51
|
Salo J, Pietikäinen A, Söderström M, Auvinen K, Salmi M, Ebady R, Moriarty TJ, Viljanen MK, Hytönen J. Flow-Tolerant Adhesion of a Bacterial Pathogen to Human Endothelial Cells Through Interaction With Biglycan. J Infect Dis 2016; 213:1623-31. [DOI: 10.1093/infdis/jiw003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/29/2015] [Indexed: 11/14/2022] Open
|
52
|
Melehani JH, Duncan JA. Inflammasome Activation Can Mediate Tissue-Specific Pathogenesis or Protection in Staphylococcus aureus Infection. Curr Top Microbiol Immunol 2016; 397:257-82. [PMID: 27460814 DOI: 10.1007/978-3-319-41171-2_13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Staphylococcus aureus is a Gram-positive coccus that interacts with human hosts on a spectrum from quiet commensal to deadly pathogen. S. aureus is capable of infecting nearly every tissue in the body resulting in cellulitis, pneumonia, osteomyelitis, endocarditis, brain abscesses, bacteremia, and more. S. aureus has a wide range of factors that promote infection, and each site of infection triggers a different response in the human host. In particular, the different patterns of inflammasome activation mediate tissue-specific pathogenesis or protection in S. aureus infection. Although still a nascent field, understanding the unique host-pathogen interactions in each infection and the role of inflammasomes in mediating pathogenesis may lead to novel strategies for treating S. aureus infections. Reviews addressing S. aureus virulence and pathogenesis (Thammavongsa et al. 2015), as well as epidemiology and pathophysiology (Tong et al. 2015), have recently been published. This review will focus on S. aureus factors that activate inflammasomes and their impact on innate immune signaling and bacterial survival.
Collapse
Affiliation(s)
- Jason H Melehani
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph A Duncan
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Medicine, Division of Infectious Diseases, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
53
|
Liu Y, Zhang D, Engström Å, Merényi G, Hagner M, Yang H, Kuwae A, Wan Y, Sjölinder M, Sjölinder H. Dynamic niche-specific adaptations in Neisseria meningitidis during infection. Microbes Infect 2015; 18:109-17. [PMID: 26482500 DOI: 10.1016/j.micinf.2015.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/30/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
Neisseria meningitidis is an opportunistic human pathogen that usually colonizes the nasopharyngeal mucosa asymptomatically. Upon invasion into the blood and central nervous system, this bacterium triggers a fulminant inflammatory reaction with the manifestations of septicemia and meningitis, causing high morbidity and mortality. To reveal the bacterial adaptations to specific and dynamic host environments, we performed a comprehensive proteomic survey of N. meningitidis isolated from the nasal mucosa, CSF and blood of a mouse disease model. We could identify 51 proteins whose expression pattern has been changed during infection, many of which have not yet been characterized. The abundance of proteins was markedly lower in the bacteria isolated from the nasal mucosa compared to the bacteria from the blood and CSF, indicating that initiating adhesion is the harshest challenge for meningococci. The high abundance of the glutamate dehydrogenase (GdhA) and Opa1800 proteins in all bacterial isolates suggests their essential role in bacterial survival in vivo. To evaluate the biological relevance of our proteomic findings, four candidate proteins from representative functional groups, such as the bacterial chaperone GroEL, IMP dehydrogenase GuaB, and membrane proteins PilQ and NMC0101, were selected and their impact on bacterial fitness was investigated by mutagenesis assays. This study provides an integrated picture of bacterial niche-specific adaptations during consecutive infection processes.
