51
|
Zhu X, Cai H, Zhao L, Ning L, Lang J. CAR-T cell therapy in ovarian cancer: from the bench to the bedside. Oncotarget 2017; 8:64607-64621. [PMID: 28969098 PMCID: PMC5610030 DOI: 10.18632/oncotarget.19929] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy and is responsible for most gynecological cancer deaths. Apart from conventional surgery, chemotherapy, and radiotherapy, chimeric antigen receptor-modified T (CAR-T) cells as a representative of adoptive cellular immunotherapy have received considerable attention in the research field of cancer treatment. CARs combine antigen specificity and T-cell-activating properties in a single fusion molecule. Several preclinical experiments and clinical trials have confirmed that adoptive cell immunotherapy using typical CAR-engineered T cells for OC is a promising treatment approach with striking clinical efficacy; moreover, the emerging CAR-Ts targeting various antigens also exert great potential. However, such therapies have side effects and toxicities, such as cytokine-associated and "on-target, off-tumor" toxicities. In this review, we systematically detail and highlight the present knowledge of CAR-Ts including the constructions, vectors, clinical applications, development challenges, and solutions of CAR-T-cell therapy for OC. We hope to provide new insight into OC treatment for the future.
Collapse
Affiliation(s)
- Xinxin Zhu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Obstetrics and Gynecology, Institute for Wound Research, University of Florida, Gainesville, Florida, USA
| | - Han Cai
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Zhao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Li Ning
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
52
|
Scholz SJ, Fronza R, Bartholomä CC, Cesana D, Montini E, von Kalle C, Gil-Farina I, Schmidt M. Lentiviral Vector Promoter is Decisive for Aberrant Transcript Formation. Hum Gene Ther 2017; 28:875-885. [PMID: 28825370 DOI: 10.1089/hum.2017.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lentiviral vectors hold great promise for the genetic correction of various inherited diseases. However, lentiviral vector biology is still not completely understood and warrants the precise decoding of molecular mechanisms underlying integration and post-translational modification. This study investigated a series of self-inactivating (SIN) and full long terminal repeat (LTR) lentiviral vectors that contained different types of promoters with or without a transgene to gain deeper insights in lentiviral target site selection and potential perturbation of cellular gene expression. Using an optimized nonrestrictive linear amplification-mediated polymerase chain reaction (nrLAM-PCR) protocol, vector structure-dependent integration site profiles were observed upon transduction of mouse lin- hematopoietic progenitors in vitro. Initial target site selection mainly depended on the presence of the promoter while being independent of its nature. Despite the increased propensity for read-through transcription of SIN lentiviral vectors, the incidence of viral-cellular fusion transcript formation involving the canonical viral splice donor or cryptic splice sites was reduced in both unselected primary lin- cells and transformed 32D cells. Moreover, the strength of the internal promoter in vectors with SIN LTRs is decisive for in vitro selection and for the abundance of chimeric transcripts, which are decreased by moderately active promoters. These results will help to better understand vector biology and to optimize therapeutic vectors for future gene therapy applications.
Collapse
Affiliation(s)
- Simone J Scholz
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany
| | - Raffaele Fronza
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany .,2 GeneWerk GmbH, Heidelberg, Germany
| | - Cynthia C Bartholomä
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany
| | - Daniela Cesana
- 3 San Raffaele Telethon Institute for Gene Therapy , Milan, Italy
| | - Eugenio Montini
- 3 San Raffaele Telethon Institute for Gene Therapy , Milan, Italy
| | - Christof von Kalle
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany
| | - Irene Gil-Farina
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany
| | - Manfred Schmidt
- 1 Department of Translational Oncology, German Cancer Research Center and National Center for Tumor Diseases , Heidelberg, Germany .,2 GeneWerk GmbH, Heidelberg, Germany
| |
Collapse
|
53
|
The FACT Complex Promotes Avian Leukosis Virus DNA Integration. J Virol 2017; 91:JVI.00082-17. [PMID: 28122976 DOI: 10.1128/jvi.00082-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 12/25/2022] Open
Abstract
All retroviruses need to integrate a DNA copy of their genome into the host chromatin. Cellular proteins regulating and targeting lentiviral and gammaretroviral integration in infected cells have been discovered, but the factors that mediate alpharetroviral avian leukosis virus (ALV) integration are unknown. In this study, we have identified the FACT protein complex, which consists of SSRP1 and Spt16, as a principal cellular binding partner of ALV integrase (IN). Biochemical experiments with purified recombinant proteins show that SSRP1 and Spt16 are able to individually bind ALV IN, but only the FACT complex effectively stimulates ALV integration activity in vitro Likewise, in infected cells, the FACT complex promotes ALV integration activity, with proviral integration frequency varying directly with cellular expression levels of the FACT complex. An increase in 2-long-terminal-repeat (2-LTR) circles in the depleted FACT complex cell line indicates that this complex regulates the ALV life cycle at the level of integration. This regulation is shown to be specific to ALV, as disruption of the FACT complex did not inhibit either lentiviral or gammaretroviral integration in infected cells.IMPORTANCE The majority of human gene therapy approaches utilize HIV-1- or murine leukemia virus (MLV)-based vectors, which preferentially integrate near genes and regulatory regions; thus, insertional mutagenesis is a substantial risk. In contrast, ALV integrates more randomly throughout the genome, which decreases the risks of deleterious integration. Understanding how ALV integration is regulated could facilitate the development of ALV-based vectors for use in human gene therapy. Here we show that the FACT complex directly binds and regulates ALV integration efficiency in vitro and in infected cells.
Collapse
|
54
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
55
|
Wen Y, Liao G, Pritchard T, Zhao TT, Connelly JP, Pruett-Miller SM, Blanc V, Davidson NO, Madison BB. A stable but reversible integrated surrogate reporter for assaying CRISPR/Cas9-stimulated homology-directed repair. J Biol Chem 2017; 292:6148-6162. [PMID: 28228480 DOI: 10.1074/jbc.m117.777722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/20/2017] [Indexed: 12/26/2022] Open
Abstract
The discovery and application of CRISPR/Cas9 technology for genome editing has greatly accelerated targeted mutagenesis in a variety of organisms. CRISPR/Cas9-mediated site-specific cleavage is typically exploited for the generation of insertions or deletions (indels) after aberrant dsDNA repair via the endogenous non-homology end-joining (NHEJ) pathway or, alternatively, for enhancing homology-directed repair to facilitate the generation of a specific mutation (or "knock-in"). However, there is a need for efficient cellular assays that can measure Cas9/guide RNA activity. Reliable methods for enriching and identifying desired mutants are also lacking. Here we describe a method using the Piggybac transposon for stable genomic integration of an H2B-GFP reporter or a hygromycin resistance gene for assaying Cas9 target cleavage and homology-directed repair. The H2B-GFP fusion protein provides increased stability and an obvious pattern of nuclear localization. This method, called SRIRACCHA (i.e. a stable, but reversible, integrated reporter for assaying CRISPR/Cas-stimulated HDR activity), enables the enrichment of mutants via selection of GFP-positive or hygromycin-resistant mammalian cells (immortalized or non-immortalized) as a surrogate for the modification of the endogenous target site. Currently available hyperactive Piggybac transposase mutants allow both delivery and removal of the surrogate reporters, with minimal risk of generating undesirable mutations. This assay permits rapid screening for efficient guide RNAs and the accelerated identification of mutant clones and is applicable to many cell types. We foresee the utility of this approach in contexts in which the maintenance of genomic integrity is essential, for example, when engineering cells for therapeutic purposes.
Collapse
Affiliation(s)
- Yahong Wen
- From the Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Grace Liao
- From the Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Thomas Pritchard
- From the Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Ting-Ting Zhao
- First Hospital of China Medical University, Department of Breast Surgery, Shenyang, China 110001
| | - Jon P Connelly
- Genome Engineering and iPSC Center (GEiC), Department of Genetics, Washington University, Saint Louis, Missouri 63110, and
| | - Shondra M Pruett-Miller
- Genome Engineering and iPSC Center (GEiC), Department of Genetics, Washington University, Saint Louis, Missouri 63110, and
| | - Valerie Blanc
- From the Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Nicholas O Davidson
- From the Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Blair B Madison
- From the Division of Gastroenterology, Washington University School of Medicine, Saint Louis, Missouri 63110,
| |
Collapse
|
56
|
Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, Karn J. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 2017; 14:9. [PMID: 28166799 PMCID: PMC5294768 DOI: 10.1186/s12977-017-0335-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023] Open
Abstract
Background Multiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. We hypothesized that TLR receptor mediated responses to inflammatory conditions by microglial cells in the central nervous system (CNS) are able to induce latent HIV proviruses, and contribute to the etiology of HIV-associated neurocognitive disorders. Results Newly developed human microglial cell lines (hµglia), obtained by immortalizing human primary microglia with simian virus-40 (SV40) large T antigen and the human telomerase reverse transcriptase, were used to generate latently infected cells using a single-round HIV virus carrying a green fluorescence protein reporter (hµglia/HIV, clones HC01 and HC69). Treatment of these cells with a panel of TLR ligands showed surprisingly that two potent TLR3 agonists, poly (I:C) and bacterial ribosomal RNA potently reactivated HIV in hμglia/HIV cells. LPS (TLR4 agonist), flagellin (TLR5 agonist), and FSL-1 (TLR6 agonist) reactivated HIV to a lesser extent, while Pam3CSK4 (TLR2/1 agonist) and HKLM (TLR2 agonist) only weakly reversed HIV latency in these cells. While agonists for TLR2/1, 4, 5 and 6 reactivated HIV through transient NF-κB induction, poly (I:C), the TLR3 agonist, did not activate NF-κB, and instead induced the virus by a previously unreported mechanism mediated by IRF3. The selective induction of IRF3 by poly (I:C) was confirmed by chromatin immunoprecipitation (ChIP) analysis. In comparison, in latently infected rat-derived microglial cells (hT-CHME-5/HIV, clone HC14), poly (I:C), LPS and flagellin were only partially active. The TLR response profile in human microglial cells is also distinct from that shown by latently infected monocyte cell lines (THP-1/HIV, clone HA3, U937/HIV, clone HUC5, and SC/HIV, clone HSCC4), where TLR2/1, 4, 5, 6 or 8, but not for TLR3, 7 or 9, reactivated HIV. Conclusions TLR signaling, in particular TLR3 activation, can efficiently reactivate HIV transcription in infected microglia, but not in monocytes or T cells. The unique response profile of microglial cells to TLR3 is fundamental to understanding how the virus responds to continuous microbial exposure, especially during inflammatory episodes, that characterizes HIV infection in the CNS. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0335-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Stephanie Milne
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Biswajit Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Roxana Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA.
