with mobilization of OCN-expressing EPCs. This study aimed to investigate the association between dysbiosis, TMAO, and circulating mature and immature OCN-expressing EPCs levels in patients with and without CAD. We included 202 patients (CAD N = 88; no CAD N = 114) who underwent assessment of EPCs using flow cytometry and gut microbiome composition. Mature and immature EPCs co-staining for OCN were identified using cell surface markers as CD34+/CD133-/kinase insert domain receptor (KDR)+ and CD34-/CD133+/KDR+ cells, respectively. The number of observed operational taxonomy units (OTU), index of microbial richness, was used to identify patients with dysbiosis. The number of immature OCN-expressing EPCs were higher in patients with CAD or dysbiosis than patients without. TMAO levels were not associated with circulating levels of OCN-expressing EPCs. The relative abundance of Ruminococcus gnavus was moderately correlated with circulating levels of immature OCN-expressing EPCs, especially in diabetic patients. Gut dysbiosis was associated with increased levels of TMAO, immature OCN-expressing EPCs, and CAD. The relative abundance of Ruminococcus gnavus was correlated with immature OCN-expressing EPCs, suggesting that the harmful effects of immature OCN-expressing EPCs on CAD and potentially vascular calcification might be mediated by gut microbiome-derived systemic inflammation.
Collapse
Affiliation(s)
- Takumi Toya
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
- Division of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Ilke Ozcan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Michel T. Corban
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jaskanwal D. Sara
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Eric V. Marietta
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Ali Ahmad
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Irina E. Horwath
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Darrell L. Loeffler
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Joseph A. Murray
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States of America
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States of America
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States of America
- * E-mail:
| |
Collapse
|
74
|
Hofeld BC, Puppala VK, Tyagi S, Ahn KW, Anger A, Jia S, Salzman NH, Hessner MJ, Widlansky ME. Lactobacillus plantarum 299v probiotic supplementation in men with stable coronary artery disease suppresses systemic inflammation. Sci Rep 2021; 11:3972. [PMID: 33597583 PMCID: PMC7889883 DOI: 10.1038/s41598-021-83252-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Recent trials demonstrate that systemic anti-inflammatory therapy reduces cardiovascular events in coronary artery disease (CAD) patients. We recently demonstrated Lactobacillus plantarum 299v (Lp299v) supplementation improved vascular endothelial function in men with stable CAD. Whether this favorable effect is in part due to anti-inflammatory action remains unknown. Testing this hypothesis, we exposed plasma obtained before and after Lp299v supplementation from these subjects to a healthy donor's PBMCs and measured differences in the PBMC transciptome, performed gene ontological analyses, and compared Lp299v-induced transcriptome changes with changes in vascular function. Daily alcohol users (DAUs) (n = 4) had a significantly different response to Lp299v and were separated from the main analyses. Non-DAUs- (n = 15) showed improved brachial flow-mediated dilation (FMD) and reduced circulating IL-8, IL-12, and leptin. 997 genes were significantly changed. I.I.com decreased (1.01 ± 0.74 vs. 0.22 ± 0.51; P < 0.0001), indicating strong anti-inflammatory effects. Pathway analyses revealed downregulation of IL-1β, interferon-stimulated pathways, and toll-like receptor signaling, and an increase in regulator T-cell (Treg) activity. Reductions in GBP1, JAK2, and TRAIL expression correlated with improved FMD. In non-DAU men with stable CAD, post-Lp299v supplementation plasma induced anti-inflammatory transcriptome changes in human PBMCs that could benefit CAD patients. Future studies should delineate changes in circulating metabolites responsible for these effects.
