51
|
Anes J, Nguyen SV, Eshwar AK, McCabe E, Macori G, Hurley D, Lehner A, Fanning S. Molecular characterisation of multi-drug resistant Escherichia coli of bovine origin. Vet Microbiol 2020; 242:108566. [PMID: 32122581 DOI: 10.1016/j.vetmic.2019.108566] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/05/2019] [Accepted: 12/26/2019] [Indexed: 12/27/2022]
Abstract
Antimicrobial resistance reported in bacteria of animal origin is considered a major challenge to veterinary public health. In this study, the genotypic and phenotypic characterisation of twelve Escherichia coli isolates of bovine origin is reported. Twelve bacterial isolates of animal origin were selected from a previous study based on their multidrug resistant (MDR) profile. Efflux pump activity was measured using ethidium bromide (EtBr) and the biofilm forming ability of the individual strains was assessed using a number of phenotypic assays. All isolates were resistant to tetracyclines and a number of isolates expressed resistance to fluoroquinolones which was also confirmed in silico by the presence of these resistance markers. Amino acid substitutions in the quinolone resistance-determining regions were identified in all isolates and the presence of several siderophores were also noted. Whole genomesequence (WGS) data showed different STs that were not associated with epidemic STs or virulent clonal complexes. Seven isolates formed biofilms in minimal media with some isolates showing better adaptation at 25 °C while others at 37 °C. The capacity to efflux EtBr was found to be high in 4 isolates and impaired in 4 others. The pathogenicity of three selected isolates was assessed in zebrafish embryo infection models, revealing isolates CFS0355 and CFS0356 as highly pathogenic. These results highlight the application of NGS technologies combined with phenotypic assays in providing a better understanding of E. coli of bovine origin and their adaptation to this niche environment.
Collapse
Affiliation(s)
- João Anes
- UCD School of Public Health, Physiotherapy and Sports Science, UCD-Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, Science Centre South, Room S1.05, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Scott V Nguyen
- UCD School of Public Health, Physiotherapy and Sports Science, UCD-Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, Science Centre South, Room S1.05, University College Dublin, Belfield, Dublin D04 N2E5, Ireland.
| | - Athmanya K Eshwar
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Evonne McCabe
- UCD School of Public Health, Physiotherapy and Sports Science, UCD-Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, Science Centre South, Room S1.05, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Guerrino Macori
- UCD School of Public Health, Physiotherapy and Sports Science, UCD-Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, Science Centre South, Room S1.05, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Daniel Hurley
- UCD School of Public Health, Physiotherapy and Sports Science, UCD-Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, Science Centre South, Room S1.05, University College Dublin, Belfield, Dublin D04 N2E5, Ireland
| | - Angelika Lehner
- Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Séamus Fanning
- UCD School of Public Health, Physiotherapy and Sports Science, UCD-Centre for Food Safety, UCD Centre for Molecular Innovation and Drug Discovery, Science Centre South, Room S1.05, University College Dublin, Belfield, Dublin D04 N2E5, Ireland; Institute for Global Food Security, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom.
| |
Collapse
|
52
|
Nielsen TK, Petersen NA, Stærk K, Grønnemose RB, Palarasah Y, Nielsen LF, Kolmos HJ, Andersen TE, Lund L. A Porcine Model for Urinary Tract Infection. Front Microbiol 2019; 10:2564. [PMID: 31824442 PMCID: PMC6882375 DOI: 10.3389/fmicb.2019.02564] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Urinary tract infection (UTI) is the most common bacterial infectious disease with a high frequency of recurrence and the leading cause of septicemia. In vivo experimentation has contributed significantly to the present-day knowledge on UTI pathogenesis. This research has traditionally been based on murine models of UTI. Occasional conflicting results between UTI in mice and humans and increasing skepticism toward small rodent models in general warrant the need of novel large-animal infection models that better resemble the anatomy and physiology of humans, and thus better mimic the course of infection in humans. Here, we report, to our knowledge, the first large-animal model of cystitis. The model is based on pigs, and the protocol supports the establishment of persistent, non-ascending infection in this animal and is established without invasive surgical procedures, pain, and discomfort for the animal. The course of infection is monitored by cystoscopy, microscopy of bladder biopsies, and biochemical analysis of urine and blood samples. At termination, harvested whole bladders from infected pigs are analyzed for microbiological colonization using microscopy, histology, and viable bacterial counts. The model is a useful tool in future studies of UTI pathogenesis and opens up novel possibilities to bridge the current knowledge obtained from small-animal UTI models to UTI pathogenesis in humans.
Collapse
Affiliation(s)
- Thomas Kastberg Nielsen
- Research Unit of Urology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Nicky Anúel Petersen
- Research Unit of Urology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Kristian Stærk
- Research Unit of Clinical Microbiology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Rasmus Birkholm Grønnemose
- Research Unit of Clinical Microbiology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation, University of Southern Denmark, Odense, Denmark
| | | | - Hans Jørn Kolmos
- Research Unit of Clinical Microbiology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Lars Lund
- Research Unit of Urology, Department of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
53
|
Sintsova A, Frick-Cheng AE, Smith S, Pirani A, Subashchandrabose S, Snitkin ES, Mobley H. Genetically diverse uropathogenic Escherichia coli adopt a common transcriptional program in patients with UTIs. eLife 2019; 8:49748. [PMID: 31633483 PMCID: PMC6802966 DOI: 10.7554/elife.49748] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the major causative agent of uncomplicated urinary tract infections (UTIs). A common virulence genotype of UPEC strains responsible for UTIs is yet to be defined, due to the large variation of virulence factors observed in UPEC strains. We hypothesized that studying UPEC functional responses in patients might reveal universal UPEC features that enable pathogenesis. Here we identify a transcriptional program shared by genetically diverse UPEC strains isolated from 14 patients during uncomplicated UTIs. Strikingly, this in vivo gene expression program is marked by upregulation of translational machinery, providing a mechanism for the rapid growth within the host. Our analysis indicates that switching to a more specialized catabolism and scavenging lifestyle in the host allows for the increased translational output. Our study identifies a common transcriptional program underlying UTIs and illuminates the molecular underpinnings that likely facilitate the fast growth rate of UPEC in infected patients.
Collapse
Affiliation(s)
- Anna Sintsova
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Arwen E Frick-Cheng
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Sara Smith
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Ali Pirani
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | | | - Evan S Snitkin
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| | - Harry Mobley
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
54
|
Rapid Growth and Metabolism of Uropathogenic Escherichia coli in Relation to Urine Composition. Clin Microbiol Rev 2019; 33:33/1/e00101-19. [PMID: 31619395 DOI: 10.1128/cmr.00101-19] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) strains cause a majority of urinary tract infections (UTIs). Since UPEC strains can become antibiotic resistant, adjunct or alternate therapies are urgently needed. UPEC strains grow extremely rapidly in patients with UTIs. Thus, this review focuses on the relation between urine composition and UPEC growth and metabolism. Compilation of urinary components from two major data sources suggests the presence of sufficient amino acids and carbohydrates as energy sources and abundant phosphorus, sulfur, and nitrogen sources. In a mouse UTI model, mutants lacking enzymes of the tricarboxylic acid cycle, gluconeogenesis, and the nonoxidative branch of the pentose cycle are less competitive than the corresponding parental strains, which is consistent with amino acids as major energy sources. Other evidence suggests that carbohydrates are required energy sources. UPEC strains in urine ex vivo and in vivo express transporters for peptides, amino acids, carbohydrates, and iron and genes associated with nitrogen limitation, amino acid synthesis, nucleotide synthesis, and nucleotide salvage. Mouse models confirm the requirement for many, but not all, of these genes. Laboratory evolution studies suggest that rapid nutrient uptake without metabolic rewiring is sufficient to account for rapid growth. Proteins and pathways required for rapid growth should be considered potential targets for alternate or adjunct therapies.
Collapse
|
55
|
Mortensen S, Johansen AE, Thøfner I, Christensen JP, Pors SE, Fresno AH, Møller-Jensen J, Olsen JE. Infectious potential of human derived uropathogenic Escherichia coli UTI89 in the reproductive tract of laying hens. Vet Microbiol 2019; 239:108445. [PMID: 31767071 DOI: 10.1016/j.vetmic.2019.108445] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
Avian pathogenic E. coli (APEC) and human uropathogenic E. coli (UPEC) harbour common virulence factors in spite of being associated with disease in different hosts. APEC strains have been shown to have zoonotic potential. In contrast, it is not known whether UPEC strains can cause infection in immunologically competent hens. The objective of the current study was to compare the ability of the well-characterized UPEC strain, UTI89, and the APEC strain, F149H1S2, to infect human and avian cells in culture and to cause salpingitis in an infection model in adult laying hens. In vitro characterization showed that the strains grew equally well in human urine, and both were able to infect human intestinal (Int407) and bladder (J82) epithelial cell lines, and they survived in avian macrophages (HD11) to the same extent. Groups of adult birds were inoculated with 108 bacteria directly into the oviduct using a surgical procedure. After an infection period of 48 h, bacterial load in the oviduct was determined by dilution series, and pathology was determined based on gross lesions and histological observations. Similar counts of UPEC UTI89 (ST95) and the APEC strain F149H1S2 (ST117) were obtained from tissues of infected birds, and salpingitis as evaluated by clinical score and histopathology was observed to a similar extent after infection with the two strains. Together, the results showed that UPEC UTI89 and APEC F149H1S2 have a similar potential for causing salpingitis in laying hens in the model used. No infection differences were observed between the UPEC UTI89 wild type and a mutant strain with knock-out of the well-known virulence gene, fimH, (UPEC UTI89ΔfimH), showing that the salpingitis model is not suitable for the detection of all UPEC virulence factors.
Collapse
Affiliation(s)
- Sisse Mortensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Andreas Eske Johansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Ida Thøfner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Jens Peter Christensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Susanne Elisabeth Pors
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Ana Herrero Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg, Denmark.
| |
Collapse
|
56
|
Jeffries J, Fuller GG, Cegelski L. Unraveling Escherichia coli's Cloak: Identification of Phosphoethanolamine Cellulose, Its Functions, and Applications. Microbiol Insights 2019; 12:1178636119865234. [PMID: 31431800 PMCID: PMC6685106 DOI: 10.1177/1178636119865234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial biofilms are complex, multicellular communities made up of bacteria enmeshed in a self-produced extracellular matrix (ECM) that protects against environmental stress. The ECM often comprises insoluble components, which complicates the study of biofilm composition, structure, and function. Wrinkled, agar-grown Escherichia coli biofilms require 2 insoluble macromolecules: curli amyloid fibers and cellulosic polymers. We quantified these components with solid-state nuclear magnetic resonance (NMR) and determined that curli contributed 85% of the isolated uropathogenic E coli ECM dry mass. The remaining 15% was cellulosic, but, surprisingly, was not ordinary cellulose. We tracked the identity of the unanticipated peak in the 13C NMR spectrum of the cellulosic component and discovered that E coli secrete phosphoethanolamine (pEtN)-modified cellulose. Cellulose is the most abundant biopolymer on the planet, and this marked the first identification of a naturally, chemically modified cellulose. To investigate potential roles of pEtN cellulose, we customized a newly designed live-cell monolayer rheometer and demonstrated that pEtN cellulose facilitated E coli attachment to bladder epithelial cells and acted as a glue, keeping curli cell associated. The discovery of pEtN cellulose opens questions regarding its biological function(s) and provides opportunities in materials science to explore this newly discovered biopolymer.