| |
Collapse
|
57
|
Gillet NA, Melamed A, Bangham CRM. High-Throughput Mapping and Clonal Quantification of Retroviral Integration Sites. Methods Mol Biol 2017; 1582:127-141. [PMID: 28357667 DOI: 10.1007/978-1-4939-6872-5_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We describe here a method to identify the position of retroviral insertion sites and simultaneously to quantify the absolute abundance of each clone, i.e., the number of cells having the provirus inserted at a given place in the host genome. The method is based on random shearing of the host cell DNA, followed by a linker-mediated PCR to amplify the genomic regions flanking the proviruses, and high-throughput sequencing of the amplicons. The quantification of the abundance of each infected clone allowed us to develop two new metrics: i. the oligoclonality index, which quantifies the nonuniformity of the distribution of clone abundance, and ii. an estimator of the total number of clones in the body of the host. These new tools are valuable for the study of retroviral infections and can also be adapted for the tracking of gene-edited cells.
Collapse
Affiliation(s)
- Nicolas A Gillet
- Molecular and Cellular Epigenetics, Interdisciplinary Cluster for Applied Genoproteomics (GIGA) of University of Liège (ULg), B34, 1 avenue de l'Hôpital, 4000, Liège, Belgium
- Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège (ULg), 13 Avenue Maréchal Juin, 5030, Gembloux, Belgium
| | - Anat Melamed
- Section of Virology, Wright-Fleming Institute, Imperial College School of Medicine, London, UK
| | - Charles R M Bangham
- Section of Virology, Wright-Fleming Institute, Imperial College School of Medicine, London, UK.
| |
Collapse
|
58
|
Sherman E, Nobles C, Berry CC, Six E, Wu Y, Dryga A, Malani N, Male F, Reddy S, Bailey A, Bittinger K, Everett JK, Caccavelli L, Drake MJ, Bates P, Hacein-Bey-Abina S, Cavazzana M, Bushman FD. INSPIIRED: A Pipeline for Quantitative Analysis of Sites of New DNA Integration in Cellular Genomes. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:39-49. [PMID: 28344990 PMCID: PMC5363316 DOI: 10.1016/j.omtm.2016.11.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/15/2016] [Indexed: 01/24/2023]
Abstract
Integration of new DNA into cellular genomes mediates replication of retroviruses and transposons; integration reactions have also been adapted for use in human gene therapy. Tracking the distributions of integration sites is important to characterize populations of transduced cells and to monitor potential outgrow of pathogenic cell clones. Here, we describe a pipeline for quantitative analysis of integration site distributions named INSPIIRED (integration site pipeline for paired-end reads). We describe optimized biochemical steps for site isolation using Illumina paired-end sequencing, including new technology for suppressing recovery of unwanted contaminants, then software for alignment, quality control, and management of integration site sequences. During library preparation, DNAs are broken by sonication, so that after ligation-mediated PCR the number of ligation junction sites can be used to infer abundance of gene-modified cells. We generated integration sites of known positions in silico, and we describe optimization of sample processing parameters refined by comparison to truth. We also present a novel graph-theory-based method for quantifying integration sites in repeated sequences, and we characterize the consequences using synthetic and experimental data. In an accompanying paper, we describe an additional set of statistical tools for data analysis and visualization. Software is available at https://github.com/BushmanLab/INSPIIRED.
Collapse
Affiliation(s)
- Eric Sherman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Christopher Nobles
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Charles C Berry
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emmanuelle Six
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, 75014 Paris, France; Laboratory of Human Lymphohematopoiesis, INSERM 24, 75014 Paris, France
| | - Yinghua Wu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Anatoly Dryga
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Nirav Malani
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Frances Male
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Shantan Reddy
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Aubrey Bailey
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Kyle Bittinger
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - John K Everett
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Laure Caccavelli
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Mary J Drake
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Paul Bates
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| | - Salima Hacein-Bey-Abina
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Marina Cavazzana
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France; Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, 75014 Paris, France
| | - Frederic D Bushman
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6076, USA
| |
Collapse
|
59
|
Abstract
To complete its life cycle, HIV-1 enters the nucleus of the host cell as reverse-transcribed viral DNA. The nucleus is a complex environment, in which chromatin is organized to support different structural and functional aspects of cell physiology. As such, it represents a challenge for an incoming viral genome, which needs to be integrated into cellular DNA to ensure productive infection. Integration of the viral genome into host DNA depends on the enzymatic activity of HIV-1 integrase and involves different cellular factors that influence the selection of integration sites. The selection of integration site has functional consequences for viral transcription, which usually follows the integration event. However, in resting CD4+ T cells, the viral genome can be silenced for long periods of time, which leads to the generation of a latent reservoir of quiescent integrated HIV-1 DNA. Integration represents the only nuclear event in the viral life cycle that can be pharmacologically targeted with current therapies, and the aspects that connect HIV-1 nuclear entry to HIV-1 integration and viral transcription are only beginning to be elucidated.
Collapse
|
60
|
Retargeted Foamy Virus Vectors Integrate Less Frequently Near Proto-oncogenes. Sci Rep 2016; 6:36610. [PMID: 27812034 PMCID: PMC5095648 DOI: 10.1038/srep36610] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022] Open
Abstract
Retroviral gene therapy offers immense potential to treat many genetic diseases and has already shown efficacy in clinical trials. However, retroviral vector mediated genotoxicity remains a major challenge and clinically relevant approaches to reduce integration near genes and proto-oncogenes are needed. Foamy retroviral vectors have several advantages over gammaretroviral and lentiviral vectors including a potentially safer integration profile and a lower propensity to activate nearby genes. Here we successfully retargeted foamy retroviral vectors away from genes and into satellite regions enriched for trimethylated histone H3 at lysine 9 by modifying the foamy virus Gag and Pol proteins. Retargeted foamy retroviral vectors integrated near genes and proto-oncogenes less often (p < 0.001) than controls. Importantly, retargeted foamy retroviral vectors can be produced at high, clinically relevant titers (>107 transducing units/ml), and unlike other reported retargeting approaches engineered target cells are not needed to achieve retargeting. As proof of principle for use in the clinic we show efficient transduction and retargeting in human cord blood CD34+ cells. The modified Gag and Pol helper constructs we describe will allow any investigator to simply use these helper plasmids during vector production to retarget therapeutic foamy retroviral vectors.
Collapse
|
61
|
Abstract
Viral vector use in gene therapy has highlighted several safety concerns, including genotoxic events. Generally, vector-mediated genotoxicity results from upregulation of cellular proto-oncogenes via promoter insertion, promoter activation, or gene transcript truncation, with enhancer-mediated activation of nearby genes the primary mechanism reported in gene therapy trials. Vector-mediated genotoxicity can be influenced by virus type, integration target site, and target cell type; different vectors have distinct integration profiles which are cell-specific. Non-viral factors, including patient age, disease, and dose can also influence genotoxic potential, thus the choice of test models and clinical trial populations is important to ensure they are indicative of efficacy and safety. Efforts have been made to develop viral vectors with less risk of insertional mutagenesis, including self-inactivating (SIN) vectors, enhancer-blocking insulators, and microRNA targeting of vectors, although insertional mutagenesis is not completely abrogated. Here we provide an overview of the current understanding of viral vector-mediated genotoxicity risk from factors contributing to viral vector-mediated genotoxicity to efforts made to reduce genotoxicity, and testing strategies required to adequately assess the risk of insertional mutagenesis. It is clear that there is not a 'one size fits all' approach to vector modification for reducing genotoxicity, and addressing these challenges will be a key step in the development of therapies such as CRISPR-Cas9 and delivery of future gene-editing technologies.
Collapse
Affiliation(s)
- Rhiannon M David
- Genetic Toxicology, Discovery Safety, AstraZeneca, Cambridge, CB4 0WG, UK
| | - Ann T Doherty
- Genetic Toxicology, Discovery Safety, AstraZeneca, Cambridge, CB4 0WG, UK
| |
Collapse
|
62
|
Towards a Safer, More Randomized Lentiviral Vector Integration Profile Exploring Artificial LEDGF Chimeras. PLoS One 2016; 11:e0164167. [PMID: 27788138 PMCID: PMC5082951 DOI: 10.1371/journal.pone.0164167] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/20/2016] [Indexed: 11/19/2022] Open
Abstract
The capacity to integrate transgenes into the host cell genome makes retroviral vectors an interesting tool for gene therapy. Although stable insertion resulted in successful correction of several monogenic disorders, it also accounts for insertional mutagenesis, a major setback in otherwise successful clinical gene therapy trials due to leukemia development in a subset of treated patients. Despite improvements in vector design, their use is still not risk-free. Lentiviral vector (LV) integration is directed into active transcription units by LEDGF/p75, a host-cell protein co-opted by the viral integrase. We engineered LEDGF/p75-based hybrid tethers in an effort to elicit a more random integration pattern to increase biosafety, and potentially reduce proto-oncogene activation. We therefore truncated LEDGF/p75 by deleting the N-terminal chromatin-reading PWWP-domain, and replaced this domain with alternative pan-chromatin binding peptides. Expression of these LEDGF-hybrids in LEDGF-depleted cells efficiently rescued LV transduction and resulted in LV integrations that distributed more randomly throughout the host-cell genome. In addition, when considering safe harbor criteria, LV integration sites for these LEDGF-hybrids distributed more safely compared to LEDGF/p75-mediated integration in wild-type cells. This approach should be broadly applicable to introduce therapeutic or suicide genes for cell therapy, such as patient-specific iPS cells.