Collapse
Affiliation(s)
- Yan Liu
- School of Life Sciences, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Ding Zhang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Åke Engström
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gábor Merényi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Matthias Hagner
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Hairu Yang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Asaomi Kuwae
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Yi Wan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Mikael Sjölinder
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| | - Hong Sjölinder
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
54
|
Gault J, Ferber M, Machata S, Imhaus AF, Malosse C, Charles-Orszag A, Millien C, Bouvier G, Bardiaux B, Péhau-Arnaudet G, Klinge K, Podglajen I, Ploy MC, Seifert HS, Nilges M, Chamot-Rooke J, Duménil G. Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation. PLoS Pathog 2015; 11:e1005162. [PMID: 26367394 PMCID: PMC4569582 DOI: 10.1371/journal.ppat.1005162] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
Abstract
The ability of pathogens to cause disease depends on their aptitude to escape the immune system. Type IV pili are extracellular filamentous virulence factors composed of pilin monomers and frequently expressed by bacterial pathogens. As such they are major targets for the host immune system. In the human pathogen Neisseria meningitidis, strains expressing class I pilins contain a genetic recombination system that promotes variation of the pilin sequence and is thought to aid immune escape. However, numerous hypervirulent clinical isolates express class II pilins that lack this property. This raises the question of how they evade immunity targeting type IV pili. As glycosylation is a possible source of antigenic variation it was investigated using top-down mass spectrometry to provide the highest molecular precision on the modified proteins. Unlike class I pilins that carry a single glycan, we found that class II pilins display up to 5 glycosylation sites per monomer on the pilus surface. Swapping of pilin class and genetic background shows that the pilin primary structure determines multisite glycosylation while the genetic background determines the nature of the glycans. Absence of glycosylation in class II pilins affects pilus biogenesis or enhances pilus-dependent aggregation in a strain specific fashion highlighting the extensive functional impact of multisite glycosylation. Finally, molecular modeling shows that glycans cover the surface of class II pilins and strongly decrease antibody access to the polypeptide chain. This strongly supports a model where strains expressing class II pilins evade the immune system by changing their sugar structure rather than pilin primary structure. Overall these results show that sequence invariable class II pilins are cloaked in glycans with extensive functional and immunological consequences. During infection pathogens and their host engage in a series of measures and counter-measures to promote their own survival: pathogens express virulence factors, the immune system targets these surface structures and pathogens modify them to evade detection. Like numerous bacterial pathogens, Neisseria meningitidis express type IV pili, long filamentous adhesive structures composed of pilins. Intriguingly the amino acid sequences of pilins from most hypervirulent strains do not vary, raising the question of how they evade the immune system. This study shows that the pilus structure is completely coated with sugars thus limiting access of antibodies to the pilin polypeptide chain. We propose that multisite glycosylation and thus variation in the type of sugar mediates immune evasion in these strains.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Adhesion
- Cell Line
- Cells, Cultured
- Conserved Sequence
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/microbiology
- Endothelium, Vascular/pathology
- Fimbriae Proteins/chemistry
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae, Bacterial/immunology
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Gene Deletion
- Glycosylation
- Host-Pathogen Interactions
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/immunology
- Human Umbilical Vein Endothelial Cells/microbiology
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Immune Evasion
- Meningococcal Infections/immunology
- Meningococcal Infections/metabolism
- Meningococcal Infections/microbiology
- Meningococcal Infections/pathology
- Microscopy, Electron, Transmission
- Models, Molecular
- Neisseria meningitidis/immunology
- Neisseria meningitidis/metabolism
- Neisseria meningitidis/ultrastructure
- Protein Processing, Post-Translational
- Sequence Homology, Amino Acid
- Species Specificity
- Surface Properties
Collapse
Affiliation(s)
- Joseph Gault
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Mathias Ferber
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Silke Machata
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Anne-Flore Imhaus
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Christian Malosse
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Arthur Charles-Orszag
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Corinne Millien
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Guillaume Bouvier
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | | | - Kelly Klinge
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Isabelle Podglajen
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France
| | - Marie Cécile Ploy
- INSERM UMR1092, Faculté de Médecine, Université de Limoges, Limoges, France
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael Nilges
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Julia Chamot-Rooke