Collapse
Affiliation(s)
- Jamie Jeffries
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Gerald G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
57
|
Bacterial Microcompartment-Mediated Ethanolamine Metabolism in Escherichia coli Urinary Tract Infection. Infect Immun 2019; 87:IAI.00211-19. [PMID: 31138611 PMCID: PMC6652756 DOI: 10.1128/iai.00211-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/16/2019] [Indexed: 12/23/2022] Open
Abstract
Urinary tract infections (UTIs) are common and in general are caused by intestinal uropathogenic Escherichia coli (UPEC) ascending via the urethra. Microcompartment-mediated catabolism of ethanolamine, a host cell breakdown product, fuels the competitive overgrowth of intestinal E. coli, both pathogenic enterohemorrhagic E. coli and commensal strains. During a UTI, urease-negative E. coli bacteria thrive, despite the comparative nutrient limitation in urine. Urinary tract infections (UTIs) are common and in general are caused by intestinal uropathogenic Escherichia coli (UPEC) ascending via the urethra. Microcompartment-mediated catabolism of ethanolamine, a host cell breakdown product, fuels the competitive overgrowth of intestinal E. coli, both pathogenic enterohemorrhagic E. coli and commensal strains. During a UTI, urease-negative E. coli bacteria thrive, despite the comparative nutrient limitation in urine. The role of ethanolamine as a potential nutrient source during UTIs is understudied. We evaluated the role of the metabolism of ethanolamine as a potential nitrogen and carbon source for UPEC in the urinary tract. We analyzed infected urine samples by culture, high-performance liquid chromatography, reverse transcription-quantitative PCR, and genomic sequencing. The ethanolamine concentration in urine was comparable to the concentration of the most abundant reported urinary amino acid, d-serine. Transcription of the eut operon was detected in the majority of urine samples containing E. coli screened. All sequenced UPEC strains had conserved eut operons, while metabolic genotypes previously associated with UTI (dsdCXA, metE) were mainly limited to phylogroup B2. In vitro ethanolamine was found to be utilized as a sole source of nitrogen by UPEC strains. The metabolism of ethanolamine in artificial urine medium (AUM) induced metabolosome formation and provided a growth advantage at the physiological levels found in urine. Interestingly, eutE (which encodes acetaldehyde dehydrogenase) was required for UPEC strains to utilize ethanolamine to gain a growth advantage in AUM, suggesting that ethanolamine is also utilized as a carbon source. These data suggest that urinary ethanolamine is a significant additional carbon and nitrogen source for infecting E. coli strains.
Collapse
|
58
|
Sarkissian CA, Alteri CJ, Mobley HLT. UTI patients have pre-existing antigen-specific antibody titers against UTI vaccine antigens. Vaccine 2019; 37:4937-4946. [PMID: 31320216 DOI: 10.1016/j.vaccine.2019.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/16/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Abstract
Urinary tract infection (UTI) is most frequently caused by uropathogenic Escherichia coli (UPEC). Our laboratory has been developing an experimental vaccine targeting four UPEC outer membrane receptors involved in iron acquisition - IreA, FyuA, IutA, and Hma - to elicit protection against UTI. These vaccine targets are all expressed in humans during UTI. In the murine model, high titers of antigen-specific serum IgG or bladder IgA correlate with protection against transurethral challenge with UPEC. Our aim was to measure levels of pre-existing serum antibodies to UTI vaccine antigens in our target population. To accomplish this, we obtained sera from 64 consenting female patients attending a clinic for symptoms of cystitis. As a control, we also collected sera from 20 healthy adult male donors with no history of UTI. Total IgG and antigen-specific IgG titers were measured by ELISA. Of the 64 female patients, 29 had significant bacteriuria (>104 cfu/ml urine) and uropathogenic E. coli (UPEC). Thirty-five patients had non-significant bacteriuria (<104 cfu/ml). Antigen-specific IgG titers did not correlate with the presence or absence of the gene encoding the antigen in the infecting strain (when present), but rather titers were proportional to prevalence of genes encoding antigens among representative collections of UPEC isolates. Surprisingly, we obtained similar results when sera from healthy male patients without history of UTI were tested. Thus, unvaccinated adults have non-protective levels of pre-existing antibodies to UTI vaccine antigens, establishing an important baseline for our target population. This suggests that a UTI vaccine would need to boost pre-existing humoral responses beyond these background levels to protect from infection.
Collapse
Affiliation(s)
- Christina A Sarkissian
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Christopher J Alteri
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
59
|
Ali I, Rafaque Z, Ahmed I, Tariq F, Graham SE, Salzman E, Foxman B, Dasti JI. Phylogeny, sequence-typing and virulence profile of uropathogenic Escherichia coli (UPEC) strains from Pakistan. BMC Infect Dis 2019; 19:620. [PMID: 31299909 PMCID: PMC6626394 DOI: 10.1186/s12879-019-4258-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/04/2019] [Indexed: 11/23/2022] Open
Abstract
Background Escherichia coli lineage ST131 predominates across various spectra of extra-intestinal infections, including urinary tract infection (UTI). The distinctive resistance profile, diverse armamentarium of virulence factors and rapid global dissemination of ST131 E. coli makes it an intriguing pathogen. However, not much is known about the prevalence and genetic attributes of ST131 lineage in Pakistan. Methods We estimated prevalence and genetic attributes of E. coli ST131 isolates causing UTI among 155 randomly selected samples. Samples were analyzed for phylogenetic grouping, O-typing and fumC/fimH typing. Isolates were further tested for the ESBL and virulence factors using PCR. Results Overall, 59% of the UPEC isolates belonged to the phylogenetic group B2, followed by D = 28%, B1 = 8% and A = 5%. Among 18 different Sequence-types, ST131 was the dominant lineage (n = 71; 46%) out of which 72% of the isolates were assigned to the phylogenetic group B2, while 61% adhered to the serogroup O25b. FumC/fimH typing confirmed 49% of the ST131 as H30 sub-types. In this study, significant numbers of the identified ST131 isolates were MDR and 42% showed ESBL phenotypes, out of which 37% carried bla-CTX-M-15. Moreover, different virulence factors were detected in following percentages: fimH,155(100%), iutA 86 (55%), feoB 76 (49%), papC 75 (48%), papGII 70 (45%), kpsMTII 40 (26%), papEF 37 (24%), fyuA 37 (24%), usp 22 (14%), papA 20 (13%), sfa/foc20 (13%), hlyA 18 (12%), afa 15 (10%), cdtB 11 (7%), papGI 6 (4%), papGIII 6 (4%), kpsMTIII 4 (3%) and bmaE2 (1%). Conclusion Conclusively, this study provides important insight into the genetic and virulence attributes of pandemic MDR ST131 strains involved in UTIs. It also highlights higher prevalence of ST131-O25b-H30 UPEC isolates in patients, which was previously unreported from this part of globe.
Collapse
Affiliation(s)
- Ihsan Ali
- Department of Medical Laboratory Technology (MLT), the University of Haripur, Abbottabad, Pakistan
| | - Zara Rafaque
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ibrar Ahmed
- Alpha Genomics (Pvt) Ltd, Islamabad, Pakistan
| | - Faiza Tariq
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sarah E Graham
- Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elizabeth Salzman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Betsy Foxman
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Javid Iqbal Dasti
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
60
|
|
61
|
Genomic and Functional Analysis of Emerging Virulent and Multidrug-Resistant Escherichia coli Lineage Sequence Type 648. Antimicrob Agents Chemother 2019; 63:AAC.00243-19. [PMID: 30885899 DOI: 10.1128/aac.00243-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/11/2019] [Indexed: 01/10/2023] Open
Abstract
The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n = 107) and ST10 (n = 96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in silico, in vitro, and in vivo results demonstrate that ST648 is well equipped with biofilm-associated features, while ST131 shows sophisticated signatures indicative of adaption to urinary tract infection, potentially conveying individual ecological niche adaptation. In addition, we used a recently developed NFDS (negative frequency-dependent selection) population model suggesting that ST648 will increase significantly in frequency as a cause of bacteremia within the next few years. Also, ESBL plasmids impacting biofilm formation aided in shaping and maintaining ST648 strains to successfully emerge worldwide across different ecologies. Our study contributes to understanding what factors drive the evolution and spread of emerging international high-risk clonal lineages.
Collapse
|
62
|
Bauckman KA, Matsuda R, Higgins CB, DeBosch BJ, Wang C, Mysorekar IU. Dietary restriction of iron availability attenuates UPEC pathogenesis in a mouse model of urinary tract infection. Am J Physiol Renal Physiol 2019; 316:F814-F822. [PMID: 30724105 PMCID: PMC6580250 DOI: 10.1152/ajprenal.00133.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Iron is a critical nutrient required by hosts and pathogens. Uropathogenic Escherichia coli (UPEC), the principal causative agent of urinary tract infections (UTIs), chelate iron for their survival and persistence. Here, we demonstrate that dietary modulation of iron availability limits UPEC burden in a mouse model of UTI. Mice on a low-iron diet exhibit reduced systemic and bladder mucosal iron availability and harbor significantly lower bacterial burden, concomitant with dampened inflammation. Hepcidin is a master regulator of iron that controls iron-dependent UPEC intracellular growth. Hepcidin-deficient mice ( Hamp1-/-) exhibit accumulation of iron deposits, persistent bacterial burden in the bladder, and a heightened inflammatory response to UTI. However, a low-iron dietary regimen reversed the iron overload and increased bacterial burden phenotypes in Hamp1-/- mice. Thus modulation of iron levels via diet can reduce UPEC infection and persistence, which may have significant implications for clinical management of UTI.
