51
|
Roy S, Liu F, Arav-Boger R. Human Cytomegalovirus Inhibits the PARsylation Activity of Tankyrase--A Potential Strategy for Suppression of the Wnt Pathway. Viruses 2015; 8:v8010008. [PMID: 26729153 PMCID: PMC4728568 DOI: 10.3390/v8010008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/18/2015] [Accepted: 12/25/2015] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) was reported to downregulate the Wnt/β-catenin pathway. Induction of Axin1, the negative regulator of the Wnt pathway, has been reported as an important mechanism for inhibition of β-catenin. Since Tankyrase (TNKS) negatively regulates Axin1, we investigated the effect of HCMV on TNKS expression and poly-ADP ribose polymerase (PARsylation) activity, during virus replication. Starting at 24 h post infection, HCMV stabilized the expression of TNKS and reduced its PARsylation activity, resulting in accumulation of Axin1 and reduction in its PARsylation as well. General PARsylation was not changed in HCMV-infected cells, suggesting specific inhibition of TNKS PARsylation. Similarly, treatment with XAV939, a chemical inhibitor of TNKS’ activity, resulted in the accumulation of TNKS in both non-infected and HCMV-infected cell lines. Reduction of TNKS activity or knockdown of TNKS was beneficial for HCMV, evidenced by its improved growth in fibroblasts. Our results suggest that HCMV modulates the activity of TNKS to induce Axin1, resulting in inhibition of the β-catenin pathway. Since HCMV replication is facilitated by TNKS knockdown or inhibition of its activity, TNKS may serve as an important virus target for control of a variety of cellular processes.
Collapse
Affiliation(s)
- Sujayita Roy
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore 21287, MD, USA.
| | - Fengjie Liu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore 21287, MD, USA.
| | - Ravit Arav-Boger
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore 21287, MD, USA.
| |
Collapse
|
52
|
The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions. PLoS Pathog 2015; 11:e1005288. [PMID: 26599541 PMCID: PMC4658056 DOI: 10.1371/journal.ppat.1005288] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/29/2015] [Indexed: 01/06/2023] Open
Abstract
Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV) does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus. Viruses are fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt it for their own benefit. However, fundamental questions such as: what is the effect that infection has on the spectrum of host mRNAs that are being translated, and whether, and to what extent, a virus possesses mechanisms to commandeer the translation machinery are still hard to address. Here we show that by simultaneously examining the changes in transcription and translation along Human cytomegalovirus (HCMV) infection, we can uncover extensive transcriptional regulation, but also diverse and dynamic translational control. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, we take advantage of our measurements of translation (protein synthesis rate) and integrate these with mass spectrometry measurements (protein abundance). This integration allowed us to unbiasedly reveal dozens of cellular proteins that are being degraded during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus.
Collapse
|
53
|
Human Cytomegalovirus Modulates Expression of Noncanonical Wnt Receptor ROR2 To Alter Trophoblast Migration. J Virol 2015; 90:1108-15. [PMID: 26559837 DOI: 10.1128/jvi.02588-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Maternal primary cytomegalovirus (CMV) infection, reactivation, or reinfection with a different viral strain may cause fetal injury and adverse pregnancy outcomes. Increasing evidence indicates that fetal injury results not only from direct viral cytopathic damage to the CMV-infected fetus but also from indirect effects through placental infection and dysfunction. CMV alters Wingless (Wnt) signaling, an essential cellular pathway involved in placentation, as evidenced by reduced transcription of canonical Wnt target genes and decreased Wnt3a-induced trophoblast migration. Whether CMV affects the noncanonical Wnt signaling pathway has been unclear. This study demonstrates for the first time that CMV infection inhibits Wnt5a-stimulated migration of human SGHPL-4 trophoblasts and that inhibition of the pathway restores normal migration of CMV-infected cells. Western blot and real-time PCR analyses show increased expression of noncanonical Wnt receptor ROR2 in CMV-infected trophoblasts. Mimicking the CMV-induced ROR2 protein expression via ectopic expression inhibited Wnt5a-induced trophoblast migration and reduced T cell-specific factor (TCF)/lymphoid enhancer-binding factor (LEF)-mediated transcription as measured using luciferase reporter assays. Gene silencing using small interfering RNA (siRNA) duplexes decreased ROR2 transcript and protein levels. In contrast, proliferation of SGHPL-4 trophoblasts, measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was not affected. The siRNA-mediated downregulation of ROR2 in trophoblasts rescued CMV-induced reduction in trophoblast migration. These data suggest a mechanism where CMV alters the expression of the Wnt receptor ROR2 to alter Wnt5a-mediated signaling and inhibit trophoblast motility. Inhibition of this mechanism may be a target for therapeutic intervention for CMV-induced placental damage and consequent fetal damage in congenital CMV infections. IMPORTANCE Maternal primary cytomegalovirus (CMV) infection, reactivation, or reinfection with a different viral strain may cause fetal injury and adverse pregnancy outcomes. Increasing evidence indicates that fetal injury results not only from direct viral cytopathic damage to the CMV-infected fetus but also from indirect effects through placental infection and placental dysfunction. No effective therapy is currently proven to prevent or treat congenital CMV infection. Understanding the molecular underpinnings of CMV infection of the placenta is essential for therapeutic innovations and vaccine design. CMV alters canonical Wingless (Wnt) signaling, an essential cellular pathway involved in placental development. This study suggests a mechanism in which CMV alters the expression of noncanonical Wnt receptor ROR2 to alter motility of placental cells, which has important implications in the pathogenesis of CMV-induced placental dysfunction. Inhibition of this mechanism may be a target for therapeutic intervention for CMV-induced placental damage and consequent fetal damage in congenital CMV infection.
