51
|
McKimm-Breschkin JL, Rootes C, Mohr PG, Barrett S, Streltsov VA. In vitro passaging of a pandemic H1N1/09 virus selects for viruses with neuraminidase mutations conferring high-level resistance to oseltamivir and peramivir, but not to zanamivir. J Antimicrob Chemother 2012; 67:1874-83. [DOI: 10.1093/jac/dks150] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
52
|
Enhanced mammalian transmissibility of seasonal influenza A/H1N1 viruses encoding an oseltamivir-resistant neuraminidase. J Virol 2012; 86:7268-79. [PMID: 22532693 DOI: 10.1128/jvi.07242-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Between 2007 and 2009, oseltamivir resistance developed among seasonal influenza A/H1N1 (sH1N1) virus isolates at an exponential rate, without a corresponding increase in oseltamivir usage. We hypothesized that the oseltamivir-resistant neuraminidase (NA), in addition to being relatively insusceptible to the antiviral effect of oseltamivir, might confer an additional fitness advantage on these viruses by enhancing their transmission efficiency among humans. Here we demonstrate that an oseltamivir-resistant clinical isolate, an A/Brisbane/59/2007(H1N1)-like virus isolated in New York State in 2008, transmits more efficiently among guinea pigs than does a highly similar, contemporaneous oseltamivir-sensitive isolate. With reverse genetics reassortants and point mutants of the two clinical isolates, we further show that expression of the oseltamivir-resistant NA in the context of viral proteins from the oseltamivir-sensitive virus (a 7:1 reassortant) is sufficient to enhance transmissibility. In the guinea pig model, the NA is the critical determinant of transmission efficiency between oseltamivir-sensitive and -resistant Brisbane/59-like sH1N1 viruses, independent of concurrent drift mutations that occurred in other gene products. Our data suggest that the oseltamivir-resistant NA (specifically, one or both of the companion mutations, H275Y and D354G) may have allowed resistant Brisbane/59-like viruses to outtransmit sensitive isolates. These data provide in vivo evidence of an evolutionary mechanism that would explain the rapidity with which oseltamivir resistance achieved fixation among sH1N1 isolates in the human reservoir.
Collapse
|
53
|
Efficient transmission of pandemic H1N1 influenza viruses with high-level oseltamivir resistance. J Virol 2012; 86:5386-9. [PMID: 22345446 DOI: 10.1128/jvi.00151-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The limited availability of approved influenza virus antivirals highlights the importance of studying the fitness and transmissibility of drug-resistant viruses. S247N is a novel, naturally occurring N1 neuraminidase mutation that reduces oseltamivir sensitivity and greatly potentiates oseltamivir resistance in the context of the H275Y mutation. Here we show that highly oseltamivir-resistant viruses containing both the S247N and H275Y mutations transmit efficiently in the guinea pig transmission model.
Collapse
|
54
|
Abstract
PURPOSE OF REVIEW The 2009 influenza pandemic introduced a new influenza A/H1N1 subtype in the human population. This pandemic 2009 influenza A/H1N1 virus has natural resistance to the adamantanes class and has a low threshold to become resistant to the neuraminidase class of antiviral drugs. This review describes recent findings on influenza antiviral resistance in pandemic 2009 influenza A/H1N1 virus. RECENT FINDINGS Pandemic 2009 viruses have emerged with novel resistance patterns to the neuraminidase inhibitors. In addition, the identification of mutations that facilitated oseltamivir resistance in prepandemic influenza emphasizes the ability of influenza to become resistant to antiviral drugs without significant loss of fitness. SUMMARY Novel initiatives are required to find and develop high genetic barrier influenza therapeutic regimens for effective treatment of severe influenza virus infections.
Collapse
|
55
|
Grienke U, Schmidtke M, von Grafenstein S, Kirchmair J, Liedl KR, Rollinger JM. Influenza neuraminidase: A druggable target for natural products. Nat Prod Rep 2012; 29:11-36. [DOI: 10.1039/c1np00053e] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
56
|
Ginting TE, Shinya K, Kyan Y, Makino A, Matsumoto N, Kaneda S, Kawaoka Y. Amino acid changes in hemagglutinin contribute to the replication of oseltamivir-resistant H1N1 influenza viruses. J Virol 2012; 86:121-7. [PMID: 22013054 PMCID: PMC3255889 DOI: 10.1128/jvi.06085-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/05/2011] [Indexed: 12/15/2022] Open
Abstract
Oseltamivir-resistant H1N1 influenza viruses emerged in 2007 to 2008 and have subsequently circulated widely. However, prior to 2007 to 2008, viruses possessing the neuraminidase (NA) H274Y mutation, which confers oseltamivir resistance, generally had low growth capability. NA mutations that compensate for the deleterious effect of the NA H274Y mutation have since been identified. Given the importance of the functional balance between hemagglutinin (HA) and NA, we focused on amino acid changes in HA. Reverse genetic analysis showed that a mutation at residue 82, 141, or 189 of the HA protein promotes virus replication in the presence of the NA H274Y mutation. Our findings thus identify HA mutations that contributed to the replacement of the oseltamivir-sensitive viruses of 2007 to 2008.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution/drug effects
- Animals
- Antiviral Agents/pharmacology
- Cell Line
- Drug Resistance, Viral/drug effects
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/metabolism
- Humans
- Influenza A Virus, H1N1 Subtype/classification
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/virology
- Molecular Sequence Data
- Mutation, Missense
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Oseltamivir/pharmacology
- Phylogeny
- Sequence Alignment
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Teridah Ernala Ginting
- Center for Infectious Diseases, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
- Division of Zoonosis, Department of Microbiology and Infectious Disease, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Kyoko Shinya
- Center for Infectious Diseases, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
- Division of Zoonosis, Department of Microbiology and Infectious Disease, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Yukihiro Kyan
- Division of Zoonosis, Department of Microbiology and Infectious Disease, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Akiko Makino
- Center for Infectious Diseases, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
- Division of Zoonosis, Department of Microbiology and Infectious Disease, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
| | - Naomi Matsumoto
- Tottori Prefectural Institute of Public Health and Environmental Science, Tottori, Japan
| | - Satoko Kaneda
- Tottori Prefectural Institute of Public Health and Environmental Science, Tottori, Japan
| | - Yoshihiro Kawaoka
- Center for Infectious Diseases, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
- Division of Zoonosis, Department of Microbiology and Infectious Disease, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan
- Influenza Research Institute, Department of Pathological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- ERATO Infection-Induced Host Responses Project, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
57
|
Abed Y, Pizzorno A, Bouhy X, Boivin G. Role of permissive neuraminidase mutations in influenza A/Brisbane/59/2007-like (H1N1) viruses. PLoS Pathog 2011; 7:e1002431. [PMID: 22174688 PMCID: PMC3234239 DOI: 10.1371/journal.ppat.1002431] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 10/26/2011] [Indexed: 02/03/2023] Open
Abstract
Neuraminidase (NA) mutations conferring resistance to NA inhibitors were believed to compromise influenza virus fitness. Unexpectedly, an oseltamivir-resistant A/Brisbane/59/2007 (Bris07)-like H1N1 H275Y NA variant emerged in 2007 and completely replaced the wild-type (WT) strain in 2008–2009. The NA of such variant contained additional NA changes (R222Q, V234M and D344N) that potentially counteracted the detrimental effect of the H275Y mutation on viral fitness. Here, we rescued a recombinant Bris07-like WT virus and 4 NA mutants/revertants (H275Y, H275Y/Q222R, H275Y/M234V and H275Y/N344D) and characterized them in vitro and in ferrets. A fluorometric-based NA assay was used to determine Vmax and Km values. Replicative capacities were evaluated by yield assays in ST6Gal1-MDCK cells. Recombinant NA proteins were expressed in 293T cells and surface NA activity was determined. Infectivity and contact transmission experiments were evaluated for the WT, H275Y and H275Y/Q222R recombinants in ferrets. The H275Y mutation did not significantly alter Km and Vmax values compared to WT. The H275Y/N344D mutant had a reduced affinity (Km of 50 vs 12 µM) whereas the H275Y/M234V mutant had a reduced activity (22 vs 28 U/sec). In contrast, the H275Y/Q222R mutant showed a significant decrease of both affinity (40 µM) and activity (7 U/sec). The WT, H275Y, H275Y/M234V and H275Y/N344D recombinants had comparable replicative capacities contrasting with H275Y/Q222R mutant whose viral titers were significantly reduced. All studied mutations reduced the cell surface NA activity compared to WT with the maximum reduction being obtained for the H275Y/Q222R mutant. Comparable infectivity and transmissibility were seen between the WT and the H275Y mutant in ferrets whereas the H275Y/Q222R mutant was associated with significantly lower lung viral titers. In conclusion, the Q222R reversion mutation compromised Bris07-like H1N1 virus in vitro and in vivo. Thus, the R222Q NA mutation present in the WT virus may have facilitated the emergence of NAI-resistant Bris07 variants. The H275Y neuraminidase (NA) mutation conferring resistance to oseltamivir was shown to impair old influenza H1N1 strains both in vitro and in vivo. By contrast, an oseltamivir-resistant A/Brisbane/59/2007 (Bris07)-like H1N1 H275Y NA variant emerged in 2007 and completely replaced the wild-type (WT) strain in 2008–2009. This discrepancy could be attributed to permissive NA mutations (R222Q, V234M and D344N) that were identified in most Bris07-like oseltamivir-resistant variants. To verify this hypothesis, we developed a reverse genetics system for a sensitive Bris07-like isolate (275H) whose NA protein contains the 3 permissive mutations (222Q, 234M, 344N). Using mutagenesis, we first introduced the H275Y then reverted codons at positions 222, 234 and 344. The resulting 5 recombinants (WT, H275Y, H275Y/Q222R, H275Y/M234V and H275Y/N344D) were compared with regard to NA enzyme properties, replicative capacities in vitro as well as infectivity and contact-transmissibility in ferrets. Among the studied permissive mutations, Q222R was associated with a significant reduction of both affinity and activity of the NA enzyme resulting in a virus with a reduced replicative capacity in vitro and decreased replication in lungs of ferrets. Thus, the R222Q mutation may have been the major permissive NA change that facilitated the emergence and spread of NAI-resistant Bris07 variants.