Collapse
Affiliation(s)
- Kyle A Bauckman
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis, Missouri
| | - Rina Matsuda
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis, Missouri
| | - Cassandra B Higgins
- Department of Pediatrics, Division of Gastroenterology, Washington University School of Medicine , St. Louis, Missouri
| | - Brian J DeBosch
- Department of Pediatrics, Division of Gastroenterology, Washington University School of Medicine , St. Louis, Missouri
| | - Caihong Wang
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis, Missouri
- Centre for Reproductive Health Sciences, Washington University School of Medicine , St. Louis, Missouri
| | - Indira U Mysorekar
- Department of Obstetrics and Gynecology, Washington University School of Medicine , St. Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, Missouri
- Centre for Reproductive Health Sciences, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
63
|
Tamadonfar KO, Omattage NS, Spaulding CN, Hultgren SJ. Reaching the End of the Line: Urinary Tract Infections. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0014-2019. [PMID: 31172909 PMCID: PMC11314827 DOI: 10.1128/microbiolspec.bai-0014-2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Indexed: 12/26/2022] Open
Abstract
Urinary tract infections (UTIs) cause a substantial health care burden. UTIs (i) are most often caused by uropathogenic Escherichia coli (UPEC), (ii) primarily affect otherwise healthy females (50% of women will have a UTI), (iii) are associated with significant morbidity and economic impact, (iv) can become chronic, and (v) are highly recurrent. A history of UTI is a significant risk factor for a recurrent UTI (rUTI). In otherwise healthy women, an acute UTI leads to a 25 to 50% chance of rUTI within months of the initial infection. Interestingly, rUTIs are commonly caused by the same strain of E. coli that led to the initial infection, arguing that there exist host-associated reservoirs, like the gastrointestinal tract and underlying bladder tissue, that can seed rUTIs. Additionally, catheter-associated UTIs (CAUTI), caused by Enterococcus and Staphylococcus as well as UPEC, represent a major health care concern. The host's response of depositing fibrinogen at the site of infection has been found to be critical to establishing CAUTI. The Drug Resistance Index, an evaluation of antibiotic resistance, indicates that UTIs have become increasingly difficult to treat since the mid-2000s. Thus, UTIs are a "canary in the coal mine," warning of the possibility of a return to the preantibiotic era, where some common infections are untreatable with available antibiotics. Numerous alternative strategies for both the prevention and treatment of UTIs are being pursued, with a focus on the development of vaccines and small-molecule inhibitors targeting virulence factors, in the hopes of reducing the burden of urogenital tract infections in an antibiotic-sparing manner.
Collapse
Affiliation(s)
- Kevin O Tamadonfar
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Natalie S Omattage
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Caitlin N Spaulding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Harvard University School of Public Health, Boston, MA 02115
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
- Center for Women's Infectious Disease Research, Washington University, School of Medicine, St. Louis, MO 63110
| |
Collapse
|
64
|
Comprehensive Identification of Fim-Mediated Inversions in Uropathogenic Escherichia coli with Structural Variation Detection Using Relative Entropy. mSphere 2019; 4:4/2/e00693-18. [PMID: 30971446 PMCID: PMC6458436 DOI: 10.1128/msphere.00693-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UTI is a common ailment that affects more than half of all women during their lifetime. The leading cause of UTIs is UPEC, which relies on type 1 pili to colonize and persist within the bladder during infection. The regulation of type 1 pili is remarkable for an epigenetic mechanism in which a section of DNA containing a promoter is inverted. The inversion mechanism relies on what are thought to be dedicated recombinase genes; however, the full repertoire for these recombinases is not known. We show here that there are no additional targets beyond those already identified for the recombinases in the entire genome of two UPEC strains, arguing that type 1 pilus expression itself is the driving evolutionary force for the presence of these recombinase genes. This further suggests that targeting the type 1 pilus is a rational alternative nonantibiotic strategy for the treatment of UTI. Most urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC), which depends on an extracellular organelle (type 1 pili) for adherence to bladder cells during infection. Type 1 pilus expression is partially regulated by inversion of a piece of DNA referred to as fimS, which contains the promoter for the fim operon encoding type 1 pili. fimS inversion is regulated by up to five recombinases collectively known as Fim recombinases. These Fim recombinases are currently known to regulate two other switches: the ipuS and hyxS switches. A long-standing question has been whether the Fim recombinases regulate the inversion of other switches, perhaps to coordinate expression for adhesion or virulence. We answered this question using whole-genome sequencing with a newly developed algorithm (structural variation detection using relative entropy [SVRE]) for calling structural variations using paired-end short-read sequencing. SVRE identified all of the previously known switches, refining the specificity of which recombinases act at which switches. Strikingly, we found no new inversions that were mediated by the Fim recombinases. We conclude that the Fim recombinases are each highly specific for a small number of switches. We hypothesize that the unlinked Fim recombinases have been recruited to regulate fimS, and fimS only, as a secondary locus; this further implies that regulation of type 1 pilus expression (and its role in gastrointestinal and/or genitourinary colonization) is important enough, on its own, to influence the evolution and maintenance of multiple additional genes within the accessory genome of E. coli. IMPORTANCE UTI is a common ailment that affects more than half of all women during their lifetime. The leading cause of UTIs is UPEC, which relies on type 1 pili to colonize and persist within the bladder during infection. The regulation of type 1 pili is remarkable for an epigenetic mechanism in which a section of DNA containing a promoter is inverted. The inversion mechanism relies on what are thought to be dedicated recombinase genes; however, the full repertoire for these recombinases is not known. We show here that there are no additional targets beyond those already identified for the recombinases in the entire genome of two UPEC strains, arguing that type 1 pilus expression itself is the driving evolutionary force for the presence of these recombinase genes. This further suggests that targeting the type 1 pilus is a rational alternative nonantibiotic strategy for the treatment of UTI.
Collapse
|
65
|
Asadi Karam MR, Habibi M, Bouzari S. Urinary tract infection: Pathogenicity, antibiotic resistance and development of effective vaccines against Uropathogenic Escherichia coli. Mol Immunol 2019; 108:56-67. [PMID: 30784763 DOI: 10.1016/j.molimm.2019.02.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/02/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
Abstract
Urinary tract infections (UTIs) are recognized as one of the most common infectious diseases in the world that can be divided to different types. Uropathogenic Escherichia coli (UPEC) strains are the most prevalent causative agent of UTIs that applied different virulence factors such as fimbriae, capsule, iron scavenger receptors, flagella, toxins, and lipopolysaccharide for their pathogenicity in the urinary tract. Despite the high pathogenicity of UPEC strains, host utilizes different immune systems such as innate and adaptive immunity for eradication of them from the urinary tract. The routine therapy of UTIs is based on the use of antibiotics such as β-lactams, trimethoprim, nitrofurantoin and quinolones in many countries. Unfortunately, the widespread and misuse of these antibiotics resulted in the increasing rate of resistance to them in the societies. Increasing antibiotic resistance and their side effects on human body show the need to develop alternative strategies such as vaccine against UTIs. Developing a vaccine against UTI pathogens will have an important role in reduction the mortality rate as well as reducing economic costs. Different vaccines based on the whole cells (killed or live-attenuated vaccines) and antigens (subunits, toxins and conjugatedvaccines) have been evaluated against UTIs pathogens. Furthermore, other therapeutic strategies such as the use of probiotics and antimicrobial peptides are considered against UTIs. Despite the extensive efforts, limited success has been achieved and more studies are needed to reach an alternative of antibiotics for treatment of UTIs.
Collapse
Affiliation(s)
| | - Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, 13164, Iran.
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran, 13164, Iran.
| |
Collapse
|
66
|
New insights into the adaptive transcriptional response to nitrogen starvation in Escherichia coli. Biochem Soc Trans 2018; 46:1721-1728. [PMID: 30514772 PMCID: PMC6299236 DOI: 10.1042/bst20180502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/14/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022]
Abstract
Bacterial adaptive responses to biotic and abiotic stresses often involve large-scale reprogramming of the transcriptome. Since nitrogen is an essential component of the bacterial cell, the transcriptional basis of the adaptive response to nitrogen starvation has been well studied. The adaptive response to N starvation in Escherichia coli is primarily a 'scavenging response', which results in the transcription of genes required for the transport and catabolism of nitrogenous compounds. However, recent genome-scale studies have begun to uncover and expand some of the intricate regulatory complexities that underpin the adaptive transcriptional response to nitrogen starvation in E. coli The purpose of this review is to highlight some of these new developments.
Collapse
|
67
|
Cross Talk between MarR-Like Transcription Factors Coordinates the Regulation of Motility in Uropathogenic Escherichia coli. Infect Immun 2018; 86:IAI.00338-18. [PMID: 30275009 PMCID: PMC6246914 DOI: 10.1128/iai.00338-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/16/2018] [Indexed: 01/19/2023] Open
Abstract
The MarR-like protein PapX represses the transcription of the flagellar master regulator genes flhDC in uropathogenic Escherichia coli (UPEC), the primary cause of uncomplicated urinary tract infections (UTIs). PapX is encoded by the pap operon, which also encodes the adherence factors termed P fimbriae. The MarR-like protein PapX represses the transcription of the flagellar master regulator genes flhDC in uropathogenic Escherichia coli (UPEC), the primary cause of uncomplicated urinary tract infections (UTIs). PapX is encoded by the pap operon, which also encodes the adherence factors termed P fimbriae. Both adherence and motility are critical for productive colonization of the urinary tract. However, the mechanisms involved in coordinating the transition between adherence and motility are not well characterized. UPEC strain CFT073 carries both papX and a homolog, focX, located in the foc operon encoding F1C fimbriae. In this study, we characterized the dose effects of “X” genes on flagellar gene expression and cross talk between focX and papX. We found that both FocX and PapX repress flhD transcription. However, we determined that the ΔpapX mutant was hypermotile, while the loss of focX did not affect motility. We further investigated this phenotype and found that FocX functions as a repressor of papX. Additionally, we identified a proximal independent promoter upstream of both focX and papX and assessed the expression of focX and papX during culture in human urine and on LB agar plates compared to LB medium. Finally, we characterized the contributions of PapX and FocX to fitness in the ascending murine model of UTI and observed a subtle, but not statistically significant, fitness defect in colonization of the kidneys. Altogether, these results expand our understanding of the impact of carrying multiple X genes on the coordinated regulation of motility and adherence in UPEC.
Collapse
|
68
|
Switzer A, Evangelopoulos D, Figueira R, de Carvalho LPS, Brown DR, Wigneshweraraj S. A novel regulatory factor affecting the transcription of methionine biosynthesis genes in Escherichia coli experiencing sustained nitrogen starvation. Microbiology (Reading) 2018; 164:1457-1470. [DOI: 10.1099/mic.0.000683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Amy Switzer
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Dimitrios Evangelopoulos
- 2Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Rita Figueira
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Luiz Pedro S. de Carvalho
- 2Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Daniel R. Brown
- 1MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | | |
Collapse
|
69
|
Ma J, An C, Jiang F, Yao H, Logue C, Nolan LK, Li G. Extraintestinal pathogenic Escherichia coli increase extracytoplasmic polysaccharide biosynthesis for serum resistance in response to bloodstream signals. Mol Microbiol 2018; 110:689-706. [PMID: 29802751 DOI: 10.1111/mmi.13987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is one of the leading causes of bloodstream infections. Characteristically, these organisms exhibit strong resistance to the bactericidal action of host serum. Although numerous serum resistance factors in ExPEC have been identified, their regulatory mechanisms during in vivo infection remain largely unknown. Here, RNA sequencing analyses together with quantitative reverse-transcription PCR revealed that ExPEC genes involved in the biosynthesis of extracytoplasmic polysaccharides (ECPs) including K-capsule, lipopolysaccharide (LPS), colanic acid, peptidoglycan and Yjb exopolysaccharides were significantly upregulated in response to serum under low oxygen conditions and during bloodstream infection. The oxygen sensor FNR directly activated the expression of K-capsule and colanic acid and also indirectly modulated the expression of colanic acid, Yjb exopolysaccharides and peptidoglycan via the known Rcs regulatory system. The global regulator Fur directly or indirectly repressed the expression ofECP biosynthesis genes in iron replete media, whereas the low iron conditions in the bloodstream could relieve Fur repression. Using in vitro and animal models, FNR, Fur and the Rcs system were confirmed as contributing to ExPEC ECP production, serum resistance and virulence. Altogether, these findings indicated that the global regulators FNR andFur and the signaling transduction system Rcs coordinately regulated the expression of ECP biosynthesis genes leading to increased ExPEC serum resistance in response to low oxygen and low iron levels in the bloodstream.
