51
|
Boettler T, Choi YS, Salek-Ardakani S, Cheng Y, Moeckel F, Croft M, Crotty S, von Herrath M. Exogenous OX40 stimulation during lymphocytic choriomeningitis virus infection impairs follicular Th cell differentiation and diverts CD4 T cells into the effector lineage by upregulating Blimp-1. THE JOURNAL OF IMMUNOLOGY 2013; 191:5026-35. [PMID: 24101548 DOI: 10.4049/jimmunol.1300013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T cell costimulation is a key component of adaptive immunity to viral infection but has also been associated with pathology because of excessive or altered T cell activity. We recently demonstrated that the TNFR family costimulatory molecule OX40 (CD134) is critically required to sustain antiviral T cell and Ab responses that enable control of viral replication in the context of chronic lymphocytic choriomeningitis virus (LCMV) infection. In this study, we investigated whether reinforcing OX40 stimulation through an agonist Ab had the potential to prevent LCMV persistence. We observed that anti-OX40 injection early after LCMV clone 13 infection increased CD8 T cell-mediated immunopathology. More strikingly, OX40 stimulation of virus-specific CD4 T cells promoted expression of the transcriptional repressor Blimp-1 and diverted the majority of cells away from follicular Th cell differentiation. This occurred in both acute and chronic infections, and resulted in dramatic reductions in germinal center and Ab responses to the viral infection. The effect of the OX40 agonist was dependent on IL-2 signaling and the timing of OX40 stimulation. Collectively, our data demonstrate that excessive OX40 signaling can result in deleterious consequences in the setting of LCMV infection.
Collapse
Affiliation(s)
- Tobias Boettler
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Locci M, Havenar-Daughton C, Landais E, Wu J, Kroenke MA, Arlehamn CL, Su LF, Cubas R, Davis MM, Sette A, Haddad EK, Poignard P, Crotty S. Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 2013; 39:758-69. [PMID: 24035365 DOI: 10.1016/j.immuni.2013.08.031] [Citation(s) in RCA: 725] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/07/2013] [Indexed: 02/08/2023]
Abstract
The vast majority of currently licensed human vaccines work on the basis of long-term protective antibody responses. It is now conceivable that an antibody-dependent HIV vaccine might be possible, given the discovery of HIV broadly neutralizing antibodies (bnAbs) in some HIV-infected individuals. However, these antibodies are difficult to develop and have characteristics indicative of a high degree of affinity maturation in germinal centers (GCs). CD4⁺ T follicular helper (Tfh) cells are specialized for B cell help and necessary for GCs. Therefore, the development of HIV bnAbs might depend on Tfh cells. Here, we identified in normal individuals a subpopulation of circulating memory PD-1⁺CXCR5⁺CD4⁺ T cells that are resting memory cells most related to bona fide GC Tfh cells by gene expression profile, cytokine profile, and functional properties. Importantly, the frequency of these cells correlated with the development of bnAbs against HIV in a large cohort of HIV⁺ individuals.
Collapse
Affiliation(s)
- Michela Locci
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Wortzman ME, Clouthier DL, McPherson AJ, Lin GHY, Watts TH. The contextual role of TNFR family members in CD8+T-cell control of viral infections. Immunol Rev 2013; 255:125-48. [DOI: 10.1111/imr.12086] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
Affiliation(s)
| | - Derek L. Clouthier
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Ann J. McPherson
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Gloria H. Y. Lin
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| | - Tania H. Watts
- The Department of Immunology; University of Toronto; Toronto; ON; Canada
| |
Collapse
|
54
|
Lei F, Song J, Haque R, Haque M, Xiong X, Fang D, Croft M, Song J. Regulation of A1 by OX40 contributes to CD8(+) T cell survival and anti-tumor activity. PLoS One 2013; 8:e70635. [PMID: 23936461 PMCID: PMC3731243 DOI: 10.1371/journal.pone.0070635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/25/2013] [Indexed: 12/28/2022] Open
Abstract
The TNFR family member OX40 (CD134) is critical for optimal clonal expansion and survival of T cells. However, the intracellular targets of OX40 in CD8 T cells are not fully understood. Here we show that A1, a Bcl-2 family protein, is regulated by OX40 in effector CD8 T cells. In contrast to wild-type T cells, OX40-deficient CD8 T cells failed to maintain A1 expression driven by antigen. Conversely, enforced OX40 stimulation promoted A1 expression. In both situations, the expression of A1 directly correlated with CD8 T cell survival. In addition, exogenous expression of A1 in OX40-deficient CD8 T cells reversed their survival defect in vitro and in vivo. Moreover, forced expression of A1 in CD8 T cells from OX40-deficient mice restored the ability of these T cells to suppress tumor growth in a murine model. These results indicate that OX40 signals regulate CD8 T cell survival at least in part through maintaining expression of the anti-apoptotic molecule A1, and provide new insight into the mechanism by which OX40 may impact anti-tumor immunity.
