51
|
Neutralization efficiency is greatly enhanced by bivalent binding of an antibody to epitopes in the V4 region and the membrane-proximal external region within one trimer of human immunodeficiency virus type 1 glycoproteins. J Virol 2010; 84:7114-23. [PMID: 20463081 DOI: 10.1128/jvi.00545-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Most antibodies are multivalent, with the potential to bind with high avidity. However, neutralizing antibodies commonly bind to virions monovalently. Bivalent binding of a monoclonal antibody (MAb) to a virion has been documented only in a single case. Thus, the role of high avidity in antibody-mediated neutralization of viruses has not been defined clearly. In this study, we demonstrated that when an artificial 2F5 epitope was inserted in the gp120 V4 region so that an HIV-1 envelope glycoprotein (Env) trimer contains a natural 2F5 epitope in the gp41 membrane-proximal envelope region (MPER) and an artificially engineered 2F5 epitope in the gp120 V4 region, bivalent 2F5 IgG achieved greatly enhanced neutralization efficiency, with a 50% inhibitory concentration (IC(50)) decrease over a 2-log scale. In contrast, the monovalent 2F5 Fab fragment did not exhibit any appreciable change in neutralization efficiency in the same context. These results demonstrate that bivalent binding of 2F5 IgG to a single HIV-1 Env trimer results in dramatic enhancement of neutralization, probably through an increase in binding avidity. Furthermore, we demonstrated that bivalent binding of MAb 2F5 to the V4 region and MPER of an HIV-1 Env trimer can be achieved only in a specific configuration, providing an important insight into the structure of a native/infectious HIV-1 Env trimer. This specific binding configuration also establishes a useful standard that can be applied to evaluate the biological relevance of structural information on the HIV-1 Env trimer.
Collapse
|
52
|
Nakamura KJ, Gach JS, Jones L, Semrau K, Walter J, Bibollet-Ruche F, Decker JM, Heath L, Decker WD, Sinkala M, Kankasa C, Thea D, Mullins J, Kuhn L, Zwick MB, Aldrovandi GM. 4E10-resistant HIV-1 isolated from four subjects with rare membrane-proximal external region polymorphisms. PLoS One 2010; 5:e9786. [PMID: 20352106 PMCID: PMC2843716 DOI: 10.1371/journal.pone.0009786] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/10/2010] [Indexed: 11/19/2022] Open
Abstract
Human antibody 4E10 targets the highly conserved membrane-proximal external region (MPER) of the HIV-1 transmembrane glycoprotein, gp41, and has extraordinarily broad neutralizing activity. It is considered by many to be a prototype for vaccine development. In this study, we describe four subjects infected with viruses carrying rare MPER polymorphisms associated with resistance to 4E10 neutralization. In one case resistant virus carrying a W680G substitution was transmitted from mother to infant. We used site-directed mutagenesis to demonstrate that the W680G substitution is necessary for conferring the 4E10-resistant phenotype, but that it is not sufficient to transfer the phenotype to a 4E10-sensitive Env. Our third subject carried Envs with a W680R substitution causing variable resistance to 4E10, indicating that residues outside the MPER are required to confer the phenotype. A fourth subject possessed a F673L substitution previously associated with 4E10 resistance. For all three subjects with W680 polymorphisms, we observed additional residues in the MPER that co-varied with position 680 and preserved charged distributions across this region. Our data provide important caveats for vaccine development targeting the MPER. Naturally occurring Env variants described in our study also represent unique tools for probing the structure-function of HIV-1 envelope.