Collapse
Affiliation(s)
- Jiale Ma
- Department of Veterinary Preventive Medicine College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Chunxia An
- Department of Veterinary Preventive Medicine College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengwei Jiang
- Department of Veterinary Preventive Medicine College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Huochun Yao
- Department of Veterinary Preventive Medicine College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Catherine Logue
- Department of Veterinary Microbiology and Preventive Medicine College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ganwu Li
- Department of Veterinary Diagnostic and Production Animal Medicine College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, China
| |
Collapse
|
70
|
Robinson AE, Lowe JE, Koh EI, Henderson JP. Uropathogenic enterobacteria use the yersiniabactin metallophore system to acquire nickel. J Biol Chem 2018; 293:14953-14961. [PMID: 30108176 DOI: 10.1074/jbc.ra118.004483] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/10/2018] [Indexed: 12/21/2022] Open
Abstract
Invasive Gram-negative bacteria often express multiple virulence-associated metal ion chelators to combat host-mediated metal deficiencies. Escherichia coli, Klebsiella, and Yersinia pestis isolates encoding the Yersinia high pathogenicity island (HPI) secrete yersiniabactin (Ybt), a metallophore originally shown to chelate iron ions during infection. However, our recent demonstration that Ybt also scavenges copper ions during infection led us to question whether it might be capable of retrieving other metals as well. Here, we find that uropathogenic E. coli also use Ybt to bind extracellular nickel ions. Using quantitative MS, we show that the canonical metal-Ybt import pathway internalizes the resulting Ni-Ybt complexes, extracts the nickel, and releases metal-free Ybt back to the extracellular space. We find that E. coli and Klebsiella direct the nickel liberated from this pathway to intracellular nickel enzymes. Thus, Ybt may provide access to nickel that is inaccessible to the conserved NikABCDE permease system. Nickel should be considered alongside iron and copper as a plausible substrate for Ybt-mediated metal import by enterobacteria during human infections.
Collapse
Affiliation(s)
- Anne E Robinson
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| | - Jessica E Lowe
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| | - Eun-Ik Koh
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| | - Jeffrey P Henderson
- From the Division of Infectious Diseases, Department of Internal Medicine, Department of Molecular Microbiology, Center for Women's Infectious Diseases Research, Washington University, St. Louis, Missouri, 63110
| |
Collapse
|
71
|
Paalanne N, Husso A, Salo J, Pieviläinen O, Tejesvi MV, Koivusaari P, Pirttilä AM, Pokka T, Mattila S, Jyrkäs J, Turpeinen A, Uhari M, Renko M, Tapiainen T. Intestinal microbiome as a risk factor for urinary tract infections in children. Eur J Clin Microbiol Infect Dis 2018; 37:1881-1891. [PMID: 30006660 DOI: 10.1007/s10096-018-3322-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/04/2018] [Indexed: 12/24/2022]
Abstract
As urinary tract infection (UTI) pathogens originate from the gut, we hypothesized that the gut environment reflected by intestinal microbiome influences the risk of UTI. Our prospective case-control study compared the intestinal microbiomes of 37 children with a febrile UTI with those of 69 healthy children. We sequenced the regions of the bacterial 16S rRNA gene and used the LefSe algorithm to calculate the size of the linear discriminant analysis (LDA) effect. We measured fecal lactoferrin and iron concentrations and quantitative PCR for Escherichia coli. At the phylum level, there were no significant differences. At the genus level, Enterobacter was more abundant in UTI patients with an LDA score > 3 (log 10), while Peptostreptococcaceae were more abundant in healthy subjects with an LDA score > 3 (log 10). In total, 20 OTUs with significantly different abundances were observed. Previous use of antimicrobials did not associate with intestinal microbiome. The relative abundance of E. coli was 1.9% in UTI patients and 0.5% in controls (95% CI of the difference-0.8 to 3.6%). The mean concentration of E.coli in quantitative PCR was 0.14 ng/μl in the patients and 0.08 ng/μl in the controls (95% CI of the difference-0.04 to 0.16). Fecal iron and lactoferrin concentrations were similar between the groups. At the family and genus level, we noted several differences in the intestinal microbiome between children with UTI and healthy children, which may imply that the gut environment is linked with the risk of UTI in children.
Collapse
Affiliation(s)
- Niko Paalanne
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland. .,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland.
| | - Aleksi Husso
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | - Jarmo Salo
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Oskari Pieviläinen
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Mysore V Tejesvi
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland.,Chain Antimicrobials Ltd, Teknologiantie 2, 90590, Oulu, Finland
| | - Pirjo Koivusaari
- Ecology and Genetics, Faculty of Science, University of Oulu, Oulu, Finland
| | | | - Tytti Pokka
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Sampo Mattila
- Research Unit in Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Juha Jyrkäs
- Research Unit in Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Ari Turpeinen
- Research Unit in Sustainable Chemistry, University of Oulu, Oulu, Finland
| | - Matti Uhari
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Marjo Renko
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Terhi Tapiainen
- Department of Pediatrics and Adolescence, Oulu University Hospital, Oulu, Finland.,PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
72
|
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, and the majority are caused by uropathogenic Escherichia coli (UPEC). The rising antibiotic resistance among UPEC and the frequent failure of antibiotics to effectively treat recurrent UTI and catheter-associated UTI motivate research on alternative ways of managing UTI. Abundant evidence indicates that the toxic radical nitric oxide (NO), formed by activation of the inducible nitric oxide synthase, plays an important role in host defence to bacterial infections, including UTI. The major source of NO production during UTI is from inflammatory cells, especially neutrophils, and from the uroepithelial cells that are known to orchestrate the innate immune response during UTI. NO and reactive nitrogen species have a wide range of antibacterial targets, including DNA, heme proteins, iron-sulfur clusters, and protein thiol groups. However, UPEC have acquired a variety of defence mechanisms for protection against NO, such as the NO-detoxifying enzyme flavohemoglobin and the NO-tolerant cytochrome bd-I respiratory oxidase. The cytotoxicity of NO-derived intermediates is nonspecific and may be detrimental to host cells, and a balanced NO production is crucial to maintain the tissue integrity of the urinary tract. In this review, we will give an overview of how NO production from host cells in the urinary tract is activated and regulated, the effect of NO on UPEC growth and colonization, and the ability of UPEC to protect themselves against NO. We also discuss the attempts that have been made to develop NO-based therapeutics for UTI treatment.
Collapse
|
73
|
Robinson AE, Heffernan JR, Henderson JP. The iron hand of uropathogenic Escherichia coli: the role of transition metal control in virulence. Future Microbiol 2018; 13:745-756. [PMID: 29870278 DOI: 10.2217/fmb-2017-0295] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The role of iron as a critical nutrient in pathogenic bacteria is widely regarded as having driven selection for iron acquisition systems among uropathogenic Escherichia coli (UPEC) isolates. Carriage of multiple transition metal acquisition systems in UPEC suggests that the human urinary tract manipulates metal-ion availability in many ways to resist infection. For siderophore systems in particular, recent studies have identified new roles for siderophore copper binding as well as production of siderophore-like inhibitors of iron uptake by other, competing bacterial species. Among these is a process of nutritional passivation of metal ions, in which uropathogens access these vital nutrients while simultaneously protecting themselves from their toxic potential. Here, we review these new findings within the current understanding of UPEC transition metal acquisition.
Collapse
Affiliation(s)
- Anne E Robinson
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James R Heffernan
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey P Henderson
- Division of Infectious Diseases, Department of Medicine, Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
74
|
Schwan WR, Beck MT, Hung CS, Hultgren SJ. Differential Regulation of Escherichia coli fim Genes following Binding to Mannose Receptors. J Pathog 2018; 2018:2897581. [PMID: 29951317 PMCID: PMC5987248 DOI: 10.1155/2018/2897581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/12/2018] [Indexed: 01/17/2023] Open
Abstract
Regulation of the uropathogenic Escherichia coli (UPEC) fimB and fimE genes was examined following type 1 pili binding to mannose-coated Sepharose beads. Within 25 min after mannose attachment, fimE expression dropped eightfold, whereas fimB transcription increased about two- to fourfold. Because both fim genes encode site-specific recombinases that affect the position of the fimS element containing the fimA promoter, the positioning of fimS was also examined. The fimS element changed to slightly more Phase-OFF in bacteria mixed with plain beads, whereas UPEC cells interacting with mannose-coated beads had significantly less Phase-OFF orientation of fimS under pH 7 conditions. On the other hand, Phase-OFF oriented fimS increased fourfold when UPEC cells were mixed with plain beads in a pH 5.5 environment. Positioning of fimS was also affected by fimH mutations, demonstrating that the FimH ligand binding to its receptor facilitates the changes. Moreover, enzyme immunoassays showed that UPEC cells had greater type 1 pili expression when mixed with mannose-coated beads versus plain beads. These results indicate that, after type 1 pilus binding to tethered mannose receptors, the physiology of the E. coli cells changes to maintain the expression of type 1 pili even when awash in an acidic environment.
Collapse
Affiliation(s)
| | | | - Chia S. Hung
- Center for Women's Infectious Disease Research, Washington University, St. Louis, MO 63110, USA
| | - Scott J. Hultgren
- Center for Women's Infectious Disease Research, Washington University, St. Louis, MO 63110, USA
| |
Collapse
|
75
|
TosR-Mediated Regulation of Adhesins and Biofilm Formation in Uropathogenic Escherichia coli. mSphere 2018; 3:3/3/e00222-18. [PMID: 29769381 PMCID: PMC5956150 DOI: 10.1128/msphere.00222-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 02/07/2023] Open
Abstract
Uropathogenic Escherichia coli strains utilize a variety of adherence factors that assist in colonization of the host urinary tract. TosA (type one secretion A) is a nonfimbrial adhesin that is predominately expressed during murine urinary tract infection (UTI), binds to kidney epithelial cells, and promotes survival during invasive infections. The tosRCBDAEF operon encodes the secretory machinery necessary for TosA localization to the E. coli cell surface, as well as the transcriptional regulator TosR. TosR binds upstream of the tos operon and in a concentration-dependent manner either induces or represses tosA expression. TosR is a member of the PapB family of fimbrial regulators that can participate in cross talk between fimbrial operons. TosR also binds upstream of the pap operon and suppresses PapA production. However, the scope of TosR-mediated cross talk is understudied and may be underestimated. To quantify the global effects of TosR-mediated regulation on the E. coli CFT073 genome, we induced expression of tosR, collected mRNA, and performed high-throughput RNA sequencing (RNA-Seq). These findings show that production of TosR affected the expression of genes involved with adhesins, including P, F1C, and Auf fimbriae, nitrate-nitrite transport, microcin secretion, and biofilm formation.IMPORTANCE Uropathogenic E. coli strains cause the majority of UTIs, which are the second most common bacterial infection in humans. During a UTI, bacteria adhere to cells within the urinary tract, using a number of different fimbrial and nonfimbrial adhesins. Biofilms can also develop on the surfaces of catheters, resulting in complications such as blockage. In this work, we further characterized the regulator TosR, which links both adhesin production and biofilm formation and likely plays a crucial function during UTI and disseminated infection.