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Guillaume Duménil
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
55
|
Jacobsen MC, Dusart PJ, Kotowicz K, Bajaj-Elliott M, Hart SL, Klein NJ, Dixon GL. A critical role for ATF2 transcription factor in the regulation of E-selectin expression in response to non-endotoxin components of Neisseria meningitidis. Cell Microbiol 2015; 18:66-79. [PMID: 26153406 PMCID: PMC4973847 DOI: 10.1111/cmi.12483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/26/2015] [Accepted: 07/05/2015] [Indexed: 01/15/2023]
Abstract
Vascular injury is a serious complication of sepsis due to the gram‐negative bacterium Neisseria meningitidis. One of the critical early steps in initiating this injury is via the interaction of leucocytes, particularly neutrophils, with adhesion molecules expressed on inflamed endothelium. We have previously demonstrated that both lipopolysaccharide (LPS) and non‐LPS components of meningococci can induce very high levels of expression of the vascular endothelial cell adhesion molecule E‐selectin, which is critical for early tethering and capture of neutrophils onto endothelium under flow. Using an LPS‐deficient strain of meningococcus, we showed that very high levels of expression can be induced in primary endothelial cells, even in the context of weak activation of the major host signal transduction factor [nuclear factor‐κB (NF‐κB)]. In this study, we show that the particular propensity for N. meningitidis to induce high levels of expression is regulated at a transcriptional level, and demonstrate a significant role for phosphorylation of the ATF2 transcription factor, likely via mitogen‐activated protein (MAP) kinases, on the activity of the E‐selectin promoter. Furthermore, inhibition of E‐selectin expression in response to the lpxA− strain by a p38 inhibitor indicates a significant role of a p38‐dependent MAPK signalling pathway in ATF2 activation. Collectively, these data highlight the role that LPS and other bacterial components have in modulating endothelial function and their involvement in the pathogenesis of meningococcal sepsis. Better understanding of these multiple mechanisms induced by complex stimuli such as bacteria, and the specific inflammatory pathways they activate, may lead to improved, focused interventions in both meningococcal and potentially bacterial sepsis more generally.
Collapse
Affiliation(s)
- M C Jacobsen
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Department of Biology, Faculty of Science, University of Regina, Regina, SK, Canada
| | - P J Dusart
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Science for Life Laboratory, Clinical Applied Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), Solna, Sweden
| | - K Kotowicz
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - M Bajaj-Elliott
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - S L Hart
- Experimental and Personalised Medicine Section, Institute of Child Health, University College London, London, UK
| | - N J Klein
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK
| | - G L Dixon
- Infection, Inflammation and Rheumatology Section, Institute of Child Health, University College London, London, UK.,Department of Microbiology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
56
|
Gorgel M, Ulstrup JJ, Bøggild A, Jones NC, Hoffmann SV, Nissen P, Boesen T. High-resolution structure of a type IV pilin from the metal-reducing bacterium Shewanella oneidensis. BMC STRUCTURAL BIOLOGY 2015; 15:4. [PMID: 25886849 PMCID: PMC4376143 DOI: 10.1186/s12900-015-0031-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/02/2015] [Indexed: 11/10/2022]
Abstract
Background Type IV pili are widely expressed among Gram-negative bacteria, where they are involved in biofilm formation, serve in the transfer of DNA, motility and in the bacterial attachment to various surfaces. Type IV pili in Shewanella oneidensis are also supposed to play an important role in extracellular electron transfer by the attachment to sediments containing electron acceptors and potentially forming conductive nanowires. Results The potential nanowire type IV pilin PilBac1 from S. oneidensis was characterized by a combination of complementary structural methods and the atomic structure was determined at a resolution of 1.67 Å by X-ray crystallography. PilBac1 consists of one long N-terminal α-helix packed against four antiparallel β-strands, thus revealing the core fold of type IV pilins. In the crystal, PilBac1 forms a parallel dimer with a sodium ion bound to one of the monomers. Interestingly, our PilBac1 crystal structure reveals two unusual features compared to other type IVa pilins: an unusual position of the disulfide bridge and a straight α-helical section, which usually exhibits a pronounced kink. This straight helix leads to a distinct packing in a filament model of PilBac1 based on an EM model of a Neisseria pilus. Conclusions In this study we have described the first structure of a pilin from Shewanella oneidensis. The structure possesses features of the common type IV pilin core, but also exhibits significant variations in the α-helical part and the D-region. Electronic supplementary material The online version of this article (doi:10.1186/s12900-015-0031-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuela Gorgel
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Jakob Jensen Ulstrup
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Andreas Bøggild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Nykola C Jones
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, building 1525, Aarhus C, 8000, Denmark.
| | - Søren V Hoffmann
- ISA, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, building 1525, Aarhus C, 8000, Denmark.