Collapse
|
54
|
Kaposi's Sarcoma-Associated Herpesvirus Viral Interferon Regulatory Factor 4 (vIRF4) Perturbs the G1-S Cell Cycle Progression via Deregulation of the cyclin D1 Gene. J Virol 2015; 90:1139-43. [PMID: 26491150 DOI: 10.1128/jvi.01897-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/14/2015] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) infection modulates the host cell cycle to create an environment optimal for its viral-DNA replication during the lytic life cycle. We report here that KSHV vIRF4 targets the β-catenin/CBP cofactor and blocks its occupancy on the cyclin D1 promoter, suppressing the G1-S cell cycle progression and enhancing KSHV replication. This shows that KSHV vIRF4 suppresses host G1-S transition, possibly providing an intracellular milieu favorable for its replication.
Collapse
|
55
|
β-Catenin Upregulates the Constitutive and Virus-Induced Transcriptional Capacity of the Interferon Beta Promoter through T-Cell Factor Binding Sites. Mol Cell Biol 2015; 36:13-29. [PMID: 26459757 DOI: 10.1128/mcb.00641-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022] Open
Abstract
Rapid upregulation of interferon beta (IFN-β) expression following virus infection is essential to set up an efficient innate antiviral response. Biological roles related to the antiviral and immune response have also been associated with the constitutive production of IFN-β in naive cells. However, the mechanisms capable of modulating constitutive IFN-β expression in the absence of infection remain largely unknown. In this work, we demonstrate that inhibition of the kinase glycogen synthase kinase 3 (GSK-3) leads to the upregulation of the constitutive level of IFN-β expression in noninfected cells, provided that GSK-3 inhibition is correlated with the binding of β-catenin to the IFN-β promoter. Under these conditions, IFN-β expression occurred through the T-cell factor (TCF) binding sites present on the IFN-β promoter independently of interferon regulatory factor 3 (IRF3). Enhancement of the constitutive level of IFN-β per se was able to confer an efficient antiviral state to naive cells and acted in synergy with virus infection to stimulate virus-induced IFN-β expression. Further emphasizing the role of β-catenin in the innate antiviral response, we show here that highly pathogenic Rift Valley fever virus (RVFV) targets the Wnt/β-catenin pathway and the formation of active TCF/β-catenin complexes at the transcriptional and protein level in RVFV-infected cells and mice.
Collapse
|
56
|
Zhang L, Tu Y, He W, Peng Y, Qiu Z. A novel mechanism of hepatocellular carcinoma cell apoptosis induced by lupeol via Brain-Derived Neurotrophic Factor Inhibition and Glycogen Synthase Kinase 3 beta reactivation. Eur J Pharmacol 2015; 762:55-62. [PMID: 26004524 DOI: 10.1016/j.ejphar.2015.05.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 01/11/2023]
Abstract
Lupeol is a naturally available triterpenoid with selective anticancerous potential on various human cancer cells. The present study shows that lupeol can inhibit cell proliferation of hepatocellular carcinoma (HCC) HCCLM3 cells in a time- and dose-dependent manner, through caspase-3 dependent activation and Poly ADP-Ribose Polymerase (PARP) cleavage. Lupeol-induced cell death is associated with a marked decrease in the protein expression of Brain-Derived Neurotrophic Factor (BDNF) and ser-9-phosphoryltion of Glycogen Synthase Kinase 3 Beta (GSK-3β), with concomitant suppression of Akt1, phosphatidyl inositol 3-kinase (PI3K), β-catenin, c-Myc and Cyclin D1 mRNA expression. Suppressing overexpression of BDNF by lupeol results in decreased protein expression of p-Akt and PI3K (p110α), as well as reactivation of GSK-3β function in HepG2 cells. Lupeol treatment also inhibits LiCl-induced activation of Wnt signaling pathway and exerts the in vitro anti-invasive activity in Huh-7 cells. LiCl-triggered high expression of β-catenin, c-Myc and Cyclin D1 protein is reduced followed by lupeol exposure. The findings suggest a mechanistic link between caspase dependent pathway, BDNF secretion and Akt/PI3K/GSK-3β in HCC cells. These results indicate that lupeol can suppress HCC cell proliferation by inhibiting BDNF secretion and phosphorylation of GSK-3β(Ser-9), cooperated with blockade of Akt/PI3K and Wnt signaling pathway.