Collapse
|
76
|
Abstract
Microbiologists typically use laboratory systems to study the bacteria that infect humans. Over time, this has created a gap between what researchers understand about bacteria growing in the laboratory and those growing in humans. It is well-known that the behavior of bacteria is shaped by their environment, but how this behavior differs in laboratory models compared with human infections is poorly understood. We compared transcription data from a variety of human infections with data from a range of in vitro samples. We found important differences in expression of genes involved in antibiotic resistance, cell–cell communication, and metabolism. Understanding the bacterial expression patterns in human patients is a necessary step toward improved therapy and the development of more accurate laboratory models. Laboratory experiments have uncovered many basic aspects of bacterial physiology and behavior. After the past century of mostly in vitro experiments, we now have detailed knowledge of bacterial behavior in standard laboratory conditions, but only a superficial understanding of bacterial functions and behaviors during human infection. It is well-known that the growth and behavior of bacteria are largely dictated by their environment, but how bacterial physiology differs in laboratory models compared with human infections is not known. To address this question, we compared the transcriptome of Pseudomonas aeruginosa during human infection to that of P. aeruginosa in a variety of laboratory conditions. Several pathways, including the bacterium’s primary quorum sensing system, had significantly lower expression in human infections than in many laboratory conditions. On the other hand, multiple genes known to confer antibiotic resistance had substantially higher expression in human infection than in laboratory conditions, potentially explaining why antibiotic resistance assays in the clinical laboratory frequently underestimate resistance in patients. Using a standard machine learning technique known as support vector machines, we identified a set of genes whose expression reliably distinguished in vitro conditions from human infections. Finally, we used these support vector machines with binary classification to force P. aeruginosa mouse infection transcriptomes to be classified as human or in vitro. Determining what differentiates our current models from clinical infections is important to better understand bacterial infections and will be necessary to create model systems that more accurately capture the biology of infection.
Collapse
|
77
|
Neumann W, Sassone-Corsi M, Raffatellu M, Nolan EM. Esterase-Catalyzed Siderophore Hydrolysis Activates an Enterobactin-Ciprofloxacin Conjugate and Confers Targeted Antibacterial Activity. J Am Chem Soc 2018; 140:5193-5201. [PMID: 29578687 DOI: 10.1021/jacs.8b01042] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enteric Gram-negative bacteria, including Escherichia coli, biosynthesize and deploy the triscatecholate siderophore enterobactin (Ent) in the vertebrate host to acquire iron, an essential nutrient. We report that Ent-Cipro, a synthetic siderophore-antibiotic conjugate based on the native Ent platform that harbors an alkyl linker at one of the catechols with a ciprofloxacin cargo attached, affords targeted antibacterial activity against E. coli strains that express the pathogen-associated iroA gene cluster. Attachment of the siderophore to ciprofloxacin, a DNA gyrase inhibitor and broad-spectrum antibiotic that is used to treat infections caused by E. coli, generates an inactive prodrug and guides the antibiotic into the cytoplasm of bacteria that express the Ent uptake machinery (FepABCDG). Intracellular hydrolysis of the siderophore restores the activity of the antibiotic. Remarkably, Fes, the cytoplasmic Ent hydrolase expressed by all E. coli, does not contribute to Ent-Cipro activation. Instead, this processing step requires IroD, a cytoplasmic hydrolase that is expressed only by E. coli that harbor the iroA gene cluster and are predominantly pathogenic. In the uropathogenic E. coli UTI89 and CFT073, Ent-Cipro provides antibacterial activity comparable to unmodified ciprofloxacin. This work highlights the potential of leveraging and targeting pathogen-associated microbial enzymes in narrow-spectrum antibacterial approaches. Moreover, because E. coli include harmless gut commensals as well as resident microbes that can contribute to disease, Ent-Cipro may provide a valuable chemical tool for strain-selective modulation of the microbiota.
Collapse
Affiliation(s)
- Wilma Neumann
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Martina Sassone-Corsi
- Department of Microbiology and Molecular Genetics , University of California , Irvine , California 92697 , United States
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics , University of California , Irvine , California 92697 , United States
| | - Elizabeth M Nolan
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
78
|
Mike LA, Tripathi A, Blankenship CM, Saluk A, Schultz PJ, Tamayo-Castillo G, Sherman DH, Mobley HLT. Discovery of nicoyamycin A, an inhibitor of uropathogenic Escherichia coli growth in low iron environments. Chem Commun (Camb) 2018; 53:12778-12781. [PMID: 29139494 DOI: 10.1039/c7cc07732g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
High-throughput screening and activity-guided purification identified nicoyamycin A, a natural product comprised of an uncommon 3-methyl-1,4-dioxane ring incorporated into a desferrioxamine-like backbone via a spiroaminal linkage. Nicoyamycin A potently inhibits uropathogenic Escherichia coli growth in low iron medium, a promising step toward developing novel antibiotics to treat recalcitrant bacterial infections.
Collapse
Affiliation(s)
- Laura A Mike
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Purification of Intracellular Bacterial Communities during Experimental Urinary Tract Infection Reveals an Abundant and Viable Bacterial Reservoir. Infect Immun 2018; 86:IAI.00740-17. [PMID: 29378794 DOI: 10.1128/iai.00740-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
Urinary tract infections (UTIs) are a major infection of humans, particularly affecting women. Recurrent UTIs can cause significant discomfort and expose patients to high levels of antibiotic use, which in turn contributes to the development of higher antibiotic resistance rates. Most UTIs are caused by uropathogenic Escherichia coli, which is able to form intracellular collections (termed intracellular bacterial communities [IBCs]) within the epithelial cells lining the bladder lumen. IBCs are seen in both infected mice and humans and are a potential cause of recurrent UTI. Genetic and molecular studies of IBCs have been hampered both by the low number of bacteria in IBCs relative to the number extracellular bacteria and by population bottlenecks that occur during IBC formation. We now report the development of a simple and rapid technique for isolating pure IBCs from experimentally infected mice. We verified the specificity and purity of the isolated IBCs via microscopy, gene expression, and culture-based methods. Our results further demonstrated that our isolation technique practically enables specific molecular studies of IBCs. In the first such direct measurement, we determined that a single epithelial cell containing an early IBC typically contains 103 viable bacteria. Our isolation technique complements recent progress in low-input, single-cell genomics to enable future genomic studies of the formation of IBCs and their activation pathways during recurrent UTI, which may lead to novel strategies to eliminate them from the bladder.
Collapse
|
80
|
Abstract
Uropathogenic Escherichia coli (UPEC) strains cause most uncomplicated urinary tract infections (UTIs). These strains are a subgroup of extraintestinal pathogenic E. coli (ExPEC) strains that infect extraintestinal sites, including urinary tract, meninges, bloodstream, lungs, and surgical sites. Here, we hypothesize that UPEC isolates adapt to and grow more rapidly within the urinary tract than other E. coli isolates and survive in that niche. To date, there has not been a reliable method available to measure their growth rate in vivo. Here we used two methods: segregation of nonreplicating plasmid pGTR902, and peak-to-trough ratio (PTR), a sequencing-based method that enumerates bacterial chromosomal replication forks present during cell division. In the murine model of UTI, UPEC strain growth was robust in vivo, matching or exceeding in vitro growth rates and only slowing after reaching high CFU counts at 24 and 30 h postinoculation (hpi). In contrast, asymptomatic bacteriuria (ABU) strains tended to maintain high growth rates in vivo at 6, 24, and 30 hpi, and population densities did not increase, suggesting that host responses or elimination limited population growth. Fecal strains displayed moderate growth rates at 6 hpi but did not survive to later times. By PTR, E. coli in urine of human patients with UTIs displayed extraordinarily rapid growth during active infection, with a mean doubling time of 22.4 min. Thus, in addition to traditional virulence determinants, including adhesins, toxins, iron acquisition, and motility, very high growth rates in vivo and resistance to the innate immune response appear to be critical phenotypes of UPEC strains. Uropathogenic Escherichia coli (UPEC) strains cause most urinary tract infections in otherwise healthy women. While we understand numerous virulence factors are utilized by E. coli to colonize and persist within the urinary tract, these properties are inconsequential unless bacteria can divide rapidly and survive the host immune response. To determine the contribution of growth rate to successful colonization and persistence, we employed two methods: one involving the segregation of a nonreplicating plasmid in bacteria as they divide and the peak-to-trough ratio, a sequencing-based method that enumerates chromosomal replication forks present during cell division. We found that UPEC strains divide extraordinarily rapidly during human UTIs. These techniques will be broadly applicable to measure in vivo growth rates of other bacterial pathogens during host colonization.
Collapse
|
81
|
Evaluation of CpxRA as a Therapeutic Target for Uropathogenic Escherichia coli Infections. Infect Immun 2018; 86:IAI.00798-17. [PMID: 29311237 DOI: 10.1128/iai.00798-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/31/2017] [Indexed: 12/18/2022] Open
Abstract
CpxRA is an envelope stress response system found in all members of the family Enterobacteriaceae; CpxA has kinase activity for CpxR and phosphatase activity for phospho-CpxR, a transcription factor. CpxR also accepts phosphate groups from acetyl phosphate, a glucose metabolite. Activation of CpxR increases the transcription of genes encoding membrane repair and downregulates virulence determinants. We hypothesized that activation of CpxR could serve as an antimicrobial/antivirulence strategy and discovered compounds that activate CpxR in Escherichia coli by inhibiting CpxA phosphatase activity. As a prelude to testing such compounds in vivo, here we constructed cpxA (in the presence of glucose, CpxR is activated because of a lack of CpxA phosphatase) and cpxR (system absent) deletion mutants of uropathogenic E. coli (UPEC) CFT073. By RNA sequencing, few transcriptional differences were noted between the cpxR mutant and its parent, but in the cpxA mutant, several UPEC virulence determinants were downregulated, including the fim and pap operons, and it exhibited reduced mannose-sensitive hemagglutination of guinea pig red blood cells in vitro In competition experiments with mice, both mutants were less fit than the parent in the urine, bladder, and kidney; these fitness defects were complemented in trans Unexpectedly, in single-strain challenges, only the cpxA mutant was attenuated for virulence in the kidney but not in the bladder or urine. For the cpxA mutant, this may be due to the preferential use of amino acids over glucose as a carbon source in the bladder and urine by UPEC. These studies suggest that CpxA phosphatase inhibitors may have some utility for treating complex urinary tract infections.