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| | - Thomas Boesen
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10c, Aarhus C, 8000, Denmark.
| |
Collapse
|
57
|
Pastushenko I, Gracia-Cazaña T, Casado-Arroyo R. [Purpura and necrosis of sudden onset in a patient with fever]. Enferm Infecc Microbiol Clin 2014; 33:129-30. [PMID: 25542339 DOI: 10.1016/j.eimc.2014.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/06/2014] [Accepted: 07/10/2014] [Indexed: 11/25/2022]
Affiliation(s)
- Ievgenia Pastushenko
- Departamento de Dermatología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España
| | - Tamara Gracia-Cazaña
- Departamento de Dermatología, Hospital Clínico Universitario Lozano Blesa, Zaragoza, España.
| | | |
Collapse
|
58
|
Morand PC, Maïssa N, Bernard SC, Bourdoulous S. [CD147 is an essential receptor for vascular colonization by Neisseria meningitidis]. Med Sci (Paris) 2014; 30:825-7. [PMID: 25311010 DOI: 10.1051/medsci/20143010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Philippe C Morand
- Inserm U1016, Institut Cochin, 22, rue Méchain, 75014 Paris, France - CNRS, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nawal Maïssa
- Inserm U1016, Institut Cochin, 22, rue Méchain, 75014 Paris, France - CNRS, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sandra C Bernard
- Inserm U1016, Institut Cochin, 22, rue Méchain, 75014 Paris, France - CNRS, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, Paris, France - Université Paris Diderot, Paris, France
| | - Sandrine Bourdoulous
- Inserm U1016, Institut Cochin, 22, rue Méchain, 75014 Paris, France - CNRS, UMR8104, Paris, France - Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
59
|
Increased biofilm formation by nontypeable Haemophilus influenzae isolates from patients with invasive disease or otitis media versus strains recovered from cases of respiratory infections. Appl Environ Microbiol 2014; 80:7088-95. [PMID: 25192997 DOI: 10.1128/aem.02544-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Biofilm formation by nontypeable (NT) Haemophilus influenzae remains a controversial topic. Nevertheless, biofilm-like structures have been observed in the middle-ear mucosa of experimental chinchilla models of otitis media (OM). To date, there have been no studies of biofilm formation in large collections of clinical isolates. This study aimed to investigate the initial adhesion to a solid surface and biofilm formation by NT H. influenzae by comparing isolates from healthy carriers, those with noninvasive respiratory disease, and those with invasive respiratory disease. We used 352 isolates from patients with nonbacteremic community-acquired pneumonia (NB-CAP), chronic obstructive pulmonary disease (COPD), OM, and invasive disease and a group of healthy colonized children. We then determined the speed of initial adhesion to a solid surface by the BioFilm ring test and quantified biofilm formation by crystal violet staining. Isolates from different clinical sources displayed high levels of biofilm formation on a static solid support after growth for 24 h. We observed clear differences in initial attachment and biofilm formation depending on the pathology associated with NT H. influenzae isolation, with significantly increased biofilm formation for NT H. influenzae isolates collected from patients with invasive disease and OM compared with NT H. influenzae isolates from patients with NB-CAP or COPD and healthy colonized subjects. In all cases, biofilm structures were detached by proteinase K treatment, suggesting an important role for proteins in the initial adhesion and static biofilm formation measured by crystal violet staining.