Collapse
Affiliation(s)
- Lingli Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Wen He
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yan Peng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhenpeng Qiu
- Wuhan University School of Basic Medical Sciences, Wuhan, People's Republic of China.
| |
Collapse
|
57
|
Tabata T, Petitt M, Zydek M, Fang-Hoover J, Larocque N, Tsuge M, Gormley M, Kauvar LM, Pereira L. Human cytomegalovirus infection interferes with the maintenance and differentiation of trophoblast progenitor cells of the human placenta. J Virol 2015; 89:5134-47. [PMID: 25741001 PMCID: PMC4403461 DOI: 10.1128/jvi.03674-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/19/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) is a major cause of birth defects that include severe neurological deficits, hearing and vision loss, and intrauterine growth restriction. Viral infection of the placenta leads to development of avascular villi, edema, and hypoxia associated with symptomatic congenital infection. Studies of primary cytotrophoblasts (CTBs) revealed that HCMV infection impedes terminal stages of differentiation and invasion by various molecular mechanisms. We recently discovered that HCMV arrests earlier stages involving development of human trophoblast progenitor cells (TBPCs), which give rise to the mature cell types of chorionic villi-syncytiotrophoblasts on the surfaces of floating villi and invasive CTBs that remodel the uterine vasculature. Here, we show that viral proteins are present in TBPCs of the chorion in cases of symptomatic congenital infection. In vitro studies revealed that HCMV replicates in continuously self-renewing TBPC lines derived from the chorion and alters expression and subcellular localization of proteins required for cell cycle progression, pluripotency, and early differentiation. In addition, treatment with a human monoclonal antibody to HCMV glycoprotein B rescues differentiation capacity, and thus, TBPCs have potential utility for evaluation of the efficacies of novel antiviral antibodies in protecting and restoring placental development. Our results suggest that HCMV replicates in TBPCs in the chorion in vivo, interfering with the earliest steps in the growth of new villi, contributing to virus transmission and impairing compensatory development. In cases of congenital infection, reduced responsiveness of the placenta to hypoxia limits the transport of substances from maternal blood and contributes to fetal growth restriction. IMPORTANCE Human cytomegalovirus (HCMV) is a leading cause of birth defects in the United States. Congenital infection can result in permanent neurological defects, mental retardation, hearing loss, visual impairment, and pregnancy complications, including intrauterine growth restriction, preterm delivery, and stillbirth. Currently, there is neither a vaccine nor any approved treatment for congenital HCMV infection during gestation. The molecular mechanisms underlying structural deficiencies in the placenta that undermine fetal development are poorly understood. Here we report that HCMV replicates in trophoblast progenitor cells (TBPCs)-precursors of the mature placental cells, syncytiotrophoblasts and cytotrophoblasts, in chorionic villi-in clinical cases of congenital infection. Virus replication in TBPCs in vitro dysregulates key proteins required for self-renewal and differentiation and inhibits normal division and development into mature placental cells. Our findings provide insights into the underlying molecular mechanisms by which HCMV replication interferes with placental maturation and transport functions.
