Davies BW, Bogard RW, Dupes NM, Gerstenfeld TAI, Simmons LA, Mekalanos JJ. DNA damage and reactive nitrogen species are barriers to Vibrio cholerae colonization of the infant mouse intestine.
PLoS Pathog 2011;
7:e1001295. [PMID:
21379340 PMCID:
PMC3040672 DOI:
10.1371/journal.ppat.1001295]
[Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/18/2011] [Indexed: 02/01/2023] Open
Abstract
Ingested Vibrio cholerae pass through the stomach and colonize the small intestines of its host. Here, we show that V. cholerae requires at least two types of DNA repair systems to efficiently compete for colonization of the infant mouse intestine. These results show that V. cholerae experiences increased DNA damage in the murine gastrointestinal tract. Agreeing with this, we show that passage through the murine gut increases the mutation frequency of V. cholerae compared to liquid culture passage. Our genetic analysis identifies known and novel defense enzymes required for detoxifying reactive nitrogen species (but not reactive oxygen species) that are also required for V. cholerae to efficiently colonize the infant mouse intestine, pointing to reactive nitrogen species as the potential cause of DNA damage. We demonstrate that potential reactive nitrogen species deleterious for V. cholerae are not generated by host inducible nitric oxide synthase (iNOS) activity and instead may be derived from acidified nitrite in the stomach. Agreeing with this hypothesis, we show that strains deficient in DNA repair or reactive nitrogen species defense that are defective in intestinal colonization have decreased growth or increased mutation frequency in acidified nitrite containing media. Moreover, we demonstrate that neutralizing stomach acid rescues the colonization defect of the DNA repair and reactive nitrogen species defense defective mutants suggesting a common defense pathway for these mutants.
Studies on intracellular bacterial pathogens have shown the need for maintaining genomic fidelity to promote colonization. Loss of DNA repair functions often leads to attenuation and rapid clearing of the invading pathogen. However, for some pathogens, an increased mutation rate has been shown to be beneficial for promoting host colonization, presumably by allowing the pathogen to rapidly adapt to adverse host conditions. We asked if the non-invasive pathogen V. cholerae experienced increased DNA damage during infection and if so, how the increased damage influenced host colonization and from where the source of the damage was derived. Our results demonstrate that V. cholerae experiences increased DNA damage during infection in the infant mouse model and that loss of ability to repair this damage results in attenuation of virulence. We specifically show that V. cholerae requires both base excision repair and mismatch repair for efficient intestinal colonization. Furthermore, we present evidence that the source of the DNA damage is derived from reactive nitrogen species (RNS) formed by acidified nitrite in the mouse gut and in doing so we identify a new RNS defense protein found in V. cholerae and several other pathogenic bacteria.
Collapse