Collapse
|
60
|
Invasive meningococcal disease: a disease of the endothelial cells. Trends Mol Med 2014; 20:571-8. [PMID: 25178566 DOI: 10.1016/j.molmed.2014.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 02/04/2023]
Abstract
Neisseria meningitidis is an extracellular pathogen, which, once in the bloodstream, has the ability to form microcolonies on the apical surface of endothelia. Pathogen interaction with microvessels is mediated by bacterial type IV pili and two receptors on endothelial cells: CD147 and the β2-adrenoceptor. CD147 facilitates the adhesion of diplococci to the endothelium, whereas the β2-adrenoceptor facilitates cell signaling, and crossing of the blood-brain barrier. In this review, we discuss how meningococcal interaction with endothelial cells is responsible for the specific clinical features of invasive meningococcal infection such as meningitis, and a peripheral thrombotic/vascular leakage syndrome possibly leading to purpura fulminans.
Collapse
|
61
|
Brehm MA, Wiles MV, Greiner DL, Shultz LD. Generation of improved humanized mouse models for human infectious diseases. J Immunol Methods 2014; 410:3-17. [PMID: 24607601 PMCID: PMC4155027 DOI: 10.1016/j.jim.2014.02.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 12/26/2022]
Abstract
The study of human-specific infectious agents has been hindered by the lack of optimal small animal models. More recently development of novel strains of immunodeficient mice has begun to provide the opportunity to utilize small animal models for the study of many human-specific infectious agents. The introduction of a targeted mutation in the IL2 receptor common gamma chain gene (IL2rg(null)) in mice already deficient in T and B cells led to a breakthrough in the ability to engraft hematopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in immunodeficient mice. These humanized mice are becoming increasingly important as pre-clinical models for the study of human immunodeficiency virus-1 (HIV-1) and other human-specific infectious agents. However, there remain a number of opportunities to further improve humanized mouse models for the study of human-specific infectious agents. This is being done by the implementation of innovative technologies, which collectively will accelerate the development of new models of genetically modified mice, including; i) modifications of the host to reduce innate immunity, which impedes human cell engraftment; ii) genetic modification to provide human-specific growth factors and cytokines required for optimal human cell growth and function; iii) and new cell and tissue engraftment protocols. The development of "next generation" humanized mouse models continues to provide exciting opportunities for the establishment of robust small animal models to study the pathogenesis of human-specific infectious agents, as well as for testing the efficacy of therapeutic agents and experimental vaccines.
Collapse
Affiliation(s)
- Michael A Brehm
- The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, United States.
| | - Michael V Wiles
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, United States.
| | - Dale L Greiner
- The University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, United States.
| | - Leonard D Shultz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, United States.
| |
Collapse
|
62
|
Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization. Nat Med 2014; 20:725-31. [PMID: 24880614 PMCID: PMC7095922 DOI: 10.1038/nm.3563] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/10/2014] [Indexed: 01/07/2023]
Abstract
Neisseria meningitidis is a cause of meningitis epidemics worldwide and of rapidly progressing fatal septic shock. A crucial step in the pathogenesis of invasive meningococcal infections is the adhesion of bloodborne meningococci to both peripheral and brain endothelia, leading to major vascular dysfunction. Initial adhesion of pathogenic strains to endothelial cells relies on meningococcal type IV pili, but the endothelial receptor for bacterial adhesion remains unknown. Here, we report that the immunoglobulin superfamily member CD147 (also called extracellular matrix metalloproteinase inducer (EMMPRIN) or Basigin) is a critical host receptor for the meningococcal pilus components PilE and PilV. Interfering with this interaction potently inhibited the primary attachment of meningococci to human endothelial cells in vitro and prevented colonization of vessels in human brain tissue explants ex vivo and in humanized mice in vivo. These findings establish the molecular events by which meningococci target human endothelia, and they open new perspectives for treatment and prevention of meningococcus-induced vascular dysfunctions.