Collapse
Affiliation(s)
- Takako Tabata
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Matthew Petitt
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Martin Zydek
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - June Fang-Hoover
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas Larocque
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | - Mitsuru Tsuge
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| | - Matthew Gormley
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA The Eli & Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, USA
| | | | - Lenore Pereira
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
58
|
Human Cytomegalovirus Infection Dysregulates the Localization and Stability of NICD1 and Jag1 in Neural Progenitor Cells. J Virol 2015; 89:6792-804. [PMID: 25903338 DOI: 10.1128/jvi.00351-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 04/10/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED Human cytomegalovirus (HCMV) infection of the developing fetus frequently results in major neural developmental damage. In previous studies, HCMV was shown to downregulate neural progenitor/stem cell (NPC) markers and induce abnormal differentiation. As Notch signaling plays a vital role in the maintenance of stem cell status and is a switch that governs NPC differentiation, the effect of HCMV infection on the Notch signaling pathway in NPCs was investigated. HCMV downregulated mRNA levels of Notch1 and its ligand, Jag1, and reduced protein levels and altered the intracellular localization of Jag1 and the intracellular effector form of Notch1, NICD1. These effects required HCMV gene expression and appeared to be mediated through enhanced proteasomal degradation. Transient expression of the viral tegument proteins of pp71 and UL26 reduced NICD1 and Jag1 protein levels endogenously and exogenously. Given the critical role of Notch signaling in NPC growth and differentiation, these findings reveal important mechanisms by which HCMV disturbs neural cell development in vitro. Similar events in vivo may be associated with HCMV-mediated neuropathogenesis during congenital infection in the fetal brain. IMPORTANCE Congenital human cytomegalovirus (HCMV) infection is the leading cause of birth defects that primarily manifest as neurological disabilities. Neural progenitor cells (NPCs), key players in fetal brain development, are the most susceptible cell type for HCMV infection in the fetal brain. Studies have shown that NPCs are fully permissive for HCMV infection, which causes neural cell loss and premature differentiation, thereby perturbing NPC fate. Elucidation of virus-host interactions that govern NPC proliferation and differentiation is critical to understanding neuropathogenesis. The Notch signaling pathway is critical for maintaining stem cell status and functions as a switch for differentiation of NPCs. Our investigation into the impact of HCMV infection on this pathway revealed that HCMV dysregulates Notch signaling by altering expression of the Notch ligand Jag1, Notch1, and its active effector in NPCs. These results suggest a mechanism for the neuropathogenesis induced by HCMV infection that includes altered NPC differentiation and proliferation.
Collapse
|
59
|
LiCl inhibits PRRSV infection by enhancing Wnt/β-catenin pathway and suppressing inflammatory responses. Antiviral Res 2015; 117:99-109. [PMID: 25746333 DOI: 10.1016/j.antiviral.2015.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/15/2014] [Accepted: 02/25/2015] [Indexed: 01/30/2023]
Abstract
Lithium chloride (LiCl) has been used as a mood stabilizer in the manic depressive disorders treatment. Recent studies show that LiCl is also a potent inhibitor for some DNA and RNA viruses. Porcine reproductive and respiratory syndrome virus (PRRSV) is an important viral pathogen in modern pig industry. In this study, we assessed the inhibitory effect of LiCl on PRRSV infection using plaque-formation assay, Q-PCR and Western blot analysis. Our results showed that LiCl could inhibit PRRSV infection in MARC-145 and PAM-CD163 cells. Previous reports have shown that LiCl could induce the Wnt pathway in the absence of Wnt ligands. In our studies, we demonstrated that LiCl activates the Wnt pathway in PRRSV infected cells. Additionally, the knockdown of β-catenin or the Wnt/β-catenin pathway inhibitor PNU74654 was able to reverse the antiviral effect of LiCl, which suggested that the inhibitory effect of LiCl against PRRSV replication might be associated with the activation of the Wnt/β-catenin pathway. We also found that lower viral replication after LiCl treatment was associated with the reduced mRNA levels of pro-inflammatory IL-8, IL-6, IL-1 β, tumor necrosis factor α and decreased NF-κB nuclear translocation. Collectively, our data demonstrated that LiCl inhibited PRRSV infection by enhancing Wnt/β-catenin pathway and suppressing pro-inflammatory responses.
Collapse
|
60
|
Abstract
In recent years good progress has been made in uncovering the genetic underpinnings of schizophrenia. Even so, as a polygenic disorder, schizophrenia has a complex etiology that is far from understood. Meanwhile data are being collected enabling the study of interactions between genes and the environment. A confluence of data from genetic and environmental exposure studies points to the role of infections and immunity in the pathophysiology of schizophrenia. In a recent study by Børglum et al., a single nucleotide polymorphism (SNP) in the gene CTNNA3 was identified that may provide clues to gene-environment interactions. The carriers of the minor allele for the SNP had a 5 fold risk of later developing schizophrenia if their mothers were CMV positive, while the children not carrying the allele had no excess risk from maternal CMV. In the current paper we summarize recent advances to clarify possible mechanism of such interactions between the host genotype and infection in schizophrenia risk.
