51
|
Syme RA, Martin A, Wyatt NA, Lawrence JA, Muria-Gonzalez MJ, Friesen TL, Ellwood SR. Transposable Element Genomic Fissuring in Pyrenophora teres Is Associated With Genome Expansion and Dynamics of Host-Pathogen Genetic Interactions. Front Genet 2018; 9:130. [PMID: 29720997 PMCID: PMC5915480 DOI: 10.3389/fgene.2018.00130] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/03/2018] [Indexed: 12/12/2022] Open
Abstract
Pyrenophora teres, P. teres f. teres (PTT) and P. teres f. maculata (PTM) cause significant diseases in barley, but little is known about the large-scale genomic differences that may distinguish the two forms. Comprehensive genome assemblies were constructed from long DNA reads, optical and genetic maps. As repeat masking in fungal genomes influences the final gene annotations, an accurate and reproducible pipeline was developed to ensure comparability between isolates. The genomes of the two forms are highly collinear, each composed of 12 chromosomes. Genome evolution in P. teres is characterized by genome fissuring through the insertion and expansion of transposable elements (TEs), a process that isolates blocks of genic sequence. The phenomenon is particularly pronounced in PTT, which has a larger, more repetitive genome than PTM and more recent transposon activity measured by the frequency and size of genome fissures. PTT has a longer cultivated host association and, notably, a greater range of host-pathogen genetic interactions compared to other Pyrenophora spp., a property which associates better with genome size than pathogen lifestyle. The two forms possess similar complements of TE families with Tc1/Mariner and LINE-like Tad-1 elements more abundant in PTT. Tad-1 was only detectable as vestigial fragments in PTM and, within the forms, differences in genome sizes and the presence and absence of several TE families indicated recent lineage invasions. Gene differences between P. teres forms are mainly associated with gene-sparse regions near or within TE-rich regions, with many genes possessing characteristics of fungal effectors. Instances of gene interruption by transposons resulting in pseudogenization were detected in PTT. In addition, both forms have a large complement of secondary metabolite gene clusters indicating significant capacity to produce an array of different molecules. This study provides genomic resources for functional genetics to help dissect factors underlying the host-pathogen interactions.
Collapse
Affiliation(s)
- Robert A. Syme
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - Nathan A. Wyatt
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Julie A. Lawrence
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Mariano J. Muria-Gonzalez
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| | - Timothy L. Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Fargo, ND, United States
| | - Simon R. Ellwood
- Centre for Crop and Disease Management, Department of Environment and Agriculture, Curtin University, Bentley, WA, Australia
| |
Collapse
|
52
|
Fernando WGD, Zhang X, Selin C, Zou Z, Liban SH, McLaren DL, Kubinec A, Parks PS, Rashid MH, Padmathilake KRE, Rong L, Yang C, Gnanesh BN, Huang S. A Six-Year Investigation of the Dynamics of Avirulence Allele Profiles, Blackleg Incidence, and Mating Type Alleles of Leptosphaeria maculans Populations Associated with Canola Crops in Manitoba, Canada. PLANT DISEASE 2018; 102:790-798. [PMID: 30673397 DOI: 10.1094/pdis-05-17-0630-re] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Blackleg, caused by the fungal pathogen Leptosphaeria maculans, is one of the most economically important diseases of canola (Brassica napus, oilseed rape) worldwide. This study assessed incidence of blackleg, the avirulence allele, and mating type distributions of L. maculans isolates collected in commercial canola fields in Manitoba, Canada, from 2010 to 2015. A total of 956 L. maculans isolates were collected from 2010 to 2015 to determine the presence of 12 avirulence alleles using differential canola cultivars and/or PCR assays specific for each avirulence allele. AvrLm2, AvrLm4, AvrLm5, AvrLm6, AvrLm7, AvrLm11, and AvrLmS were detected at frequencies ranging from 97 to 33%, where the AvrLm1, AvrLm3, AvrLm9, AvrLepR1, and AvrLepR2 alleles were the least abundant. When the race structure was examined, a total of 170 races were identified among the 956 isolates, with three major races, AvrLm-2-4-5-6-7-11, AvrLm-2-4-5-6-7-11-S, and Avr-1-4-5-6-7-11-(S) accounting for 15, 10, and 6% of the total fungal population, respectively. The distribution of the mating type alleles (MAT1-1 and MAT1-2) indicated that sexual reproduction was not inhibited in any of the nine Manitoba regions in any of the years L. maculans isolates were collected.
Collapse
Affiliation(s)
| | - Xuehua Zhang
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Carrie Selin
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Zhongwei Zou
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Sakaria H Liban
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Debra L McLaren
- Agriculture and Agri-Food Canada, Brandon Research and Development Centre, Brandon, MB, R7A 5Y3, Canada
| | - Anastasia Kubinec
- Crops Branch - Industry Development, Manitoba Agriculture, Carman, MB, R0G 0J0, Canada
| | - Paula S Parks
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - M Harunur Rashid
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | - Lihua Rong
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Cunchun Yang
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | | | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
53
|
McNally KE, Menardo F, Lüthi L, Praz CR, Müller MC, Kunz L, Ben‐David R, Chandrasekhar K, Dinoor A, Cowger C, Meyers E, Xue M, Zeng F, Gong S, Yu D, Bourras S, Keller B. Distinct domains of the AVRPM3 A2/F2 avirulence protein from wheat powdery mildew are involved in immune receptor recognition and putative effector function. THE NEW PHYTOLOGIST 2018; 218:681-695. [PMID: 29453934 PMCID: PMC6175116 DOI: 10.1111/nph.15026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 01/05/2018] [Indexed: 05/22/2023]
Abstract
Recognition of the AVRPM3A2/F2 avirulence protein from powdery mildew by the wheat PM3A/F immune receptor induces a hypersensitive response after co-expression in Nicotiana benthamiana. The molecular determinants of this interaction and how they shape natural AvrPm3a2/f2 allelic diversity are unknown. We sequenced the AvrPm3a2/f2 gene in a worldwide collection of 272 mildew isolates. Using the natural polymorphisms of AvrPm3a2/f2 as well as sequence information from related gene family members, we tested 85 single-residue-altered AVRPM3A2/F2 variants with PM3A, PM3F and PM3FL456P/Y458H (modified for improved signaling) in Nicotiana benthamiana for effects on recognition. An intact AvrPm3a2/f2 gene was found in all analyzed isolates and the protein variant recognized by PM3A/F occurred globally at high frequencies. Single-residue alterations in AVRPM3A2/F2 mostly disrupted, but occasionally enhanced, the recognition response by PM3A, PM3F and PM3FL456P/Y458H . Residues enhancing hypersensitive responses constituted a protein domain separate from both naturally occurring polymorphisms and positively selected residues of the gene family. These results demonstrate the utility of using gene family sequence diversity to screen residues for their role in recognition. This approach identified a putative interaction surface in AVRPM3A2/F2 not polymorphic in natural alleles. We conclude that molecular mechanisms besides recognition drive AvrPm3a2/f2 diversification.