Collapse
|
63
|
Melkova Z, Shankaran P, Madlenakova M, Bodor J. Current views on HIV-1 latency, persistence, and cure. Folia Microbiol (Praha) 2016; 62:73-87. [PMID: 27709447 DOI: 10.1007/s12223-016-0474-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/20/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 infection cannot be cured as it persists in latently infected cells that are targeted neither by the immune system nor by available therapeutic approaches. Consequently, a lifelong therapy suppressing only the actively replicating virus is necessary. The latent reservoir has been defined and characterized in various experimental models and in human patients, allowing research and development of approaches targeting individual steps critical for HIV-1 latency establishment, maintenance, and reactivation. However, additional mechanisms and processes driving the remaining low-level HIV-1 replication in the presence of the suppressive therapy still remain to be identified and targeted. Current approaches toward HIV-1 cure involve namely attempts to reactivate and purge HIV latently infected cells (so-called "shock and kill" strategy), as well as approaches involving gene therapy and/or gene editing and stem cell transplantation aiming at generation of cells resistant to HIV-1. This review summarizes current views and concepts underlying different approaches aiming at functional or sterilizing cure of HIV-1 infection.
Collapse
Affiliation(s)
- Zora Melkova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic. .,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic.
| | - Prakash Shankaran
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic
| | - Michaela Madlenakova
- Department of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Studnickova 7, 128 00, Prague 2, Czech Republic.,BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Josef Bodor
- BIOCEV, Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec, Průmyslová 595, 252 50, Vestec, Czech Republic
| |
Collapse
|
64
|
van Vollenstee FA, Jackson C, Hoffmann D, Potgieter M, Durandt C, Pepper MS. Human adipose derived mesenchymal stromal cells transduced with GFP lentiviral vectors: assessment of immunophenotype and differentiation capacity in vitro. Cytotechnology 2016; 68:2049-60. [PMID: 26815002 PMCID: PMC5023578 DOI: 10.1007/s10616-016-9945-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 12/13/2022] Open
Abstract
Adipose derived mesenchymal stromal/stem cells (ASCs) are a heterogeneous population characterized by (a) their ability to adhere to plastic; (b) immunophenotypic expression of certain cell surface markers, while lacking others; and (c) the capacity to differentiate into lineages of mesodermal origin including osteocytes, chondrocytes and adipocytes. The long-term goal is to utilize these cells for clinical translation into cell-based therapies. However, preclinical safety and efficacy need to be demonstrated in animal models. ASCs can also be utilized as biological vehicles for vector-based gene delivery systems, since they are believed to home to sites of inflammation and infection in vivo. These factors motivated the development of a labelling system for ASCs using lentiviral vector-based green fluorescent protein (GFP) transduction. Human ASCs were transduced with GFP-expressing lentiviral vectors. A titration study determined the viral titer required to transduce the maximum number of ASCs. The effect of the transduced GFP lentiviral vector on ASC immunophenotypic expression of surface markers as well as their ability to differentiate into osteocytes and adipocytes were assessed in vitro. A transduction efficiency in ASC cultures of approximately 80 % was observed with an MOI of ~118. No significant immunophenotypic differences were observed between transduced and non-transduced cells and both cell types successfully differentiated into adipocytes and osteocytes in vitro. We obtained >80 % transduction of ASCs using GFP lentiviral vectors. Transduced ASCs maintained plastic adherence, demonstrated ASC immunophenotype and the ability to differentiate into cells of the mesodermal lineage. This GFP-ASC transduction technique offers a potential tracking system for future pre-clinical studies.
Collapse
Affiliation(s)
- Fiona A van Vollenstee
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine and MRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 2034, Pretoria, 0001, South Africa
| | - Carlo Jackson
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine and MRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 2034, Pretoria, 0001, South Africa
| | - Danie Hoffmann
- Plastic and Reconstructive Surgeon, Private Practice, Pretoria, South Africa
| | - Marnie Potgieter
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine and MRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 2034, Pretoria, 0001, South Africa
| | - Chrisna Durandt
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine and MRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 2034, Pretoria, 0001, South Africa
| | - Michael S Pepper
- Department of Immunology, Faculty of Health Sciences, Institute for Cellular and Molecular Medicine and MRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, P.O. Box 2034, Pretoria, 0001, South Africa.
| |
Collapse
|
65
|
Kotterman MA, Chalberg TW, Schaffer DV. Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annu Rev Biomed Eng 2016; 17:63-89. [PMID: 26643018 DOI: 10.1146/annurev-bioeng-071813-104938] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a range of human trials, viral vectors have emerged as safe and effective delivery vehicles for clinical gene therapy, particularly for monogenic recessive disorders, but there has also been early work on some idiopathic diseases. These successes have been enabled by research and development efforts focusing on vectors that combine low genotoxicity and immunogenicity with highly efficient delivery, including vehicles based on adeno-associated virus and lentivirus, which are increasingly enabling clinical success. However, numerous delivery challenges must be overcome to extend this success to many diseases; these challenges include developing techniques to evade preexisting immunity, to ensure more efficient transduction of therapeutically relevant cell types, to target delivery, and to ensure genomic maintenance. Fortunately, vector-engineering efforts are demonstrating promise in the development of next-generation gene therapy vectors that can overcome these barriers. This review highlights key historical trends in clinical gene therapy, the recent clinical successes of viral-based gene therapy, and current research that may enable future clinical application.
Collapse
Affiliation(s)
| | | | - David V Schaffer
- 4D Molecular Therapeutics, San Francisco, California 94107; .,University of California, Berkeley, California 94720-3220;
| |
Collapse
|
66
|
Abstract
Structurally and functionally diverged sex chromosomes have evolved in many animals as well as in some plants. Sex chromosomes represent a specific genomic region(s) with locally suppressed recombination. As a consequence, repetitive sequences involving transposable elements, tandem repeats (satellites and microsatellites), and organellar DNA accumulate on the Y (W) chromosomes. In this paper, we review the main types of repetitive elements, their gathering on the Y chromosome, and discuss new findings showing that not only accumulation of various repeats in non-recombining regions but also opposite processes form Y chromosome. The aim of this review is also to discuss the mechanisms of repetitive DNA spread involving (retro) transposition, DNA polymerase slippage or unequal crossing-over, as well as modes of repeat removal by ectopic recombination. The intensity of these processes differs in non-recombining region(s) of sex chromosomes when compared to the recombining parts of genome. We also speculate about the relationship between heterochromatinization and the formation of heteromorphic sex chromosomes.
Collapse
|
67
|
Retroviral vector interactions with hematopoietic cells. Curr Opin Virol 2016; 21:41-46. [PMID: 27521874 DOI: 10.1016/j.coviro.2016.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 01/01/2023]
Abstract
Hematopoietic stem cell (HSC) gene therapy using retroviral vectors is a powerful and promising approach to permanently correct many hematopoietic disorders. Increasing the transduction of quiescent HSCs and reducing genotoxicity are major challenges in the field. Retroviral vectors, including lentiviral and foamy vectors, have been extensively modified resulting in improved safety and efficacy. This review will focus on recent advances to improve vector entry, transduction efficiency, control of transgene expression and approaches to improve safety by modifying the retroviral integration profile.
Collapse
|
68
|
HIV integration and the establishment of latency in CCL19-treated resting CD4(+) T cells require activation of NF-κB. Retrovirology 2016; 13:49. [PMID: 27459960 PMCID: PMC4962537 DOI: 10.1186/s12977-016-0284-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/15/2016] [Indexed: 12/17/2022] Open
Abstract
Background Eradication of HIV cannot be achieved with combination antiretroviral therapy (cART) because of the persistence of long-lived latently infected resting memory CD4+ T cells. We previously reported that HIV latency could be established in resting CD4+ T cells in the presence of the chemokine CCL19. To define how CCL19 facilitated the establishment of latent HIV infection, the role of chemokine receptor signalling was explored. Results In resting CD4+ T cells, CCL19 induced phosphorylation of RAC-alpha serine/threonine-protein kinase (Akt), nuclear factor kappa B (NF-κB), extracellular-signal-regulated kinase (ERK) and p38. Inhibition of the phosphoinositol-3-kinase (PI3K) and Ras/Raf/Mitogen-activated protein kinase/ERK kinase (MEK)/ERK signalling pathways inhibited HIV integration, without significant reduction in HIV nuclear entry (measured by Alu-LTR and 2-LTR circle qPCR respectively). Inhibiting activation of MEK1/ERK1/2, c-Jun N-terminal kinase (JNK), activating protein-1 (AP-1) and NF-κB, but not p38, also inhibited HIV integration. We also show that HIV integrases interact with Pin1 in CCL19-treated CD4+ T cells and inhibition of JNK markedly reduced this interaction, suggesting that CCL19 treatment provided sufficient signals to protect HIV integrase from degradation via the proteasome pathway. Infection of CCL19-treated resting CD4+ T cells with mutant strains of HIV, lacking NF-κB binding sites in the HIV long terminal repeat (LTR) compared to infection with wild type virus, led to a significant reduction in integration by up to 40-fold (range 1–115.4, p = 0.03). This was in contrast to only a modest reduction of 5-fold (range 1.7–11, p > 0.05) in fully activated CD4+ T cells infected with the same mutants. Finally, we demonstrated significant differences in integration sites following HIV infection of unactivated, CCL19-treated, and fully activated CD4+ T cells. Conclusions HIV integration in CCL19-treated resting CD4+ T cells depends on NF-κB signalling and increases the stability of HIV integrase, which allow subsequent integration and establishment of latency. These findings have implications for strategies needed to prevent the establishment, and potentially reverse, latent infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0284-7) contains supplementary material, which is available to authorized users.