Collapse
Affiliation(s)
- Benjamin C Hofeld
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Venkata K Puppala
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sudhi Tyagi
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kwang Woo Ahn
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amberly Anger
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shuang Jia
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nita H Salzman
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Martin J Hessner
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael E Widlansky
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
- Division of Cardiovascular Medicine, Professor of Medicine and Pharmacology, Medical College of Wisconsin, Hub for Collaborative Medicine, 5th Floor A5743, 8701 W. Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
75
|
Schulz S, Reichert S, Grollmitz J, Friebe L, Kohnert M, Hofmann B, Schaller HG, Klawonn F, Shi R. The role of Saccharibacteria (TM7) in the subginival microbiome as a predictor for secondary cardiovascular events. Int J Cardiol 2021; 331:255-261. [PMID: 33529661 DOI: 10.1016/j.ijcard.2021.01.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/27/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The composition of the subgingival microbiota is of great importance in both oral and systemic diseases. However, a possible association of the oral microbiome and cardiovascular (CV) outcome has not yet been considered in a complex model. The primary objective of the study (DRKS-ID: DRKS00015776) was to assess differences in complex subgingival bacterial composition, depending on the CV outcome in patients undergoing Coronary Artery Bypass Grafting Surgery (CABG). MATERIAL AND METHODS We conducted a longitudinal cohort study enrolling 102 CV patients. After a one-year follow-up, the postoperative outcome was evaluated applying MACCE (Major Adverse Cardiac and Cerebrovascular Events) criteria. The complex oral microbiome was evaluated depending on CV outcome. The mathematical data processing included Qiime 2 software workflow and DADA2 pipeline as well as Human Oral Microbiome Database (HOMD) and Greengenes database classification. For identifying biomarkers distinguishing patients suffering from secondary CV events, the Cox Proportional Hazard Model for survival analysis was applied. RESULTS In total, 19,418 Operational Taxonomic Units (OTU) were mapped according to the HOMD and Greengenes database. No significant differences in alpha and beta diversity were linked to CV outcomes (Shannon index; Principal Coordinates Analysis). No biomarker predicting secondary CV events were identified applying the area under the receiver operating characteristic curve (AUC) model. However, in survival analysis, one biomarker of Saccharibacteria phylum (class: TM7-3, order: CW040, family: F16) was associated with the incidence of a secondary CV event (p = 0.016). CONCLUSIONS For the first time, a subgingival biomarker has been identified that supports a cardiovascular prognosis in CV patients undergoing coronary artery bypass grafting.
Collapse
Affiliation(s)
- Susanne Schulz
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany.
| | - Stefan Reichert
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Julia Grollmitz
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Lisa Friebe
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Michael Kohnert
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Britt Hofmann
- Department of Cardiothoracic Surgery, Heart Centre of the University Clinics Halle (Saale), Martin-Luther-University Halle-Wittenberg, Germany
| | - Hans-Günter Schaller
- Department of Operative Dentistry and Periodontology, Martin-Luther-University Halle-Wittenberg, Germany
| | - Frank Klawonn
- Biostatistics, Helmholtz Centre for Infection Research, Braunschweig, Germany; Department of Computer Science, Ostfalia University of Applied Sciences, Wolfenbüttel, Germany
| | - Ruibing Shi
- Biostatistics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
76
|
Skoufos G, Kardaras FS, Alexiou A, Kavakiotis I, Lambropoulou A, Kotsira V, Tastsoglou S, Hatzigeorgiou A. Peryton: a manual collection of experimentally supported microbe-disease associations. Nucleic Acids Res 2021; 49:D1328-D1333. [PMID: 33080028 PMCID: PMC7779029 DOI: 10.1093/nar/gkaa902] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/23/2020] [Accepted: 10/17/2020] [Indexed: 12/26/2022] Open
Abstract
We present Peryton (https://dianalab.e-ce.uth.gr/peryton/), a database of experimentally supported microbe-disease associations. Its first version constitutes a novel resource hosting more than 7900 entries linking 43 diseases with 1396 microorganisms. Peryton's content is exclusively sustained by manual curation of biomedical articles. Diseases and microorganisms are provided in a systematic, standardized manner using reference resources to create database dictionaries. Information about the experimental design, study cohorts and the applied high- or low-throughput techniques is meticulously annotated and catered to users. Several functionalities are provided to enhance user experience and enable ingenious use of Peryton. One or more microorganisms and/or diseases can be queried at the same time. Advanced filtering options and direct text-based filtering of results enable refinement of returned information and the conducting of tailored queries suitable to different research questions. Peryton also provides interactive visualizations to effectively capture different aspects of its content and results can be directly downloaded for local storage and downstream analyses. Peryton will serve as a valuable source, enabling scientists of microbe-related disease fields to form novel hypotheses but, equally importantly, to assist in cross-validation of findings.