Collapse
|
63
|
Imhaus AF, Duménil G. The number of Neisseria meningitidis type IV pili determines host cell interaction. EMBO J 2014; 33:1767-83. [PMID: 24864127 DOI: 10.15252/embj.201488031] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
As mediators of adhesion, autoaggregation and bacteria-induced plasma membrane reorganization, type IV pili are at the heart of Neisseria meningitidis infection. Previous studies have proposed that two minor pilins, PilV and PilX, are displayed along the pilus structure and play a direct role in mediating these effects. In contrast with this hypothesis, combining imaging and biochemical approaches we found that PilV and PilX are located in the bacterial periplasm rather than along pilus fibers. Furthermore, preventing exit of these proteins from the periplasm by fusing them to the mCherry protein did not alter their function. Deletion of the pilV and pilX genes led to a decrease in the number, but not length, of pili displayed on the bacterial surface indicating a role in the initiation of pilus biogenesis. By finely regulating the expression of a central component of the piliation machinery, we show that the modest reductions in the number of pili are sufficient to recapitulate the phenotypes of the pilV and pilX mutants. We further show that specific type IV pili-dependent functions require different ranges of pili numbers.
Collapse
Affiliation(s)
- Anne-Flore Imhaus
- INSERM U970 Paris Cardiovascular Research Center, Paris, France Faculté de Médecine Paris Descartes, Université Paris Descartes, Paris, France
| | - Guillaume Duménil
- INSERM U970 Paris Cardiovascular Research Center, Paris, France Faculté de Médecine Paris Descartes, Université Paris Descartes, Paris, France
| |
Collapse
|
64
|
Melican K, Aubey F, Duménil G. Humanized mouse model to study bacterial infections targeting the microvasculature. J Vis Exp 2014. [PMID: 24747976 PMCID: PMC4161007 DOI: 10.3791/51134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neisseria meningitidis causes a severe, frequently fatal sepsis when it enters the human blood stream. Infection leads to extensive damage of the blood vessels resulting in vascular leak, the development of purpuric rashes and eventual tissue necrosis. Studying the pathogenesis of this infection was previously limited by the human specificity of the bacteria, which makes in vivo models difficult. In this protocol, we describe a humanized model for this infection in which human skin, containing dermal microvessels, is grafted onto immunocompromised mice. These vessels anastomose with the mouse circulation while maintaining their human characteristics. Once introduced into this model, N. meningitidis adhere exclusively to the human vessels, resulting in extensive vascular damage, inflammation and in some cases the development of purpuric rash. This protocol describes the grafting, infection and evaluation steps of this model in the context of N. meningitidis infection. The technique may be applied to numerous human specific pathogens that infect the blood stream.
Collapse
Affiliation(s)
- Keira Melican
- INSERM U970, Paris Cardiovascular Research Centre; Faculté de Médecine Paris Descartes, Université Paris Descartes
| | - Flore Aubey
- INSERM U970, Paris Cardiovascular Research Centre; Faculté de Médecine Paris Descartes, Université Paris Descartes
| | - Guillaume Duménil
- INSERM U970, Paris Cardiovascular Research Centre; Faculté de Médecine Paris Descartes, Université Paris Descartes;
| |
Collapse
|
65
|
The hypervariable region of meningococcal major pilin PilE controls the host cell response via antigenic variation. mBio 2014; 5:e01024-13. [PMID: 24520062 PMCID: PMC3950515 DOI: 10.1128/mbio.01024-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Type IV pili (Tfp) are expressed by many Gram-negative bacteria to promote aggregation, adhesion, internalization, twitching motility, or natural transformation. Tfp of Neisseria meningitidis, the causative agent of cerebrospinal meningitis, are involved in the colonization of human nasopharynx. After invasion of the bloodstream, Tfp allow adhesion of N. meningitidis to human endothelial cells, which leads to the opening of the blood-brain barrier and meningitis. To achieve firm adhesion, N. meningitidis induces a host cell response that results in elongation of microvilli surrounding the meningococcal colony. Here we study the role of the major pilin subunit PilE during host cell response using human dermal microvascular endothelial cells and the pharynx carcinoma-derived FaDu epithelial cell line. We first show that some PilE variants are unable to induce a host cell response. By engineering PilE mutants, we observed that the PilE C-terminus domain, which contains a disulfide bonded region (D-region), is critical for the host cell response and that hypervariable regions confer different host cell specificities. Moreover, the study of point mutants of the pilin D-region combined with structural modeling of PilE revealed that the D-region contains two independent regions involved in signaling to human dermal microvascular endothelial cells (HDMECs) or FaDu cells. Our results indicate that the diversity of the PilE D-region sequence allows the induction of the host cell response via several receptors. This suggests that Neisseria meningitidis has evolved a powerful tool to adapt easily to many niches by modifying its ability to interact with host cells. Type IV pili (Tfp) are long appendages expressed by many Gram-negative bacteria, including Neisseria meningitidis, the causative agent of cerebrospinal meningitis. These pili are involved in many aspects of pathogenesis: natural competence, aggregation, adhesion, and twitching motility. More specifically, Neisseria meningitidis, which is devoid of a secretion system to manipulate its host, has evolved its Tfp to signal to brain endothelial cells and open the blood-brain barrier. In this report, we investigate, at the molecular level, the involvement of the major pilin subunit PilE in host cell response. Our results indicate that the PilE C-terminal domain, which contains a disulfide bonded region (D-region), is critical for the host cell response and contains two independent regions involved in host cell signaling.