Collapse
Affiliation(s)
- Kyle J. Nakamura
- Department of Pediatrics, Childrens Hospital of Los Angeles, Los Angeles, California, United States of America
- Systems Biology and Disease Program, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Johannes S. Gach
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Laura Jones
- Department of Pediatrics, Childrens Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Katherine Semrau
- Center for International Health and Development, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Jan Walter
- Department of Pediatrics, Childrens Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Frederic Bibollet-Ruche
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Julie M. Decker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Laura Heath
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - William D. Decker
- Department of Pediatrics, Childrens Hospital of Los Angeles, Los Angeles, California, United States of America
| | - Moses Sinkala
- Lusaka District Health Management Team, Lusaka, Zambia
| | - Chipepo Kankasa
- University Teaching Hospital, University of Zambia, Lusaka, Zambia
| | - Donald Thea
- Center for International Health and Development, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - James Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Louise Kuhn
- Department of Epidemiology, Columbia University, New York, New York, United States of America
| | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Grace M. Aldrovandi
- Department of Pediatrics, Childrens Hospital of Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
53
|
A V3 loop-dependent gp120 element disrupted by CD4 binding stabilizes the human immunodeficiency virus envelope glycoprotein trimer. J Virol 2010; 84:3147-61. [PMID: 20089638 DOI: 10.1128/jvi.02587-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) entry into cells is mediated by a trimeric complex consisting of noncovalently associated gp120 (exterior) and gp41 (transmembrane) envelope glycoproteins. The binding of gp120 to receptors on the target cell alters the gp120-gp41 relationship and activates the membrane-fusing capacity of gp41. Interaction of gp120 with the primary receptor, CD4, results in the exposure of the gp120 third variable (V3) loop, which contributes to binding the CCR5 or CXCR4 chemokine receptors. We show here that insertions in the V3 stem or polar substitutions in a conserved hydrophobic patch near the V3 tip result in decreased gp120-gp41 association (in the unliganded state) and decreased chemokine receptor binding (in the CD4-bound state). Subunit association and syncytium-forming ability of the envelope glycoproteins from primary HIV-1 isolates were disrupted more by V3 changes than those of laboratory-adapted HIV-1 envelope glycoproteins. Changes in the gp120 beta2, beta19, beta20, and beta21 strands, which evidence suggests are proximal to the V3 loop in unliganded gp120, also resulted in decreased gp120-gp41 association. Thus, a gp120 element composed of the V3 loop and adjacent beta strands contributes to quaternary interactions that stabilize the unliganded trimer. CD4 binding dismantles this element, altering the gp120-gp41 relationship and rendering the hydrophobic patch in the V3 tip available for chemokine receptor binding.
Collapse
|
54
|
Abstract
The structure of the human immunodeficiency virus (HIV) and some of its components have been difficult to study in three-dimensions (3D) primarily because of their intrinsic structural variability. Recent advances in cryoelectron tomography (cryo-ET) have provided a new approach for determining the 3D structures of the intact virus, the HIV capsid, and the envelope glycoproteins located on the viral surface. A number of cryo-ET procedures related to specimen preservation, data collection, and image processing are presented in this chapter. The techniques described herein are well suited for determining the ultrastructure of bacterial and viral pathogens and their associated molecular machines in situ at nanometer resolution.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, Texas, USA
| | | | | |
Collapse
|
55
|
|
56
|
Tilton JC, Doms RW. Entry inhibitors in the treatment of HIV-1 infection. Antiviral Res 2009; 85:91-100. [PMID: 19683546 DOI: 10.1016/j.antiviral.2009.07.022] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 07/21/2009] [Accepted: 07/30/2009] [Indexed: 11/15/2022]
Abstract
Infection of target cells by HIV is a complex, multi-stage process involving attachment to host cells and CD4 binding, coreceptor binding, and membrane fusion. Drugs that block HIV entry are collectively known as entry inhibitors, but comprise a complex group of drugs with multiple mechanisms of action depending on the stage of the entry process at which they act. Two entry inhibitors, maraviroc and enfuvirtide, have been approved for the treatment of HIV-1 infection, and a number of agents are in development. This review covers the entry inhibitors and their use in the management of HIV-1 infection. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- John C Tilton
- Department of Microbiology, University of Pennsylvania, 301C Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
57
|
Bartesaghi A, Subramaniam S. Membrane protein structure determination using cryo-electron tomography and 3D image averaging. Curr Opin Struct Biol 2009; 19:402-7. [PMID: 19646859 PMCID: PMC2752674 DOI: 10.1016/j.sbi.2009.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
Abstract
The vast majority of membrane protein complexes of biological interest cannot be purified to homogeneity, or removed from a physiologically relevant context without loss of function. It is therefore not possible to easily determine the 3D structures of these protein complexes using X-ray crystallography or conventional cryo-electron microscopy. Newly emerging methods that combine cryo-electron tomography with 3D image classification and averaging are, however, beginning to provide unique opportunities for in situ determination of the structures of membrane protein assemblies in intact cells and nonsymmetric viruses. Here we review recent progress in this field and assess the potential of these methods to describe the conformation of membrane proteins in their native environment.