Collapse
|
69
|
Cheng JK, Lewis AM, Kim DS, Dyess T, Alper HS. Identifying and retargeting transcriptional hot spots in the human genome. Biotechnol J 2016; 11:1100-9. [PMID: 27311394 DOI: 10.1002/biot.201600015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/18/2016] [Accepted: 05/30/2016] [Indexed: 01/17/2023]
Abstract
Mammalian cell line development requires streamlined methodologies that will reduce both the cost and time to identify candidate cell lines. Improvements in site-specific genomic editing techniques can result in flexible, predictable, and robust cell line engineering. However, an outstanding question in the field is the specific site of integration. Here, we seek to identify productive loci within the human genome that will result in stable, high expression of heterologous DNA. Using an unbiased, random integration approach and a green fluorescent reporter construct, we identify ten single-integrant, recombinant human cell lines that exhibit stable, high-level expression. From these cell lines, eight unique corresponding integration loci were identified. These loci are concentrated in non-protein coding regions or intronic regions of protein coding genes. Expression mapping of the surrounding genes reveals minimal disruption of endogenous gene expression. Finally, we demonstrate that targeted de novo integration at one of the identified loci, the 12(th) exon-intron region of the GRIK1 gene on chromosome 21, results in superior expression and stability compared to the standard, illegitimate integration approach at levels approaching 4-fold. The information identified here along with recent advances in site-specific genomic editing techniques can lead to expedited cell line development.
Collapse
Affiliation(s)
- Joseph K Cheng
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Amanda M Lewis
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA.,Biologics Development, Bristol-Myers Squibb, Devens, MA, USA
| | - Do Soon Kim
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Timothy Dyess
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Hal S Alper
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA. .,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
70
|
Abstract
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Collapse
Affiliation(s)
- Paul Lesbats
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School , 450 Brookline Avenue, Boston, Massachusetts 02215 United States
| | - Peter Cherepanov
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K.,Imperial College London , St-Mary's Campus, Norfolk Place, London, W2 1PG, U.K
| |
Collapse
|
71
|
Chen NY, Zhou L, Gane PJ, Opp S, Ball NJ, Nicastro G, Zufferey M, Buffone C, Luban J, Selwood D, Diaz-Griffero F, Taylor I, Fassati A. HIV-1 capsid is involved in post-nuclear entry steps. Retrovirology 2016; 13:28. [PMID: 27107820 PMCID: PMC4842275 DOI: 10.1186/s12977-016-0262-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/14/2016] [Indexed: 11/17/2022] Open
Abstract
Background HIV-1 capsid influences viral uncoating and nuclear import. Some capsid is detected in the nucleus but it is unclear if it has any function. We reported that the antibiotic Coumermycin-A1 (C-A1) inhibits HIV-1 integration and that a capsid mutation confers resistance to C-A1, suggesting that capsid might affect post-nuclear entry steps. Results Here we report that C-A1 inhibits HIV-1 integration in a capsid-dependent way. Using molecular docking, we identify an extended binding pocket delimited by two adjacent capsid monomers where C-A1 is predicted to bind. Isothermal titration calorimetry confirmed that C-A1 binds to hexameric capsid. Cyclosporine washout assays in Jurkat CD4+ T cells expressing engineered human TRIMCyp showed that C-A1 causes faster and greater escape from TRIMCyp restriction. Sub-cellular fractionation showed that small amounts of capsid accumulated in the nuclei of infected cells and C-A1 reduced the nuclear capsid. A105S and N74D capsid mutant viruses did not accumulate capsid in the nucleus, irrespective of C-A1 treatment. Depletion of Nup153, a nucleoporin located at the nuclear side of the nuclear pore that binds to HIV-1 capsid, made the virus less susceptible to TRIMCyp restriction, suggesting that Nup153 may help maintain some integrity of the viral core in the nucleus. Furthermore C-A1 increased binding of CPSF6, a nuclear protein, to capsid. Conclusions Our results indicate that capsid is involved in post-nuclear entry steps preceding integration. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0262-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nan-Yu Chen
- Division of Infection and Immunity, University College London, Cruciform Building, 90 Gower Street, London, WC1E 6BT, UK.,Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fuhsing Street, Kueishan, Taoyuan, 333, Taiwan
| | - Lihong Zhou
- Division of Infection and Immunity, University College London, Cruciform Building, 90 Gower Street, London, WC1E 6BT, UK.,Genome Damage and Stability Centre, University of Sussex, Science Park Road, Falmer, Brighton, BN1 9RQ, UK
| | - Paul J Gane
- Medicinal Chemistry Group, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK.,Chemical Computing Group, St. John's Innovation Centre, Cowley Road, Cambridge, CB4 0WS, UK
| | - Silvana Opp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Neil J Ball
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Giuseppe Nicastro
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Madeleine Zufferey
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel Servet, CH-1211, Geneva, Switzerland.,Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Biotech 2, Suite 319, Worcester, MA, 01605, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jeremy Luban
- Department of Microbiology and Molecular Medicine, University of Geneva, 1 Rue Michel Servet, CH-1211, Geneva, Switzerland.,Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Biotech 2, Suite 319, Worcester, MA, 01605, USA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 373 Plantation Street, Biotech 2, Suite 319, Worcester, MA, 01605, USA
| | - David Selwood
- Medicinal Chemistry Group, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ian Taylor
- Mill Hill Laboratory, The Francis Crick Institute, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Ariberto Fassati
- Division of Infection and Immunity, University College London, Cruciform Building, 90 Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
72
|
Cui P, Löber U, Alquezar-Planas DE, Ishida Y, Courtiol A, Timms P, Johnson RN, Lenz D, Helgen KM, Roca AL, Hartman S, Greenwood AD. Comprehensive profiling of retroviral integration sites using target enrichment methods from historical koala samples without an assembled reference genome. PeerJ 2016; 4:e1847. [PMID: 27069793 PMCID: PMC4824918 DOI: 10.7717/peerj.1847] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/04/2016] [Indexed: 11/20/2022] Open
Abstract
Background. Retroviral integration into the host germline results in permanent viral colonization of vertebrate genomes. The koala retrovirus (KoRV) is currently invading the germline of the koala (Phascolarctos cinereus) and provides a unique opportunity for studying retroviral endogenization. Previous analysis of KoRV integration patterns in modern koalas demonstrate that they share integration sites primarily if they are related, indicating that the process is currently driven by vertical transmission rather than infection. However, due to methodological challenges, KoRV integrations have not been comprehensively characterized. Results. To overcome these challenges, we applied and compared three target enrichment techniques coupled with next generation sequencing (NGS) and a newly customized sequence-clustering based computational pipeline to determine the integration sites for 10 museum Queensland and New South Wales (NSW) koala samples collected between the 1870s and late 1980s. A secondary aim of this study sought to identify common integration sites across modern and historical specimens by comparing our dataset to previously published studies. Several million sequences were processed, and the KoRV integration sites in each koala were characterized. Conclusions. Although the three enrichment methods each exhibited bias in integration site retrieval, a combination of two methods, Primer Extension Capture and hybridization capture is recommended for future studies on historical samples. Moreover, identification of integration sites shows that the proportion of integration sites shared between any two koalas is quite small.
Collapse
Affiliation(s)
- Pin Cui
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Ulrike Löber
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.,Institute of Biochemistry & Biology, University of Potsdam, Potsdam, Germany
| | - David E Alquezar-Planas
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Alexandre Courtiol
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Peter Timms
- University of the Sunshine Coast, Sippy Downs Queensland, Australia
| | - Rebecca N Johnson
- Australian Centre for Wildlife Genomics, Australian Museum, Sydney, Australia
| | - Dorina Lenz
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Kristofer M Helgen
- National Museum of Natural History, Smithsonian Institution, Washington, DC, USA.,Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Stefanie Hartman
- Institute of Biochemistry & Biology, University of Potsdam, Potsdam, Germany
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| |
Collapse
|
73
|
Rasheedi S, Shun MC, Serrao E, Sowd GA, Qian J, Hao C, Dasgupta T, Engelman AN, Skowronski J. The Cleavage and Polyadenylation Specificity Factor 6 (CPSF6) Subunit of the Capsid-recruited Pre-messenger RNA Cleavage Factor I (CFIm) Complex Mediates HIV-1 Integration into Genes. J Biol Chem 2016; 291:11809-19. [PMID: 26994143 DOI: 10.1074/jbc.m116.721647] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/11/2023] Open
Abstract
HIV-1 favors integration into active genes and gene-enriched regions of host cell chromosomes, thus maximizing the probability of provirus expression immediately after integration. This requires cleavage and polyadenylation specificity factor 6 (CPSF6), a cellular protein involved in pre-mRNA 3' end processing that binds HIV-1 capsid and connects HIV-1 preintegration complexes to intranuclear trafficking pathways that link integration to transcriptionally active chromatin. CPSF6 together with CPSF5 and CPSF7 are known subunits of the cleavage factor I (CFIm) 3' end processing complex; however, CPSF6 could participate in additional protein complexes. The molecular mechanisms underpinning the role of CPSF6 in HIV-1 infection remain to be defined. Here, we show that a majority of cellular CPSF6 is incorporated into the CFIm complex. HIV-1 capsid recruits CFIm in a CPSF6-dependent manner, which suggests that the CFIm complex mediates the known effects of CPSF6 in HIV-1 infection. To dissect the roles of CPSF6 and other CFIm complex subunits in HIV-1 infection, we analyzed virologic and integration site targeting properties of a CPSF6 variant with mutations that prevent its incorporation into CFIm We show, somewhat surprisingly, that CPSF6 incorporation into CFIm is not required for its ability to direct preferential HIV-1 integration into genes. The CPSF5 and CPSF7 subunits appear to have only a minor, if any, role in this process even though they appear to facilitate CPSF6 binding to capsid. Thus, CPSF6 alone controls the key molecular interactions that specify HIV-1 preintegration complex trafficking to active chromatin.
Collapse
Affiliation(s)
- Sheeba Rasheedi
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106 and
| | - Ming-Chieh Shun
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106 and
| | - Erik Serrao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Gregory A Sowd
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Juan Qian
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106 and
| | - Caili Hao
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106 and
| | - Twishasri Dasgupta
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106 and
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Jacek Skowronski
- From the Department of Molecular Biology and Microbiology, Case Western Reserve School of Medicine, Cleveland, Ohio 44106 and
| |
Collapse
|
74
|
Abstract
The persistence of human immunodeficiency virus type 1 (HIV-1) in latent reservoirs is a major barrier to HIV cure. Reservoir establishment depends on low viral expression that may be related to provirus integration sites (IS). In vitro, in cell lines and primary T cells, latency is associated with specific IS through reduced viral expression mediated by transcriptional interference by host cellular promoters, reverse orientation, and the presence of specific epigenetic modifiers. In primary T cell models of latency, specific IS are associated with intracellular viral antigen expression that is not directly related to cell activation. In contrast, in patient CD4+ T cells, there is enrichment for IS in genes controlling cell cycle and survival and in some clonally expanded T cell subpopulations. Multiple insertion sites within some specific genes may suggest that integrated HIV can increase the host’s T cell survival.