Collapse
Affiliation(s)
- Yacine Abed
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Andrés Pizzorno
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Xavier Bouhy
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, Québec, Canada
| | - Guy Boivin
- Research Center in Infectious Diseases of the CHUQ-CHUL and Laval University, Québec City, Québec, Canada
- * E-mail:
| |
Collapse
|
58
|
The 2008-2009 H1N1 influenza virus exhibits reduced susceptibility to antibody inhibition: Implications for the prevalence of oseltamivir resistant variant viruses. Antiviral Res 2011; 93:144-53. [PMID: 22138712 DOI: 10.1016/j.antiviral.2011.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/14/2011] [Accepted: 11/15/2011] [Indexed: 12/25/2022]
Abstract
A naturally-occurring H275Y oseltamivir resistant variant of influenza A (H1N1) virus emerged in 2007, subsequently becoming prevalent worldwide, via an undetermined mechanism. To understand the antigenic properties of the H275Y variant, oseltamivir resistant and susceptible strains of H1N1 viruses were analyzed by hemagglutination inhibition (HI) and microneutralization assays. HI analysis with H1-positive sera obtained from seasonal flu vaccine immunized and non-immunized individuals, and H1-specific monoclonal antibodies, revealed that resistant strains exhibited a reduced reactivity to these antisera and antibodies in the HI assay, as compared to susceptible strains. Neutralization assay testing demonstrated that oseltamivir resistant H1N1 strains are also less susceptible to antibody inhibition during infection. Mice inoculated with a resistant clinical isolate exhibit 4-fold lower virus-specific antibody titers than mice infected with a susceptible strain under the same conditions. Resistant and sensitive variants of 2009 pandemic H1N1 virus did not exhibit such differences. While HA1 and NA phylogenetic trees show that both oseltamivir resistant and susceptible strains belong to clade 2B, NA D354G and HA A189T substitutions were found exclusively, and universally, in oseltamivir resistant variants. Our results suggest that the reduced susceptibility to antibody inhibition and lesser in vivo immunogenicity of the oseltamivir resistant 2008-2009 H1N1 influenza A virus is conferred by coupled NA and HA mutations, and may contribute to the prevalence of this H1N1 variant.
Collapse
|
59
|
Smith JR, Rayner CR, Donner B, Wollenhaupt M, Klumpp K, Dutkowski R. Oseltamivir in seasonal, pandemic, and avian influenza: a comprehensive review of 10-years clinical experience. Adv Ther 2011; 28:927-59. [PMID: 22057727 PMCID: PMC7101998 DOI: 10.1007/s12325-011-0072-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Indexed: 12/13/2022]
Abstract
Oseltamivir (Tamiflu®; F. Hoffmann-La Roche Ltd, Basel, Switzerland) is an orally administered antiviral for the treatment and prevention of influenza A and B infections that is registered in more than 100 countries worldwide. More than 83 million patients have been exposed to the product since its introduction. Oseltamivir is recommended by the World Health Organization (WHO) for use in the clinical management of pandemic and seasonal influenza of varying severity, and as the primary antiviral agent for treatment of avian H5N1 influenza infection in humans. This article is a nonsystematic review of the experience gained from the first 10 years of using oseltamivir for influenza infections since its launch in early 2000, emphasizing recent advances in our understanding of the product and its clinical utility in five main areas. The article reviews the pharmacokinetics of oseltamivir and its active metabolite, oseltamivir carboxylate, including information on special populations such as children and elderly adults, and the co-administration of oseltamivir with other agents. This is followed by a summary of data on the effectiveness of oseltamivir treatment and prophylaxis in patients with all types of influenza, including pandemic (H1N1) 2009 and avian H5N1 influenza. The implications of changes in susceptibility of circulating influenza viruses to oseltamivir and other antiviral agents are also described, as is the emergence of antiviral resistance during and after the 2009 pandemic. The fourth main section deals with the safety profile of oseltamivir in standard and special patient populations, and reviews spontaneously reported adverse event data from the pandemic and pre-pandemic periods and the topical issue of neuropsychiatric adverse events. Finally, the article considers the pharmacoeconomics of oseltamivir in comparison with vaccination and usual care regimens, and as a component of pandemic influenza mitigation strategies.
Collapse
Affiliation(s)
- James R Smith
- Pharmaceuticals Division, F. Hoffmann-La Roche Ltd, PBMT Bldg 74/3O Z1.06, CH-4070, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
60
|
Escuret V, Ferraris O, Lina B. The antiviral resistance of influenza virus. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/thy.11.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
61
|
Rameix-Welti MA, Munier S, Le Gal S, Cuvelier F, Agou F, Enouf V, Naffakh N, van der Werf S. Neuraminidase of 2007-2008 influenza A(H1N1) viruses shows increased affinity for sialic acids due to the D344N substitution. Antivir Ther 2011; 16:597-603. [PMID: 21685548 DOI: 10.3851/imp1804] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND During the 2007-2008 season, A(H1N1) viruses naturally resistant to oseltamivir due to an H275Y substitution in the neuraminidase emerged and spread in the human population. The neuraminidase of 2007-2008 A(H1N1) viruses has an increased affinity for sialic acids as compared with the N1 of previously circulating viruses. METHODS Using site-directed mutagenesis analysis and an enzymatic assay on cells transiently expressing the viral neuraminidase, the amino acid changes that could account for the particular enzymatic properties of the neuraminidase of 2007-2008 A(H1N1) viruses were explored. The affinity for the substrate (K(m)) and the inhibition constants for inhibitors (K(i)) were determined for wild-type and mutated neuraminidases. Reverse genetics was used to produce 6:2 reassortant viruses expressing haemagglutinin and neuraminidase derived from A(H1N1) viruses of the 2007-2008 season or from a previously circulating H1N1 virus, in an A/WSN/33 background. RESULTS The D344N substitution characteristic of the N1 of 2007-2008 A(H1N1) viruses was identified as a major determinant of its increased affinity for sialic acids. According to the viral plaque phenotype of the 6:2 reassortant viruses, the H275Y mutation was deleterious when the surface glycoproteins were derived from the H1N1 virus isolated in 2004, but not when they were derived from A(H1N1) viruses of the 2007-2008 season. CONCLUSIONS The D344N substitution, by modifying the enzymatic property of the N1, may have favoured the emergence and spread of viruses naturally resistant to oseltamivir.
Collapse
Affiliation(s)
- Marie-Anne Rameix-Welti
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Baranovich T, Webster RG, Govorkova EA. Fitness of neuraminidase inhibitor-resistant influenza A viruses. Curr Opin Virol 2011; 1:574-81. [PMID: 22440915 DOI: 10.1016/j.coviro.2011.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/30/2011] [Indexed: 12/20/2022]
Abstract
Antiviral drugs are important components for the control of influenza. The key question is whether antiviral use or natural virus evolution will lead to the emergence of drug-resistant virus with comparable or superior fitness to drug-susceptible counterpart. Currently, neuraminidase (NA) inhibitors (NAIs) are the first choice for influenza prevention and treatment. In this article we will review complex process of the risk assessment for the fitness of NAIs-resistant seasonal H1N1 and H3N2, pandemic 2009 H1N1, and highly pathogenic H5N1 influenza A viruses: identification of antiviral susceptibility, degree of functional NA loss, molecular markers of resistance, and evaluation of replicative ability in vivo, virulence and transmissibility in animal studies (mouse, ferret, and guinea pig models).
Collapse
Affiliation(s)
- Tatiana Baranovich
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | | | |
Collapse
|
63
|
Järhult JD, Muradrasoli S, Wahlgren J, Söderström H, Orozovic G, Gunnarsson G, Bröjer C, Latorre-Margalef N, Fick J, Grabic R, Lennerstrand J, Waldenström J, Lundkvist A, Olsen B. Environmental levels of the antiviral oseltamivir induce development of resistance mutation H274Y in influenza A/H1N1 virus in mallards. PLoS One 2011; 6:e24742. [PMID: 21931841 PMCID: PMC3171471 DOI: 10.1371/journal.pone.0024742] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/16/2011] [Indexed: 02/01/2023] Open
Abstract
Oseltamivir (Tamiflu®) is the most widely used drug against influenza infections and is extensively stockpiled worldwide as part of pandemic preparedness plans. However, resistance is a growing problem and in 2008–2009, seasonal human influenza A/H1N1 virus strains in most parts of the world carried the mutation H274Y in the neuraminidase gene which causes resistance to the drug. The active metabolite of oseltamivir, oseltamivir carboxylate (OC), is poorly degraded in sewage treatment plants and surface water and has been detected in aquatic environments where the natural influenza reservoir, dabbling ducks, can be exposed to the substance. To assess if resistance can develop under these circumstances, we infected mallards with influenza A/H1N1 virus and exposed the birds to 80 ng/L, 1 µg/L and 80 µg/L of OC through their sole water source. By sequencing the neuraminidase gene from fecal samples, we found that H274Y occurred at 1 µg/L of OC and rapidly dominated the viral population at 80 µg/L. IC50 for OC was increased from 2–4 nM in wild-type viruses to 400–700 nM in H274Y mutants as measured by a neuraminidase inhibition assay. This is consistent with the decrease in sensitivity to OC that has been noted among human clinical isolates carrying H274Y. Environmental OC levels have been measured to 58–293 ng/L during seasonal outbreaks and are expected to reach µg/L-levels during pandemics. Thus, resistance could be induced in influenza viruses circulating among wild ducks. As influenza viruses can cross species barriers, oseltamivir resistance could spread to human-adapted strains with pandemic potential disabling oseltamivir, a cornerstone in pandemic preparedness planning. We propose surveillance in wild birds as a measure to understand the resistance situation in nature and to monitor it over time. Strategies to lower environmental levels of OC include improved sewage treatment and, more importantly, a prudent use of antivirals.