Collapse
Affiliation(s)
- Kaitlin Elyse McNally
- Department of Plant and Microbial BiologyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Fabrizio Menardo
- Department of Plant and Microbial BiologyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Linda Lüthi
- Department of Plant and Microbial BiologyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Coraline Rosalie Praz
- Department of Plant and Microbial BiologyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Marion Claudia Müller
- Department of Plant and Microbial BiologyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Lukas Kunz
- Department of Plant and Microbial BiologyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Roi Ben‐David
- Institute of Plant ScienceARO‐Volcani Center50250Bet DaganIsrael
| | - Kottakota Chandrasekhar
- Department of Plant Pathology and MicrobiologyThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovot76100Israel
| | - Amos Dinoor
- Department of Plant Pathology and MicrobiologyThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovot76100Israel
| | - Christina Cowger
- United States Department of Agriculture‐Agricultural Research Service (USDA‐ARS)North Carolina State UniversityRaleighNC27695USA
- Department of Plant PathologyNorth Carolina State UniversityRaleighNC27695USA
| | - Emily Meyers
- Department of Plant PathologyNorth Carolina State UniversityRaleighNC27695USA
| | - Mingfeng Xue
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural Sciences430064WuhanChina
- Ministry of AgricultureKey Laboratory of Integrated Pest Management in Crops in Central China430064WuhanChina
| | - Fangsong Zeng
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural Sciences430064WuhanChina
- Ministry of AgricultureKey Laboratory of Integrated Pest Management in Crops in Central China430064WuhanChina
| | - Shuangjun Gong
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural Sciences430064WuhanChina
- Ministry of AgricultureKey Laboratory of Integrated Pest Management in Crops in Central China430064WuhanChina
- College of Life ScienceWuhan University430072WuhanChina
| | - Dazhao Yu
- Institute of Plant Protection and Soil ScienceHubei Academy of Agricultural Sciences430064WuhanChina
- Ministry of AgricultureKey Laboratory of Integrated Pest Management in Crops in Central China430064WuhanChina
- College of Life ScienceWuhan University430072WuhanChina
| | - Salim Bourras
- Department of Plant and Microbial BiologyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| | - Beat Keller
- Department of Plant and Microbial BiologyUniversity of ZürichZollikerstrasse 1078008ZürichSwitzerland
| |
Collapse
|
54
|
Stukenbrock EH, Dutheil JY. Fine-Scale Recombination Maps of Fungal Plant Pathogens Reveal Dynamic Recombination Landscapes and Intragenic Hotspots. Genetics 2018; 208:1209-1229. [PMID: 29263029 PMCID: PMC5844332 DOI: 10.1534/genetics.117.300502] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/15/2017] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination is an important driver of evolution. Variability in the intensity of recombination across chromosomes can affect sequence composition, nucleotide variation, and rates of adaptation. In many organisms, recombination events are concentrated within short segments termed recombination hotspots. The variation in recombination rate and positions of recombination hotspot can be studied using population genomics data and statistical methods. In this study, we conducted population genomics analyses to address the evolution of recombination in two closely related fungal plant pathogens: the prominent wheat pathogen Zymoseptoria tritici and a sister species infecting wild grasses Z. ardabiliae We specifically addressed whether recombination landscapes, including hotspot positions, are conserved in the two recently diverged species and if recombination contributes to rapid evolution of pathogenicity traits. We conducted a detailed simulation analysis to assess the performance of methods of recombination rate estimation based on patterns of linkage disequilibrium, in particular in the context of high nucleotide diversity. Our analyses reveal overall high recombination rates, a lack of suppressed recombination in centromeres, and significantly lower recombination rates on chromosomes that are known to be accessory. The comparison of the recombination landscapes of the two species reveals a strong correlation of recombination rate at the megabase scale, but little correlation at smaller scales. The recombination landscapes in both pathogen species are dominated by frequent recombination hotspots across the genome including coding regions, suggesting a strong impact of recombination on gene evolution. A significant but small fraction of these hotspots colocalize between the two species, suggesting that hotspot dynamics contribute to the overall pattern of fast evolving recombination in these species.
Collapse
Affiliation(s)
- Eva H Stukenbrock
- Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Environmental Genomics, Christian-Albrechts University of Kiel, 24118, Germany
| | - Julien Y Dutheil
- Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
- Institut des Sciences de L'Évolution de Montpellier, Centre National de la Recherche Scientifique, Université Montpellier 2, 34095, France
| |
Collapse
|
55
|
Fouché S, Plissonneau C, Croll D. The birth and death of effectors in rapidly evolving filamentous pathogen genomes. Curr Opin Microbiol 2018; 46:34-42. [PMID: 29455143 DOI: 10.1016/j.mib.2018.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 11/19/2022]
Abstract
Plant pathogenic fungi and oomycetes are major risks to food security due to their evolutionary success in overcoming plant defences. Pathogens produce effectors to interfere with host defences and metabolism. These effectors are often encoded in rapidly evolving compartments of the genome. We review how effector genes emerged and were lost in pathogen genomes drawing on the links between effector evolution and chromosomal rearrangements. Some new effectors entered pathogen genomes via horizontal transfer or introgression. However, new effector functions also arose through gene duplication or from previously non-coding sequences. The evolutionary success of an effector is tightly linked to its transcriptional regulation during host colonization. Some effectors converged on an epigenetic control of expression imposed by genomic defences against transposable elements. Transposable elements were also drivers of effector diversification and loss that led to mosaics in effector presence-absence variation. Such effector mosaics within species was the foundation for rapid pathogen adaptation.
Collapse
Affiliation(s)
- Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Clémence Plissonneau
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland; UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Bretignières, BP 01, Thiverval-Grignon F-78850, France
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
56
|
Neik TX, Barbetti MJ, Batley J. Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:1788. [PMID: 29163558 PMCID: PMC5681527 DOI: 10.3389/fpls.2017.01788] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/02/2017] [Indexed: 05/18/2023]
Abstract
Brassica napus is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (R) genes in B. napus has become of critical importance. In this review, we discuss four key pathogens affecting Brassica crops: Clubroot (Plasmodiophora brassicae), Blackleg (Leptosphaeria maculans and L. biglobosa), Sclerotinia Stem Rot (Sclerotinia sclerotiorum), and Downy Mildew (Hyaloperonospora parasitica). We first review current studies covering prevalence of these pathogens on Brassica crops and highlight the R genes and QTL that have been identified from Brassica species against these pathogens. Insights into the relationships between the pathogen and its Brassica host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of R genes in B. napus in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of R genes in B. napus can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant B. napus.
Collapse
Affiliation(s)
- Ting Xiang Neik
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Martin J. Barbetti
- School of Agriculture and Environment and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
57
|
Gervais J, Plissonneau C, Linglin J, Meyer M, Labadie K, Cruaud C, Fudal I, Rouxel T, Balesdent M. Different waves of effector genes with contrasted genomic location are expressed by Leptosphaeria maculans during cotyledon and stem colonization of oilseed rape. MOLECULAR PLANT PATHOLOGY 2017; 18:1113-1126. [PMID: 27474899 PMCID: PMC6638281 DOI: 10.1111/mpp.12464] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Leptosphaeria maculans, the causal agent of stem canker disease, colonizes oilseed rape (Brassica napus) in two stages: a short and early colonization stage corresponding to cotyledon or leaf colonization, and a late colonization stage during which the fungus colonizes systemically and symptomlessly the plant during several months before stem canker appears. To date, the determinants of the late colonization stage are poorly understood; L. maculans may either successfully escape plant defences, leading to stem canker development, or the plant may develop an 'adult-stage' resistance reducing canker incidence. To obtain an insight into these determinants, we performed an RNA-sequencing (RNA-seq) pilot project comparing fungal gene expression in infected cotyledons and in symptomless or necrotic stems. Despite the low fraction of fungal material in infected stems, sufficient fungal transcripts were detected and a large number of fungal genes were expressed, thus validating the feasibility of the approach. Our analysis showed that all avirulence genes previously identified are under-expressed during stem colonization compared with cotyledon colonization. A validation RNA-seq experiment was then performed to investigate the expression of candidate effector genes during systemic colonization. Three hundred and seven 'late' effector candidates, under-expressed in the early colonization stage and over-expressed in the infected stems, were identified. Finally, our analysis revealed a link between the regulation of expression of effectors and their genomic location: the 'late' effector candidates, putatively involved in systemic colonization, are located in gene-rich genomic regions, whereas the 'early' effector genes, over-expressed in the early colonization stage, are located in gene-poor regions of the genome.