Collapse
Affiliation(s)
- Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Denmark
| | - Anders D. Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Denmark
- iSEQ, Centre for Integrative Sequencing, Aarhus University, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | - Brad D. Pearce
- Rollins School of Public Health, Department of Epidemiology, Emory University, Atlanta GA, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta GA, USA
| |
Collapse
|
61
|
Weisblum Y, Panet A, Haimov-Kochman R, Wolf DG. Models of vertical cytomegalovirus (CMV) transmission and pathogenesis. Semin Immunopathol 2014; 36:615-25. [PMID: 25291972 DOI: 10.1007/s00281-014-0449-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 02/04/2023]
Abstract
Despite the considerable clinical impact of congenital human cytomegalovirus (HCMV) infection, the mechanisms of maternal-fetal transmission and the resultant placental and fetal damage are largely unknown. Here, we discuss animal models for the evaluation of CMV vaccines and virus-induced pathology and particularly explore surrogate human models for HCMV transmission and pathogenesis in the maternal-fetal interface. Studies in floating and anchoring placental villi and more recently, ex vivo modeling of HCMV infection in integral human decidual tissues, provide unique insights into patterns of viral tropism, spread, and injury, defining the outcome of congenital infection, and the effect of potential antiviral interventions.
Collapse
Affiliation(s)
- Yiska Weisblum
- Clinical Virology Unit, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
62
|
Richards MH, Narasipura SD, Kim S, Seaton MS, Lutgen V, Al-Harthi L. Dynamic interaction between astrocytes and infiltrating PBMCs in context of neuroAIDS. Glia 2014; 63:441-51. [PMID: 25331637 DOI: 10.1002/glia.22763] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 10/06/2014] [Indexed: 12/13/2022]
Abstract
HIV-mediated neuropathogenesis is a multifaceted process involving several players, including resident brain cells (neurons, astrocytes, and microglia) and infiltrating cells [peripheral blood mononuclear cells (PBMCs)]. We evaluated the dynamic interaction between astrocytes and infiltrating PBMCs as it impacts HIV in the CNS. We demonstrate that human primary-derived astrocytes (PDAs) predominantly secrete Wnt 1, 2b, 3, 5b, and 10b. Wnts are small secreted glycoproteins that initiate either β-catenin-dependent or independent signal transduction. The Wnt pathway plays a vital role in the regulation of CNS activities including neurogenesis, neurotransmitter release, synaptic plasticity, and memory consolidation. We show that HIV infection of PDAs altered astrocyte Wnt profile by elevating Wnts 2b and 10b. Astrocyte conditioned media (ACM) inhibited HIV replication in PBMCs by 50%. Removal of Wnts from ACM abrogated its ability to suppress HIV replication in PBMCs. Inversely, PBMCs supernatant activated PDAs, as demonstrated by a 10-fold increase in HLA-DR and a 5-fold increase in IFNγ expression, and enhanced astrocyte susceptibility to HIV by 2-fold, which was mediated by IFNγ in a Stat-3-dependent manner. Collectively, these data demonstrate a dynamic interaction between astrocytes and PBMCs, whereby astrocyte-secreted Wnts exert an anti-HIV effect on infected PBMCs and PBMCs, in turn, secrete IFNγ that enhance astrocyte susceptibility to productive HIV infection and mediate their activation.
Collapse
Affiliation(s)
- Maureen H Richards
- Department of Immunology and Microbiology, Rush University Medical Center, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
63
|
Manipulation of host pathways by human cytomegalovirus: insights from genome-wide studies. Semin Immunopathol 2014; 36:651-8. [PMID: 25260940 DOI: 10.1007/s00281-014-0443-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
Abstract
The herpesvirus human cytomegalovirus (HCMV) infects the majority of the world's population, leading to severe diseases in millions of newborns and immunocompromised adults annually. During infection, HCMV extensively manipulates cellular gene expression to maintain conditions favorable for efficient viral propagation. Identifying the pathways that the virus relies on or subverts is of great interest as they have the potential to provide new therapeutic targets and to reveal novel principles in cell biology. Over the past years, high-throughput analyses have profoundly broadened our understanding of the processes that occur during HCMV infection. In this review, we will discuss these new findings and how they impact our understanding of the biology of HCMV.
Collapse
|
64
|
Herbein G, Kumar A. The oncogenic potential of human cytomegalovirus and breast cancer. Front Oncol 2014; 4:230. [PMID: 25202681 PMCID: PMC4142708 DOI: 10.3389/fonc.2014.00230] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/08/2014] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the leading causes of cancer-related death among women. The vast majority of breast cancers are carcinomas that originate from cells lining the milk-forming ducts of the mammary gland. Numerous articles indicate that breast tumors exhibit diverse phenotypes depending on their distinct physiopathological signatures, clinical courses, and therapeutic possibilities. The human cytomegalovirus (HCMV) is a multifaceted highly host specific betaherpesvirus that is regarded as asymptomatic or mildly pathogenic virus in immunocompetent host. HCMV may cause serious in utero infections as well as acute and chronic complications in immunocompromised individual. The involvement of HCMV in late inflammatory complications underscores its possible role in inflammatory diseases and cancer. HCMV targets a variety of cell types in vivo, including macrophages, epithelial cells, endothelial cells, fibroblasts, stromal cells, neuronal cells, smooth muscle cells, and hepatocytes. HCMV can be detected in the milk after delivery and thereby HCMV could spread to adjacent mammary epithelial cells. HCMV also infects macrophages and induces an atypical M1/M2 phenotype, close to the tumor-associated macrophage phenotype, which is associated with the release of cytokines involved in cancer initiation or promotion and breast cancer of poor prognosis. HCMV antigens and DNA have been detected in tissue biopsies of breast cancers and elevation in serum HCMV IgG antibody levels has been reported to precede the development of breast cancer in some women. In this review, we will discuss the potential role of HCMV in the initiation and progression of breast cancer.