Collapse
|
66
|
Sanchez Rodriguez R, Pauli ML, Neuhaus IM, Yu SS, Arron ST, Harris HW, Yang SHY, Anthony BA, Sverdrup FM, Krow-Lucal E, MacKenzie TC, Johnson DS, Meyer EH, Löhr A, Hsu A, Koo J, Liao W, Gupta R, Debbaneh MG, Butler D, Huynh M, Levin EC, Leon A, Hoffman WY, McGrath MH, Alvarado MD, Ludwig CH, Truong HA, Maurano MM, Gratz IK, Abbas AK, Rosenblum MD. Memory regulatory T cells reside in human skin. J Clin Invest 2014; 124:1027-36. [PMID: 24509084 DOI: 10.1172/jci72932] [Citation(s) in RCA: 269] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/21/2013] [Indexed: 01/07/2023] Open
Abstract
Regulatory T cells (Tregs), which are characterized by expression of the transcription factor Foxp3, are a dynamic and heterogeneous population of cells that control immune responses and prevent autoimmunity. We recently identified a subset of Tregs in murine skin with properties typical of memory cells and defined this population as memory Tregs (mTregs). Due to the importance of these cells in regulating tissue inflammation in mice, we analyzed this cell population in humans and found that almost all Tregs in normal skin had an activated memory phenotype. Compared with mTregs in peripheral blood, cutaneous mTregs had unique cell surface marker expression and cytokine production. In normal human skin, mTregs preferentially localized to hair follicles and were more abundant in skin with high hair density. Sequence comparison of TCRs from conventional memory T helper cells and mTregs isolated from skin revealed little homology between the two cell populations, suggesting that they recognize different antigens. Under steady-state conditions, mTregs were nonmigratory and relatively unresponsive; however, in inflamed skin from psoriasis patients, mTregs expanded, were highly proliferative, and produced low levels of IL-17. Taken together, these results identify a subset of Tregs that stably resides in human skin and suggest that these cells are qualitatively defective in inflammatory skin disease.
Collapse
|
67
|
Casellato A, Rossi Paccani S, Barrile R, Bossi F, Ciucchi L, Codolo G, Pizza M, Aricò B, de Bernard M. The C2 fragment from Neisseria meningitidis antigen NHBA increases endothelial permeability by destabilizing adherens junctions. Cell Microbiol 2014; 16:925-37. [PMID: 24397470 DOI: 10.1111/cmi.12250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/29/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022]
Abstract
Neisseria meningitidis is a human pathogen that can cause fatal sepsis and meningitis once it reaches the blood stream and the nervous system. Here we demonstrate that a fragment, released upon proteolysis of the surface-exposed protein Neisserial Heparin Binding Antigen (NHBA), by the bacterial protease NalP, alters the endothelial permeability by inducing the internalization of the adherens junction protein VE-cadherin. We found that C2 rapidly accumulates in mitochondria where it induces the production of reactive oxygen species: the latter are required for the phosphorylation of the junctional protein and for its internalization that, in turn, is responsible for the endothelial leakage. Our data support the notion that the NHBA-derived fragment C2 might contribute to the extensive vascular leakage typically associated with meningococcal sepsis.