Collapse
Affiliation(s)
- Julie Gervais
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Clémence Plissonneau
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Juliette Linglin
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Michel Meyer
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Karine Labadie
- CEA‐Institut de Génomique, GENOSCOPECentre National de SéquençageEvry CedexFrance
| | - Corinne Cruaud
- CEA‐Institut de Génomique, GENOSCOPECentre National de SéquençageEvry CedexFrance
| | - Isabelle Fudal
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Thierry Rouxel
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Marie‐Hélène Balesdent
- UMR BIOGER, INRA, AgroParisTech, Université Paris‐Saclay, Avenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| |
Collapse
|
58
|
Taylor JW, Branco S, Gao C, Hann-Soden C, Montoya L, Sylvain I, Gladieux P. Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0057-2016. [PMID: 28936945 PMCID: PMC11687547 DOI: 10.1128/microbiolspec.funk-0057-2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
The first eukaryotic genome to be sequenced was fungal, and there continue to be more sequenced genomes in the kingdom Fungi than in any other eukaryotic kingdom. Comparison of these genomes reveals many sources of genetic variation, from single nucleotide polymorphisms to horizontal gene transfer and on to changes in the arrangement and number of chromosomes, not to mention endofungal bacteria and viruses. Population genomics shows that all sources generate variation all the time and implicate natural selection as the force maintaining genome stability. Variation in wild populations is a rich resource for associating genetic variation with phenotypic variation, whether through quantitative trait locus mapping, genome-wide association studies, or reverse ecology. Subjects of studies associating genetic and phenotypic variation include model fungi, e.g., Saccharomyces and Neurospora, but pioneering studies have also been made with fungi pathogenic to plants, e.g., Pyricularia (= Magnaporthe), Zymoseptoria, and Fusarium, and to humans, e.g., Coccidioides, Cryptococcus, and Candida.
Collapse
Affiliation(s)
- John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102
| | - Sara Branco
- Département Génétique et Ecologie Evolutives Laboratoire Ecologie, Systématique et Evolution, CNRS-UPS-AgroParisTech, Université de Paris-Sud, 91405 Orsay, France, and Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717
| | - Cheng Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Chris Hann-Soden
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Liliam Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Iman Sylvain
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Pierre Gladieux
- INRA, UMR BGPI, Campus International de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
59
|
Seidl MF, Thomma BPHJ. Transposable Elements Direct The Coevolution between Plants and Microbes. Trends Genet 2017; 33:842-851. [PMID: 28800915 DOI: 10.1016/j.tig.2017.07.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/24/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022]
Abstract
Transposable elements are powerful drivers of genome evolution in many eukaryotes. Although they are mostly considered as 'selfish' genetic elements, increasing evidence suggests that they contribute to genetic variability; particularly under stress conditions. Over the past few years, the role of transposable elements during host-microbe interactions has been recognised. It has been proposed that many pathogenic microbes have evolved a 'two-speed' genome with regions that show increased variability and that are enriched in transposable elements and pathogenicity-related genes. Plants similarly display structured genomes with transposable-element-rich regions that mediate accelerated evolution. Immune receptor genes typically reside in such regions. Various mechanisms have recently been identified through which transposable elements contribute to the coevolution between plants and their associated microbes.
Collapse
Affiliation(s)
- Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Both authors contributed equally.
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Both authors contributed equally.
| |
Collapse
|
60
|
Möller M, Stukenbrock EH. Evolution and genome architecture in fungal plant pathogens. Nat Rev Microbiol 2017; 15:756-771. [DOI: 10.1038/nrmicro.2017.76] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
61
|
Petit-Houdenot Y, Fudal I. Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance Management. FRONTIERS IN PLANT SCIENCE 2017; 8:1072. [PMID: 28670324 PMCID: PMC5472840 DOI: 10.3389/fpls.2017.01072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/02/2017] [Indexed: 05/07/2023]
Abstract
During infection, pathogens secrete an arsenal of molecules, collectively called effectors, key elements of pathogenesis which modulate innate immunity of the plant and facilitate infection. Some of these effectors can be recognized directly or indirectly by resistance (R) proteins from the plant and are then called avirulence (AVR) proteins. This recognition usually triggers defense responses including the hypersensitive response and results in resistance of the plant. R-AVR gene interactions are frequently exploited in the field to control diseases. Recently, the availability of fungal genomes has accelerated the identification of AVR genes in plant pathogenic fungi, including in fungi infecting agronomically important crops. While single AVR genes recognized by their corresponding R gene were identified, more and more complex interactions between AVR and R genes are reported (e.g., AVR genes recognized by several R genes, R genes recognizing several AVR genes in distinct organisms, one AVR gene suppressing recognition of another AVR gene by its corresponding R gene, two cooperating R genes both necessary to recognize an AVR gene). These complex interactions were particularly reported in pathosystems showing a long co-evolution with their host plant but could also result from the way agronomic crops were obtained and improved (e.g., through interspecific hybridization or introgression of resistance genes from wild related species into cultivated crops). In this review, we describe some complex R-AVR interactions between plants and fungi that were recently reported and discuss their implications for AVR gene evolution and R gene management.
Collapse
Affiliation(s)
- Yohann Petit-Houdenot
- UMR BIOGER, Institut National De La Recherche Agronomique, AgroParisTech, Université Paris SaclayThiverval-Grignon, France
| | - Isabelle Fudal
- UMR BIOGER, Institut National De La Recherche Agronomique, AgroParisTech, Université Paris SaclayThiverval-Grignon, France
| |
Collapse
|
62
|
Rouxel T, Balesdent MH. Life, death and rebirth of avirulence effectors in a fungal pathogen of Brassica crops, Leptosphaeria maculans. THE NEW PHYTOLOGIST 2017; 214:526-532. [PMID: 28084619 DOI: 10.1111/nph.14411] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 11/21/2016] [Indexed: 05/18/2023]
Abstract
Contents 526 I. 526 II. 527 III. 527 IV. 529 V. 529 VI. 530 VII. 530 531 References 531 SUMMARY: In agricultural systems, major (R) genes for resistance in plants exert strong selection pressure on cognate/corresponding avirulence effector genes of phytopathogens. However, a complex interplay often exists between trade-offs linked to effector function and the need to escape R gene recognition. Here, using the Leptosphaeria maculans-oilseed rape pathosystem we review evolution of effectors submitted to multiple resistance gene selection. Characteristics of this pathosystem include a crop in which resistance genes have been deployed intensively resulting in 'boom and bust' cycles; a fungal pathogen with a high adaptive potential in which seven avirulence genes are cloned and for which population surveys have been coupled with molecular analysis of events responsible for virulence. The mode of evolution of avirulence genes, all located in dispensable parts of the 'two-speed' genome, is a highly dynamic gene-specific process. In some instances, avirulence genes are readily deleted under selection. However, others, even when located in the most plastic genome regions, undergo only limited point mutations or their avirulence phenotype is 'camouflaged' by another avirulence gene. Thus, while hundreds of effector genes are present, some effectors are likely to have an important and nonredundant function, suggesting functional redundancy and dispensability of effectors might not be the rule.