Collapse
Affiliation(s)
- Josef D Järhult
- Section of Infectious Diseases, Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Chao DL, Bloom JD, Kochin BF, Antia R, Longini IM. The global spread of drug-resistant influenza. J R Soc Interface 2011; 9:648-56. [PMID: 21865253 DOI: 10.1098/rsif.2011.0427] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Resistance to oseltamivir, the most widely used influenza antiviral drug, spread to fixation in seasonal influenza A(H1N1) between 2006 and 2009. This sudden rise in resistance seemed puzzling given the low overall level of the oseltamivir usage and the lack of a correlation between local rates of resistance and oseltamivir usage. We used a stochastic simulation model and deterministic approximations to examine how such events can occur, and in particular to determine how the rate of fixation of the resistant strain depends both on its fitness in untreated hosts as well as the frequency of antiviral treatment. We found that, for the levels of antiviral usage in the population, the resistant strain will eventually spread to fixation, if it is not attenuated in transmissibility relative to the drug-sensitive strain, but not at the speed observed in seasonal H1N1. The extreme speed with which the resistance spread in seasonal H1N1 suggests that the resistant strain had a transmission advantage in untreated hosts, and this could have arisen from genetic hitchhiking, or from the mutations responsible for resistance and compensation. Importantly, our model also shows that resistant virus will fail to spread if it is even slightly less transmissible than its sensitive counterpart--a finding of relevance given that resistant pandemic influenza (H1N1) 2009 may currently suffer from a small, but nonetheless experimentally perceptible reduction in transmissibility.
Collapse
Affiliation(s)
- Dennis L Chao
- Center for Statistics and Quantitative Infectious Diseases, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
65
|
Bloom JD, Nayak JS, Baltimore D. A computational-experimental approach identifies mutations that enhance surface expression of an oseltamivir-resistant influenza neuraminidase. PLoS One 2011; 6:e22201. [PMID: 21799795 PMCID: PMC3140507 DOI: 10.1371/journal.pone.0022201] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 06/16/2011] [Indexed: 12/31/2022] Open
Abstract
The His274→Tyr (H274Y) oseltamivir (Tamiflu) resistance mutation causes a substantial decrease in the total levels of surface-expressed neuraminidase protein and activity in early isolates of human seasonal H1N1 influenza, and in the swine-origin pandemic H1N1. In seasonal H1N1, H274Y only became widespread after the occurrence of secondary mutations that counteracted this decrease. H274Y is currently rare in pandemic H1N1, and it remains unclear whether secondary mutations exist that might similarly counteract the decreased neuraminidase surface expression associated with this resistance mutation in pandemic H1N1. Here we investigate the possibility of predicting such secondary mutations. We first test the ability of several computational approaches to retrospectively identify the secondary mutations that enhanced levels of surface-expressed neuraminidase protein and activity in seasonal H1N1 shortly before the emergence of oseltamivir resistance. We then use the most successful computational approach to predict a set of candidate secondary mutations to the pandemic H1N1 neuraminidase. We experimentally screen these mutations, and find that several of them do indeed partially counteract the decrease in neuraminidase surface expression caused by H274Y. Two of the secondary mutations together restore surface-expressed neuraminidase activity to wildtype levels, and also eliminate the very slight decrease in viral growth in tissue-culture caused by H274Y. Our work therefore demonstrates a combined computational-experimental approach for identifying mutations that enhance neuraminidase surface expression, and describes several specific mutations with the potential to be of relevance to the spread of oseltamivir resistance in pandemic H1N1.
Collapse
MESH Headings
- Computational Biology
- Drug Resistance, Viral/genetics
- Gene Expression Regulation, Viral/drug effects
- Gene Expression Regulation, Viral/genetics
- HEK293 Cells
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza, Human/epidemiology
- Influenza, Human/virology
- Models, Molecular
- Mutation
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Oseltamivir/pharmacology
- Pandemics
- Protein Conformation
- Tissue Culture Techniques
Collapse
Affiliation(s)
- Jesse D. Bloom
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Jagannath S. Nayak
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - David Baltimore
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
66
|
Haasbach E, Pauli EK, Spranger R, Mitzner D, Schubert U, Kircheis R, Planz O. Antiviral activity of the proteasome inhibitor VL-01 against influenza A viruses. Antiviral Res 2011; 91:304-13. [PMID: 21777621 DOI: 10.1016/j.antiviral.2011.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/29/2011] [Accepted: 07/05/2011] [Indexed: 01/04/2023]
Abstract
The appearance of highly pathogenic avian influenza A viruses of the H5N1 subtype being able to infect humans and the 2009 H1N1 pandemic reveals the urgent need for new and efficient countermeasures against these viruses. The long-term efficacy of current antivirals is often limited, because of the emergence of drug-resistant virus mutants. A growing understanding of the virus-host interaction raises the possibility to explore alternative targets involved in the viral replication. In the present study we show that the proteasome inhibitor VL-01 leads to reduction of influenza virus replication in human lung adenocarcinoma epithelial cells (A549) as demonstrated with three different influenza virus strains, A/Puerto Rico/8/34 (H1N1) (EC50 value of 1.7 μM), A/Regensburg/D6/09 (H1N1v) (EC50 value of 2.4 μM) and A/Mallard/Bavaria/1/2006 (H5N1) (EC50 value of 0.8 μM). In in vivo experiments we could demonstrate that VL-01-aerosol-treatment of BALB/c mice with 14.1 mg/kg results in no toxic side effects, reduced progeny virus titers in the lung (1.1 ± 0.3 log10 pfu) and enhanced survival of mice after infection with a 5-fold MLD50 of the human influenza A virus strain A/Puerto Rico/8/34 (H1N1) up to 50%. Furthermore, treatment of mice with VL-01 reduced the cytokine release of IL-α/β, IL-6, MIP-1β, RANTES and TNF-α induced by LPS or highly pathogen avian H5N1 influenza A virus. The present data demonstrates an antiviral effect of VL-01 in vitro and in vivo and the ability to reduce influenza virus induced cytokines and chemokines.
Collapse
Affiliation(s)
- Emanuel Haasbach
- Friedrich-Loeffler-Institut, Institute of Immunology, Paul-Ehrlich Str. 28, 72076 Tuebingen, Germany
| | | | | | | | | | | | | |
Collapse
|
67
|
Yang JR, Lin YC, Huang YP, Su CH, Lo J, Ho YL, Yao CY, Hsu LC, Wu HS, Liu MT. Reassortment and mutations associated with emergence and spread of oseltamivir-resistant seasonal influenza A/H1N1 viruses in 2005-2009. PLoS One 2011; 6:e18177. [PMID: 21483816 PMCID: PMC3069057 DOI: 10.1371/journal.pone.0018177] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/22/2011] [Indexed: 11/18/2022] Open
Abstract
A dramatic increase in the frequency of the H275Y mutation in the neuraminidase (NA), conferring resistance to oseltamivir, has been detected in human seasonal influenza A/H1N1 viruses since the influenza season of 2007-2008. The resistant viruses emerged in the ratio of 14.3% and quickly reached 100% in Taiwan from September to December 2008. To explore the mechanisms responsible for emergence and spread of the resistant viruses, we analyzed the complete genome sequences of 25 viruses collected during 2005-2009 in Taiwan, which were chosen from various clade viruses, 1, 2A, 2B-1, 2B-2, 2C-1 and 2C-2 by the classification of hemagglutinin (HA) sequences. Our data revealed that the dominant variant, clade 2B-1, in the 2007-2008 influenza emerged through an intra-subtype 4+4 reassortment between clade 1 and 2 viruses. The dominant variant acquired additional substitutions, including A206T in HA, H275Y and D354G in NA, L30R and H41P in PB1-F2, and V411I and P453S in basic polymerase 2 (PB2) proteins and subsequently caused the 2008-2009 influenza epidemic in Taiwan, accompanying the widespread oseltamivir-resistant viruses. We also characterized another 3+5 reassortant virus which became double resistant to oseltamivir and amantadine. Comparison of oseltamivir-resistant influenza A/H1N1 viruses belonging to various clades in our study highlighted that both reassortment and mutations were associated with emergence and spread of these viruses and the specific mutation, H275Y, conferring to antiviral resistance, was acquired in a hitch-hiking mechanism during the viral evolutionary processes.
Collapse
Affiliation(s)
- Ji-Rong Yang
- Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Yu-Cheng Lin
- Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Yuan-Pin Huang
- Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Chun-Hui Su
- Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Je Lo
- Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Yu-Lin Ho
- Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Ching-Yuan Yao
- Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Li-Ching Hsu
- Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, Republic of China
| | - Ho-Sheng Wu
- Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, Republic of China
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei, Taiwan, Republic of China
- * E-mail: (H-SW); (M-TL)
| | - Ming-Tsan Liu
- Research and Diagnostic Center, Centers for Disease Control, Taipei, Taiwan, Republic of China
- * E-mail: (H-SW); (M-TL)
| |
Collapse
|
68
|
Preziosi P. Influenza pharmacotherapy: present situation, strategies and hopes. Expert Opin Pharmacother 2011; 12:1523-49. [PMID: 21438743 DOI: 10.1517/14656566.2011.566557] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Influenza is a serious health threat for people of all ages. The causative virus is evolving continuously and the risk of an unexpected mutant, which cannot be controlled by seasonal vaccination, is real. New and more effective antiviral drugs are needed. AREAS COVERED This review examines the antiviral drugs with confirmed efficacy in combating influenza, as well as newer compounds that are currently undergoing testing and will hopefully be marketed in the near future. A comprehensive, state-of-the-art picture of drug therapy for influenza is presented, including novel solutions and effective strategies for prescribing currently available antiviral drugs, with emphasis on the importance of updated local epidemiological data, clinical assessment and laboratory testing. EXPERT OPINION Current anti-influenza drug research is no longer tied solely to viral envelope protein targets like haemagglutinin and neuraminidase. New drugs act on the viral RNA polymerase complex, which is involved in transcription and replication of the viral genome, and can prevent the maturation, replication and dissemination of numerous viral subtypes. Combating this infection and reducing the duration of symptoms also has important socioeconomic implications related to health-care spending (including hospitalization for complications) and sick-leave pay for workers.