Collapse
|
68
|
Soyer M, Charles-Orszag A, Lagache T, Machata S, Imhaus AF, Dumont A, Millien C, Olivo-Marin JC, Duménil G. Early sequence of events triggered by the interaction ofNeisseria meningitidiswith endothelial cells. Cell Microbiol 2013; 16:878-95. [DOI: 10.1111/cmi.12248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/12/2013] [Accepted: 12/03/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Magali Soyer
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Arthur Charles-Orszag
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Thibault Lagache
- Institut Pasteur; Unité d'Analyse d'Images Quantitative; Centre National de la Recherche Scientifique; Unité de Recherche Associée 2582; Paris France
| | - Silke Machata
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Anne-Flore Imhaus
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Audrey Dumont
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Corinne Millien
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur; Unité d'Analyse d'Images Quantitative; Centre National de la Recherche Scientifique; Unité de Recherche Associée 2582; Paris France
| | - Guillaume Duménil
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| |
Collapse
|
69
|
Abstract
Most pathogens are able to infect multiple hosts but some are highly adapted to a single-host species. A detailed understanding of the basis of host specificity can provide important insights into molecular pathogenesis, the evolution of pathogenic microbes, and the potential for pathogens to cross the species barrier to infect new hosts. Comparative genomics and the development of humanized mouse models have provided important new tools with which to explore the basis of generalism and specialism. This review will examine host specificity of bacterial pathogens with a focus on generalist and specialist serovars of Salmonella enterica.
Collapse
Affiliation(s)
- Andreas Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis School of Medicine, Davis, California 95616
| | | |
Collapse
|
70
|
Lerolle N, Carlotti A, Melican K, Aubey F, Pierrot M, Diehl JL, Caille V, Hékimian G, Gandrille S, Mandet C, Bruneval P, Dumenil G, Borgel D. Assessment of the interplay between blood and skin vascular abnormalities in adult purpura fulminans. Am J Respir Crit Care Med 2013; 188:684-92. [PMID: 23924269 DOI: 10.1164/rccm.201302-0228oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Purpura fulminans in adults is a rare but devastating disease. Its pathophysiology is not well known. OBJECTIVES To understand the pathophysiology of skin lesions in purpura fulminans, the interplay between circulating blood and vascular alterations was assessed. METHODS Prospective multicenter study in four intensive care units. Patients with severe sepsis without skin lesions were recruited as control subjects. MEASUREMENTS AND MAIN RESULTS Twenty patients with severe sepsis and purpura fulminans were recruited for blood sampling, and skin biopsy was performed in deceased patients. High severity of disease and mortality rates (80%) was observed. Skin biopsies in purpura fulminans lesions revealed thrombosis and extensive vascular damage: vascular congestion and dilation, endothelial necrosis, alteration of markers of endothelial integrity (CD31) and of the protein C pathway receptors (endothelial protein C receptor, thrombomodulin). Elevated plasminogen activating inhibitor-1 mRNA was also observed. Comparison with control patients showed that these lesions were specific to purpura fulminans. By contrast, no difference was observed for blood hemostasis parameters, including soluble thrombomodulin, activated protein C, and disseminated intravascular coagulation markers. Bacterial presence at the vascular wall was observed specifically in areas of vascular damage in eight of nine patients tested (including patients with Streptococcus pneumoniae, Neisseria meningitidis, Escherichia coli, and Pseudomonas aeruginosa infection). CONCLUSIONS Thrombi and extensive vascular damage with multifaceted prothrombotic local imbalance are characteristics of purpura fulminans. A "vascular wall infection" hypothesis, responsible for endothelial damage and subsequent skin lesions, can be put forward.
Collapse
Affiliation(s)
- Nicolas Lerolle
- 1 Département de Réanimation Médicale et Médicine Hyperbare, Centre Hospitalier Universitaire Angers, and Faculté de Médecine, Université d'Angers, Angers, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Melican K, Duménil G. A humanized model of microvascular infection. Future Microbiol 2013; 8:567-9. [PMID: 23642111 DOI: 10.2217/fmb.13.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
72
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|