Collapse
Affiliation(s)
- Thierry Rouxel
- UMR Bioger, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| | - Marie-Hélène Balesdent
- UMR Bioger, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, Thiverval-Grignon, F-78850, France
| |
Collapse
|
63
|
Plissonneau C, Blaise F, Ollivier B, Leflon M, Carpezat J, Rouxel T, Balesdent MH. Unusual evolutionary mechanisms to escape effector-triggered immunity in the fungal phytopathogen Leptosphaeria maculans. Mol Ecol 2017; 26:2183-2198. [PMID: 28160497 DOI: 10.1111/mec.14046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 12/18/2022]
Abstract
Leptosphaeria maculans is the fungus responsible for the stem canker disease of oilseed rape (Brassica napus). AvrLm3 and AvrLm4-7, two avirulence effector genes of L. maculans, are involved in an unusual relationship: AvrLm4-7 suppresses the Rlm3-mediated resistance. Here, we assessed AvrLm3 polymorphism in a collection of 235 L. maculans isolates. No field isolates exhibited deletion or inactivating mutations in AvrLm3, as observed for other L. maculans avirulence genes. Eleven isoforms of the AvrLm3 protein were found. In isolates virulent towards both Rlm3 and Rlm7 (a3a7), the loss of the Rlm3-mediated resistance response was due to two distinct mechanisms. First, when AvrLm4-7 was inactivated (deletion or inactivating mutations), amino acid substitutions in AvrLm3 generated virulent isoforms of the protein. Second, when only point mutations were observed in AvrLm4-7, a3a7 isolates still contained an avirulent allele of AvrLm3. Directed mutagenesis confirmed that some point mutations in AvrLm4-7 were sufficient for the fungus to escape Rlm7-mediated resistance while maintaining the suppression of the AvrLm3 phenotype. Signatures of positive selection were also identified in AvrLm3. The complex evolutionary mechanisms enabling L. maculans to escape Rlm3-mediated resistance while preserving AvrLm3 integrity, along with observed reduced aggressiveness of isolates silenced for AvrLm3, serves to emphasize the importance of this effector in pathogenicity towards B. napus. While the common response to resistance gene pressure is local selection of isolates depleted in the cognate avirulence gene, this example contributes to complexify the gene-for-gene concept of plant-pathogen evolution with a 'camouflaged' model allowing retention of nondispensable avirulence effectors.
Collapse
Affiliation(s)
- C Plissonneau
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France.,Plant Pathology, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092, Zürich, Switzerland
| | - F Blaise
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - B Ollivier
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - M Leflon
- Terres Inovia, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - J Carpezat
- Terres Inovia, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - T Rouxel
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - M-H Balesdent
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| |
Collapse
|
64
|
New Multilocus Variable-Number Tandem-Repeat Analysis (MLVA) Scheme for Fine-Scale Monitoring and Microevolution-Related Study of Ralstonia pseudosolanacearum Phylotype I Populations. Appl Environ Microbiol 2017; 83:AEM.03095-16. [PMID: 28003195 DOI: 10.1128/aem.03095-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022] Open
Abstract
Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is considered one of the most harmful plant diseases in the world. Special attention should be paid to R. pseudosolanacearum phylotype I due to its large host range, its worldwide distribution, and its high evolutionary potential. So far, the molecular epidemiology and population genetics of this bacterium are poorly understood. Until now, the genetic structure of the RSSC has been analyzed on the worldwide and regional scales. Emerging questions regarding evolutionary forces in RSSC adaptation to hosts now require genetic markers that are able to monitor RSSC field populations. In this study, we aimed to evaluate the multilocus variable-number tandem-repeat analysis (MLVA) approach for its ability to discriminate genetically close phylotype I strains and for population genetics studies. We developed a new MLVA scheme (MLVA-7) allowing us to genotype 580 R. pseudosolanacearum phylotype I strains extracted from susceptible and resistant hosts and from different habitats (stem, soil, and rhizosphere). Based on specificity, polymorphism, and the amplification success rate, we selected seven fast-evolving variable-number tandem-repeat (VNTR) markers. The newly developed MLVA-7 scheme showed higher discriminatory power than the previously published MLVA-13 scheme when applied to collections sampled from the same location on different dates and to collections from different locations on very small scales. Our study provides a valuable tool for fine-scale monitoring and microevolution-related study of R. pseudosolanacearum phylotype I populations.IMPORTANCE Understanding the evolutionary dynamics of adaptation of plant pathogens to new hosts or ecological niches has become a key point for the development of innovative disease management strategies, including durable resistance. Whereas the molecular mechanisms underlying virulence or pathogenicity changes have been studied thoroughly, the population genetics of plant pathogen adaptation remains an open, unexplored field, especially for plant-pathogenic bacteria. MLVA has become increasingly popular for epidemiosurveillance and molecular epidemiology studies of plant pathogens. However, this method has been used mostly for genotyping and identification on a regional or global scale. In this study, we developed a new MLVA scheme, targeting phylotype I of the soilborne Ralstonia solanacearum species complex (RSSC), specifically to address the bacterial population genetics on the field scale. Such a MLVA scheme, based on fast-evolving loci, may be a tool of choice for field experimental evolution and spatial genetics studies.
Collapse
|
65
|
Abstract
Fungal plant pathogens rapidly evolve virulence on resistant hosts through mutations in genes encoding proteins that modulate the host immune responses. The mutational spectrum likely includes chromosomal rearrangements responsible for gains or losses of entire genes. However, the mechanisms creating adaptive structural variation in fungal pathogen populations are poorly understood. We used complete genome assemblies to quantify structural variants segregating in the highly polymorphic fungal wheat pathogen Zymoseptoria tritici The genetic basis of virulence in Z. tritici is complex, and populations harbor significant genetic variation for virulence; hence, we aimed to identify whether structural variation led to functional differences. We combined single-molecule real-time sequencing, genetic maps, and transcriptomics data to generate a fully assembled and annotated genome of the highly virulent field isolate 3D7. Comparative genomics analyses against the complete reference genome IPO323 identified large chromosomal inversions and the complete gain or loss of transposable-element clusters, explaining the extensive chromosomal-length polymorphisms found in this species. Both the 3D7 and IPO323 genomes harbored long tracts of sequences exclusive to one of the two genomes. These orphan regions contained 296 genes unique to the 3D7 genome and not previously known for this species. These orphan genes tended to be organized in clusters and showed evidence of mutational decay. Moreover, the orphan genes were enriched in genes encoding putative effectors and included a gene that is one of the most upregulated putative effector genes during wheat infection. Our study showed that this pathogen species harbored extensive chromosomal structure polymorphism that may drive the evolution of virulence. IMPORTANCE Pathogen outbreak populations often harbor previously unknown genes conferring virulence. Hence, a key puzzle of rapid pathogen evolution is the origin of such evolutionary novelty in genomes. Chromosomal rearrangements and structural variation in pathogen populations likely play a key role. However, identifying such polymorphism is challenging, as most genome-sequencing approaches only yield information about point mutations. We combined long-read technology and genetic maps to assemble the complete genome of a strain of a highly polymorphic fungal pathogen of wheat. Comparisons against the reference genome of the species showed substantial variation in the chromosome structure and revealed large regions unique to each assembled genome. These regions were enriched in genes encoding likely effector proteins, which are important components of pathogenicity. Our study showed that pathogen populations harbor extensive polymorphism at the chromosome level and that this polymorphism can be a source of adaptive genetic variation in pathogen evolution.
Collapse
|
66
|
Larkan NJ, Raman H, Lydiate DJ, Robinson SJ, Yu F, Barbulescu DM, Raman R, Luckett DJ, Burton W, Wratten N, Salisbury PA, Rimmer SR, Borhan MH. Multi-environment QTL studies suggest a role for cysteine-rich protein kinase genes in quantitative resistance to blackleg disease in Brassica napus. BMC PLANT BIOLOGY 2016; 16:183. [PMID: 27553246 PMCID: PMC4995785 DOI: 10.1186/s12870-016-0877-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/17/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Resistance to the blackleg disease of Brassica napus (canola/oilseed rape), caused by the hemibiotrophic fungal pathogen Leptosphaeria maculans, is determined by both race-specific resistance (R) genes and quantitative resistance loci (QTL), or adult-plant resistance (APR). While the introgression of R genes into breeding material is relatively simple, QTL are often detected sporadically, making them harder to capture in breeding programs. For the effective deployment of APR in crop varieties, resistance QTL need to have a reliable influence on phenotype in multiple environments and be well defined genetically to enable marker-assisted selection (MAS). RESULTS Doubled-haploid populations produced from the susceptible B. napus variety Topas and APR varieties AG-Castle and AV-Sapphire were analysed for resistance to blackleg in two locations over 3 and 4 years, respectively. Three stable QTL were detected in each population, with two loci appearing to be common to both APR varieties. Physical delineation of three QTL regions was sufficient to identify candidate defense-related genes, including a cluster of cysteine-rich receptor-like kinases contained within a 49 gene QTL interval on chromosome A01. Individual L. maculans isolates were used to define the physical intervals for the race-specific R genes Rlm3 and Rlm4 and to identify QTL common to both field studies and the cotyledon resistance response. CONCLUSION Through multi-environment QTL analysis we have identified and delineated four significant and stable QTL suitable for MAS of quantitative blackleg resistance in B. napus, and identified candidate genes which potentially play a role in quantitative defense responses to L. maculans.