Collapse
|
82
|
Stork C, Kovács B, Rózsai B, Putze J, Kiel M, Dorn Á, Kovács J, Melegh S, Leimbach A, Kovács T, Schneider G, Kerényi M, Emödy L, Dobrindt U. Characterization of Asymptomatic Bacteriuria Escherichia coli Isolates in Search of Alternative Strains for Efficient Bacterial Interference against Uropathogens. Front Microbiol 2018; 9:214. [PMID: 29491858 PMCID: PMC5817090 DOI: 10.3389/fmicb.2018.00214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 01/30/2018] [Indexed: 12/16/2022] Open
Abstract
Asymptomatic bacterial colonization of the urinary bladder (asymptomatic bacteriuria, ABU) can prevent bladder colonization by uropathogens and thus symptomatic urinary tract infection (UTI). Deliberate bladder colonization with Escherichia coli ABU isolate 83972 has been shown to outcompete uropathogens and prevent symptomatic UTI by bacterial interference. Many ABU isolates evolved from uropathogenic ancestors and, although attenuated, may still be able to express virulence-associated factors. Our aim was to screen for efficient and safe candidate strains that could be used as alternatives to E. coli 83972 for preventive and therapeutic bladder colonization. To identify ABU E. coli strains with minimal virulence potential but maximal interference efficiency, we compared nine ABU isolates from diabetic patients regarding their virulence- and fitness-associated phenotypes in vitro, their virulence in a murine model of sepsis and their genome content. We identified strains in competitive growth experiments, which successfully interfere with colonization of ABU isolate 83972 or uropathogenic E. coli strain 536. Six isolates were able to outcompete E. coli 83972 and two of them also outcompeted UPEC 536 during growth in urine. Superior competitiveness was not simply a result of better growth abilities in urine, but seems also to involve expression of antagonistic factors. Competitiveness in urine did not correlate with the prevalence of determinants coding for adhesins, iron uptake, toxins, and antagonistic factors. Three ABU strains (isolates 61, 106, and 123) with superior competitiveness relative to ABU model strain 83972 display low in vivo virulence in a murine sepsis model, and susceptibility to antibiotics. They belong to different phylogroups and differ in the presence of ExPEC virulence- and fitness-associated genes. Importantly, they all lack marked cytotoxic activity and exhibit a high LD50 value in the sepsis model. These strains represent promising candidates for a more detailed assessment of relevant fitness traits in urine and their suitability for therapeutic bladder colonization.
Collapse
Affiliation(s)
- Christoph Stork
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Beáta Kovács
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary.,First Department of Internal Medicine, University of Pécs, Pécs, Hungary
| | - Barnabás Rózsai
- Department of Paediatrics, University of Pécs, Pécs, Hungary
| | - Johannes Putze
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Matthias Kiel
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Ágnes Dorn
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Judit Kovács
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | | | | | - György Schneider
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Monika Kerényi
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Levente Emödy
- Department of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
83
|
Bauckman KA, Mysorekar IU. Ferritinophagy drives uropathogenic Escherichia coli persistence in bladder epithelial cells. Autophagy 2018; 12:850-63. [PMID: 27002654 DOI: 10.1080/15548627.2016.1160176] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Autophagy is a cellular recycling pathway, which in many cases, protects host cells from infections by degrading pathogens. However, uropathogenic Escherichia coli (UPEC), the predominant cause of urinary tract infections (UTIs), persist within the urinary tract epithelium (urothelium) by forming reservoirs within autophagosomes. Iron is a critical nutrient for both host and pathogen, and regulation of iron availability is a key host defense against pathogens. Iron homeostasis depends on the shuttling of iron-bound ferritin to the lysosome for recycling, a process termed ferritinophagy (a form of selective autophagy). Here, we demonstrate for the first time that UPEC shuttles with ferritin-bound iron into the autophagosomal and lysosomal compartments within the urothelium. Iron overload in urothelial cells induces ferritinophagy in an NCOA4-dependent manner causing increased iron availability for UPEC, triggering bacterial overproliferation and host cell death. Addition of even moderate levels of iron is sufficient to increase and prolong bacterial burden. Furthermore, we show that lysosomal damage due to iron overload is the specific mechanism causing host cell death. Significantly, we demonstrate that host cell death and bacterial burden can be reversed by inhibition of autophagy or inhibition of iron-regulatory proteins, or chelation of iron. Together, our findings suggest that UPEC persist in host cells by taking advantage of ferritinophagy. Thus, modulation of iron levels in the bladder may provide a therapeutic avenue to controlling UPEC persistence, epithelial cell death, and recurrent UTIs.
Collapse
Affiliation(s)
- Kyle A Bauckman
- a Departments of Obstetrics & Gynecology, Washington University School of Medicine , St. Louis , MO , USA
| | - Indira U Mysorekar
- a Departments of Obstetrics & Gynecology, Washington University School of Medicine , St. Louis , MO , USA.,b Pathology & Immunology, Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
84
|
Pedersen RM, Grønnemose RB, Stærk K, Asferg CA, Andersen TB, Kolmos HJ, Møller-Jensen J, Andersen TE. A Method for Quantification of Epithelium Colonization Capacity by Pathogenic Bacteria. Front Cell Infect Microbiol 2018; 8:16. [PMID: 29450193 PMCID: PMC5799267 DOI: 10.3389/fcimb.2018.00016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Most bacterial infections initiate at the mucosal epithelium lining the gastrointestinal, respiratory, and urogenital tracts. At these sites, bacterial pathogens must adhere and increase in numbers to effectively breach the outer barrier and invade the host. If the bacterium succeeds in reaching the bloodstream, effective dissemination again requires that bacteria in the blood, reestablish contact to distant endothelium sites and form secondary site foci. The infectious potential of bacteria is therefore closely linked to their ability to adhere to, colonize, and invade epithelial and endothelial surfaces. Measurement of bacterial adhesion to epithelial cells is therefore standard procedure in studies of bacterial virulence. Traditionally, such measurements have been conducted with microtiter plate cell cultures to which bacteria are added, followed by washing procedures and final quantification of retained bacteria by agar plating. This approach is fast and straightforward, but yields only a rough estimate of the adhesive properties of the bacteria upon contact, and little information on the ability of the bacterium to colonize these surfaces under relevant physiological conditions. Here, we present a method in which epithelia/endothelia are simulated by flow chamber-grown human cell layers, and infection is induced by seeding of pathogenic bacteria on these surfaces under conditions that simulate the physiological microenvironment. Quantification of bacterial adhesion and colonization of the cell layers is then performed by in situ time-lapse fluorescence microscopy and automatic detection of bacterial surface coverage. The method is demonstrated in three different infection models, simulating Staphylococcus aureus endothelial infection and Escherichia coli intestinal- and uroepithelial infection. The approach yields valuable information on the fitness of the bacterium to successfully adhere to and colonize epithelial surfaces and can be used to evaluate the influence of specific virulence genes, growth conditions, and antimicrobial treatment on this process.
Collapse
Affiliation(s)
- Rune M Pedersen
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Rasmus B Grønnemose
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Kristian Stærk
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Cecilie A Asferg
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Thea B Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Hans J Kolmos
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Thomas E Andersen
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark
| |
Collapse
|
85
|
Temporal Regulation of fim Genes in Uropathogenic Escherichia coli during Infection of the Murine Urinary Tract. J Pathog 2017; 2017:8694356. [PMID: 29445547 PMCID: PMC5763102 DOI: 10.1155/2017/8694356] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 11/17/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) adhere to cells in the human urinary tract via type 1 pili that undergo phase variation where a 314-bp fimS DNA element flips between Phase-ON and Phase-OFF orientations through two site-specific recombinases, FimB and FimE. Three fim-lux operon transcriptional fusions were created and moved into the clinical UPEC isolate NU149 to determine their temporal regulation in UPEC growing in the urinary tract. Within murine urinary tracts, the UPEC strains demonstrated elevated transcription of fimA and fimB early in the infection, but lower transcription by the fifth day in murine kidneys. In contrast, fimE transcription was much lower than either fimA or fimB early, increased markedly at 24 h after inoculation, and then dropped five days after inoculation. Positioning of fimS was primarily in the Phase-ON position over the time span in UPEC infected bladders, whereas in UPEC infected murine kidneys the Phase-OFF orientation was favored by the fifth day after inoculation. Hemagglutination titers with guinea pig erythrocytes remained constant in UPEC growing in infected murine bladders but fell substantially in UPEC infected kidneys over time. Our results show temporal in vivo regulation of fim gene expression in different environmental niches when UPEC infects the murine urinary tract.
Collapse
|
86
|
Abstract
Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract and bloodstream infections and possesses an array of virulence factors for colonization, survival, and persistence. One such factor is the polysaccharide K capsule. Among the different K capsule types, the K1 serotype is strongly associated with UPEC infection. In this study, we completely sequenced the K1 UPEC urosepsis strain PA45B and employed a novel combination of a lytic K1 capsule-specific phage, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing (TraDIS) to identify the complement of genes required for capsule production. Our analysis identified known genes involved in capsule biosynthesis, as well as two additional regulatory genes (mprA and lrhA) that we characterized at the molecular level. Mutation of mprA resulted in protection against K1 phage-mediated killing, a phenotype restored by complementation. We also identified a significantly increased unidirectional Tn5 insertion frequency upstream of the lrhA gene and showed that strong expression of LrhA induced by a constitutive Pcl promoter led to loss of capsule production. Further analysis revealed loss of MprA or overexpression of LrhA affected the transcription of capsule biosynthesis genes in PA45B and increased sensitivity to killing in whole blood. Similar phenotypes were also observed in UPEC strains UTI89 (K1) and CFT073 (K2), demonstrating that the effects were neither strain nor capsule type specific. Overall, this study defined the genome of a UPEC urosepsis isolate and identified and characterized two new regulatory factors that affect UPEC capsule production.IMPORTANCE Urinary tract infections (UTIs) are among the most common bacterial infections in humans and are primarily caused by uropathogenic Escherichia coli (UPEC). Many UPEC strains express a polysaccharide K capsule that provides protection against host innate immune factors and contributes to survival and persistence during infection. The K1 serotype is one example of a polysaccharide capsule type and is strongly associated with UPEC strains that cause UTIs, bloodstream infections, and meningitis. The number of UTIs caused by antibiotic-resistant UPEC is steadily increasing, highlighting the need to better understand factors (e.g., the capsule) that contribute to UPEC pathogenesis. This study describes the original and novel application of lytic capsule-specific phage killing, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing to define the entire complement of genes required for capsule production in UPEC. Our comprehensive approach uncovered new genes involved in the regulation of this key virulence determinant.