Collapse
Affiliation(s)
- Paolo Preziosi
- Emeritus of Pharmacology, Catholic University School of Medicine, Institute of Pharmacology, Largo Francesco Vito, 1 00168 Rome, Italy.
| |
Collapse
|
69
|
Holder BP, Simon P, Liao LE, Abed Y, Bouhy X, Beauchemin CAA, Boivin G. Assessing the in vitro fitness of an oseltamivir-resistant seasonal A/H1N1 influenza strain using a mathematical model. PLoS One 2011; 6:e14767. [PMID: 21455300 PMCID: PMC3063785 DOI: 10.1371/journal.pone.0014767] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 02/15/2011] [Indexed: 01/09/2023] Open
Abstract
In 2007, the A/Brisbane/59/2007 (H1N1) seasonal influenza virus strain acquired the oseltamivir-resistance mutation H275Y in its neuraminidase (NA) gene. Although previous studies had demonstrated that this mutation impaired the replication capacity of the influenza virus in vitro and in vivo, the A/Brisbane/59/2007 H275Y oseltamivir-resistant mutant completely out-competed the wild-type (WT) strain and was, in the 2008–2009 influenza season, the primary A/H1N1 circulating strain. Using a combination of plaque and viral yield assays, and a simple mathematical model, approximate values were extracted for two basic viral kinetics parameters of the in vitro infection. In the ST6GalI-MDCK cell line, the latent infection period (i.e., the time for a newly infected cell to start releasing virions) was found to be 1–3 h for the WT strain and more than 7 h for the H275Y mutant. The infecting time (i.e., the time for a single infectious cell to cause the infection of another one) was between 30 and 80 min for the WT, and less than 5 min for the H275Y mutant. Single-cycle viral yield experiments have provided qualitative confirmation of these findings. These results, though preliminary, suggest that the increased fitness success of the A/Brisbane/59/2007 H275Y mutant may be due to increased infectivity compensating for an impaired or delayed viral release, and are consistent with recent evidence for the mechanistic origins of fitness reduction and recovery in NA expression. The method applied here can reconcile seemingly contradictory results from the plaque and yield assays as two complementary views of replication kinetics, with both required to fully capture a strain's fitness.
Collapse
Affiliation(s)
| | - Philippe Simon
- Infectious Disease Research Centre, CHUQ–CHUL and Laval University, Québec, Québec, Canada
| | - Laura E. Liao
- Department of Physics, Ryerson University, Toronto, Ontario, Canada
| | - Yacine Abed
- Infectious Disease Research Centre, CHUQ–CHUL and Laval University, Québec, Québec, Canada
| | - Xavier Bouhy
- Infectious Disease Research Centre, CHUQ–CHUL and Laval University, Québec, Québec, Canada
| | | | - Guy Boivin
- Infectious Disease Research Centre, CHUQ–CHUL and Laval University, Québec, Québec, Canada
- * E-mail: (CAAB); (GB)
| |
Collapse
|
70
|
Combinatorial effect of two framework mutations (E119V and I222L) in the neuraminidase active site of H3N2 influenza virus on resistance to oseltamivir. Antimicrob Agents Chemother 2011; 55:2942-52. [PMID: 21422222 DOI: 10.1128/aac.01699-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuraminidase (NA) inhibitors (NIs) are the first line of defense against influenza virus. Reverse genetics experiments allow the study of resistance mechanisms by anticipating the impacts of mutations to the virus. To look at the possibility of an increased effect on the resistance phenotype of a combination of framework mutations, known to confer resistance to oseltamivir or zanamivir, with limited effect on virus fitness, we constructed 4 viruses by reverse genetics in the A/Moscow/10/99 H3N2 background containing double mutations in their neuraminidase genes: E119D+I222L, E119V+I222L, D198N+I222L, and H274Y+I222L (N2 numbering). Among the viruses produced, the E119D+I222L mutant virus was not able to grow without bacterial NA complementation and the D198N+I222L mutant and H274Y+I222L mutant were not stable after passages in MDCK cells. The E119V+I222L mutant was stable after five passages in MDCK cells. This E119V-and-I222L combination had a combinatorial effect on oseltamivir resistance. The total NA activity of the E119V+I222L mutant was low (5% compared to that of the wild-type virus). This drop in NA activity resulted from a decreased NA quantity in the virion in comparison to that of the wild-type virus (1.4% of that of the wild type). In MDCK-SIAT1 cells, the E119V+I222L mutant virus did not present a replicative advantage over the wild-type virus, even in the presence of oseltamivir. Double mutations combining two framework mutations in the NA gene still have to be monitored, as they could induce a high level of resistance to NIs, without impairing the NA affinity. Our study allows a better understanding of the diversity of the mechanisms of resistance to NIs.
Collapse
|
71
|
|
72
|
Abstract
The recent H1N1 pandemic that emerged in 2009 has illustrated how swiftly a new influenza virus can circulate the globe. Here we explain the origins of the 2009 pandemic virus, and other twentieth century pandemics. We also consider the impact of the 2009 pandemic in the human population and the use of vaccines and antiviral drugs. Thankfully this outbreak was much less severe than that associated with Spanish flu in 1918. We describe the viral factors that affect virulence of influenza and speculate on the future course of this virus in humans and animals.
Collapse
Affiliation(s)
- Nigel Curtis
- Royal Children's Hosp., Dept. Paediatrics, University of Melbourne, Parkville, 3052 Victoria Australia
| | - Adam Finn
- Institute of Child Life and Health, UBHT Education Centre, University of Bristol, Upper Maudlin Street, Bristol, BS2 8AE United Kingdom
| | - Andrew J. Pollard
- University of Oxford, Level 4,John Radcliffe Hospital, Oxford, OX3 9DU United Kingdom
| |
Collapse
|
73
|
Brookes DW, Miah S, Lackenby A, Hartgroves L, Barclay WS. Pandemic H1N1 2009 influenza virus with the H275Y oseltamivir resistance neuraminidase mutation shows a small compromise in enzyme activity and viral fitness. J Antimicrob Chemother 2010; 66:466-70. [PMID: 21172786 PMCID: PMC3037153 DOI: 10.1093/jac/dkq486] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Resistance to the neuraminidase inhibitor oseltamivir can be conferred by a well-characterized mutation in the neuraminidase gene, H275Y. In human H1N1 viruses that circulated in the first years of the 21st century, this mutation carried a fitness cost and resistant viruses were rare. During the 2007-08 influenza season, oseltamivir-resistant viruses of H1N1 phenotype emerged and predominated. March 2009 saw the emergence of a novel H1N1 influenza pandemic. We examined whether the H275Y mutation affected neuraminidase enzyme activity or replication of the pandemic influenza virus. METHODS Using reverse genetics we engineered the H275Y mutation into the neuraminidase of a 2009 pandemic H1N1 virus and assessed the ability of this enzyme to desialylate mono- and multivalent substrates. The growth kinetics of wild-type and mutant viruses were assessed in Madin-Darby canine kidney (MDCK) and fully differentiated human airway epithelial (HAE) cells. RESULTS The presence of H275Y was associated with a 1.3-fold decrease in the affinity of the neuraminidase for a monovalent substrate and a 4-fold compromise in desialylation of multivalent substrate. This was associated with a fitness cost to viral replication in vitro, which only became apparent during competitive replication in the mucus-rich HAE culture system. CONCLUSIONS The neuraminidase protein of pandemic influenza isolates tolerates the H275Y mutation and this mutation confers resistance to oseltamivir. However, unlike seasonal H1N1 viruses isolated since 2007, the mutation is not associated with any fitness advantage and thus is unlikely to predominate without further antigenic drift, compensating mutations or intense selection pressure.
Collapse
Affiliation(s)
- Daniel W Brookes
- Section of Virology, Faculty of Medicine, Wright Fleming Institute, Imperial College London, Norfolk Place, London W2 1PG, UK
| | | | | | | | | |
Collapse
|
74
|
Iota-carrageenan is a potent inhibitor of influenza A virus infection. PLoS One 2010; 5:e14320. [PMID: 21179403 PMCID: PMC3001860 DOI: 10.1371/journal.pone.0014320] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/18/2010] [Indexed: 01/05/2023] Open
Abstract
The 2009 flu pandemic and the appearance of oseltamivir-resistant H1N1 influenza strains highlight the need for treatment alternatives. One such option is the creation of a protective physical barrier in the nasal cavity. In vitro tests demonstrated that iota-carrageenan is a potent inhibitor of influenza A virus infection, most importantly also of pandemic H1N1/2009 in vitro. Consequently, we tested a commercially available nasal spray containing iota-carrageenan in an influenza A mouse infection model. Treatment of mice infected with a lethal dose of influenza A PR8/34 H1N1 virus with iota-carrageenan starting up to 48 hours post infection resulted in a strong protection of mice similar to mice treated with oseltamivir. Since alternative treatment options for influenza are rare, we conclude that the nasal spray containing iota-carrageenan is an alternative to neuraminidase inhibitors and should be tested for prevention and treatment of influenza A in clinical trials in humans.