Collapse
Affiliation(s)
- Nicholas J. Larkan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2 Canada
- Armatus Genetics Inc, Saskatoon, SK S7W 0C9 Canada
| | - Harsh Raman
- Graham Centre for Agricultural Innovation (an alliance between Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650 Australia
| | - Derek J. Lydiate
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2 Canada
| | - Stephen J. Robinson
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2 Canada
| | - Fengqun Yu
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2 Canada
| | - Denise M. Barbulescu
- Department of Economic Development, Jobs, Transport and Resources, Grains Innovation Park, Horsham, VIC 3400 Australia
| | - Rosy Raman
- Graham Centre for Agricultural Innovation (an alliance between Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650 Australia
| | - David J. Luckett
- Graham Centre for Agricultural Innovation (an alliance between Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650 Australia
| | - Wayne Burton
- Department of Economic Development, Jobs, Transport and Resources, Grains Innovation Park, Horsham, VIC 3400 Australia
- Seednet Australia, Golf Course Road, Horsham, VIC 3402 Australia
| | - Neil Wratten
- Graham Centre for Agricultural Innovation (an alliance between Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, NSW 2650 Australia
| | - Philip A. Salisbury
- Department of Economic Development, Jobs, Transport and Resources, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3083 Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, VIC 3010 Australia
| | - S. Roger Rimmer
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2 Canada
| | - M. Hossein Borhan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2 Canada
| |
Collapse
|
67
|
Faino L, Seidl MF, Shi-Kunne X, Pauper M, van den Berg GCM, Wittenberg AHJ, Thomma BPHJ. Transposons passively and actively contribute to evolution of the two-speed genome of a fungal pathogen. Genome Res 2016; 26:1091-100. [PMID: 27325116 PMCID: PMC4971763 DOI: 10.1101/gr.204974.116] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/17/2016] [Indexed: 12/29/2022]
Abstract
Genomic plasticity enables adaptation to changing environments, which is especially relevant for pathogens that engage in “arms races” with their hosts. In many pathogens, genes mediating virulence cluster in highly variable, transposon-rich, physically distinct genomic compartments. However, understanding of the evolution of these compartments, and the role of transposons therein, remains limited. Here, we show that transposons are the major driving force for adaptive genome evolution in the fungal plant pathogen Verticillium dahliae. We show that highly variable lineage-specific (LS) regions evolved by genomic rearrangements that are mediated by erroneous double-strand repair, often utilizing transposons. We furthermore show that recent genetic duplications are enhanced in LS regions, against an older episode of duplication events. Finally, LS regions are enriched in active transposons, which contribute to local genome plasticity. Thus, we provide evidence for genome shaping by transposons, both in an active and passive manner, which impacts the evolution of pathogen virulence.
Collapse
Affiliation(s)
- Luigi Faino
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Xiaoqian Shi-Kunne
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Marc Pauper
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | | | | | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
68
|
Plissonneau C, Daverdin G, Ollivier B, Blaise F, Degrave A, Fudal I, Rouxel T, Balesdent MH. A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. THE NEW PHYTOLOGIST 2016; 209:1613-24. [PMID: 26592855 DOI: 10.1111/nph.13736] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/27/2015] [Indexed: 05/02/2023]
Abstract
Extending the durability of plant resistance genes towards fungal pathogens is a major challenge. We identified and investigated the relationship between two avirulence genes of Leptosphaeria maculans, AvrLm3 and AvrLm4-7. When an isolate possesses both genes, the Rlm3-mediated resistance of oilseed rape (Brassica napus) is not expressed due to the presence of AvrLm4-7 but virulent isolates toward Rlm7 recover the AvrLm3 phenotype. Combining genetic and genomic approaches (genetic mapping, RNA-seq, BAC (bacterial artificial chromosome) clone sequencing and de novo assembly) we cloned AvrLm3, a telomeric avirulence gene of L. maculans. AvrLm3 is located in a gap of the L. maculans reference genome assembly, is surrounded by repeated elements, encodes for a small secreted cysteine-rich protein and is highly expressed at early infection stages. Complementation and silencing assays validated the masking effect of AvrLm4-7 on AvrLm3 recognition by Rlm3 and we showed that the presence of AvrLm4-7 does not impede AvrLm3 expression in planta. Y2H assays suggest the absence of physical interaction between the two avirulence proteins. This unusual interaction is the basis for field experiments aiming to evaluate strategies that increase Rlm7 durability.
Collapse
Affiliation(s)
- Clémence Plissonneau
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Guillaume Daverdin
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Bénédicte Ollivier
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Françoise Blaise
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Alexandre Degrave
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Thierry Rouxel
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Marie-Hélène Balesdent
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| |
Collapse
|
69
|
Shiller J, Van de Wouw AP, Taranto AP, Bowen JK, Dubois D, Robinson A, Deng CH, Plummer KM. A Large Family of AvrLm6-like Genes in the Apple and Pear Scab Pathogens, Venturia inaequalis and Venturia pirina. FRONTIERS IN PLANT SCIENCE 2015; 6:980. [PMID: 26635823 PMCID: PMC4646964 DOI: 10.3389/fpls.2015.00980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/26/2015] [Indexed: 05/19/2023]
Abstract
Venturia inaequalis and V. pirina are Dothideomycete fungi that cause apple scab and pear scab disease, respectively. Whole genome sequencing of V. inaequalis and V. pirina isolates has revealed predicted proteins with sequence similarity to AvrLm6, a Leptosphaeria maculans effector that triggers a resistance response in Brassica napus and B. juncea carrying the resistance gene, Rlm6. AvrLm6-like genes are present as large families (>15 members) in all sequenced strains of V. inaequalis and V. pirina, while in L. maculans, only AvrLm6 and a single paralog have been identified. The Venturia AvrLm6-like genes are located in gene-poor regions of the genomes, and mostly in close proximity to transposable elements, which may explain the expansion of these gene families. An AvrLm6-like gene from V. inaequalis with the highest sequence identity to AvrLm6 was unable to trigger a resistance response in Rlm6-carrying B. juncea. RNA-seq and qRT-PCR gene expression analyses, of in planta- and in vitro-grown V. inaequalis, has revealed that many of the AvrLm6-like genes are expressed during infection. An AvrLm6 homolog from V. inaequalis that is up-regulated during infection was shown (using an eYFP-fusion protein construct) to be localized to the sub-cuticular stroma during biotrophic infection of apple hypocotyls.
Collapse
Affiliation(s)
- Jason Shiller
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
| | | | - Adam P. Taranto
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
- Plant Sciences Division, Research School of Biology, The Australian National University, CanberraACT, Australia
| | - Joanna K. Bowen
- The New Zealand Institute for Plant and Food Research LimitedAuckland, New Zealand
| | - David Dubois
- School of BioSciences, University of Melbourne, ParkvilleVIC, Australia
| | - Andrew Robinson
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, MelbourneVIC, Australia
| | - Cecilia H. Deng
- The New Zealand Institute for Plant and Food Research LimitedAuckland, New Zealand
| | - Kim M. Plummer
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
| |
Collapse
|
70
|
Dong S, Raffaele S, Kamoun S. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev 2015; 35:57-65. [PMID: 26451981 DOI: 10.1016/j.gde.2015.09.001] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/04/2015] [Accepted: 09/04/2015] [Indexed: 02/02/2023]
Abstract
Fungi and oomycetes include deep and diverse lineages of eukaryotic plant pathogens. The last 10 years have seen the sequencing of the genomes of a multitude of species of these so-called filamentous plant pathogens. Already, fundamental concepts have emerged. Filamentous plant pathogen genomes tend to harbor large repertoires of genes encoding virulence effectors that modulate host plant processes. Effector genes are not randomly distributed across the genomes but tend to be associated with compartments enriched in repetitive sequences and transposable elements. These findings have led to the 'two-speed genome' model in which filamentous pathogen genomes have a bipartite architecture with gene sparse, repeat rich compartments serving as a cradle for adaptive evolution. Here, we review this concept and discuss how plant pathogens are great model systems to study evolutionary adaptations at multiple time scales. We will also introduce the next phase of research on this topic.