Collapse
Affiliation(s)
- Georges Herbein
- Department of Virology and Department of Pathogens & Inflammation, UPRES EA4266, SFR FED 4234, CHRU Besançon, University of Franche-Comté , Besançon , France
| | - Amit Kumar
- Department of Virology and Department of Pathogens & Inflammation, UPRES EA4266, SFR FED 4234, CHRU Besançon, University of Franche-Comté , Besançon , France
| |
Collapse
|
65
|
Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D, Stanton RJ, Wang ECY, Aicheler R, Murrell I, Wilkinson GWG, Lehner PJ, Gygi SP. Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell 2014; 157:1460-1472. [PMID: 24906157 PMCID: PMC4048463 DOI: 10.1016/j.cell.2014.04.028] [Citation(s) in RCA: 345] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/18/2014] [Accepted: 04/03/2014] [Indexed: 12/11/2022]
Abstract
A systematic quantitative analysis of temporal changes in host and viral proteins throughout the course of a productive infection could provide dynamic insights into virus-host interaction. We developed a proteomic technique called “quantitative temporal viromics” (QTV), which employs multiplexed tandem-mass-tag-based mass spectrometry. Human cytomegalovirus (HCMV) is not only an important pathogen but a paradigm of viral immune evasion. QTV detailed how HCMV orchestrates the expression of >8,000 cellular proteins, including 1,200 cell-surface proteins to manipulate signaling pathways and counterintrinsic, innate, and adaptive immune defenses. QTV predicted natural killer and T cell ligands, as well as 29 viral proteins present at the cell surface, potential therapeutic targets. Temporal profiles of >80% of HCMV canonical genes and 14 noncanonical HCMV open reading frames were defined. QTV is a powerful method that can yield important insights into viral infection and is applicable to any virus with a robust in vitro model. PaperClip
>8,000 proteins quantified over eight time points, including 1,200 cell-surface proteins Temporal profiles of 139/171 canonical HCMV proteins and 14 noncanonical HCMV ORFs Multiple families of cell-surface receptors selectively modulated by HCMV Multiple signaling pathways modulated during HCMV infection
Collapse
Affiliation(s)
- Michael P Weekes
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA; Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Peter Tomasec
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Ceri A Fielding
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - David Nusinow
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Richard J Stanton
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Eddie C Y Wang
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Rebecca Aicheler
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Isa Murrell
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Gavin W G Wilkinson
- School of Medicine, Cardiff University, Tenovus Building, Heath Park, Cardiff CF14 4XX, UK
| | - Paul J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
66
|
Roy S, Arav-Boger R. New cell-signaling pathways for controlling cytomegalovirus replication. Am J Transplant 2014; 14:1249-58. [PMID: 24839861 PMCID: PMC4280670 DOI: 10.1111/ajt.12725] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/10/2014] [Accepted: 02/27/2014] [Indexed: 02/06/2023]
Abstract
Cytomegalovirus (CMV) is increasingly recognized as an accomplished modulator of cell-signaling pathways, both directly via interaction between viral and cellular proteins, and indirectly by activating metabolic/energy states of infected cells. Viral genes, as well as captured cellular genes, enable CMV to modify these pathways upon binding to cellular receptors, up until generation of virus progeny. Deregulation of cell-signaling pathways appears to be a well-developed tightly balanced virus strategy to achieve the desired consequences in each infected cell type. Importantly and perhaps surprisingly, identification of new signaling pathways in cancer cells positioned CMV as a sophisticated user and abuser of many such pathways, creating opportunities to develop novel therapeutic strategies for inhibiting CMV replication (in addition to standard of care CMV DNA polymerase inhibitors). Advances in genomics and proteomics allow the identification of CMV products interacting with the cellular machinery. Ultimately, clinical implementation of candidate drugs capable of disrupting the delicate balance between CMV and cell-signaling will depend on the specificity and selectivity index of newly identified targets.