Collapse
|
75
|
Ottmann M, Duchamp MB, Casalegno JS, Frobert E, Moulès V, Ferraris O, Valette M, Escuret V, Lina B. Novel influenza A(H1N1) 2009 in vitro reassortant viruses with oseltamivir resistance. Antivir Ther 2010; 15:721-6. [PMID: 20710053 DOI: 10.3851/imp1576] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND With the recent emergence of the novel A(H1N1) virus in 2009, the efficacy of available drugs, such as neuraminidase (NA) inhibitors, is of great concern for good patient care. Influenza viruses are known to be able to acquire resistance. In 2007, A(H1N1) viruses related to A/Brisbane/59/2007 (H1N1) (A[H1N1] Brisbane-like virus), which are naturally resistant to oseltamivir, emerged. Resistance to oseltamivir can be acquired either by spontaneous mutation in the NA (H275Y in N1), or by reassortment with a mutated NA. It is therefore crucial to determine the risk of pandemic A(H1N1) 2009 virus acquiring resistance against oseltamivir by reassortment. METHODS We estimated the capacity of reassortment between the A(H1N1) 2009 virus and an oseltamivir-resistant A(H1N1) Brisbane-like virus by in vitro coinfections of influenza-permissive cells. The screening and the analysis of reassortant viruses was performed by specific reverse transcriptase PCRs and by sequencing. RESULTS Out of 50 analysed reassortant viruses, two harboured the haemagglutinin (HA) segment from the pandemic A(H1N1) 2009 virus and the mutated NA originated from the A(H1N1) Brisbane-like virus. The replicating capacities of these viruses were measured, showing no difference as compared to the two parental strains, suggesting that acquisition of the mutated NA segment did not impair viral fitness in vitro. CONCLUSIONS Our results suggest that the novel A(H1N1) 2009 virus can acquire by in vitro genetic reassortment the H275Y mutated NA segment conferring resistance to oseltamivir.
Collapse
|
76
|
Casalegno JS, Bouscambert-Duchamp M, Caro V, Schuffenecker I, Sabatier M, Traversier A, Valette M, Lina B, Ferraris O, Escuret V. Oseltamivir-resistant influenza A(H1N1) viruses in south of France, 2007/2009. Antiviral Res 2010; 87:242-8. [PMID: 20665943 DOI: 10.1016/j.antiviral.2010.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Influenza A(H1N1) viruses resistant to oseltamivir carboxylate (OC) emerged in 2007/2008 in the absence of antiviral pressure. These OC-resistant A(H1N1) viruses had a better fitness than the sensitive ones as they were 100% prevalent in 2008/2009. To better understand the role of the neuraminidase (NA) affinity in the emergence of these OC-resistant A(H1N1) viruses we compared the NA properties among A(H1N1) clinical isolates in south of France between 2005 and 2009 and reference strains from 1977 to 2007, using NA inhibition assays, kinetic analyses of NA activities, and sequence analysis of viral NA and hemagglutinin (HA). In 2007/2008, among 374 A(H1N1) isolates tested, 38% were resistant to OC with a mean IC50 of 564+/-357 nM. The mean Km of OC-sensitive isolates (H275) was significantly lower (22.6+/- 4.7 microM) than the Km of previous reference strains (44.9+/- 5 microM) and the mean Km of the OC-resistant isolates (Y275) (37.2 +/- 7.7 microM). The combination of different amino acid mutations in N1 particularly the D344N could explain the higher NA affinity of A/Brisbane/59/2007 related variants compared to the previous A(H1N1) strains and the H275Y mutation allowed to retrieve Km values near 40 microM.
Collapse
Affiliation(s)
- Jean-Sébastien Casalegno
- Hospices Civils de Lyon, National Influenza Centre (South of France), Laboratory of Virology - Bât A3, 59 Boulevard Pinel, F-69677 Bron Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Reduced effectiveness of oseltamivir in children infected with oseltamivir-resistant influenza A (H1N1) viruses with His275Tyr mutation. Pediatr Infect Dis J 2010; 29:898-904. [PMID: 20442686 DOI: 10.1097/inf.0b013e3181de9d24] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Little is known about whether neuraminidase inhibitors are effective for children infected with oseltamivir-resistant influenza A(H1N1) viruses. METHODS Children aged 15 years and younger having influenza-like illness and who visited outpatient clinics within 48 hours of fever onset were enrolled from 2006-2007 to 2008-2009 influenza seasons in Japan. Patients received oseltamivir, zanamivir, or no treatment after screening by a rapid antigen test. Nasopharyngeal swabs were collected before antiviral therapy and were used for virus isolation. Oseltamivir resistance was determined by detection of the H275Y mutation in neuraminidase, and susceptibility test using neuraminidase inhibition assay. Daily body temperature was evaluated according to drug type and susceptibility by univariate and multivariate analyses. RESULTS Of 1647 patients screened, 238 oseltamivir-resistant H1N1 cases (87 oseltamivir-treated, 64 zanamivir-treated, and 87 nontreated) and 110 oseltamivir-susceptible cases (60 oseltamivir-treated and 50 nontreated) were evaluated. In oseltamivir-resistant cases, fever on days 4 to 5 after the start of treatment was significantly higher in oseltamivir-treated and nontreated than in zanamivir-treated patients (P < 0.05). In oseltamivir-susceptible cases, fever was significantly lower in oseltamivir-treated than nontreated on days 3 to 6 (P < 0.01). Similar findings were obtained for duration of the fever and proportion of recurrent fever. Reduced effectiveness of oseltamivir was more prominent in children 0 to 6 years old than in those 7 to 15 years old. Multiple logistic regression analysis showed that lower age, nontreatment, and oseltamivir treatment of oseltamivir-resistant patients were factors associated with the duration of the longer fever. CONCLUSIONS Infection with oseltamivir-resistant viruses significantly reduced the effectiveness of oseltamivir, and this tendency was more apparent in younger children.
Collapse
|
78
|
Esposito S, Molteni CG, Daleno C, Valzano A, Fossali E, Da Dalt L, Cecinati V, Bruzzese E, Giacchino R, Giaquinto C, Galeone C, Lackenby A, Principi N. Clinical importance and impact on the households of oseltamivir-resistant seasonal A/H1N1 influenza virus in healthy children in Italy. Virol J 2010; 7:202. [PMID: 20738882 PMCID: PMC2939559 DOI: 10.1186/1743-422x-7-202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 08/26/2010] [Indexed: 11/10/2022] Open
Abstract
A resistance of A/H1N1 influenza viruses to oseltamivir has recently emerged in a number of countries. However, the clinical and socioeconomic importance of this resistance has not been precisely defined. As children have the highest incidence of influenza infection and are at high risk of severe disease, the aim of this study was to evaluate the clinical importance and the impact on the households of oseltamivir-resistant seasonal A/H1N1 influenza virus in an otherwise healthy pediatric population. A total of 4,726 healthy children younger than 15 years with influenza-like illness were tested for influenza viruses by real-time polymerase chain reaction in the winters of 2007-2008 and 2008-2009 in Italy. The influenza A virus-positive samples underwent neuraminidase gene analysis using pyrosequencing to identify mutations H275Y and N294 S in A/H1N1, and E119V, R292K, and N294 S in A/H3N2. Among the A/H1N1 subtypes, the H275Y mutation was found in 2/126 samples taken in 2007-2008 (1.6%) and in all 17 samples (100%; p < 0.0001) taken in 2008-2009. No other mutation was identified in any of the A/H1N1 or A/H3N2 influenza viruses. No significant differences were found in terms of clinical importance or impact on the households between the children with oseltamivir-resistant seasonal A/H1N1 influenza virus and those with the wild-type. The spread of H275Y-mutated A/H1N1 seasonal influenza virus is a common phenomenon and the clinical importance and impact on the households of the mutated virus is similar to that of the wild-type in an otherwise healthy pediatric population.
Collapse
Affiliation(s)
- Susanna Esposito
- Department of Maternal and Pediatric Sciences, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Govorkova EA, Ilyushina NA, Marathe BM, McClaren JL, Webster RG. Competitive fitness of oseltamivir-sensitive and -resistant highly pathogenic H5N1 influenza viruses in a ferret model. J Virol 2010; 84:8042-50. [PMID: 20519385 PMCID: PMC2916532 DOI: 10.1128/jvi.00689-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/24/2010] [Indexed: 11/20/2022] Open
Abstract
The fitness of oseltamivir-resistant highly pathogenic H5N1 influenza viruses has important clinical implications. We generated recombinant human A/Vietnam/1203/04 (VN; clade 1) and A/Turkey/15/06 (TK; clade 2.2) influenza viruses containing the H274Y neuraminidase (NA) mutation, which confers resistance to NA inhibitors, and compared the fitness levels of the wild-type (WT) and resistant virus pairs in ferrets. The VN-H274Y and VN-WT viruses replicated to similar titers in the upper respiratory tract (URT) and caused comparable disease signs, and none of the animals survived. On days 1 to 3 postinoculation, disease signs caused by oseltamivir-resistant TK-H274Y virus were milder than those caused by TK-WT virus, and all animals survived. We then studied fitness by using a novel approach. We coinoculated ferrets with different ratios of oseltamivir-resistant and -sensitive H5N1 viruses and measured the proportion of clones in day-6 nasal washes that contained the H274Y NA mutation. Although the proportion of VN-H274Y clones increased consistently, that of TK-H274Y virus decreased. Mutations within NA catalytic (R292K) and framework (E119A/K, I222L, H274L, and N294S) sites or near the NA enzyme active site (V116I, I117T/V, Q136H, K150N, and A250T) emerged spontaneously (without drug pressure) in both pairs of viruses. The NA substitutions I254V and E276A could exert a compensatory effect on the fitness of VN-H274Y and TK-H274Y viruses. NA enzymatic function was reduced in both drug-resistant H5N1 viruses. These results show that the H274Y NA mutation affects the fitness of two H5N1 influenza viruses differently. Our novel method of assessing viral fitness accounts for both virus-host interactions and virus-virus interactions within the host.