Collapse
Affiliation(s)
- Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Sylvain Raffaele
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan 31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan 31326, France
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| |
Collapse
|
71
|
Ghanbarnia K, Fudal I, Larkan NJ, Links MG, Balesdent MH, Profotova B, Fernando WGD, Rouxel T, Borhan MH. Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. MOLECULAR PLANT PATHOLOGY 2015; 16:699-709. [PMID: 25492575 PMCID: PMC6638346 DOI: 10.1111/mpp.12228] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Five avirulence genes from Leptosphaeria maculans, the causal agent of blackleg of canola (Brassica napus), have been identified previously through map-based cloning. In this study, a comparative genomic approach was used to clone the previously mapped AvrLm2. Given the lack of a presence-absence gene polymorphism coincident with the AvrLm2 phenotype, 36 L. maculans isolates were resequenced and analysed for single-nucleotide polymorphisms (SNPs) in predicted small secreted protein-encoding genes present within the map interval. Three SNPs coincident with the AvrLm2 phenotype were identified within LmCys1, previously identified as a putative effector-coding gene. Complementation of a virulent isolate with LmCys1, as the candidate AvrLm2 allele, restored the avirulent phenotype on Rlm2-containing B. napus lines. AvrLm2 encodes a small cysteine-rich protein with low similarity to other proteins in the public databases. Unlike other avirulence genes, AvrLm2 resides in a small GC island within an AT-rich isochore of the genome, and was never found to be deleted completely in virulent isolates.
Collapse
Affiliation(s)
- Kaveh Ghanbarnia
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | | | - Nicholas J Larkan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| | - Matthew G Links
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5C9
| | | | | | | | | | - M Hossein Borhan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| |
Collapse
|
72
|
Blondeau K, Blaise F, Graille M, Kale SD, Linglin J, Ollivier B, Labarde A, Lazar N, Daverdin G, Balesdent MH, Choi DHY, Tyler BM, Rouxel T, van Tilbeurgh H, Fudal I. Crystal structure of the effector AvrLm4-7 of Leptosphaeria maculans reveals insights into its translocation into plant cells and recognition by resistance proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:610-24. [PMID: 26082394 DOI: 10.1111/tpj.12913] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 05/13/2023]
Abstract
The avirulence gene AvrLm4-7 of Leptosphaeria maculans, the causal agent of stem canker in Brassica napus (oilseed rape), confers a dual specificity of recognition by two resistance genes (Rlm4 and Rlm7) and is strongly involved in fungal fitness. In order to elucidate the biological function of AvrLm4-7 and understand the specificity of recognition by Rlm4 and Rlm7, the AvrLm4-7 protein was produced in Pichia pastoris and its crystal structure was determined. It revealed the presence of four disulfide bridges, but no close structural analogs could be identified. A short stretch of amino acids in the C terminus of the protein, (R/N)(Y/F)(R/S)E(F/W), was well-conserved among AvrLm4-7 homologs. Loss of recognition of AvrLm4-7 by Rlm4 is caused by the mutation of a single glycine to an arginine residue located in a loop of the protein. Loss of recognition by Rlm7 is governed by more complex mutational patterns, including gene loss or drastic modifications of the protein structure. Three point mutations altered residues in the well-conserved C-terminal motif or close to the glycine involved in Rlm4-mediated recognition, resulting in the loss of Rlm7-mediated recognition. Transient expression in Nicotiana benthamiana (tobacco) and particle bombardment experiments on leaves from oilseed rape suggested that AvrLm4-7 interacts with its cognate R proteins inside the plant cell, and can be translocated into plant cells in the absence of the pathogen. Translocation of AvrLm4-7 into oilseed rape leaves is likely to require the (R/N)(Y/F)(R/S)E(F/W) motif as well as an RAWG motif located in a nearby loop that together form a positively charged region.
Collapse
Affiliation(s)
- Karine Blondeau
- I2BC, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, UMR9198, Bât 430, F-91405, Orsay, France
| | - Françoise Blaise
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Marc Graille
- I2BC, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, UMR9198, Bât 430, F-91405, Orsay, France
| | - Shiv D Kale
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Juliette Linglin
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Bénédicte Ollivier
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Audrey Labarde
- I2BC, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, UMR9198, Bât 430, F-91405, Orsay, France
| | - Noureddine Lazar
- I2BC, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, UMR9198, Bât 430, F-91405, Orsay, France
| | - Guillaume Daverdin
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Marie-Hélène Balesdent
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Danielle H Y Choi
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, VA, 24061, USA
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, 97331, USA
| | - Thierry Rouxel
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| | - Herman van Tilbeurgh
- I2BC, Université Paris-Saclay, CEA, CNRS, Université Paris Sud, UMR9198, Bât 430, F-91405, Orsay, France
| | - Isabelle Fudal
- INRA, UMR 1290 INRA-AgroParisTech BIOGER, Avenue Lucien Brétignières, F-78850, Thiverval-Grignon, France
| |
Collapse
|
73
|
Gladieux P, Feurtey A, Hood ME, Snirc A, Clavel J, Dutech C, Roy M, Giraud T. The population biology of fungal invasions. Mol Ecol 2015; 24:1969-86. [DOI: 10.1111/mec.13028] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/24/2014] [Accepted: 11/28/2014] [Indexed: 12/16/2022]
Affiliation(s)
- P. Gladieux
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - A. Feurtey
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - M. E. Hood
- Department of Biology; Amherst College; Amherst Massachusetts 01002 USA
| | - A. Snirc
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| | - J. Clavel
- Conservation des Espèces; Restauration et Suivi des Populations - CRBPO; Muséum National d'Histoire Naturelle-CNRS-Université Pierre et Marie Curie; 55 rue Buffon 75005 Paris France
| | - C. Dutech
- Biodiversité Gènes et Communautés; INRA-Université Bordeaux 1; Site de Pierroton 33610 Cestas France
| | - M. Roy
- Evolution et Diversité Biologique; Université Toulouse Paul Sabatier-Ecole Nationale de Formation Agronomique-CNRS; 118 route de Narbonne 31062 Toulouse France
| | - T. Giraud
- Ecologie; Systématique et Evolution; Université Paris-Sud; Bâtiment 360 F-91405 Orsay France
- CNRS; 91405 Orsay France
| |
Collapse
|
74
|
Calculating RIP Mutation in Fungal Genomes Using RIPCAL. Fungal Biol 2015. [DOI: 10.1007/978-3-319-10503-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
75
|
Transposable element-assisted evolution and adaptation to host plant within the Leptosphaeria maculans-Leptosphaeria biglobosa species complex of fungal pathogens. BMC Genomics 2014; 15:891. [PMID: 25306241 PMCID: PMC4210507 DOI: 10.1186/1471-2164-15-891] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 09/26/2014] [Indexed: 12/21/2022] Open
Abstract
Background Many plant-pathogenic fungi have a tendency towards genome size expansion, mostly driven by increasing content of transposable elements (TEs). Through comparative and evolutionary genomics, five members of the Leptosphaeria maculans-Leptosphaeria biglobosa species complex (class Dothideomycetes, order Pleosporales), having different host ranges and pathogenic abilities towards cruciferous plants, were studied to infer the role of TEs on genome shaping, speciation, and on the rise of better adapted pathogens. Results L. maculans ‘brassicae’, the most damaging species on oilseed rape, is the only member of the species complex to have a TE-invaded genome (32.5%) compared to the other members genomes (<4%). These TEs had an impact at the structural level by creating large TE-rich regions and are suspected to have been instrumental in chromosomal rearrangements possibly leading to speciation. TEs, associated with species-specific genes involved in disease process, also possibly had an incidence on evolution of pathogenicity by promoting translocations of effector genes to highly dynamic regions and thus tuning the regulation of effector gene expression in planta. Conclusions Invasion of L. maculans ‘brassicae’ genome by TEs followed by bursts of TE activity allowed this species to evolve and to better adapt to its host, making this genome species a peculiarity within its own species complex as well as in the Pleosporales lineage. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-891) contains supplementary material, which is available to authorized users.