Collapse
Affiliation(s)
- Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
58
|
Apellániz B, Nir S, Nieva JL. Distinct mechanisms of lipid bilayer perturbation induced by peptides derived from the membrane-proximal external region of HIV-1 gp41. Biochemistry 2009; 48:5320-31. [PMID: 19449801 DOI: 10.1021/bi900504t] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The conserved, membrane-proximal external region (MPER) of the human immunodeficiency virus type-1 envelope glycoprotein 41 subunit is required for fusogenic activity. It has been proposed that MPER functions by disrupting the virion membrane. Supporting its critical role in viral entry as a membrane-bound entity, MPER constitutes the target for broadly neutralizing antibodies that have evolved mechanisms to recognize membrane-inserted epitopes. We have analyzed here the molecular mechanisms of membrane permeabilization induced by N-preTM and PreTM-C, two peptides derived from MPER sequences showing a tendency to associate with the bilayer interface or to transfer into the hydrocarbon core, respectively. Both peptides contained the full epitope sequence recognized by the 4E10 monoclonal antibody (MAb4E10), which was subsequently used to probe peptide accessibility from the water phase. Capacities of N-preTM and PreTM-C for associating with vesicles and inducing their permeabilization were comparable. However, MAb4E10 specifically blocked the permeabilization induced by N-preTM but did not appreciably affect that induced by PreTM-C. Supporting the existence of different membrane-bound lytic structures, N-preTM was running as a monomer on SDS-PAGE and induced the graded release of vesicular contents, whereas PreTM-C migrated on SDS-PAGE as dimers and permeabilized vesicles following an all-or-none mechanism, reminiscent of that underlying melittin-induced membrane lysis. These results support the functional segmentation of gp41 membrane regions into hydrophobic subdomains, which might expose neutralizing epitopes and induce membrane-disrupting effects following distinct patterns during the fusion cascade.
Collapse
Affiliation(s)
- Beatriz Apellániz
- Unidad de Biofisica (CSIC-UPV/EHU) and Departamento de Bioquimica, Universidad del Pais Vasco, Aptdo. 644, 48080 Bilbao, Spain
| | | | | |
Collapse
|
59
|
Cryo-electron tomography in biology and medicine. Ann Anat 2009; 191:427-45. [PMID: 19559584 DOI: 10.1016/j.aanat.2009.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 12/16/2022]
Abstract
During the last six decades electron microscopy (EM) has been essential to ultra-structural studies of the cell to understand the fundamentals of cellular morphology and processes underlying diseases. More recently, electron tomography (ET) has emerged as a novel approach able to provide three-dimensional (3D) information on cells and tissues at molecular level. Electron tomography is comparable to medical tomographic techniques like CAT, PET and MRI in the sense that it provides a 3D view of an object, yet it does so at a cellular scale and with nanometer resolution. Electron tomography has the unique ability to visualize molecular assemblies, cytoskeletal elements and organelles within cells. The three-dimensional perspective it provides has revised our understanding of cellular organization and its relation with morphological changes in normal development and disease. Cryo-electron tomography of vitrified samples at cryogenic temperatures combines excellent structural preservation with direct high-resolution imaging. The use of cryo-preparation and imaging techniques eliminates artifacts induced by plastic embedding and staining of the samples is circumvented. This review describes the technique of cryo-electron tomography, its basic principles, cryo-specimen preparation, tomographic data acquisition and image processing. A number of illustrative examples ranging from whole cells, cytoskeletal filaments, viruses and organelles are presented along with a comprehensive list of research articles employing cryo-electron tomography as the key ultrastuctural technique.