Collapse
Affiliation(s)
- Elena A. Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, The D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia, Department of Pathology, University of Tennessee, Memphis, Tennessee 38105
| | - Natalia A. Ilyushina
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, The D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia, Department of Pathology, University of Tennessee, Memphis, Tennessee 38105
| | - Bindumadhav M. Marathe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, The D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia, Department of Pathology, University of Tennessee, Memphis, Tennessee 38105
| | - Jennifer L. McClaren
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, The D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia, Department of Pathology, University of Tennessee, Memphis, Tennessee 38105
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105-2794, The D. I. Ivanovsky Institute of Virology, Moscow 123098, Russia, Department of Pathology, University of Tennessee, Memphis, Tennessee 38105
| |
Collapse
|
80
|
Duan S, Boltz DA, Seiler P, Li J, Bragstad K, Nielsen LP, Webby RJ, Webster RG, Govorkova EA. Oseltamivir-resistant pandemic H1N1/2009 influenza virus possesses lower transmissibility and fitness in ferrets. PLoS Pathog 2010; 6:e1001022. [PMID: 20686654 PMCID: PMC2912389 DOI: 10.1371/journal.ppat.1001022] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 06/30/2010] [Indexed: 11/29/2022] Open
Abstract
The neuraminidase (NA) inhibitor oseltamivir offers an important immediate option for the control of influenza, and its clinical use has increased substantially during the recent H1N1 pandemic. In view of the high prevalence of oseltamivir-resistant seasonal H1N1 influenza viruses in 2007–2008, there is an urgent need to characterize the transmissibility and fitness of oseltamivir-resistant H1N1/2009 viruses, although resistant variants have been isolated at a low rate. Here we studied the transmissibility of a closely matched pair of pandemic H1N1/2009 clinical isolates, one oseltamivir-sensitive and one resistant, in the ferret model. The resistant H275Y mutant was derived from a patient on oseltamivir prophylaxis and was the first oseltamivir-resistant isolate of the pandemic virus. Full genome sequencing revealed that the pair of viruses differed only at NA amino acid position 275. We found that the oseltamivir-resistant H1N1/2009 virus was not transmitted efficiently in ferrets via respiratory droplets (0/2), while it retained efficient transmission via direct contact (2/2). The sensitive H1N1/2009 virus was efficiently transmitted via both routes (2/2 and 1/2, respectively). The wild-type H1N1/2009 and the resistant mutant appeared to cause a similar disease course in ferrets without apparent attenuation of clinical signs. We compared viral fitness within the host by co-infecting a ferret with oseltamivir-sensitive and -resistant H1N1/2009 viruses and found that the resistant virus showed less growth capability (fitness). The NA of the resistant virus showed reduced substrate-binding affinity and catalytic activity in vitro and delayed initial growth in MDCK and MDCK-SIAT1 cells. These findings may in part explain its less efficient transmission. The fact that the oseltamivir-resistant H1N1/2009 virus retained efficient transmission through direct contact underlines the necessity of continuous monitoring of drug resistance and characterization of possible evolving viral proteins during the pandemic. Most of the currently circulating pandemic H1N1/2009 (“swine”) influenza viruses are susceptible to the anti-influenza drug oseltamivir. Many countries have stockpiled oseltamivir for pandemic preparedness, and to date only a small proportion of the H1N1/2009 viruses isolated have been oseltamivir-resistant. However, if these viruses can be readily transmitted, oseltamivir resistance may spread. We evaluated the transmissibility of a pair of pandemic H1N1/2009 influenza viruses in ferrets. One virus was oseltamivir-sensitive and the other carried the oseltamivir resistance-associated H275Y NA mutation. We also investigated the viruses' susceptibility to NA inhibitors (the drug class to which oseltamivir belongs), their NA enzyme kinetics, and their replication efficiency in cultured cells. Under identical conditions, the resistant H1N1/2009 virus was not transmitted by respiratory droplets but was efficiently transmitted by direct contact, while the sensitive H1N1/2009 virus was efficiently transmitted by both routes.
Collapse
Affiliation(s)
- Susu Duan
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - David A. Boltz
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Patrick Seiler
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jiang Li
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Karoline Bragstad
- National Influenza Laboratory, Department of Virology, Statens Serum Institute, Copenhagen, Denmark
| | - Lars P. Nielsen
- National Influenza Laboratory, Department of Virology, Statens Serum Institute, Copenhagen, Denmark
| | - Richard J. Webby
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Robert G. Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Elena A. Govorkova
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
81
|
Hamelin MÈ, Baz M, Abed Y, Couture C, Joubert P, Beaulieu É, Bellerose N, Plante M, Mallett C, Schumer G, Kobinger GP, Boivin G. Oseltamivir-resistant pandemic A/H1N1 virus is as virulent as its wild-type counterpart in mice and ferrets. PLoS Pathog 2010; 6:e1001015. [PMID: 20661429 PMCID: PMC2908621 DOI: 10.1371/journal.ppat.1001015] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 06/23/2010] [Indexed: 11/22/2022] Open
Abstract
The neuraminidase inhibitor oseltamivir is currently used for treatment of patients infected with the pandemic A/H1N1 (pH1N1) influenza virus, although drug-resistant mutants can emerge rapidly and possibly be transmitted. We describe the characteristics of a pair of oseltamivir-resistant and oseltamivir-susceptible pH1N1 clinical isolates that differed by a single change (H274Y) in the neuraminidase protein. Viral fitness of pH1N1 isolates was assessed in vitro by determining replication kinetics in MDCK α2,6 cells and in vivo by performing experimental infections of BALB/c mice and ferrets. Despite slightly reduced propagation of the mutant isolate in vitro during the first 24 h, the wild-type (WT) and mutant resistant viruses induced similar maximum weight loss in mice and ferrets with an identical pyrexic response in ferrets (AUC of 233.9 and 233.2, P = 0.5156). Similarly, comparable titers were obtained for the WT and the mutant strains on days 1, 3, 6 and 9 post-infection in mouse lungs and on days 1–7 in ferret nasal washes. A more important perivascular (day 6) and pleural (days 6 and 12) inflammation was noted in the lungs of mice infected with the H274Y mutant, which correlated with increased pulmonary levels of IL-6 and KC. Such increased levels of IL-6 were also observed in lymph nodes of ferrets infected with the mutant strain. Furthermore, the H274Y mutant strain was transmitted to ferrets. In conclusion, viral fitness of the H274Y pH1N1 isolate is not substantially altered and has the potential to induce severe disease and to disseminate. During the 2009 pandemic of the novel A/H1N1 (pH1N1) virus, the World Health Organization recommended oseltamivir as first-line agent for treatment of patients with severe infections leading to hospitalization and for those with underlying diseases predisposing to pulmonary complications. Oseltamivir-resistant isolates started to emerge at the end of June 2009 with now more than 100 strains reported worldwide including a few outbreaks where transmission of resistant viruses may have occurred. We characterized the fitness of a pair of oseltamivir-susceptible and oseltamivir-resistant strains emerging from the same familial cluster and that differed by only a single change (H274Y) in the neuraminidase protein. We found that the drug-resistant (mutant) virus was at least as virulent as the drug-susceptible (wild-type) virus in mice and ferrets. Based on these data, we believe that the H274Y pH1N1 mutant strain has the potential to disseminate in the population and to eventually replace the susceptible strain, a phenomenon that has been already observed with seasonal A/Brisbane/59/2007-like (H1N1) viruses.
Collapse
Affiliation(s)
- Marie-Ève Hamelin
- CHUQ-CHUL Research Center in Infectious Diseases and Laval University, Québec City, Québec, Canada
| | - Mariana Baz
- CHUQ-CHUL Research Center in Infectious Diseases and Laval University, Québec City, Québec, Canada
| | - Yacine Abed
- CHUQ-CHUL Research Center in Infectious Diseases and Laval University, Québec City, Québec, Canada
| | - Christian Couture
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | | | | | | | | | - Gregg Schumer
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | | | - Guy Boivin
- CHUQ-CHUL Research Center in Infectious Diseases and Laval University, Québec City, Québec, Canada
- * E-mail:
| |
Collapse
|
82
|
Antiviral susceptibility of avian and swine influenza virus of the N1 neuraminidase subtype. J Virol 2010; 84:9800-9. [PMID: 20660186 DOI: 10.1128/jvi.00296-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses of the N1 neuraminidase (NA) subtype affecting both animals and humans caused the 2009 pandemic. Anti-influenza virus NA inhibitors are crucial early in a pandemic, when specific influenza vaccines are unavailable. Thus, it is urgent to confirm the antiviral susceptibility of the avian viruses, a potential source of a pandemic virus. We evaluated the NA inhibitor susceptibilities of viruses of the N1 subtype isolated from wild waterbirds, swine, and humans. Most avian viruses were highly or moderately susceptible to oseltamivir (50% inhibitory concentration [IC(50)], <5.1 to 50 nM). Of 91 avian isolates, 7 (7.7%) had reduced susceptibility (IC(50), >50 nM) but were sensitive to the NA inhibitors zanamivir and peramivir. Oseltamivir susceptibility ranged more widely among the waterbird viruses (IC(50), 0.5 to 154.43 nM) than among swine and human viruses (IC(50), 0.33 to 2.56 nM). Swine viruses were sensitive to oseltamivir, compared to human seasonal H1N1 isolated before 2007 (mean IC(50), 1.4 nM). Avian viruses from 2007 to 2008 were sensitive to oseltamivir, in contrast to the emergence of resistant H1N1 in humans. Susceptibility remained high to moderate over time among influenza viruses. Sequence analysis of the outliers did not detect molecular markers of drug-resistance (e.g., H275Y NA mutation [N1 numbering]) but revealed mutations outside the NA active site. In particular, V267I, N307D, and V321I residue changes were found, and structural analyses suggest that these mutations distort hydrophobic pockets and affect residues in the NA active site. We determined that natural oseltamivir resistance among swine and wild waterbirds is rare. Minor naturally occurring variants in NA can affect antiviral susceptibility.