Collapse
Affiliation(s)
- Fengyang Lei
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Jianyong Song
- Center of Irradiation, The Third Military Medical University, Chongqing, China
| | - Rizwanul Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Mohammad Haque
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Xiaofang Xiong
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
55
|
Byun M, Ma CS, Akçay A, Pedergnana V, Palendira U, Myoung J, Avery DT, Liu Y, Abhyankar A, Lorenzo L, Schmidt M, Lim HK, Cassar O, Migaud M, Rozenberg F, Canpolat N, Aydogan G, Fleckenstein B, Bustamante J, Picard C, Gessain A, Jouanguy E, Cesarman E, Olivier M, Gros P, Abel L, Croft M, Tangye SG, Casanova JL. Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood. ACTA ACUST UNITED AC 2013; 210:1743-59. [PMID: 23897980 PMCID: PMC3754857 DOI: 10.1084/jem.20130592] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human OX40 is necessary for robust CD4+ T cell memory and confers selective protective immunity against HHV-8 infection in endothelial cells. Kaposi sarcoma (KS), a human herpes virus 8 (HHV-8; also called KSHV)–induced endothelial tumor, develops only in a small fraction of individuals infected with HHV-8. We hypothesized that inborn errors of immunity to HHV-8 might underlie the exceedingly rare development of classic KS in childhood. We report here autosomal recessive OX40 deficiency in an otherwise healthy adult with childhood-onset classic KS. OX40 is a co-stimulatory receptor expressed on activated T cells. Its ligand, OX40L, is expressed on various cell types, including endothelial cells. We found OX40L was abundantly expressed in KS lesions. The mutant OX40 protein was poorly expressed on the cell surface and failed to bind OX40L, resulting in complete functional OX40 deficiency. The patient had a low proportion of effector memory CD4+ T cells in the peripheral blood, consistent with impaired CD4+ T cell responses to recall antigens in vitro. The proportion of effector memory CD8+ T cells was less diminished. The proportion of circulating memory B cells was low, but the antibody response in vivo was intact, including the response to a vaccine boost. Together, these findings suggest that human OX40 is necessary for robust CD4+ T cell memory and confers apparently selective protective immunity against HHV-8 infection in endothelial cells.
Collapse
Affiliation(s)
- Minji Byun
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Straub T, Schweier O, Bruns M, Nimmerjahn F, Waisman A, Pircher H. Nucleoprotein-specific nonneutralizing antibodies speed up LCMV elimination independently of complement and FcγR. Eur J Immunol 2013; 43:2338-48. [PMID: 23749409 DOI: 10.1002/eji.201343565] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/21/2013] [Accepted: 06/04/2013] [Indexed: 12/12/2022]
Abstract
CD8(+) T cells have an essential role in controlling lymphocytic choriomeningitis virus (LCMV) infection in mice. Here, we examined the contribution of humoral immunity, including nonneutralizing antibodies (Abs), in this infection induced by low virus inoculation doses. Mice with impaired humoral immunity readily terminated infection with the slowly replicating LCMV strain Armstrong but showed delayed virus elimination after inoculation with the faster replicating LCMV strain WE and failed to clear the rapidly replicating LCMV strain Docile, which is in contrast to the results obtained with wild-type mice. Thus, the requirement for adaptive humoral immunity to control the infection was dependent on the replication speed of the LCMV strains used. Ab transfers further showed that LCMV-specific IgG Abs isolated from LCMV immune serum accelerated virus elimination. These Abs were mainly directed against the viral nucleoprotein (NP) and completely lacked virus neutralizing activity. Moreover, mAbs specific for the LCMV NP were also able to decrease viral titers after transfer into infected hosts. Intriguingly, neither C3 nor Fcγ receptors were required for the antiviral activity of the transferred Abs. In conclusion, our study suggests that rapidly generated nonneutralizing Abs specific for the viral NP speed up virus elimination and thereby may counteract T-cell exhaustion.