Collapse
Affiliation(s)
- Simin D. Rezaei
- Faculty of Medicine, Dentistry and Health Sciences, Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, The University of Melbourne, 4th Floor, 786-798 Elizabeth St, Melbourne, 3010 Australia
| | - Paul U. Cameron
- Faculty of Medicine, Dentistry and Health Sciences, Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, The University of Melbourne, 4th Floor, 786-798 Elizabeth St, Melbourne, 3010 Australia
- Infectious Diseases Unit, Department of Infectious Diseases, Alfred Hospital, 85 Commercial Rd, Melbourne, Victoria 3004 Australia
| |
Collapse
|
75
|
Tyagi M, Weber J, Bukrinsky M, Simon GL. The effects of cocaine on HIV transcription. J Neurovirol 2015; 22:261-74. [PMID: 26572787 DOI: 10.1007/s13365-015-0398-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/01/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
Abstract
Illicit drug users are a high-risk population for infection with the human immunodeficiency virus (HIV). A strong correlation exists between prohibited drug use and an increased rate of HIV transmission. Cocaine stands out as one of the most frequently abused illicit drugs, and its use is correlated with HIV infection and disease progression. The central nervous system (CNS) is a common target for both drugs of abuse and HIV, and cocaine intake further accelerates neuronal injury in HIV patients. Although the high incidence of HIV infection in illicit drug abusers is primarily due to high-risk activities such as needle sharing and unprotected sex, several studies have demonstrated that cocaine enhances the rate of HIV gene expression and replication by activating various signal transduction pathways and downstream transcription factors. In order to generate mature HIV genomic transcript, HIV gene expression has to pass through both the initiation and elongation phases of transcription, which requires discrete transcription factors. In this review, we will provide a detailed analysis of the molecular mechanisms that regulate HIV transcription and discuss how cocaine modulates those mechanisms to upregulate HIV transcription and eventually HIV replication.
Collapse
Affiliation(s)
- Mudit Tyagi
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA. .,Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA.
| | - Jaime Weber
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| | - Michael Bukrinsky
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA
| | - Gary L Simon
- Division of Infectious Diseases, Department of Medicine, The George Washington University, 2300 Eye Street, N.W., Washington, DC, 20037, USA
| |
Collapse
|
76
|
Serrao E, Engelman AN. Sites of retroviral DNA integration: From basic research to clinical applications. Crit Rev Biochem Mol Biol 2015; 51:26-42. [PMID: 26508664 DOI: 10.3109/10409238.2015.1102859] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the most crucial steps in the life cycle of a retrovirus is the integration of the viral DNA (vDNA) copy of the RNA genome into the genome of an infected host cell. Integration provides for efficient viral gene expression as well as for the segregation of viral genomes to daughter cells upon cell division. Some integrated viruses are not well expressed, and cells latently infected with human immunodeficiency virus type 1 (HIV-1) can resist the action of potent antiretroviral drugs and remain dormant for decades. Intensive research has been dedicated to understanding the catalytic mechanism of integration, as well as the viral and cellular determinants that influence integration site distribution throughout the host genome. In this review, we summarize the evolution of techniques that have been used to recover and map retroviral integration sites, from the early days that first indicated that integration could occur in multiple cellular DNA locations, to current technologies that map upwards of millions of unique integration sites from single in vitro integration reactions or cell culture infections. We further review important insights gained from the use of such mapping techniques, including the monitoring of cell clonal expansion in patients treated with retrovirus-based gene therapy vectors, or patients with acquired immune deficiency syndrome (AIDS) on suppressive antiretroviral therapy (ART). These insights span from integrase (IN) enzyme sequence preferences within target DNA (tDNA) at the sites of integration, to the roles of host cellular proteins in mediating global integration distribution, to the potential relationship between genomic location of vDNA integration site and retroviral latency.
Collapse
Affiliation(s)
- Erik Serrao
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Alan N Engelman
- a Department of Cancer Immunology and Virology , Dana-Farber Cancer Institute , Boston , MA , USA
| |
Collapse
|
77
|
Maldarelli F. HIV-infected cells are frequently clonally expanded after prolonged antiretroviral therapy: implications for HIV persistence. J Virus Erad 2015. [DOI: 10.1016/s2055-6640(20)30930-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
78
|
HIV-infected cells are frequently clonally expanded after prolonged antiretroviral therapy: implications for HIV persistence. J Virus Erad 2015; 1:237-44. [PMID: 27482422 PMCID: PMC4946654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
HIV infection is controlled but not eradicated by combination antiretroviral therapy (cART), and persistence during therapy represents a substantial barrier to strategies to eradicate infection. The nature of persistence is uncertain, and a number of mechanisms have been proposed to explain HIV persistence in vivo, including low-level HIV replication, sanctuary sites for HIV-infected cells, and latent HIV residing within long-lived cells. Analysis of residual viraemia and of cell-associated HIV revealed evidence of multiple copies of identical HIV sequences suggesting infected cells can undergo cellular expansion. Recently, analysis of integration sites in HIV-infected cells derived from peripheral blood lymphocytes of patients undergoing long-term cART revealed direct evidence that HIV-infected cells undergo clonal expansion. These studies demonstrated that clonally expanded populations are common in HIV-infected individuals, persist for prolonged periods and increase in frequency during prolonged therapy. Several analyses reported that site of integration may affect persistence, clonal expansion, or both. As such, expanded populations may represent an important source of infectious HIV during cART. Many HIV integrants are defective for replication, however, and additional research is essential to determine to what degree clonally expanded populations represent a reservoir of replication-competent HIV.
Collapse
|
79
|
Characterization of Equine Infectious Anemia Virus Integration in the Horse Genome. Viruses 2015; 7:3241-60. [PMID: 26102582 PMCID: PMC4488736 DOI: 10.3390/v7062769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 01/17/2023] Open
Abstract
Human immunodeficiency virus (HIV)-1 has a unique integration profile in the human genome relative to murine and avian retroviruses. Equine infectious anemia virus (EIAV) is another well-studied lentivirus that can also be used as a promising retro-transfection vector, but its integration into its native host has not been characterized. In this study, we mapped 477 integration sites of the EIAV strain EIAVFDDV13 in fetal equine dermal (FED) cells during in vitro infection. Published integration sites of EIAV and HIV-1 in the human genome were also analyzed as references. Our results demonstrated that EIAVFDDV13 tended to integrate into genes and AT-rich regions, and it avoided integrating into transcription start sites (TSS), which is consistent with EIAV and HIV-1 integration in the human genome. Notably, the integration of EIAVFDDV13 favored long interspersed elements (LINEs) and DNA transposons in the horse genome, whereas the integration of HIV-1 favored short interspersed elements (SINEs) in the human genome. The chromosomal environment near LINEs or DNA transposons potentially influences viral transcription and may be related to the unique EIAV latency states in equids. The data on EIAV integration in its natural host will facilitate studies on lentiviral infection and lentivirus-based therapeutic vectors.
Collapse
|
80
|
DNA Physical Properties and Nucleosome Positions Are Major Determinants of HIV-1 Integrase Selectivity. PLoS One 2015; 10:e0129427. [PMID: 26075397 PMCID: PMC4468133 DOI: 10.1371/journal.pone.0129427] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/09/2015] [Indexed: 02/06/2023] Open
Abstract
Retroviral integrases (INs) catalyse the integration of the reverse transcribed viral DNA into the host cell genome. This process is selective, and chromatin has been proposed to be a major factor regulating this step in the viral life cycle. However, the precise underlying mechanisms are still under investigation. We have developed a new in vitro integration assay using physiologically-relevant, reconstituted genomic acceptor chromatin and high-throughput determination of nucleosome positions and integration sites, in parallel. A quantitative analysis of the resulting data reveals a chromatin-dependent redistribution of the integration sites and establishes a link between integration sites and nucleosome positions. The co-activator LEDGF/p75 enhanced integration but did not modify the integration sites under these conditions. We also conducted an in cellulo genome-wide comparative study of nucleosome positions and human immunodeficiency virus type-1 (HIV-1) integration sites identified experimentally in vivo. These studies confirm a preferential integration in nucleosome-covered regions. Using a DNA mechanical energy model, we show that the physical properties of DNA probed by IN binding are important in determining IN selectivity. These novel in vitro and in vivo approaches confirm that IN has a preference for integration into a nucleosome, and suggest the existence of two levels of IN selectivity. The first depends on the physical properties of the target DNA and notably, the energy required to fit DNA into the IN catalytic pocket. The second depends on the DNA deformation associated with DNA wrapping around a nucleosome. Taken together, these results indicate that HIV-1 IN is a shape-readout DNA binding protein.
Collapse
|
81
|
Abstract
The prognosis of patients with coronary artery disease and stroke has improved substantially over the last decade as a result of advances in primary and secondary preventive care as well as novel interventional approaches, including the development of drug-eluting stents and balloons. Despite this progress, however, cardiovascular disease remains the leading cause of death in industrialized nations. Sustained efforts to elucidate the underlying mechanisms of atherogenesis, reperfusion-induced cardiac injury, and ischemic heart failure have led to the identification of several target genes as key players in the development and progression of atherosclerotic vascular disease. This knowledge has now enabled genetic therapeutic modulation not only for inherited diseases with a single gene defect, such as familial hypercholesterolemia, but also for multifactorial disorders. This review will focus on approaches in adeno-associated viral (AAV)-mediated gene therapy for atherosclerosis and its long-term sequelae.