Collapse
Affiliation(s)
- Giorgos Skoufos
- Department of Electrical & Computer Engineering, Univ. of Thessaly, Volos 38221, Greece
- Hellenic Pasteur Institute, Athens 11521, Greece
| | - Filippos S Kardaras
- Hellenic Pasteur Institute, Athens 11521, Greece
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, Univ. of Thessaly, Lamia 351 31, Greece
| | - Athanasios Alexiou
- Hellenic Pasteur Institute, Athens 11521, Greece
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, Univ. of Thessaly, Lamia 351 31, Greece
| | - Ioannis Kavakiotis
- Department of Electrical & Computer Engineering, Univ. of Thessaly, Volos 38221, Greece
- Hellenic Pasteur Institute, Athens 11521, Greece
| | | | | | - Spyros Tastsoglou
- Department of Electrical & Computer Engineering, Univ. of Thessaly, Volos 38221, Greece
- Hellenic Pasteur Institute, Athens 11521, Greece
| | - Artemis G Hatzigeorgiou
- Department of Electrical & Computer Engineering, Univ. of Thessaly, Volos 38221, Greece
- Hellenic Pasteur Institute, Athens 11521, Greece
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, Univ. of Thessaly, Lamia 351 31, Greece
| |
Collapse
|
77
|
Abstract
Aging is characterized by the functional decline of tissues and organs and increased risk of aging-associated disorders, which pose major societal challenges and are a public health priority. Despite extensive human genetics studies, limited progress has been made linking genetics with aging. There is a growing realization that the altered assembly, structure and dynamics of the gut microbiota actively participate in the aging process. Age-related microbial dysbiosis is involved in reshaping immune responses during aging, which manifest as immunosenescence (insufficiency) and inflammaging (over-reaction) that accompany many age-associated enteric and extraenteric diseases. The gut microbiota can be regulated, suggesting a potential target for aging interventions. This review summarizes recent findings on the physiological succession of gut microbiota across the life-cycle, the roles and mechanisms of gut microbiota in healthy aging, alterations of gut microbiota and aging-associated diseases, and the gut microbiota-targeted anti-aging strategies.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People's Hospital, Lishui, Zhejiang, China
| | - Shaochang Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
78
|
黄 嘉, 王 利, 吴 小, 陈 焕, 付 秀, 陈 少, 刘 涛. [Analysis of intestinal flora in patients with chronic rhinosinusitis based on highthroughput sequencing]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1319-1324. [PMID: 32990228 PMCID: PMC7544583 DOI: 10.12122/j.issn.1673-4254.2020.09.15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate the changes in diversity, relative abundance and distribution of intestinal flora in patients with chronic rhinosinusitis and nasal polyps (CRSwNP) using high-throughput sequencing technology identify the intestinal flora significantly related to pathogenesis and progression of CRSwNP. METHODS Ten patients with CRSwNP hospitalized in the Department of Otolaryngology-Head and Neck Surgery of Guangdong Provincial People's Hospital were selected as the case group with 10 healthy volunteers recruited in the same period as the control group. Fecal genomic DNA extraction kit was used to extract the DNA in the fecal samples, and the DNA fragment length was measured and quantified. The V3 and V4 highly variable regions of the 16S rDNA gene of prokaryotes were amplified followed by library construction, Illumina MiSeq sequencing, sequence alignment and species identification analysis. The relative abundance, diversity and distribution characteristics of the intestinal flora were analyzed, and the relevant metabolic pathways were predicted. RESULTS Compared with the control group, the patients with CRSwNP had significant changes in the overall structure of the intestinal flora, highlighted by increased abundance of Saccharopolyspora and decreased contents of Ruminococcae, Coprococcus, Collinsella and Dialister. Among the metabolic pathways predicted to be associated with CRSwNP, 9 showed significant changes in patients with CRSwNP as compared with the control group (P < 0.05). CONCLUSIONS Patients with CRSwNP have significant changes in the structural characteristics of intestinal flora related with multiple metabolic pathways, and these changes may play an important role in the development of chronic rhinosinusitis.