Collapse
Affiliation(s)
- Tobias Straub
- Department of Immunology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
57
|
Welten SPM, Melief CJM, Arens R. The distinct role of T cell costimulation in antiviral immunity. Curr Opin Virol 2013; 3:475-82. [PMID: 23850168 DOI: 10.1016/j.coviro.2013.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/18/2013] [Accepted: 06/18/2013] [Indexed: 11/18/2022]
Abstract
Defining the critical molecular interactions for inducing antiviral T cell responses is important for improvement of vaccines. Recent progress in understanding the role of T cell costimulatory molecules provides the insight that these molecules not only enhance CD4 and CD8 T cell responses in acute infections but also have an impact in latent and chronic viral infections. Intriguingly, the requirements for T cell costimulation seem to be distinct for each virus but nonetheless at least one or more costimulatory pathways are instrumental for development of protective immunity. Remarkably, certain viruses have evolved mechanisms to evade host costimulatory pathways to their advantage. These new insights have important implications for rational vaccine design.
Collapse
Affiliation(s)
- Suzanne P M Welten
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | | | | |
Collapse
|
58
|
Zhang JY, Wu XL, Yang B, Wang Y, Feng GH, Jiang TJ, Zeng QL, Xu XS, Li YY, Jin L, Lv S, Zhang Z, Fu J, Wang FS. Upregulation of OX40 ligand on monocytes contributes to early virological control in patients with chronic hepatitis C. Eur J Immunol 2013; 43:1953-1962. [PMID: 23589118 DOI: 10.1002/eji.201243097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/18/2013] [Accepted: 04/10/2013] [Indexed: 12/20/2022]
Abstract
Dysfunctional hepatitis C virus (HCV) specific CD4(+) T cells are known to contribute to inadequate adaptive immunity in chronic hepatitis C (CHC), although the underlying mechanisms remain largely undefined. In this study, OX40 ligand (OX40L) expression was investigated in 41 treatment-naïve CHC patients, 20 sustained virological responders and 36 healthy subjects. We observed that OX40L expression was significantly upregulated in peripheral monocytes in CHC patients compared with sustained virological responders and healthy subjects. OX40L upregulation correlated significantly with plasma viral load rather than serum alanine aminotransaminase levels. Furthermore, longitudinal analyses indicated that upregulated OX40L expression on monocytes is closely associated with rapid or early virological responses in patients receiving pegylated IFN-α/ribavirin treatment. In vitro, HCV core antigen strongly stimulated monocyte expression of OX40L and blockade of TLR2 signaling significantly downregulated OX40L expression. More importantly, elevated OX40L expression was also shown to be closely associated with elevation of the HCV-specific CD4(+) T-cell response and in vitro blockade of OX40L expressed on monocytes led to impaired CD4(+) T-cell function. These findings, therefore, implicate OX40L expression can be used as a marker to evaluate antiviral treatment efficacy and extend the notion that enhancement of OX40L expression could be a good way for immunotherapy in CHC patients.
Collapse
Affiliation(s)
- Ji-Yuan Zhang
- Institute of Translational Hepatology, Research Center for Biological Therapy, Beijing 302 Hospital, Beijing, P R China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|