Collapse
|
83
|
Assessing the viral fitness of oseltamivir-resistant influenza viruses in ferrets, using a competitive-mixtures model. J Virol 2010; 84:9427-38. [PMID: 20631138 DOI: 10.1128/jvi.00373-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To determine the relative fitness of oseltamivir-resistant strains compared to susceptible wild-type viruses, we combined mathematical modeling and statistical techniques with a novel in vivo "competitive-mixtures" experimental model. Ferrets were coinfected with either pure populations (100% susceptible wild-type or 100% oseltamivir-resistant mutant virus) or mixed populations of wild-type and oseltamivir-resistant influenza viruses (80%:20%, 50%:50%, and 20%:80%) at equivalent infectivity titers, and the changes in the relative proportions of those two viruses were monitored over the course of the infection during within-host and over host-to-host transmission events in a ferret contact model. Coinfection of ferrets with mixtures of an oseltamivir-resistant R292K mutant A(H3N2) virus and a R292 oseltamivir-susceptible wild-type virus demonstrated that the R292K mutant virus was rapidly outgrown by the R292 wild-type virus in artificially infected donor ferrets and did not transmit to any of the recipient ferrets. The competitive-mixtures model was also used to investigate the fitness of the seasonal A(H1N1) oseltamivir-resistant H274Y mutant and showed that within infected ferrets the H274Y mutant virus was marginally outgrown by the wild-type strain but demonstrated equivalent transmissibility between ferrets. This novel in vivo experimental method and accompanying mathematical analysis provide greater insight into the relative fitness, both within the host and between hosts, of two different influenza virus strains compared to more traditional methods that infect ferrets with only pure populations of viruses. Our statistical inferences are essential for the development of the next generation of mathematical models of the emergence and spread of oseltamivir-resistant influenza in human populations.
Collapse
|
84
|
Ujike M, Shimabukuro K, Mochizuki K, Obuchi M, Kageyama T, Shirakura M, Kishida N, Yamashita K, Horikawa H, Kato Y, Fujita N, Tashiro M, Odagiri T. Oseltamivir-resistant influenza viruses A (H1N1) during 2007-2009 influenza seasons, Japan. Emerg Infect Dis 2010; 16:926-35. [PMID: 20507742 PMCID: PMC3086245 DOI: 10.3201/eid1606.091623] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prevalence of these viruses increased during the 2008–09 season. To monitor oseltamivir-resistant influenza viruses A (H1N1) (ORVs) with H275Y in neuraminidase (NA) in Japan during 2 influenza seasons, we analyzed 3,216 clinical samples by NA sequencing and/or NA inhibition assay. The total frequency of ORVs was 2.6% (45/1,734) during the 2007–08 season and 99.7% (1,477/1,482) during the 2008–09 season, indicating a marked increase in ORVs in Japan during 1 influenza season. The NA gene of ORVs in the 2007–08 season fell into 2 distinct lineages by D354G substitution, whereas that of ORVs in the 2008–09 season fell into 1 lineage. NA inhibition assay and M2 sequencing showed that almost all the ORVs were sensitive to zanamivir and amantadine. The hemagglutination inhibition test showed that ORVs were antigenetically similar to the 2008–09 vaccine strain A/Brisbane/59/2007. Our data indicate that the current vaccine or zanamivir and amantadine are effective against recent ORVs, but continuous surveillance remains necessary.
Collapse
Affiliation(s)
- Makoto Ujike
- National Institute of Infectious Diseases, Musashi-Murayama, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Bloom JD, Gong LI, Baltimore D. Permissive secondary mutations enable the evolution of influenza oseltamivir resistance. Science 2010; 328:1272-5. [PMID: 20522774 PMCID: PMC2913718 DOI: 10.1126/science.1187816] [Citation(s) in RCA: 520] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The His274-->Tyr274 (H274Y) mutation confers oseltamivir resistance on N1 influenza neuraminidase but had long been thought to compromise viral fitness. However, beginning in 2007-2008, viruses containing H274Y rapidly became predominant among human seasonal H1N1 isolates. We show that H274Y decreases the amount of neuraminidase that reaches the cell surface and that this defect can be counteracted by secondary mutations that also restore viral fitness. Two such mutations occurred in seasonal H1N1 shortly before the widespread appearance of H274Y. The evolution of oseltamivir resistance was therefore enabled by "permissive" mutations that allowed the virus to tolerate subsequent occurrences of H274Y. An understanding of this process may provide a basis for predicting the evolution of oseltamivir resistance in other influenza strains.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Antiviral Agents/pharmacology
- Cell Line
- Cell Line, Tumor
- Cell Membrane/metabolism
- Drug Resistance, Viral/genetics
- Evolution, Molecular
- Genes, Viral
- Genetic Fitness
- Humans
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/growth & development
- Influenza, Human/drug therapy
- Influenza, Human/virology
- Mutation
- Neuraminidase/antagonists & inhibitors
- Neuraminidase/chemistry
- Neuraminidase/genetics
- Neuraminidase/metabolism
- Oseltamivir/pharmacology
- Phylogeny
- Selection, Genetic
Collapse
Affiliation(s)
- Jesse D. Bloom
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lizhi Ian Gong
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - David Baltimore
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
86
|
Matsuzaki Y, Mizuta K, Aoki Y, Suto A, Abiko C, Sanjoh K, Sugawara K, Takashita E, Itagaki T, Katsushima Y, Ujike M, Obuchi M, Odagiri T, Tashiro M. A two-year survey of the oseltamivir-resistant influenza A(H1N1) virus in Yamagata, Japan and the clinical effectiveness of oseltamivir and zanamivir. Virol J 2010; 7:53. [PMID: 20202225 PMCID: PMC2847566 DOI: 10.1186/1743-422x-7-53] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 03/05/2010] [Indexed: 12/18/2022] Open
Abstract
Background Oseltamivir is the preferred antiviral drug for influenza, but oseltamivir-resistant A(H1N1) viruses have circulated worldwide since the 2007-2008 influenza season. We aimed to determine the rate of oseltamivir resistance among A(H1N1) isolates from Yamagata, Japan, to compare the virological characteristics between isolates from the 2007-2008 and 2008-2009 seasons, and to evaluate the clinical effectiveness of oseltamivir. Results Oseltamivir resistance, determined by detecting the H275Y mutation in the neuraminidase (NA) gene, was observed in 2.5% (2 of 79) and 100% (77 of 77) of isolates from the 2007-2008 and 2008-2009 seasons, respectively. Antigenic analysis suggested that antigenically different variants of A(H1N1) viruses circulated in the 2008-2009 season. Growth testing demonstrated that the ability of the 2008-2009 isolates to replicate in MDCK cells was similar to those of the oseltamivir-susceptible isolates from the 2007-2008 season. A phylogenetic analysis revealed that two oseltamivir-resistant viruses isolated in the 2007-2008 season were closely related to other oseltamivir-susceptible viruses in Yamagata but were different from oseltamivir-resistant viruses isolated in Europe and North America in the 2007-2008 season. The oseltamivir-resistant viruses isolated in Japan in the 2008-2009 season were phylogenetically similar to oseltamivir-resistant isolates from Europe and North America during the 2007-2008 season. Furthermore, the median duration of fever after the start of oseltamivir treatment was significantly longer in oseltamivir-resistant cases (2 days; range 1-6 days) than in oseltamivir-susceptible cases (1.5 days: range 1-2 days) (P = 0.0356). Conclusion Oseltamivir-resistant A(H1N1) isolates from Yamagata in the 2007-2008 season might have acquired resistance through the use of oseltamivir, and the 2008-2009 oseltamivir-resistant isolates might have been introduced into Japan and circulated throughout the country. Influenza surveillance to monitor oseltamivir-resistance would aid clinicians in determining an effective antiviral treatment strategy.
Collapse
Affiliation(s)
- Yoko Matsuzaki
- Course of Clinical Nursing, Yamagata University Faculty of Medicine, Yamagata 990-9585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Genetic makeup of amantadine-resistant and oseltamivir-resistant human influenza A/H1N1 viruses. J Clin Microbiol 2010; 48:1085-92. [PMID: 20129961 DOI: 10.1128/jcm.01532-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the population.
Collapse
|
88
|
Holmes EC. Evolution in health and medicine Sackler colloquium: The comparative genomics of viral emergence. Proc Natl Acad Sci U S A 2010; 107 Suppl 1:1742-6. [PMID: 19858482 PMCID: PMC2868293 DOI: 10.1073/pnas.0906193106] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RNA viruses are the main agents of emerging and re-emerging diseases. It is therefore important to reveal the evolutionary processes that underpin their ability to jump species boundaries and establish themselves in new hosts. Here, I discuss how comparative genomics can contribute to this endeavor. Arguably the most important evolutionary process in RNA virus evolution, abundant mutation, may even open up avenues for their control through "lethal mutagenesis." Despite this remarkable mutational power, adaptation to diverse host species remains a major adaptive challenge, such that the most common outcome of host jumps are short-term "spillover" infections. A powerful case study of the utility of genomic approaches to studies of viral evolution and emergence is provided by influenza virus and brought into sharp focus by the ongoing epidemic of swine-origin H1N1 influenza A virus (A/H1N1pdm). Research here reveals a marked lack of surveillance of influenza viruses in pigs, coupled with the possibility of cryptic transmission before the first reported human cases, such that the exact genesis of A/H1N1pdm (where, when, how) is uncertain.