Collapse
|
82
|
Cohn LB, Silva IT, Oliveira TY, Rosales RA, Parrish EH, Learn GH, Hahn BH, Czartoski JL, McElrath MJ, Lehmann C, Klein F, Caskey M, Walker BD, Siliciano JD, Siliciano RF, Jankovic M, Nussenzweig MC. HIV-1 integration landscape during latent and active infection. Cell 2015; 160:420-32. [PMID: 25635456 DOI: 10.1016/j.cell.2015.01.020] [Citation(s) in RCA: 360] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/18/2014] [Accepted: 01/12/2015] [Indexed: 11/15/2022]
Abstract
The barrier to curing HIV-1 is thought to reside primarily in CD4(+) T cells containing silent proviruses. To characterize these latently infected cells, we studied the integration profile of HIV-1 in viremic progressors, individuals receiving antiretroviral therapy, and viremic controllers. Clonally expanded T cells represented the majority of all integrations and increased during therapy. However, none of the 75 expanded T cell clones assayed contained intact virus. In contrast, the cells bearing single integration events decreased in frequency over time on therapy, and the surviving cells were enriched for HIV-1 integration in silent regions of the genome. Finally, there was a strong preference for integration into, or in close proximity to, Alu repeats, which were also enriched in local hotspots for integration. The data indicate that dividing clonally expanded T cells contain defective proviruses and that the replication-competent reservoir is primarily found in CD4(+) T cells that remain relatively quiescent.
Collapse
Affiliation(s)
- Lillian B Cohn
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Israel T Silva
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy, Rua Catão Roxo, 2501, Ribeirão Preto CEP 14051-140, Brazil
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Rafael A Rosales
- Departamento de Computação e Matemática, Universidade de São Paulo. Av. Bandeirantes, 3900, Ribeirão Preto CEP 14049-901, Brazil
| | - Erica H Parrish
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie L Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Clara Lehmann
- Department I of Internal Medicine, University Hospital of Cologne, 50924 Cologne, Germany; German Centre for Infection Research, partner site Bonn-Cologne, 50924 Cologne, Germany
| | - Florian Klein
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Bruce D Walker
- Ragon Institute of MGH, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
83
|
de Jong J, Wessels LFA, van Lohuizen M, de Ridder J, Akhtar W. Applications of DNA integrating elements: Facing the bias bully. Mob Genet Elements 2015; 4:1-6. [PMID: 26442173 PMCID: PMC4588226 DOI: 10.4161/2159256x.2014.992694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/19/2014] [Accepted: 11/25/2014] [Indexed: 12/17/2022] Open
Abstract
Retroviruses and DNA transposons are an important part of molecular biologists' toolbox. The applications of these elements range from functional genomics to oncogene discovery and gene therapy. However, these elements do not integrate uniformly across the genome, which is an important limitation to their use. A number of genetic and epigenetic factors have been shown to shape the integration preference of these elements. Insight into integration bias can significantly enhance the analysis and interpretation of results obtained using these elements. For three different applications, we outline how bias can affect results, and can potentially be addressed.
Collapse
Affiliation(s)
- Johann de Jong
- Computational Cancer Biology Group; Division of Molecular Carcinogenesis; The Netherlands Cancer Institute ; Amsterdam, The Netherlands
| | - Lodewyk F A Wessels
- Computational Cancer Biology Group; Division of Molecular Carcinogenesis; The Netherlands Cancer Institute ; Amsterdam, The Netherlands ; Delft Bioinformatics Lab; TU Delft ; Delft, The Netherlands
| | - Maarten van Lohuizen
- Division of Molecular Genetics; The Netherlands Cancer Institute ; Amsterdam, The Netherlands
| | | | - Waseem Akhtar
- Division of Molecular Genetics; The Netherlands Cancer Institute ; Amsterdam, The Netherlands
| |
Collapse
|
84
|
Figueroa JA, Reidy A, Mirandola L, Trotter K, Suvorava N, Figueroa A, Konala V, Aulakh A, Littlefield L, Grizzi F, Rahman RL, Jenkins MR, Musgrove B, Radhi S, D'Cunha N, D'Cunha LN, Hermonat PL, Cobos E, Chiriva-Internati M. Chimeric antigen receptor engineering: a right step in the evolution of adoptive cellular immunotherapy. Int Rev Immunol 2015; 34:154-187. [PMID: 25901860 DOI: 10.3109/08830185.2015.1018419] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cancer immunotherapy comprises different therapeutic strategies that exploit the use of distinct components of the immune system, with the common goal of specifically targeting and eradicating neoplastic cells. These varied approaches include the use of specific monoclonal antibodies, checkpoint inhibitors, cytokines, therapeutic cancer vaccines and cellular anticancer strategies such as activated dendritic cell (DC) vaccines, tumor-infiltrating lymphocytes (TILs) and, more recently, genetically engineered T cells. Each one of these approaches has demonstrated promise, but their generalized success has been hindered by the paucity of specific tumor targets resulting in suboptimal tumor responses and unpredictable toxicities. This review will concentrate on recent advances on the use of engineered T cells for adoptive cellular immunotherapy (ACI) in cancer.
Collapse
Affiliation(s)
- Jose A Figueroa
- Division of Hematology and Oncology, Texas Tech University Health Sciences Center , Lubbock, TX , USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Benleulmi MS, Matysiak J, Henriquez DR, Vaillant C, Lesbats P, Calmels C, Naughtin M, Leon O, Skalka AM, Ruff M, Lavigne M, Andreola ML, Parissi V. Intasome architecture and chromatin density modulate retroviral integration into nucleosome. Retrovirology 2015; 12:13. [PMID: 25807893 PMCID: PMC4358916 DOI: 10.1186/s12977-015-0145-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/19/2015] [Indexed: 01/19/2023] Open
Abstract
Background Retroviral integration depends on the interaction between intasomes, host chromatin and cellular targeting cofactors as LEDGF/p75 or BET proteins. Previous studies indicated that the retroviral integrase, by itself, may play a role in the local integration site selection within nucleosomal target DNA. We focused our study on this local association by analyzing the intrinsic properties of various retroviral intasomes to functionally accommodate different chromatin structures in the lack of other cofactors. Results Using in vitro conditions allowing the efficient catalysis of full site integration without these cofactors, we show that distinct retroviral integrases are not equally affected by chromatin compactness. Indeed, while PFV and MLV integration reactions are favored into dense and stable nucleosomes, HIV-1 and ASV concerted integration reactions are preferred into poorly dense chromatin regions of our nucleosomal acceptor templates. Predicted nucleosome occupancy around integration sites identified in infected cells suggests the presence of a nucleosome at the MLV and HIV-1 integration sites surrounded by differently dense chromatin. Further analyses of the relationships between the in vitro integration site selectivity and the structure of the inserted DNA indicate that structural constraints within intasomes could account for their ability to accommodate nucleosomal DNA and could dictate their capability to bind nucleosomes functionally in these specific chromatin contexts. Conclusions Thus, both intasome architecture and compactness of the chromatin surrounding the targeted nucleosome appear important determinants of the retroviral integration site selectivity. This supports a mechanism involving a global targeting of the intasomes toward suitable chromatin regions followed by a local integration site selection modulated by the intrinsic structural constraints of the intasomes governing the target DNA bending and dictating their sensitivity toward suitable specific nucleosomal structures and density. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0145-9) contains supplementary material, which is available to authorized users.
Collapse
|
86
|
Craigie R, Bushman FD. Host Factors in Retroviral Integration and the Selection of Integration Target Sites. Microbiol Spectr 2014; 2:10.1128/microbiolspec.MDNA3-0026-2014. [PMID: 26104434 PMCID: PMC4525071 DOI: 10.1128/microbiolspec.mdna3-0026-2014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Indexed: 02/07/2023] Open
Abstract
In order to replicate, a retrovirus must integrate a DNA copy of the viral RNA genome into a chromosome of the host cell. The study of retroviral integration has advanced considerably in the past few years. Here we focus on host factor interactions and the linked area of integration targeting. Genome-wide screens for cellular factors affecting HIV replication have identified a series of host cell proteins that may mediate subcellular trafficking for preintegration complexes, nuclear import, and integration target site selection. The cell transcriptional co-activator protein LEDGF/p75 has been identified as a tethering factor important for HIV integration, and recently, BET proteins (Brd2, 4, and 4) have been identified as tethering factors for the gammaretroviruses. A new class of HIV inhibitors has been developed targeting the HIV-1 IN-LEDGF binding site, though surprisingly these inhibitors appear to block assembly late during replication and do not act at the integration step. Going forward, genome-wide studies of HIV-host interactions offer many new starting points to investigate HIV replication and identify potential new inhibitor targets.
Collapse
Affiliation(s)
- Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0560
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
87
|
Hennig K, Raasch L, Kolbe C, Weidner S, Leisegang M, Uckert W, Titeux M, Hovnanian A, Kuehlcke K, Loew R. HEK293-Based Production Platform for γ-Retroviral (Self-Inactivating) Vectors: Application for Safe and Efficient Transfer ofCOL7A1cDNA. HUM GENE THER CL DEV 2014; 25:218-28. [DOI: 10.1089/humc.2014.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
| | | | | | | | | | - Wolfgang Uckert
- Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
- Institute of Biology, Humboldt University Berlin, 13092 Berlin, Germany
| | - Matthias Titeux
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases: From Disease Mechanism to Therapies, 75730 Paris, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, 75730 Paris, France
| | - Alain Hovnanian
- INSERM UMR 1163, Laboratory of Genetic Skin Diseases: From Disease Mechanism to Therapies, 75730 Paris, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, 75730 Paris, France
- Department of Genetics, Necker Hospital, 75730 Paris, France
| | | | | |
Collapse
|
88
|
Deyle DR, Hansen RS, Cornea AM, Li LB, Burt AA, Alexander IE, Sandstrom RS, Stamatoyannopoulos JA, Wei CL, Russell DW. A genome-wide map of adeno-associated virus-mediated human gene targeting. Nat Struct Mol Biol 2014; 21:969-75. [PMID: 25282150 PMCID: PMC4405182 DOI: 10.1038/nsmb.2895] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 08/27/2014] [Indexed: 02/03/2023]
Abstract
To determine which genomic features promote homologous recombination, we created a genome-wide map of gene targeting sites. We used an adeno-associated virus vector to target identical loci introduced as transcriptionally active retroviral vectors. A comparison of ~2,000 targeted and untargeted sites showed that targeting occurred throughout the human genome and was not influenced by the presence of nearby CpG islands, sequence repeats or DNase I-hypersensitive sites. Targeted sites were preferentially located within transcription units, especially when the target loci were transcribed in the opposite orientation to their surrounding chromosomal genes. We determined the impact of DNA replication by mapping replication forks, which revealed a preference for recombination at target loci transcribed toward an incoming fork. Our results constitute the first genome-wide screen of gene targeting in mammalian cells and demonstrate a strong recombinogenic effect of colliding polymerases.