Collapse
|
76
|
Van de Wouw AP, Lowe RGT, Elliott CE, Dubois DJ, Howlett BJ. An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea cultivars. MOLECULAR PLANT PATHOLOGY 2014; 15:523-30. [PMID: 24279453 PMCID: PMC6638781 DOI: 10.1111/mpp.12105] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The fungus Leptosphaeria maculans causes blackleg of Brassica species. Here, we report the mapping and subsequent cloning of an avirulence gene from L. maculans. This gene, termed AvrLmJ1, confers avirulence towards all three Brassica juncea cultivars tested. Analysis of RNA-seq data showed that AvrLmJ1 is housed in a region of the L. maculans genome which contains only one gene that is highly expressed in planta. The closest genes are 57 and 33 kb away and, like other avirulence genes of L. maculans, AvrLmJ1 is located within an AT-rich, gene-poor region of the genome. The encoded protein is 141 amino acids, has a predicted signal peptide and is cysteine rich. Two virulent isolates contain a premature stop codon in AvrLmJ1. Complementation of an isolate that forms cotyledonary lesions on B. juncea with the wild-type allele of AvrLmJ1 confers avirulence towards all three B. juncea cultivars tested, suggesting that the gene may confer species-specific avirulence activity.
Collapse
|
77
|
|
78
|
Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLoS Genet 2014; 10:e1004227. [PMID: 24603691 PMCID: PMC3945186 DOI: 10.1371/journal.pgen.1004227] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/22/2014] [Indexed: 01/07/2023] Open
Abstract
Plant pathogens secrete an arsenal of small secreted proteins (SSPs) acting as effectors that modulate host immunity to facilitate infection. SSP-encoding genes are often located in particular genomic environments and show waves of concerted expression at diverse stages of plant infection. To date, little is known about the regulation of their expression. The genome of the Ascomycete Leptosphaeria maculans comprises alternating gene-rich GC-isochores and gene-poor AT-isochores. The AT-isochores harbor mosaics of transposable elements, encompassing one-third of the genome, and are enriched in putative effector genes that present similar expression patterns, namely no expression or low-level expression during axenic cultures compared to strong induction of expression during primary infection of oilseed rape (Brassica napus). Here, we investigated the involvement of one specific histone modification, histone H3 lysine 9 methylation (H3K9me3), in epigenetic regulation of concerted effector gene expression in L. maculans. For this purpose, we silenced the expression of two key players in heterochromatin assembly and maintenance, HP1 and DIM-5 by RNAi. By using HP1-GFP as a heterochromatin marker, we observed that almost no chromatin condensation is visible in strains in which LmDIM5 was silenced by RNAi. By whole genome oligoarrays we observed overexpression of 369 or 390 genes, respectively, in the silenced-LmHP1 and -LmDIM5 transformants during growth in axenic culture, clearly favouring expression of SSP-encoding genes within AT-isochores. The ectopic integration of four effector genes in GC-isochores led to their overexpression during growth in axenic culture. These data strongly suggest that epigenetic control, mediated by HP1 and DIM-5, represses the expression of at least part of the effector genes located in AT-isochores during growth in axenic culture. Our hypothesis is that changes of lifestyle and a switch toward pathogenesis lift chromatin-mediated repression, allowing a rapid response to new environmental conditions.
Collapse
|
79
|
Grandaubert J, Balesdent MH, Rouxel T. [Transposable elements reshaping genomes and favouring the evolutionary and adaptive potential of fungal phytopathogens]. Biol Aujourdhui 2014; 207:277-290. [PMID: 24594576 DOI: 10.1051/jbio/2013026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 06/03/2023]
Abstract
Phytopathogenic fungi are a major threat for global food security and show an extreme plasticity in pathogenicity behaviours. They often have a high adaptive potential allowing them to rapidly counteract the control methods used by men in agrosystems. In this paper, we evaluate the link between genome plasticity and adaptive potential using genomics and comparative genomics approaches. Our model is the evolutionary series Leptosphaeria maculans-Leptosphaeria biglobosa, encompassing five distinct entities, whose conspecificity or heterospecificity status is unclear, and which all are pathogens of cruciferous plants. They however differ by their host range and pathogenicity. Compared to other species of the species complex, the species best adapted to oilseed rape, L. maculans "brassicae", causing important losses in the crop, has a genome that was submitted to a recent and massive burst of transposition by a few families of transposable elements (TEs). Whether the genome invasion contributed to speciation is still unclear to-date but there is a coincidence between this burst of TEs and divergence between two species. This TE burst contributed to diversification of effector proteins and thus to generation of novel pathogenic specificities. In addition, the location of effector genes within genome regions enriched in TEs has direct consequences on adaptation to plant resistance and favours a multiplicity of mutation events allowing "breakdown" of resistance. These data are substantiated by other examples in the literature showing that fungi tend to have a "two-speed" genome, in which a plastic compartment enriched in TE host genes is involved in pathogenicity and adaptation to host.
Collapse
|
80
|
Delourme R, Bousset L, Ermel M, Duffé P, Besnard AL, Marquer B, Fudal I, Linglin J, Chadœuf J, Brun H. Quantitative resistance affects the speed of frequency increase but not the diversity of the virulence alleles overcoming a major resistance gene to Leptosphaeria maculans in oilseed rape. INFECTION GENETICS AND EVOLUTION 2014; 27:490-9. [PMID: 24394446 DOI: 10.1016/j.meegid.2013.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/20/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Quantitative resistance mediated by multiple genetic factors has been shown to increase the potential for durability of major resistance genes. This was demonstrated in the Leptosphaeria maculans/Brassica napus pathosystem in a 5year recurrent selection field experiment on lines harboring the qualitative resistance gene Rlm6 combined or not with quantitative resistance. The quantitative resistance limited the size of the virulent isolate population. In this study we continued this recurrent selection experiment in the same way to examine whether the pathogen population could adapt and render the major gene ineffective in the longer term. The cultivars Eurol, with a susceptible background, and Darmor, with quantitative resistance, were used. We confirmed that the combination of qualitative and quantitative resistance is an effective approach for controlling the pathogen epidemics over time. This combination did not prevent isolates virulent against the major gene from amplifying in the long term but the quantitative resistance significantly delayed for 5years the loss of effectiveness of the qualitative resistance and disease severity was maintained at a low level on the genotype with both types of resistance after the fungus population had adapted to the major gene. We also showed that diversity of AvrLm6 virulence alleles was comparable in isolates recovered after the recurrent selection on lines carrying either the major gene alone or in combination with quantitative resistance: a single repeat-induced point mutation and deletion events were observed in both situations. Breeding varieties which combine qualitative and quantitative resistance can effectively contribute to disease control by increasing the potential for durability of major resistance genes.