Collapse
Affiliation(s)
- 嘉裕 黄
- 广东省人民医院//广东省医学科学院耳鼻咽喉头颈外科,广东 广州 510080Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- 汕头大学医学院,广东 汕头 515063Shantou University Medical College, Shantou 515063, China
| | - 利平 王
- 广东省人民医院//广东省医学科学院耳鼻咽喉头颈外科,广东 广州 510080Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 小琴 吴
- 广东省人民医院//广东省医学科学院耳鼻咽喉头颈外科,广东 广州 510080Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 焕钧 陈
- 广东省英德市人民医院耳鼻咽喉科,广东 英德 513000Department of Otolaryngology, People's Hospital of Yingde City, Yingde 513000, China
| | - 秀丽 付
- 广东省英德市人民医院耳鼻咽喉科,广东 英德 513000Department of Otolaryngology, People's Hospital of Yingde City, Yingde 513000, China
| | - 少华 陈
- 广东省人民医院//广东省医学科学院耳鼻咽喉头颈外科,广东 广州 510080Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - 涛 刘
- 广东省人民医院//广东省医学科学院耳鼻咽喉头颈外科,广东 广州 510080Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
79
|
Sikora M, Stec A, Chrabaszcz M, Knot A, Waskiel-Burnat A, Rakowska A, Olszewska M, Rudnicka L. Gut Microbiome in Psoriasis: An Updated Review. Pathogens 2020; 9:pathogens9060463. [PMID: 32545459 PMCID: PMC7350295 DOI: 10.3390/pathogens9060463] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
(1) Background: A growing body of evidence highlights that intestinal dysbiosis is associated with the development of psoriasis. The gut–skin axis is the novel concept of the interaction between skin diseases and microbiome through inflammatory mediators, metabolites and the intestinal barrier. The objective of this study was to synthesize current data on the gut microbial composition in psoriasis. (2) Methods: We conducted a systematic review of studies investigating intestinal microbiome in psoriasis, using the PRISMA checklist. We searched MEDLINE, EMBASE, and Web of Science databases for relevant published articles (2000–2020). (3) Results: All of the 10 retrieved studies reported alterations in the gut microbiome in patients with psoriasis. Eight studies assessed alpha- and beta-diversity. Four of them reported a lack of change in alpha-diversity, but all confirmed significant changes in beta-diversity. At the phylum-level, at least two or more studies reported a lower relative abundance of Bacteroidetes, and higher Firmicutes in psoriasis patients versus healthy controls. (4) Conclusions: There is a significant association between alterations in gut microbial composition and psoriasis; however, there is high heterogeneity between studies. More unified methodological standards in large-scale studies are needed to understand microbiota’s contribution to psoriasis pathogenesis and its modulation as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Mariusz Sikora
- Department of Dermatology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.C.); (A.W.-B.); (A.R.); (M.O.); (L.R.)
- Correspondence:
| | - Albert Stec
- Student Research Committee, Department of Dermatology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (A.K.)
| | - Magdalena Chrabaszcz
- Department of Dermatology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.C.); (A.W.-B.); (A.R.); (M.O.); (L.R.)
| | - Aleksandra Knot
- Student Research Committee, Department of Dermatology, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.S.); (A.K.)
| | - Anna Waskiel-Burnat
- Department of Dermatology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.C.); (A.W.-B.); (A.R.); (M.O.); (L.R.)
| | - Adriana Rakowska
- Department of Dermatology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.C.); (A.W.-B.); (A.R.); (M.O.); (L.R.)
| | - Malgorzata Olszewska
- Department of Dermatology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.C.); (A.W.-B.); (A.R.); (M.O.); (L.R.)
| | - Lidia Rudnicka
- Department of Dermatology, Medical University of Warsaw, 02-091 Warsaw, Poland; (M.C.); (A.W.-B.); (A.R.); (M.O.); (L.R.)
| |
Collapse
|