Collapse
Affiliation(s)
- David R Deyle
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - R Scott Hansen
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Anda M Cornea
- Department of Molecular and Cellular Biology, University of Washington, Seattle, Washington, USA
| | - Li B Li
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Amber A Burt
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Richard S Sandstrom
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Chia-Lin Wei
- Genomic Technologies Department, Joint Genome Institute, Walnut Creek, California, USA
| | - David W Russell
- 1] Department of Medicine, University of Washington, Seattle, Washington, USA. [2] Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
89
|
Niederer HA, Bangham CRM. Integration site and clonal expansion in human chronic retroviral infection and gene therapy. Viruses 2014; 6:4140-64. [PMID: 25365582 PMCID: PMC4246213 DOI: 10.3390/v6114140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/09/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022] Open
Abstract
Retroviral vectors have been successfully used therapeutically to restore expression of genes in a range of single-gene diseases, including several primary immunodeficiency disorders. Although clinical trials have shown remarkable results, there have also been a number of severe adverse events involving malignant outgrowth of a transformed clonal population. This clonal expansion is influenced by the integration site profile of the viral integrase, the transgene expressed, and the effect of the viral promoters on the neighbouring host genome. Infection with the pathogenic human retrovirus HTLV-1 also causes clonal expansion of cells containing an integrated HTLV-1 provirus. Although the majority of HTLV-1-infected people remain asymptomatic, up to 5% develop an aggressive T cell malignancy. In this review we discuss recent findings on the role of the genomic integration site in determining the clonality and the potential for malignant transformation of cells carrying integrated HTLV-1 or gene therapy vectors, and how these results have contributed to the understanding of HTLV-1 pathogenesis and to improvements in gene therapy vector safety.
Collapse
Affiliation(s)
- Heather A Niederer
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK.
| | - Charles R M Bangham
- Department of Immunology, Wright-Fleming Institute, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
90
|
Matreyek KA, Wang W, Serrao E, Singh PK, Levin HL, Engelman A. Host and viral determinants for MxB restriction of HIV-1 infection. Retrovirology 2014; 11:90. [PMID: 25348155 PMCID: PMC4213484 DOI: 10.1186/s12977-014-0090-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/08/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interferon-induced cellular proteins play important roles in the host response against viral infection. The Mx family of dynamin-like GTPases, which include MxA and MxB, target a wide variety of viruses. Despite considerable evidence demonstrating the breadth of antiviral activity of MxA, human MxB was only recently discovered to specifically inhibit lentiviruses. Here we assess both host and viral determinants that underlie MxB restriction of HIV-1 infection. RESULTS Heterologous expression of MxB in human osteosarcoma cells potently inhibited HIV-1 infection (~12-fold), yet had little to no effect on divergent retroviruses. The anti-HIV effect manifested as a partial block in the formation of 2-long terminal repeat circle DNA and hence nuclear import, and we accordingly found evidence for an additional post-nuclear entry block. A large number of previously characterized capsid mutations, as well as mutations that abrogated integrase activity, counteracted MxB restriction. MxB expression suppressed integration into gene-enriched regions of chromosomes, similar to affects observed previously when cells were depleted for nuclear transport factors such as transportin 3. MxB activity did not require predicted GTPase active site residues or a series of unstructured loops within the stalk domain that confer functional oligomerization to related dynamin family proteins. In contrast, we observed an N-terminal stretch of residues in MxB to harbor key determinants. Protein localization conferred by a nuclear localization signal (NLS) within the N-terminal 25 residues, which was critical, was fully rescuable by a heterologous NLS. Consistent with this observation, a heterologous nuclear export sequence (NES) abolished full-length MxB activity. We additionally mapped sub-regions within amino acids 26-90 that contribute to MxB activity, finding sequences present within residues 27-50 particularly important. CONCLUSIONS MxB inhibits HIV-1 by interfering with minimally two steps of infection, nuclear entry and post-nuclear trafficking and/or integration, without destabilizing the inherent catalytic activity of viral preintegration complexes. Putative MxB GTPase active site residues and stalk domain Loop 4 -- both previously shown to be necessary for MxA function -- were dispensable for MxB antiviral activity. Instead, we highlight subcellular localization and a yet-determined function(s) present in the unique MxB N-terminal region to be required for HIV-1 restriction.
Collapse
Affiliation(s)
- Kenneth A Matreyek
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA. .,Present address: Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA.
| | - Weifeng Wang
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Erik Serrao
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Parmit Kumar Singh
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Henry L Levin
- Section on Eukaryotic Transposable Elements, Program in Cellular Regulation and Metabolism, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
91
|
Kaur G, Long CR, Dufour JM. Genetically engineered immune privileged Sertoli cells: A new road to cell based gene therapy. SPERMATOGENESIS 2014; 2:23-31. [PMID: 22553487 PMCID: PMC3341243 DOI: 10.4161/spmg.19119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sertoli cells are immune privileged cells, important for controlling the immune response to male germ cells as well as maintaining the tolerogenic environment in the testis. Additionally, ectopic Sertoli cells have been shown to survive and protect co-grafted cells when transplanted across immunological barriers. The survival of ectopic Sertoli cells has led to the idea that they could be used in cell based gene therapy. In this review, we provide a brief overview of testis immune privilege and Sertoli cell transplantation, factors contributing to Sertoli cell immune privilege, the challenges faced by viral vector gene therapy, the use of immune privileged cells in cell based gene therapy and describe several recent studies on the use of genetically engineered Sertoli cells to provide continuous delivery of therapeutic proteins.
Collapse
|
92
|
Desimmie BA, Demeulemeester J, Christ F, Debyser Z. Rational design of LEDGINs as first allosteric integrase inhibitors for the treatment of HIV infection. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e517-22. [PMID: 24451643 DOI: 10.1016/j.ddtec.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interaction between lens epithelium-derived growth factor (LEDGF/p75) and HIV-1 integrase (IN) is an attractive target for antiviral development because its inhibition blocks HIV replication. Developing novel small molecules that disrupt the LEDGF/p75-IN interaction constitutes a promising new therapeutic strategy for the treatment of HIV. Here we will highlight recent advances in the design and development of small-molecule inhibitors binding to the LEDGF/p75 binding pocket of IN, referred to as LEDGINs.
Collapse
|
93
|
McAllister RG, Liu J, Woods MW, Tom SK, Rupar CA, Barr SD. Lentivector integration sites in ependymal cells from a model of metachromatic leukodystrophy: non-B DNA as a new factor influencing integration. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e187. [PMID: 25158091 PMCID: PMC4221599 DOI: 10.1038/mtna.2014.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
The blood–brain barrier controls the passage of molecules from the blood into the central nervous system (CNS) and is a major challenge for treatment of neurological diseases. Metachromatic leukodystrophy is a neurodegenerative lysosomal storage disease caused by loss of arylsulfatase A (ARSA) activity. Gene therapy via intraventricular injection of a lentiviral vector is a potential approach to rapidly and permanently deliver therapeutic levels of ARSA to the CNS. We present the distribution of integration sites of a lentiviral vector encoding human ARSA (LV-ARSA) in murine brain choroid plexus and ependymal cells, administered via a single intracranial injection into the CNS. LV-ARSA did not exhibit a strong preference for integration in or near actively transcribed genes, but exhibited a strong preference for integration in or near satellite DNA. We identified several genomic hotspots for LV-ARSA integration and identified a consensus target site sequence characterized by two G-quadruplex-forming motifs flanking the integration site. In addition, our analysis identified several other non-B DNA motifs as new factors that potentially influence lentivirus integration, including human immunodeficiency virus type-1 in human cells. Together, our data demonstrate a clinically favorable integration site profile in the murine brain and identify non-B DNA as a potential new host factor that influences lentiviral integration in murine and human cells.
Collapse
Affiliation(s)
- Robert G McAllister
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - Jiahui Liu
- Department of Biochemistry, Western University, London, Ontario, Canada
| | - Matthew W Woods
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - Sean K Tom
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| | - C Anthony Rupar
- 1] Department of Biochemistry, Western University, London, Ontario, Canada [2] Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada [3] Department of Pediatrics, Western University, London, Ontario, Canada [4] Children's Health Research Institute, Western University, London, Ontario, Canada
| | - Stephen D Barr
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Center for Human Immunology, Western University, London, Ontario, Canada
| |
Collapse
|
94
|
Kvaratskhelia M, Sharma A, Larue RC, Serrao E, Engelman A. Molecular mechanisms of retroviral integration site selection. Nucleic Acids Res 2014; 42:10209-25. [PMID: 25147212 PMCID: PMC4176367 DOI: 10.1093/nar/gku769] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Retroviral replication proceeds through an obligate integrated DNA provirus, making retroviral vectors attractive vehicles for human gene-therapy. Though most of the host cell genome is available for integration, the process of integration site selection is not random. Retroviruses differ in their choice of chromatin-associated features and also prefer particular nucleotide sequences at the point of insertion. Lentiviruses including HIV-1 preferentially integrate within the bodies of active genes, whereas the prototypical gammaretrovirus Moloney murine leukemia virus (MoMLV) favors strong enhancers and active gene promoter regions. Integration is catalyzed by the viral integrase protein, and recent research has demonstrated that HIV-1 and MoMLV targeting preferences are in large part guided by integrase-interacting host factors (LEDGF/p75 for HIV-1 and BET proteins for MoMLV) that tether viral intasomes to chromatin. In each case, the selectivity of epigenetic marks on histones recognized by the protein tether helps to determine the integration distribution. In contrast, nucleotide preferences at integration sites seem to be governed by the ability for the integrase protein to locally bend the DNA duplex for pairwise insertion of the viral DNA ends. We discuss approaches to alter integration site selection that could potentially improve the safety of retroviral vectors in the clinic.