Collapse
Affiliation(s)
- R Delourme
- INRA, UMR 1349 IGEPP, BP35327, F-35653 Le Rheu Cedex, France.
| | - L Bousset
- INRA, UMR 1349 IGEPP, BP35327, F-35653 Le Rheu Cedex, France.
| | - M Ermel
- INRA, UMR 1349 IGEPP, BP35327, F-35653 Le Rheu Cedex, France.
| | - P Duffé
- INRA, UMR 1349 IGEPP, BP35327, F-35653 Le Rheu Cedex, France.
| | - A L Besnard
- INRA, UMR 1349 IGEPP, BP35327, F-35653 Le Rheu Cedex, France.
| | - B Marquer
- INRA, UMR 1349 IGEPP, BP35327, F-35653 Le Rheu Cedex, France.
| | - I Fudal
- INRA, UR 1290 BIOGER, BP 01, F-78850 Thiverval-Grignon, France.
| | - J Linglin
- INRA, UR 1290 BIOGER, BP 01, F-78850 Thiverval-Grignon, France.
| | - J Chadœuf
- INRA, UR 1052 GAFL, Domaine Saint Maurice, CS 60094, F-84143 Montfavet Cedex, France.
| | - H Brun
- INRA, UMR 1349 IGEPP, BP35327, F-35653 Le Rheu Cedex, France.
| |
Collapse
|
81
|
Zander M, Patel DA, Van de Wouw A, Lai K, Lorenc MT, Campbell E, Hayward A, Edwards D, Raman H, Batley J. Identifying genetic diversity of avirulence genes in Leptosphaeria maculans using whole genome sequencing. Funct Integr Genomics 2013; 13:295-308. [PMID: 23793572 DOI: 10.1007/s10142-013-0324-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/07/2013] [Accepted: 05/12/2013] [Indexed: 12/18/2022]
Abstract
Next generation sequencing technology allows rapid re-sequencing of individuals, as well as the discovery of single nucleotide polymorphisms (SNPs), for genomic diversity and evolutionary analyses. By sequencing two isolates of the fungal plant pathogen Leptosphaeria maculans, the causal agent of blackleg disease in Brassica crops, we have generated a resource of over 76 million sequence reads aligned to the reference genome. We identified over 21,000 SNPs with an overall SNP frequency of one SNP every 2,065 bp. Sequence validation of a selection of these SNPs in additional isolates collected throughout Australia indicates a high degree of polymorphism in the Australian population. In preliminary phylogenetic analysis, isolates from Western Australia clustered together and those collected from Brassica juncea stubble were identical. These SNPs provide a novel marker resource to study the genetic diversity of this pathogen. We demonstrate that re-sequencing provides a method of validating previously characterised SNPs and analysing differences in important genes, such as the disease related avirulence genes of L. maculans. Understanding the genetic characteristics of this devastating pathogen is vital in developing long-term solutions to managing blackleg disease in Brassica crops.
Collapse
Affiliation(s)
- Manuel Zander
- School of Agriculture and Food Sciences and Centre for Integrative Legume Research, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, Chèvre AM, Leflon M, Rouxel T. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. THE NEW PHYTOLOGIST 2013; 198:887-898. [PMID: 23406519 DOI: 10.1111/nph.12178] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/10/2013] [Indexed: 05/02/2023]
Abstract
Phytopathogenic fungi frequently contain dispensable chromosomes, some of which contribute to host range or pathogenicity. In Leptosphaeria maculans, the stem canker agent of oilseed rape (Brassica napus), the minichromosome was previously suggested to be dispensable, without evidence for any role in pathogenicity. Using genetic and genomic approaches, we investigated the inheritance and molecular determinant of an L. maculans-Brassica rapa incompatible interaction. Single gene control of the resistance was found, while all markers located on the L. maculans minichromosome, absent in the virulent parental isolate, co-segregated with the avirulent phenotype. Only one candidate avirulence gene was identified on the minichromosome, validated by complementation experiments and termed AvrLm11. The minichromosome was frequently lost following meiosis, but the frequency of isolates lacking it remained stable in field populations sampled at a 10-yr time interval, despite a yearly sexual stage in the L. maculans life cycle. This work led to the cloning of a new 'lost in the middle of nowhere' avirulence gene of L. maculans, interacting with a B. rapa resistance gene termed Rlm11 and introgressed into B. napus. It demonstrated the dispensability of the L. maculans minichromosome and suggested that its loss generates a fitness deficit.
Collapse
Affiliation(s)
- Marie-Hélène Balesdent
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Bénédicte Ollivier
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Pascal Bally
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Jonathan Grandaubert
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Frédérique Eber
- INRA, UMR1349 IGEPP, BP35327, F-35653, Le Rheu Cedex, France
| | | | - Martine Leflon
- CETIOM, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Thierry Rouxel
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| |
Collapse
|
83
|
Haag KL, Sheikh-Jabbari E, Ben-Ami F, Ebert D. Microsatellite and single-nucleotide polymorphisms indicate recurrent transitions to asexuality in a microsporidian parasite. J Evol Biol 2013; 26:1117-28. [PMID: 23530861 DOI: 10.1111/jeb.12125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/07/2013] [Indexed: 01/10/2023]
Abstract
Assessing the mode of reproduction of microparasites remains a difficult task because direct evidence for sexual processes is often absent and the biological covariates of sex and asex are poorly known. Species with geographically divergent modes of reproduction offer the possibility to explore some of these covariates, for example, the influence of life-history traits, mode of transmission and life-cycle complexity. Here, we present a phylogeographical study of a microsporidian parasite, which allows us to relate population genetic structure and mode of reproduction to its geographically diverged life histories. We show that in microsporidians from the genus Hamiltosporidium, that use the cladoceran Daphnia as host, an epidemic population structure has evolved, most probably since the last Ice Age. We partially sequenced three housekeeping genes (alpha tubulin, beta tubulin and hsp70) and genotyped seven microsatellite loci in 51 Hamiltosporidium isolates sampled within Europe and the Middle East. We found two phylogenetically related asexual parasite lines, one each from Fennoscandia and Israel, which share the unique ability of being transmitted both vertically and horizontally from Daphnia to Daphnia. The sexual forms cannot transmit horizontally among Daphnia, but presumably have a complex life cycle with a second host species. In spite of the similarities between the two asexual lineages, a clustering analysis based on microsatellite polymorphisms shows that asexual Fennoscandian parasites do not share ancestry with any other Hamiltosporidium that we have sampled. Moreover, allele sequence divergence at the hsp70 locus is twice as large in Fennoscandian than in Israeli parasites. Our results indicate that asexual reproduction evolved twice independently, first in Fennoscandian and more recently in the Israeli parasites. We conclude that the independent origin of asexuality in these two populations is associated with the altered parasite mode of transmission and the underlying dynamics of host populations.
Collapse
Affiliation(s)
- K L Haag
- Zoological Institute, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
84
|
Zhan J, McDonald BA. Experimental measures of pathogen competition and relative fitness. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:131-53. [PMID: 23767846 DOI: 10.1146/annurev-phyto-082712-102302] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Competition among pathogen strains for limited host resources can have a profound effect on pathogen evolution. A better understanding of the principles and consequences of competition can be useful in designing more sustainable disease management strategies. The competitive ability and relative fitness of a pathogen strain are determined by its intrinsic biological properties, the resistance and heterogeneity of the corresponding host population, the population density and genetic relatedness of the competing strains, and the physical environment. Competitive ability can be inferred indirectly from fitness components, such as basic reproduction rate or transmission rate. However, pathogen strains that exhibit higher fitness components when they infect a host alone may not exhibit a competitive advantage when they co-infect the same host. The most comprehensive measures of competitive ability and relative fitness come from calculating selection coefficients in a mixed infection in a field setting. Mark-release-recapture experiments can be used to estimate fitness costs associated with unnecessary virulence and fungicide resistance.
Collapse
Affiliation(s)
- Jiasui Zhan
- Key Lab for Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | | |
Collapse
|
85
|
|