Collapse
|
87
|
Magistro G, Magistro C, Stief CG, Schubert S. The high-pathogenicity island (HPI) promotes flagellum-mediated motility in extraintestinal pathogenic Escherichia coli. PLoS One 2017; 12:e0183950. [PMID: 29016611 PMCID: PMC5634559 DOI: 10.1371/journal.pone.0183950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022] Open
Abstract
The key of success of extraintestinal pathogenic Escherichia coli (ExPEC) to colonize niches outside the intestinal tract and to establish infection is the coordinated action of numerous virulence and fitness factors. The so-called high-pathogenicity island (HPI), responsible for synthesis, secretion and uptake of the siderophore yersiniabactin, proved to be an important virulence determinant. In this study we investigated the interaction of the flagellum-mediated motility and the HPI. The impairment of yersiniabactin production by deletion of irp2 or ybtA affected significantly motility. The gain of yersiniabactin production improved motility in both pathogenic and non-pathogenic E. coli strains. The loss of flagella expression had no adverse effect on the HPI. Strikingly, external iron abundance was not able to suppress activation of the HPI during motility. The HPI activity of swarming bacteria was comparable to iron deplete conditions, and could even be maximized by supplementing excessive iron. This fact is the first description of a regulatory mechanism, which does not follow the known hierarchical regulation of siderophore systems. Transcriptional reporter fusions of the ybtA promoter demonstrated that the entire promoter region with all YbtA binding sites is necessary for complete induction in both HPI-positive and HPI-negative strains. Altogether, these results suggest that the HPI is part of a complex regulatory network, which orchestrates various virulence mechanisms to optimize the overall fitness of ExPEC.
Collapse
Affiliation(s)
- Giuseppe Magistro
- Department of Urology, Ludwig-Maximilians-Universität, Munich, Germany
- * E-mail:
| | - Christiane Magistro
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Munich, Germany
| | | | - Sören Schubert
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Munich, Germany
| |
Collapse
|
88
|
Biofilm Formation by Uropathogenic Escherichia coli Is Favored under Oxygen Conditions That Mimic the Bladder Environment. Int J Mol Sci 2017; 18:ijms18102077. [PMID: 28973965 PMCID: PMC5666759 DOI: 10.3390/ijms18102077] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 02/06/2023] Open
Abstract
One of the most common urologic problems afflicting millions of people worldwide is urinary tract infection (UTI). The severity of UTIs ranges from asymptomatic bacteriuria to acute cystitis, and in severe cases, pyelonephritis and urosepsis. The primary cause of UTIs is uropathogenic Escherichia coli (UPEC), for which current antibiotic therapies often fail. UPEC forms multicellular communities known as biofilms on urinary catheters, as well as on and within bladder epithelial cells. Biofilm formation protects UPEC from environmental conditions, antimicrobial therapy, and the host immune system. Previous studies have investigated UPEC biofilm formation in aerobic conditions (21% oxygen); however, urine oxygen tension is reduced (4–6%), and urine contains molecules that can be used by UPEC as alternative terminal electron acceptors (ATEAs) for respiration. This study was designed to determine whether these different terminal electron acceptors utilized by E. coli influence biofilm formation. A panel of 50 urine-associated E. coli isolates was tested for the ability to form biofilm under anaerobic conditions and in the presence of ATEAs. Biofilm production was reduced under all tested sub-atmospheric levels of oxygen, with the notable exception of 4% oxygen, the reported concentration of oxygen within the bladder.
Collapse
|
89
|
Hussain HI, Iqbal Z, Seleem MN, Huang D, Sattar A, Hao H, Yuan Z. Virulence and transcriptome profile of multidrug-resistant Escherichia coli from chicken. Sci Rep 2017; 7:8335. [PMID: 28827616 PMCID: PMC5567091 DOI: 10.1038/s41598-017-07798-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/03/2017] [Indexed: 02/01/2023] Open
Abstract
Numerous studies have examined the prevalence of pathogenic Escherichia coli in poultry and poultry products; however, limited data are available regarding their resistance- and virulence-associated gene expression profiles. This study was designed to examine the resistance and virulence of poultry E. coli strains in vitro and in vivo via antibiotic susceptibility, biofilm formation and adhesion, and invasion and intracellular survivability assays in Caco-2 and Raw 264.7 cell lines as well as the determination of the median lethal dose in two-day old chickens. A clinical pathogenic multidrug-resistant isolate, E. coli 381, isolated from broilers, was found to be highly virulent in cell culture and 1000-fold more virulent in a chicken model than other strains; accordingly, the isolate was subsequently selected for transcriptome analysis. The comparative gene expression profile of MDR E. coli 381 and the reference human strain E. coli ATCC 25922 was completed with Illumina HiSeq. 2500 transcriptome analysis. Differential gene expression analysis indicates that there are multiple pathways involved in the resistance and virulence of this highly virulent strain. The results garnered from this study provide critical information about the highly virulent MDR E. coli strain of poultry origin and warrant further investigation due to its significant threat to public health.
Collapse
Affiliation(s)
- Hafiz I Hussain
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Zahid Iqbal
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
- University College of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Deyu Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Adeel Sattar
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
90
|
Habibi M, Asadi Karam MR, Bouzari S. Evaluation of prevalence, immunogenicity and efficacy of FyuA iron receptor in uropathogenic Escherichia coli isolates as a vaccine target against urinary tract infection. Microb Pathog 2017; 110:477-483. [PMID: 28754265 DOI: 10.1016/j.micpath.2017.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 01/31/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) are among the most prevalent agents of urinary tract infections (UTIs). Antibiotic resistance reaches the need for alternative treatment approaches such as vaccination against UTIs. There is no ideal vaccine against UTIs, thus there is a need to evaluate different targets of uropathogens against UTIs. Ferric scavenger receptor FyuA in UPEC has the properties of an ideal vaccine candidate against UTIs. In the present study, the prevalence of FyuA among UPEC isolates, its immunogenicity with and without alum adjuvant, and its efficacy against experimental UTI were assessed. Totally, fyuA gene was present in 77% of the UPEC isolates tested. Alignments of FyuA exhibited a high degree of conservation among different submitted UPEC isolates in GenBank. The bioinformatics studies showed the high confidence value and stability of the FyuA structure. SDS-PAGE and Western blot confirmed the purification of FyuA with high yield by nickel resins. Mice vaccinated subcutaneously with the FyuA induced a significantly higher humoral response (total IgG, IgG1 and IgG2a) than control mice that alum enhanced these responses. The FuyA alone showed the ability to reduce the colonization of UPEC in bladder and kidney of mice as compared to the control group. But the addition of alum to FyuA increased the protection level against UPEC in these organs. Since, FyuA induced significant IgG1 (Th2) and IgG2a (Th1) responses and protected the mice against experimental UTI, it could be a promising target against UPEC infections.
Collapse
Affiliation(s)
- Mehri Habibi
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran
| | | | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Pasteur Ave., Tehran 13164, Iran.
| |
Collapse
|
91
|
Susceptibility to Urinary Tract Infection: Benefits and Hazards of the Antibacterial Host Response. Microbiol Spectr 2017; 4. [PMID: 27337480 DOI: 10.1128/microbiolspec.uti-0019-2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A paradigm shift is needed to improve and personalize the diagnosis of infectious disease and to select appropriate therapies. For many years, only the most severe and complicated bacterial infections received more detailed diagnostic and therapeutic attention as the efficiency of antibiotic therapy has guaranteed efficient treatment of patients suffering from the most common infections. Indeed, treatability almost became a rationale not to analyze bacterial and host parameters in these larger patient groups. Due to the rapid spread of antibiotic resistance, common infections like respiratory tract- or urinary-tract infections (UTIs) now pose new and significant therapeutic challenges. It is fortunate and timely that infectious disease research can offer such a wealth of new molecular information that is ready to use for the identification of susceptible patients and design of new suitable therapies. Paradoxically, the threat of antibiotic resistance may become a window of opportunity, by encouraging the implementation of new diagnostic and therapeutic approaches. The frequency of antibiotic resistance is rising rapidly in uropathogenic organisms and the molecular and genetic understanding of UTI susceptibility is quite advanced. More bold translation of the new molecular diagnostic and therapeutic tools would not just be possible but of great potential benefit in this patient group. This chapter reviews the molecular basis for susceptibility to UTI, including recent advances in genetics, and discusses the consequences for diagnosis and therapy. By dissecting the increasingly well-defined molecular interactions between bacteria and host and the molecular features of excessive bacterial virulence or host-response malfunction, it is becoming possible to isolate the defensive from the damaging aspects of the host response. Distinguishing "good" from "bad" inflammation has been a long-term quest of biomedical science and in UTI, patients need the "good" aspects of the inflammatory response to resist infection while avoiding the "bad" aspects, causing chronicity and tissue damage.
Collapse
|
92
|
Inactivation of Transcriptional Regulators during Within-Household Evolution of Escherichia coli. J Bacteriol 2017; 199:JB.00036-17. [PMID: 28439032 DOI: 10.1128/jb.00036-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/13/2017] [Indexed: 01/24/2023] Open
Abstract
We analyzed the within-household evolution of two household-associated Escherichia coli strains from pandemic clonal group ST131-H30, using isolates recovered from five individuals within two families, each of which had a distinct strain. Family 1's strain was represented by a urine isolate from the index patient (older sister) with recurrent cystitis and a blood isolate from her younger sister with fatal urosepsis. Family 2's strain was represented by a urine isolate from the index patient (father) with pyelonephritis and renal abscesses, blood and kidney drainage isolates from the daughter with emphysematous pyelonephritis, and urine and fecal isolates from the mother with cystitis. Collectively, the several variants of each family's strain had accumulated a total of 8 (family 1) and 39 (family 2) point mutations; no two isolates were identical. Of the 47 total mutations, 36 resulted in amino acid changes or truncation of coded proteins. Fourteen such mutations (39%) targeted genes encoding transcriptional regulators, and 9 (25%) involved DNA-binding transcription factors (TFs), which significantly exceeded the relative contribution of TF genes to the isolates' genomes (∼6%). At least one-half of the transcriptional regulator mutations were inactivating, based on phenotypic and/or transcriptional analysis. In particular, inactivating mutations in the global regulator LrhA (repressor of type 1 fimbriae and flagella) occurred in the blood isolates from both households and increased the virulence of E. coli strains in a murine sepsis model. The results indicate that E. coli undergoes adaptive evolution between and/or within hosts, generating subpopulations with distinctive phenotypes and virulence potential.IMPORTANCE The clonal evolution of bacterial strains associated with interhost transmission is poorly understood. We characterized the genome sequences of clonal descendants of two Escherichia coli strains, recovered at different time points from multiple individuals within two households who had different types of urinary tract infection. We found evidence that the E. coli strains underwent extensive mutational diversification between and within these individuals, driven disproportionately by inactivation of transcriptional regulators. In urosepsis isolates, the mutations observed in the global regulator LrhA increased bacterial virulence in a murine sepsis model. Our findings help in understanding the adaptive dynamics and strategies of E. coli during short-term natural evolution.
Collapse
|
93
|
Newman JW, Floyd RV, Fothergill JL. The contribution of Pseudomonas aeruginosa virulence factors and host factors in the establishment of urinary tract infections. FEMS Microbiol Lett 2017; 364:3866593. [DOI: 10.1093/femsle/fnx124] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 12/26/2022] Open
|
94
|
'Omic' Approaches to Study Uropathogenic Escherichia coli Virulence. Trends Microbiol 2017; 25:729-740. [PMID: 28550944 DOI: 10.1016/j.tim.2017.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 01/21/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is a pathogen of major significance to global human health and is strongly associated with rapidly increasing antibiotic resistance. UPEC is the primary cause of urinary tract infection (UTI), a disease that involves a complicated pathogenic pathway of extracellular and intracellular lifestyles during interaction with the host. The application of multiple 'omic' technologies, including genomics, transcriptomics, proteomics, and metabolomics, has provided enormous knowledge to our understanding of UPEC biology. Here we outline this progress and present a view for future developments using these exciting forefront technologies to fully comprehend UPEC pathogenesis in the context of infection.