Collapse
|
67
|
Hillesheim A, Nordhoff C, Boergeling Y, Ludwig S, Wixler V. β-catenin promotes the type I IFN synthesis and the IFN-dependent signaling response but is suppressed by influenza A virus-induced RIG-I/NF-κB signaling. Cell Commun Signal 2014; 12:29. [PMID: 24767605 PMCID: PMC4021428 DOI: 10.1186/1478-811x-12-29] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/15/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The replication cycle of most pathogens, including influenza viruses, is perfectly adapted to the metabolism and signal transduction pathways of host cells. After infection, influenza viruses activate several cellular signaling cascades that support their propagation but suppress those that interfere with viral replication. Accumulation of viral RNA plays thereby a central role. Its sensing by the pattern recognition receptors of the host cells leads to the activation of several signal transduction waves that result in induction of genes, responsible for the cellular innate immune response. Type I interferon (IFN) genes and interferon-stimulated genes (ISG) coding for antiviral-acting proteins, such as MxA, OAS-1 or PKR, are primary targets of these signaling cascades. β- and γ-catenin are closely related armadillo repeat-containing proteins with dual roles. At the cell membrane they serve as adapter molecules linking cell-cell contacts to microfilaments. In the cytosol and nucleus, the proteins form a transcriptional complex with the lymphoid enhancer factor/T-cell factor (LEF/TCF), regulating the transcription of many genes, thereby controlling different cellular functions such as cell cycle progression and differentiation. RESULTS In this study, we demonstrate that β- and γ-catenin are important regulators of the innate cellular immune response to influenza A virus (IAV) infections. They inhibit viral replication in lung epithelial cells by enhancing the virus-dependent induction of the IFNB1 gene and interferon-stimulated genes. Simultaneously, the prolonged infection counteracts the antiviral effect of β- and γ-catenin. Influenza viruses suppress β-catenin-dependent transcription by misusing the RIG-I/NF-κB signaling cascade that is induced in the course of infection by viral RNA. CONCLUSION We identified β- and γ-catenin as novel antiviral-acting proteins. While these factors support the induction of common target genes of the cellular innate immune response, their functional activity is suppressed by pathogen evasion.
Collapse
Affiliation(s)
- Andrea Hillesheim
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Carolin Nordhoff
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Yvonne Boergeling
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Viktor Wixler
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| |
Collapse
|
68
|
Ueland T, Rollag H, Hartmann A, Jardine AG, Humar A, Michelsen AE, Bignamini AA, Åsberg A, Aukrust P. Secreted Wnt antagonists during eradication of cytomegalovirus infection in solid organ transplant recipients. Am J Transplant 2014; 14:210-5. [PMID: 24224707 DOI: 10.1111/ajt.12506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/19/2013] [Accepted: 09/11/2013] [Indexed: 01/25/2023]
Abstract
We evaluated secreted wingless (Wnt) modulators during cytomegalovirus (CMV) infection in solid organ transplant recipients (SOTr). The major findings were: (i) Plasma levels of Dickkopf-1 (DKK-1) were significantly lower in patients with CMV DNAemia above lower level of quantification at baseline. (ii) Receiver operating characteristic analysis indicated that low DKK-1 and increased secreted frizzled related protein-3 levels were predictors of poor virological outcomes during follow-up. Our findings demonstrate an imbalanced pattern of circulating secreted Wnt modulators in SOTr with poor virological outcomes following treatment for CMV disease, and may suggest a role for dysregulated Wnt signaling on viral pathogenesis during CMV infection.
Collapse
Affiliation(s)
- T Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Knöfler M, Pollheimer J. Human placental trophoblast invasion and differentiation: a particular focus on Wnt signaling. Front Genet 2013; 4:190. [PMID: 24133501 PMCID: PMC3783976 DOI: 10.3389/fgene.2013.00190] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/06/2013] [Indexed: 12/12/2022] Open
Abstract
Wingless ligands, a family of secreted proteins, are critically involved in organ development and tissue homeostasis by ensuring balanced rates of stem cell proliferation, cell death and differentiation. Wnt signaling components also play crucial roles in murine placental development controlling trophoblast lineage determination, chorioallantoic fusion and placental branching morphogenesis. However, the role of the pathway in human placentation, trophoblast development and differentiation is only partly understood. Here, we summarize our present knowledge about Wnt signaling in the human placenta and discuss its potential role in physiological and aberrant trophoblast invasion, gestational diseases and choriocarcinoma formation. Differentiation of proliferative first trimester cytotrophoblasts into invasive extravillous trophoblasts is associated with nuclear recruitment of β -catenin and induction of Wnt-dependent T-cell factor 4 suggesting that canonical Wnt signaling could be important for the formation and function of extravillous trophoblasts. Indeed, activation of the pathway was shown to promote trophoblast invasion in different in vitro trophoblast model systems as well as trophoblast cell fusion. Methylation-mediated silencing of inhibitors of Wnt signaling provided evidence for epigenetic activation of the pathway in placental tissues and choriocarcinoma cells. Similarly, abundant nuclear expression of β -catenin in invasive trophoblasts of complete hydatidiform moles suggested a role for hyper-activated Wnt signaling. In contrast, upregulation of Wnt inhibitors was noticed in placentae of women with preeclampsia, a disease characterized by shallow trophoblast invasion and incomplete spiral artery remodeling. Moreover, changes in Wnt signaling have been observed upon cytomegalovirus infection and in recurrent abortions. In summary, the current literature suggests a critical role of Wnt signaling in physiological and abnormal trophoblast function.