Collapse
|
60
|
Song L, Sun ZYJ, Coleman KE, Zwick MB, Gach JS, Wang JH, Reinherz EL, Wagner G, Kim M. Broadly neutralizing anti-HIV-1 antibodies disrupt a hinge-related function of gp41 at the membrane interface. Proc Natl Acad Sci U S A 2009; 106:9057-62. [PMID: 19458040 PMCID: PMC2690059 DOI: 10.1073/pnas.0901474106] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Indexed: 12/13/2022] Open
Abstract
A vaccine capable of stimulating protective antiviral antibody responses is needed to curtail the global AIDS epidemic caused by HIV-1. Although rarely elicited during the course of natural infection or upon conventional vaccination, the membrane-proximal ectodomain region (MPER) of the HIV-1 glycoprotein of M(r) 41,000 (gp41) envelope protein subunit is the target of 3 such human broadly neutralizing antibodies (BNAbs): 4E10, 2F5, and Z13e1. How these BNAbs bind to their lipid-embedded epitopes and mediate antiviral activity is unclear, but such information might offer important insight into a worldwide health imperative. Here, EPR and NMR techniques were used to define the manner in which these BNAbs differentially recognize viral membrane-encrypted residues configured within the L-shaped helix-hinge-helix MPER segment. Two distinct modes of antibody-mediated interference of viral infection were identified. 2F5, like 4E10, induces large conformational changes in the MPER relative to the membrane. However, although 4E10 straddles the hinge and extracts residues W672 and F673, 2F5 lifts up residues N-terminal to the hinge region, exposing L669 and W670. In contrast, Z13e1 effects little change in membrane orientation or conformation, but rather immobilizes the MPER hinge through extensive rigidifying surface contacts. Thus, BNAbs disrupt HIV-1 MPER fusogenic functions critical for virus entry into human CD4 T cells and macrophages either by preventing hinge motion or by perturbing MPER orientation. HIV-1 MPER features important for targeted vaccine design have been revealed, the implications of which extend to BNAb targets on other viral fusion proteins.
Collapse
Affiliation(s)
- Likai Song
- Cancer Vaccine Center and
- Departments of Medicine
| | | | | | - Michael B. Zwick
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Johannes S. Gach
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Jia-huai Wang
- Laboratory of Immunobiology and Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA 02115
- Biological Chemistry and Molecular Pharmacology, and
- Pediatrics Harvard Medical School, Boston, MA 02115; and
| | - Ellis L. Reinherz
- Cancer Vaccine Center and
- Laboratory of Immunobiology and Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA 02115
- Departments of Medicine
| | | | - Mikyung Kim
- Laboratory of Immunobiology and Department of Medical Oncology, Dana–Farber Cancer Institute, Boston, MA 02115
- Departments of Medicine
| |
Collapse
|
61
|
Winkler H, Zhu P, Liu J, Ye F, Roux KH, Taylor KA. Tomographic subvolume alignment and subvolume classification applied to myosin V and SIV envelope spikes. J Struct Biol 2009; 165:64-77. [PMID: 19032983 PMCID: PMC2656979 DOI: 10.1016/j.jsb.2008.10.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/12/2008] [Accepted: 10/09/2008] [Indexed: 11/28/2022]
Abstract
Electron tomography is a technique for three-dimensional reconstruction, that is widely used for imaging macromolecules, macromolecular assemblies or whole cells. Combined with cryo-electron microscopy, it is capable of visualizing structural detail in a state close to in vivo conditions in the cell. In electron tomography, micrographs are taken while tilting the specimen to different angles about a fixed axis. Due to mechanical constraints, the angular tilt range is limited. As a consequence, the reconstruction of a 3D image is missing data, which for a single axis tilt series is called the "missing wedge", a region in reciprocal space where Fourier coefficients cannot be obtained experimentally. Tomographic data is analyzed by extracting subvolumes from the raw tomograms, by alignment of the extracted subvolumes, multivariate data analysis, classification, and class-averaging, which results in an increased signal-to-noise ratio and substantial data reduction. Subvolume analysis is a valuable tool to discriminate heterogeneous populations of macromolecules, or conformations of a macromolecule or macromolecular assembly as well as to characterize interactions between macromolecules. However, this analysis is hampered by the lack of data in the original tomograms caused by the missing wedge. Here, we report enhancements of our subvolume processing protocols in which the problem of the missing data in reciprocal space is addressed by using constrained correlation and weighted averaging in reciprocal space. These procedures are applied to the analysis of myosin V and simian immunodeficiency virus (SIV) envelope spikes. We also investigate the effect of the missing wedge on image classification and establish limits of reliability by model calculations with generated phantoms.
Collapse
Affiliation(s)
- Hanspeter Winkler
- Florida State University, Institute of Molecular Biophysics, Tallahassee, FL 32306, USA.
| | | | | | | | | | | |
Collapse
|