Collapse
|
95
|
Madelung M, Kronborg T, Doktor TK, Struve C, Krogfelt KA, Møller-Jensen J. DFI-seq identification of environment-specific gene expression in uropathogenic Escherichia coli. BMC Microbiol 2017; 17:99. [PMID: 28438119 PMCID: PMC5404293 DOI: 10.1186/s12866-017-1008-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
Background During infection of the urinary tract, uropathogenic Escherichia coli (UPEC) are exposed to different environments, such as human urine and the intracellular environments of bladder epithelial cells. Each environment elicits a distinct bacterial environment-specific transcriptional response. We combined differential fluorescence induction (DFI) with next-generation sequencing, collectively termed DFI-seq, to identify differentially expressed genes in UPEC strain UTI89 during growth in human urine and bladder cells. Results DFI-seq eliminates the need for iterative cell sorting of the bacterial library and yields a genome-wide view of gene expression. By analysing the gene expression of UPEC in human urine we found that genes involved in amino acid biosynthesis were upregulated. Deletion mutants lacking genes involved in arginine biosynthesis were outcompeted by the wild type during growth in human urine and inhibited in their ability to invade or proliferate in the J82 bladder epithelial cell line. Furthermore, DFI-seq was used to identify genes involved in invasion of J82 bladder epithelial cells. 56 genes were identified to be differentially expressed of which almost 60% encoded hypothetical proteins. One such gene UTI89_C5139, displayed increased adhesion and invasion of J82 cells when deleted from UPEC strain UTI89. Conclusions We demonstrate the usefulness of DFI-seq for identification of genes required for optimal growth of UPEC in human urine, as well as potential virulence genes upregulated during infection of bladder cell culture. DFI-seq holds potential for the study of bacterial gene expression in live-animal infection systems. By linking fitness genes, such as those genes involved in amino acid biosynthesis, to virulence, this study contributes to our understanding of UPEC pathophysiology. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1008-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michelle Madelung
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tina Kronborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Carsten Struve
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Karen Angeliki Krogfelt
- Department of Microbiology and Infection Control, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
96
|
Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization. Infect Immun 2017; 85:IAI.01041-16. [PMID: 28031261 DOI: 10.1128/iai.01041-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infection (UTI) is a major global infectious disease affecting millions of people annually. Human urinary copper (Cu) content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC). UPEC upregulates the expression of Cu efflux genes during clinical UTI in patients as an adaptive response to host-derived Cu. Whether Cu is mobilized to urine as a host response to UTI and its role in protection against UTI remain unresolved. To address these questions, we tested the hypothesis that Cu is a host effector mobilized to urine during UTI to limit bacterial growth. Our results reveal that Cu is mobilized to urine during UTI caused by the major uropathogens Proteus mirabilis and Klebsiella pneumoniae, in addition to UPEC, in humans. Ceruloplasmin, a Cu-containing ferroxidase, is found at higher levels in UTI urine than in healthy control urine and serves as the molecular source of urinary Cu during UTI. Our results demonstrate that ceruloplasmin decreases the bioavailability of iron in urine by a transferrin-dependent mechanism. Experimental UTI with UPEC in nonhuman primates recapitulates the increased urinary Cu content observed during clinical UTI. Furthermore, Cu-deficient mice are highly colonized by UPEC, indicating that Cu is involved in the limiting of bacterial growth within the urinary tract. Collectively, our results indicate that Cu is a host effector that is involved in protection against pathogen colonization of the urinary tract. Because urinary Cu levels are amenable to modulation, augmentation of the Cu-based host defense against UTI represents a novel approach to limiting bacterial colonization during UTI.
Collapse
|
97
|
Rees CA, Franchina FA, Nordick KV, Kim PJ, Hill JE. Expanding the Klebsiella pneumoniae volatile metabolome using advanced analytical instrumentation for the detection of novel metabolites. J Appl Microbiol 2017; 122:785-795. [PMID: 27930839 DOI: 10.1111/jam.13372] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/03/2016] [Accepted: 11/29/2016] [Indexed: 12/15/2022]
Abstract
AIMS The purpose of this study was to identify the volatile molecules produced by the pathogenic Gram-negative bacterium Klebsiella pneumoniae (ATCC 13883) during in vitro growth using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS). METHODS AND RESULTS Klebsiella pneumoniae ATCC 13883 was incubated in lysogeny broth to mid-exponential and stationary growth phases. Headspace volatile molecules from culture supernatants were concentrated using solid-phase microextraction (SPME) and analysed via GC×GC-TOFMS. Ninety-two K. pneumoniae-associated volatile molecules were detected, of which 78 (85%) were detected at both phases of growth and 14 (15%) were detected at either mid-exponential or stationary growth phases. CONCLUSIONS This study has increased the total number of reported K. pneumoniae-associated volatile molecules from 77 to 150, demonstrating the sensitivity and resolution achieved by employing GC×GC-TOFMS for the analysis of bacterial headspace volatiles. SIGNIFICANCE AND IMPACT OF THE STUDY This study represents an early-stage comprehensive volatile metabolomic analysis of an opportunistic bacterial pathogen. Characterizing the volatile molecules produced by K. pneumoniae during in vitro growth could provide us with a better understanding of this organisms' metabolism, an area that has not been extensively studied to date.
Collapse
Affiliation(s)
- C A Rees
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - F A Franchina
- Thayer School of Engineering at Dartmouth, Hanover, NH, USA
| | | | - P J Kim
- Dartmouth College, Hanover, NH, USA
| | - J E Hill
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Thayer School of Engineering at Dartmouth, Hanover, NH, USA
| |
Collapse
|
98
|
Azevedo AS, Almeida C, Melo LF, Azevedo NF. Impact of polymicrobial biofilms in catheter-associated urinary tract infections. Crit Rev Microbiol 2016; 43:423-439. [PMID: 28033847 DOI: 10.1080/1040841x.2016.1240656] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent reports have demonstrated that most biofilms involved in catheter-associated urinary tract infections are polymicrobial communities, with pathogenic microorganisms (e.g. Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and uncommon microorganisms (e.g. Delftia tsuruhatensis, Achromobacter xylosoxidans) frequently co-inhabiting the same urinary catheter. However, little is known about the interactions that occur between different microorganisms and how they impact biofilm formation and infection outcome. This lack of knowledge affects CAUTIs management as uncommon bacteria action can, for instance, influence the rate at which pathogens adhere and grow, as well as affect the overall biofilm resistance to antibiotics. Another relevant aspect is the understanding of factors that drive a single pathogenic bacterium to become prevalent in a polymicrobial community and subsequently cause infection. In this review, a general overview about the IMDs-associated biofilm infections is provided, with an emphasis on the pathophysiology and the microbiome composition of CAUTIs. Based on the available literature, it is clear that more research about the microbiome interaction, mechanisms of biofilm formation and of antimicrobial tolerance of the polymicrobial consortium are required to better understand and treat these infections.
Collapse
Affiliation(s)
- Andreia S Azevedo
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal
| | - Carina Almeida
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal.,b Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, Universidade do Minho , Braga , Portugal
| | - Luís F Melo
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal
| | - Nuno F Azevedo
- a Department of Chemical Engineering, Faculty of Engineering , Laboratory for Process Engineering, Environment, and Energy and Biotechnology Engineering (LEPABE), University of Porto , Porto , Portugal
| |
Collapse
|
99
|
Abstract
Strains of Klebsiella pneumoniae are frequently opportunistic pathogens implicated in urinary tract and catheter-associated urinary-tract infections of hospitalized patients and compromised individuals. Infections are particularly difficult to treat since most clinical isolates exhibit resistance to several antibiotics leading to treatment failure and the possibility of systemic dissemination. Infections of medical devices such as urinary catheters is a major site of K. pneumoniae infections and has been suggested to involve the formation of biofilms on these surfaces. Over the last decade there has been an increase in research activity designed to investigate the pathogenesis of K. pneumoniae in the urinary tract. These investigations have begun to define the bacterial factors that contribute to growth and biofilm formation. Several virulence factors have been demonstrated to mediate K. pneumoniae infectivity and include, but are most likely not limited to, adherence factors, capsule production, lipopolysaccharide presence, and siderophore activity. The development of both in vitro and in vivo models of infection will lead to further elucidation of the molecular pathogenesis of K. pneumoniae. As for most opportunistic infections, the role of host factors as well as bacterial traits are crucial in determining the outcome of infections. In addition, multidrug-resistant strains of these bacteria have become a serious problem in the treatment of Klebsiella infections and novel strategies to prevent and inhibit bacterial growth need to be developed. Overall, the frequency, significance, and morbidity associated with K. pneumoniae urinary tract infections have increased over many years. The emergence of these bacteria as sources of antibiotic resistance and pathogens of the urinary tract present a challenging problem for the clinician in terms of management and treatment of individuals.
Collapse
|
100
|
Mike LA, Smith SN, Sumner CA, Eaton KA, Mobley HLT. Siderophore vaccine conjugates protect against uropathogenic Escherichia coli urinary tract infection. Proc Natl Acad Sci U S A 2016; 113:13468-13473. [PMID: 27821778 PMCID: PMC5127358 DOI: 10.1073/pnas.1606324113] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the primary cause of uncomplicated urinary tract infections (UTIs). Whereas most infections are isolated cases, 1 in 40 women experience recurrent UTIs. The rise in antibiotic resistance has complicated the management of chronic UTIs and necessitates new preventative strategies. Currently, no UTI vaccines are approved for use in the United States, and the development of a highly effective vaccine remains elusive. Here, we have pursued a strategy for eliciting protective immunity by vaccinating with small molecules required for pathogenesis, rather than proteins or peptides. Small iron-chelating molecules called siderophores were selected as antigens to vaccinate against UTI for this vaccine strategy. These pathogen-associated stealth siderophores evade host immune defenses and enhance bacterial virulence. Previous animal studies revealed that vaccination with siderophore receptor proteins protects against UTI. The poor solubility of these integral outer-membrane proteins in aqueous solutions limits their practical utility. Because their cognate siderophores are water soluble, we hypothesized that these bacterial-derived small molecules are prime vaccine candidates. To test this hypothesis, we immunized mice with siderophores conjugated to an immunogenic carrier protein. The siderophore-protein conjugates elicited an adaptive immune response that targeted bacterial stealth siderophores and protected against UTI. Our study has identified additional antigens suitable for a multicomponent UTI vaccine and highlights the potential use of bacterial-derived small molecules as antigens in vaccine therapies.
Collapse
Affiliation(s)
- Laura A Mike
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Sara N Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Christopher A Sumner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Kathryn A Eaton
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Harry L T Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|