Collapse
Affiliation(s)
- Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Amit Sharma
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Ross C Larue
- Center for Retrovirus Research and College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Erik Serrao
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
95
|
Beatty J. Viral causes of feline lymphoma: Retroviruses and beyond. Vet J 2014; 201:174-80. [DOI: 10.1016/j.tvjl.2014.05.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 05/11/2014] [Accepted: 05/17/2014] [Indexed: 11/30/2022]
|
96
|
Correa de Freitas MC, Fontes AM, de Castilho Fernandes A, Picanço-Castro V, de Sousa Russo EM, Covas DT. Murine leukemia virus-derived retroviral vector has differential integration patterns in human cell lines used to produce recombinant factor VIII. Rev Bras Hematol Hemoter 2014; 36:213-8. [PMID: 25031062 PMCID: PMC4109740 DOI: 10.1016/j.bjhh.2014.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 01/01/2014] [Indexed: 11/17/2022] Open
Abstract
Objective Nowadays recombinant factor VIII is produced in murine cells including in Chinese hamster ovary (CHO) and baby hamster kidney cells (BHK). Previous studies, using the murine leukemia virus-derived retroviral vector pMFG-FVIII-P140K, modified two recombinant human cell lines, HepG2 and Hek293 to produce recombinant factor VIII. In order to characterize these cells, the present study aimed to analyze the integration pattern of retroviral vector pMFG-FVIII-P140K. Methods This study used ligation-mediated polymerase chain reaction to locate the site of viral vector integration by sequencing polymerase chain reaction products. The sequences were compared to genomic databases to characterize respective clones. Results The retroviral vector presented different and non-random profiles of integration between cells lines. A preference of integration for chromosomes 19, 17 and 11 was observed for HepG2FVIIIdB/P140K and chromosome 9 for Hek293FVIIIdB/P140K. In genomic regions such as CpG islands and transcription factor binding sites, there was no difference in the integration profiles for both cell lines. Integration in intronic regions of encoding protein genes (RefSeq genes) was also observed in both cell lines. Twenty percent of integrations occurred at fragile sites in the genome of the HepG2 cell line and 17% in Hek293. Conclusion The results suggest that the cell type can affect the profile of chromosomal integration of the retroviral vector used; these differences may interfere in the level of expression of recombinant proteins.
Collapse
|
97
|
Gabriel R, Kutschera I, Bartholomae CC, von Kalle C, Schmidt M. Linear amplification mediated PCR--localization of genetic elements and characterization of unknown flanking DNA. J Vis Exp 2014:e51543. [PMID: 24998871 DOI: 10.3791/51543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Linear-amplification mediated PCR (LAM-PCR) has been developed to study hematopoiesis in gene corrected cells of patients treated by gene therapy with integrating vector systems. Due to the stable integration of retroviral vectors, integration sites can be used to study the clonal fate of individual cells and their progeny. LAM- PCR for the first time provided evidence that leukemia in gene therapy treated patients originated from provirus induced overexpression of a neighboring proto-oncogene. The high sensitivity and specificity of LAM-PCR compared to existing methods like inverse PCR and ligation mediated (LM)-PCR is achieved by an initial preamplification step (linear PCR of 100 cycles) using biotinylated vector specific primers which allow subsequent reaction steps to be carried out on solid phase (magnetic beads). LAM-PCR is currently the most sensitive method available to identify unknown DNA which is located in the proximity of known DNA. Recently, a variant of LAM-PCR has been developed that circumvents restriction digest thus abrogating retrieval bias of integration sites and enables a comprehensive analysis of provirus locations in host genomes. The following protocol explains step-by-step the amplification of both 3'- and 5'- sequences adjacent to the integrated lentiviral vector.
Collapse
Affiliation(s)
- Richard Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ)
| | - Ina Kutschera
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ)
| | - Cynthia C Bartholomae
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ)
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ)
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ);
| |
Collapse
|
98
|
Wegman-Points LJ, Teoh-Fitzgerald MLT, Mao G, Zhu Y, Fath MA, Spitz DR, Domann FE. Retroviral-infection increases tumorigenic potential of MDA-MB-231 breast carcinoma cells by expanding an aldehyde dehydrogenase (ALDH1) positive stem-cell like population. Redox Biol 2014; 2:847-54. [PMID: 25009786 PMCID: PMC4085353 DOI: 10.1016/j.redox.2014.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/01/2014] [Accepted: 06/05/2014] [Indexed: 01/08/2023] Open
Abstract
Retroviral transformation has been associated with pro-proliferative oncogenic signaling in human cells. The current study demonstrates that transduction of human breast carcinoma cells (MDA-MB231) with LXSN and QCXIP retroviral vectors causes significant increases in growth rate, clonogenic fraction, and aldehyde dehydrogenase-1 positive cells (ALDH1+), which is associated with increased steady-state levels of cancer stem cell populations. Furthermore, this retroviral-induced enhancement of cancer cell growth in vitro was also accompanied by a significant increase in xenograft tumor growth rate in vivo. The retroviral induced increases in cancer cell growth rate were partially inhibited by treatment with 100 U/ml polyethylene glycol-conjugated-(PEG)-superoxide dismutase and/or PEG-catalase. These results show that retroviral infection of MDA-MB231 human breast cancer cells is capable of enhancing cell proliferation and cancer stem cell populations as well as suggesting that modulation of reactive oxygen species-induced pro-survival signaling pathways may be involved in these effects. Retroviral infection causes persistent ROS production in breast cancer cells. Retroviral infected cells display increased clonogenic fraction and tumorigenic potential. The ALDH1+ mammary cancer stem cell population is increased in infected cells. The above effects of retroviral infection can be inhibited with antioxidant enzymes.
Collapse
Affiliation(s)
- Lauren J Wegman-Points
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA 52240, United States ; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States
| | - Melissa L T Teoh-Fitzgerald
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, United States ; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States
| | - Gaowei Mao
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States ; University of Pittsburg, United States
| | - Yueming Zhu
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States ; Northwestern University Medical School, United States
| | - Melissa A Fath
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States
| | - Frederick E Domann
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, United States
| |
Collapse
|
99
|
Rapamycin relieves lentiviral vector transduction resistance in human and mouse hematopoietic stem cells. Blood 2014; 124:913-23. [PMID: 24914132 DOI: 10.1182/blood-2013-12-546218] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transplantation of genetically modified hematopoietic stem cells (HSCs) is a promising therapeutic strategy for genetic diseases, HIV, and cancer. However, a barrier for clinical HSC gene therapy is the limited efficiency of gene delivery via lentiviral vectors (LVs) into HSCs. We show here that rapamycin, an allosteric inhibitor of the mammalian target of rapamycin complexes, facilitates highly efficient lentiviral transduction of mouse and human HSCs and dramatically enhances marking frequency in long-term engrafting cells in mice. Mechanistically, rapamycin enhanced postbinding endocytic events, leading to increased levels of LV cytoplasmic entry, reverse transcription, and genomic integration. Despite increasing LV copy number, rapamycin did not significantly alter LV integration site profile or chromosomal distribution in mouse HSCs. Rapamycin also enhanced in situ transduction of mouse HSCs via direct intraosseous infusion. Collectively, rapamycin strongly augments LV transduction of HSCs in vitro and in vivo and may prove useful for therapeutic gene delivery.
Collapse
|
100
|
Moiani A, Suerth JD, Gandolfi F, Rizzi E, Severgnini M, De Bellis G, Schambach A, Mavilio F. Genome-wide analysis of alpharetroviral integration in human hematopoietic stem/progenitor cells. Genes (Basel) 2014; 5:415-29. [PMID: 24840152 PMCID: PMC4094940 DOI: 10.3390/genes5020415] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/30/2014] [Accepted: 05/06/2014] [Indexed: 01/12/2023] Open
Abstract
Gene transfer vectors derived from gamma-retroviruses or lentiviruses are currently used for the gene therapy of genetic or acquired diseases. Retroviral vectors display a non-random integration pattern in the human genome, targeting either regulatory regions (gamma-retroviruses) or the transcribed portion of expressed genes (lentiviruses), and have the potential to deregulate gene expression at the transcriptional or post-transcriptional level. A recently developed alternative vector system derives from the avian sarcoma-leukosis alpha-retrovirus (ASLV) and shows favorable safety features compared to both gamma-retroviral and lentiviral vectors in preclinical models. We performed a high-throughput analysis of the integration pattern of self-inactivating (SIN) alpha-retroviral vectors in human CD34+ hematopoietic stem/progenitor cells (HSPCs) and compared it to previously reported gamma-retroviral and lentiviral vectors integration profiles obtained in the same experimental setting. Compared to gamma-retroviral and lentiviral vectors, the SIN-ASLV vector maintains a preference for open chromatin regions, but shows no bias for transcriptional regulatory elements or transcription units, as defined by genomic annotations and epigenetic markers (H3K4me1 and H3K4me3 histone modifications). Importantly, SIN-ASLV integrations do not cluster in hot spots and target potentially dangerous genomic loci, such as the EVI2A/B, RUNX1 and LMO2 proto-oncogenes at a virtually random frequency. These characteristics predict a safer profile for ASLV-derived vectors for clinical applications.
Collapse
Affiliation(s)
- Arianna Moiani
- Genethon, 1bis Rue de l'Internationale, 91020 Evry, France.
| | - Julia Debora Suerth
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| | | | - Ermanno Rizzi
- Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche, Milan 20132, Italy.
| | - Marco Severgnini
- Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche, Milan 20132, Italy.
| | - Gianluca De Bellis
- Institute for Biomedical Technologies, Consiglio Nazionale delle Ricerche, Milan 20132, Italy.
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Carl-Neuberg-Str.1, D-30625 Hannover, Germany.
| | - Fulvio Mavilio
- Genethon, 1bis Rue de l'Internationale, 91020 Evry, France.
| |
Collapse
|