Collapse
Affiliation(s)
- Edward C Holmes
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
89
|
Gerloff NA, Kremer JR, Mossong J, Opp M, Muller CP. Genomic diversity of oseltamivir-resistant influenza virus A (H1N1), Luxembourg, 2007-08. Emerg Infect Dis 2010; 15:1523-4. [PMID: 19788831 PMCID: PMC2819849 DOI: 10.3201/eid1509.090452] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
90
|
Zahariadis G, Joffe AR, Talbot J, Devilliers A, Campbell P, Pabbaraju K, Wong S, Bastien N, Li Y, Mitchell RL, Pang XL, Yanow S, Chui L, Predy G, Willans D, Lee BE, Preiksaitis JK, Clement B, Jacobs A, Jaipaul J, Fonseca K. Identification and epidemiology of severe respiratory disease due to novel swine-origin influenza A (H1N1) virus infection in Alberta. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2010; 21:e151-7. [PMID: 22132007 PMCID: PMC3009582 DOI: 10.1155/2010/293098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND In March 2009, global surveillance started detecting cases of influenza-like illness in Mexico. By mid-April 2009, two pediatric patients were identified in the United States who were confirmed to be infected by a novel influenza A (H1N1) strain. The present article describes the first identified severe respiratory infection and the first death associated with pandemic H1N1 (pH1N1) in Canada. METHODS Enhanced public health and laboratory surveillance for pH1N1 was implemented throughout Alberta on April 24, 2009. Respiratory specimens from all patients with a respiratory illness and travel history or those presenting with a severe respiratory infection requiring hospitalization underwent screening for respiratory viruses using molecular methods. For the first severe case identified and the first death due to pH1N1, histocompatibility leukocyte antigens were compared by molecular methods. RESULTS The first death (a 39-year-old woman) occurred on April 28, 2009, and on May 1, 2009, a 10-year-old child presented with severe respiratory distress due to pH1N1. Both patients had no travel or contact with anyone who had travelled to Mexico; the cases were not linked. Histocompatibility antigen comparison of both patients did not identify any notable similarity. pH1N1 strains identified in Alberta did not differ from the Mexican strain. CONCLUSION Rapid transmission of pH1N1 continued to occur in Alberta following the first death and the first severe respiratory infection in Canada, which were identified without any apparent connection to Mexico or the United States. Contact tracing follow-up suggested that oseltamivir may have prevented ongoing transmission of pH1N1.
Collapse
|
91
|
Detection of influenza A H1N1 and H3N2 mutations conferring resistance to oseltamivir using rolling circle amplification. Antiviral Res 2009; 84:242-8. [DOI: 10.1016/j.antiviral.2009.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 09/02/2009] [Accepted: 09/22/2009] [Indexed: 01/09/2023]
|
92
|
|
93
|
Abstract
The increasing availability of complete genome sequences of RNA viruses has the potential to shed new light on fundamental aspects of their biology. Here, I use case studies of 3 RNA viruses to explore the impact of genomic sequence data, with particular emphasis on influenza A virus. Notably, the studies of RNA virus genomics undertaken to date largely focused on issues of evolution and epidemiology, and they have given these disciplines new impetus. However, genomic data have so far made fewer inroads into areas of more direct importance for disease, prevention, and control; thus, harnessing their full potential remains an important goal.
Collapse
Affiliation(s)
- Edward C Holmes
- Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
94
|
Structural basis for oseltamivir resistance of influenza viruses. Vaccine 2009; 27:6317-23. [DOI: 10.1016/j.vaccine.2009.07.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/02/2009] [Indexed: 11/20/2022]
|
95
|
Why are oseltamivir and zanamivir effective against the newly emerged influenza A virus (A/H1N1)? Cell Res 2009; 19:1221-4. [PMID: 19770846 PMCID: PMC7091778 DOI: 10.1038/cr.2009.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
96
|
Deyde VM, Gubareva LV. Influenza genome analysis using pyrosequencing method: current applications for a moving target. Expert Rev Mol Diagn 2009; 9:493-509. [PMID: 19580433 DOI: 10.1586/erm.09.21] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pyrosequencing is a high-throughput non-gel-based DNA sequencing method that was introduced in the late 1990s. It employs a DNA sequencing-by-synthesis approach based on real-time measurement of pyrophosphate released from incorporation of dNTPs. A cascade of enzymatic reactions proportionally converts the pyrophosphate to a light signal recorded in a form of peaks, known as pyrograms. Routinely, a 45-60-nucleotide sequence is obtained per reaction. Recent improvements introduced in the assay chemistry have extended the read to approximately 100 nucleotides. Since its advent, pyrosequencing has been applied in the fields of microbiology, molecular biology and pharmacogenomics. The pyrosequencing approach was first applied to analysis of influenza genome in 2005, when it played a critical role in the timely detection of an unprecedented rise in resistance to the adamantane class of anti-influenza drugs. More recently, pyrosequencing was successfully applied for monitoring the emergence and spread of influenza A (H1N1) virus resistance to oseltamivir, a newer anti-influenza drug. The present report summarizes known applications of the pyrosequencing approach for influenza genome analysis with an emphasis on drug-resistance detection.
Collapse
Affiliation(s)
- Varough M Deyde
- Virus Surveillance and Diagnosis Branch, Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Mail Stop G-16, 1600 Clifton Road, Atlanta, GA 30333, USA
| | | |
Collapse
|
97
|
Ciblak MA, Hasoksuz M, Escuret V, Valette M, Gul F, Yilmaz H, Turan N, Bozkaya E, Badur S. Surveillance and oseltamivir resistance of human influenza a virus in Turkey during the 2007-2008 season. J Med Virol 2009; 81:1645-51. [PMID: 19626608 DOI: 10.1002/jmv.21546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Monitoring the activity of influenza viruses is important for establishing the circulating types and for detection of the emergence of novel sub-types and antiviral resistant strains. This is the first report from Turkey on the surveillance and oseltamivir resistance of influenza viruses in 2007-2008. Five hundred twenty-four nasal swabs were tested from different geographical regions in Turkey during November 2007-April 2008. One hundred sixty-three (31%) samples were positive for influenza viruses of which 111 (68%) were influenza A, 52 (31%) influenza B using an immuno-capture ELISA. Forty isolates were selected at random from influenza A positive samples and grown in MDCK cell cultures. The supernatant of the cell cultures was used for RNA extraction followed by RT-PCR to detect the sub-types. Sub-typing revealed all samples as A/H1N1. The N1 gene segment of 30 A/H1N1 samples was sequenced in part, from the 201st to 365th residue, which included the critical region for oseltamivir resistance. Then resulting sequences were analyzed with oseltamivir sensitive and resistant strains obtained from National Center for Biotechnology Information (NCBI) GenBank by CLC Main Workbench Software. H275Y (H274Y according to N2 numbering) mutation, which is known to confer resistance to oseltamivir, was detected in 6 out of 30 (20%) H1N1 isolates from four cities (Istanbul, Bursa, Ankara, and Izmir). The D354G mutation was observed in all oseltamivir resistant H1N1 isolates but not in the oseltamivir sensitive isolates. Assay of neuraminidase activity revealed that these isolates were resistant to oseltamivir, but sensitive to zanamivir.
Collapse
Affiliation(s)
- Meral Akcay Ciblak
- Istanbul Faculty of Medicine, Department of Microbiology and Clinical Microbiology, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Eshaghi A, Blair J, Burton L, Choi KW, De Lima C, McGeer AA, Low DE, Mazzulli T, Drews SJ. Infection with H274Y-positive influenza A (H1N1) is not associated with a change in nasopharyngeal Streptococcus pneumoniae colonization in patients. Int J Infect Dis 2009; 13:e321-2. [DOI: 10.1016/j.ijid.2008.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/10/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022] Open
|
99
|
Meijer A, Lackenby A, Hungnes O, Lina B, van-der-Werf S, Schweiger B, Opp M, Paget J, van-de-Kassteele J, Hay A, Zambon M. Oseltamivir-resistant influenza virus A (H1N1), Europe, 2007-08 season. Emerg Infect Dis 2009. [PMID: 19331731 PMCID: PMC2671453 DOI: 10.3201/eid1504.081280] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Europe, the 2007-08 winter season was dominated by influenza virus A (H1N1) circulation through week 7, followed by influenza B virus from week 8 onward. Oseltamivir-resistant influenza viruses A (H1N1) (ORVs) with H275Y mutation in the neuraminidase emerged independently of drug use. By country, the proportion of ORVs ranged from 0% to 68%, with the highest proportion in Norway. The average weighted prevalence of ORVs across Europe increased gradually over time, from near 0 in week 40 of 2007 to 56% in week 19 of 2008 (mean 20%). Neuraminidase genes of ORVs possessing the H275Y substitution formed a homogeneous subgroup closely related to, but distinguishable from, those of oseltamivir-sensitive influenza viruses A (H1N1). Minor variants of ORVs emerged independently, indicating multiclonal ORVs. Overall, the clinical effect of ORVs in Europe, measured by influenza-like illness or acute respiratory infection, was unremarkable and consistent with normal seasonal activity.
Collapse
Affiliation(s)
- Adam Meijer
- Netherlands Institute for Health Services Research, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Meijer A, Lackenby A, Hungnes O, Lina B, van-der-Werf S, Schweiger B, Opp M, Paget J, van-de-Kassteele J, Hay A, Zambon M. Oseltamivir-resistant influenza virus A (H1N1), Europe, 2007-08 season. Emerg Infect Dis 2009; 15:552-60. [PMID: 19331731 DOI: 10.3201/eid1504.181280] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In Europe, the 2007-08 winter season was dominated by influenza virus A (H1N1) circulation through week 7, followed by influenza B virus from week 8 onward. Oseltamivir-resistant influenza viruses A (H1N1) (ORVs) with H275Y mutation in the neuraminidase emerged independently of drug use. By country, the proportion of ORVs ranged from 0% to 68%, with the highest proportion in Norway. The average weighted prevalence of ORVs across Europe increased gradually over time, from near 0 in week 40 of 2007 to 56% in week 19 of 2008 (mean 20%). Neuraminidase genes of ORVs possessing the H275Y substitution formed a homogeneous subgroup closely related to, but distinguishable from, those of oseltamivir-sensitive influenza viruses A (H1N1). Minor variants of ORVs emerged independently, indicating multiclonal ORVs. Overall, the clinical effect of ORVs in Europe, measured by influenza-like illness or acute respiratory infection, was unremarkable and consistent with normal seasonal activity.
Collapse
Affiliation(s)
- Adam Meijer
- Netherlands Institute for Health Services Research, Utrecht, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|