Collapse
Affiliation(s)
- Martin Knöfler
- Department of Obstetrics and Fetal-Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna Austria
| | | |
Collapse
|
70
|
Wnt modulating agents inhibit human cytomegalovirus replication. Antimicrob Agents Chemother 2013; 57:2761-7. [PMID: 23571549 DOI: 10.1128/aac.00029-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection with human cytomegalovirus (HCMV) continues to be a threat for pregnant women and immunocompromised hosts. Although limited anti-HCMV therapies are available, development of new agents is desired. The Wnt signaling pathway plays a critical role in embryonic and cancer stem cell development and is targeted by gammaherpesviruses, Epstein-Barr virus (EBV), and Kaposi's sarcoma-associated herpesvirus (KSHV). HCMV infects stem cells, including neural progenitor cells, during embryogenesis. To investigate the role of Wnt in HCMV replication in vitro, we tested monensin, nigericin, and salinomycin, compounds that inhibit cancer stem cell growth by modulating the Wnt pathway. These compounds inhibited the replication of HCMV Towne and a clinical isolate. Inhibition occurred prior to DNA replication but persisted throughout the full replication cycle. There was a significant decrease in expression of IE2, UL44, and pp65 proteins. HCMV infection resulted in a significant and sustained decrease in expression of phosphorylated and total lipoprotein receptor-related protein 6 (pLRP6 and LRP6, respectively), Wnt 5a/b, and β-catenin and a modest decrease in Dvl2/3, while levels of the negative regulator axin 1 were increased. Nigericin decreased the expression of pLRP6, LRP6, axin 1, and Wnt 5a/b in noninfected and HCMV-infected cells. For all three compounds, a correlation was found between expression levels of Wnt 5a/b and axin 1 and HCMV inhibition. The decrease in Wnt 5a/b and axin 1 expression was more significant in HCMV-infected cells than noninfected cells. These data illustrate the complex effects of HCMV on the Wnt pathway and the fine balance between Wnt and HCMV, resulting in abrogation of HCMV replication. Additional studies are required to elucidate how HCMV targets Wnt for its benefit.
Collapse
|
71
|
Angelova M, Machado HL, Swan KF, Morris C, Sullivan DE. Extravillous Trophoblast Migration and Invasion Assay. Bio Protoc 2013; 3:e840. [PMID: 27547783 DOI: 10.21769/bioprotoc.840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Extravillous trophoblast (EVT) migration and invasion through the decidualized endometrium is essential to successful placentation. SGHPL-4 cells, an EVT cell line derived from first trimester placenta, is a widely used model of cytotrophoblast differentiation into an invasive phenotype. Here we describe a quantitative cell migration assay that can be modified to also measure cell invasion. SGHPL-4 cells were seeded into BD Fluoroblok cell culture inserts constructed with an 8 μm porous membrane and allowed to migrate towards epidermal growth factor, a known chemoattractant for EVTs. To assess EVT invasion, Fluoroblok inserts were first coated with Matrigel, a basement membrane matrix. SGHPL-4 cells were labeled with calcein AM and cells that had invaded and/or migrated across the membrane were quantified by a bottom-reading fluorescence plate reader. The advantage of the Fluoroblok inserts over other migration/invasion assays is that they allow nondestructive detection of migrated cells.
Collapse
Affiliation(s)
- Magdalena Angelova
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, USA
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, USA
| | - Kenneth F Swan
- Department of Obstetrics and Gynecology, Tulane University School of Medicine, New Orleans, USA
| | - Cindy Morris
- Department of Obstetrics and Gynecology, Tulane University School of Medicine, New Orleans, USA
| | - Deborah E Sullivan
- Department of Obstetrics and Gynecology, Tulane University School of Medicine, New Orleans, USA
| |
Collapse
|