51
|
McInnes RS, McCallum GE, Lamberte LE, van Schaik W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr Opin Microbiol 2020; 53:35-43. [PMID: 32143027 DOI: 10.1016/j.mib.2020.02.002] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 01/05/2023]
Abstract
Infections caused by antibiotic-resistant bacteria are a major threat to public health. The pathogens causing these infections can acquire antibiotic resistance genes in a process termed horizontal gene transfer (HGT). HGT is a common event in the human gut microbiome, that is, the microbial ecosystem of the human intestinal tract. HGT in the gut microbiome can occur via different mechanisms of which transduction and conjugation have been best characterised. Novel bioinformatic tools and experimental approaches have been developed to determine the association of antibiotic resistance genes with their microbial hosts and to quantify the extent of HGT in the gut microbiome. Insights from studies into HGT in the gut microbiome may lead to the development of novel interventions to minimise the spread of antibiotic resistance genes among commensals and opportunistic pathogens.
Collapse
Affiliation(s)
- Ross S McInnes
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Gregory E McCallum
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Lisa E Lamberte
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
52
|
Singhvi N, Gupta V, Gaur M, Sharma V, Puri A, Singh Y, Dubey GP, Lal R. Interplay of Human Gut Microbiome in Health and Wellness. Indian J Microbiol 2020; 60:26-36. [PMID: 32089571 PMCID: PMC7000599 DOI: 10.1007/s12088-019-00825-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
The gut microbiome analysis, with specific interest on their direct impact towards the human health, is currently revolutionizing the unexplored frontiers of the pathogenesis and wellness. Although in-depth investigations of gut microbiome, 'the Black Boxes', complexities and functionalities are yet at its infancy, profound evidences are being reported for their concurrent involvement in disease etiology and its treatment. Interestingly, studies from the 'minimal murine' (Oligo-MM12), 'humanized' microbiota gnotobiotic mice models and patient samples, combined with multi-omics and cell biology approaches, have been revealing the implications of these findings in the treatment of gut dysbiosis associated diseases. Nonetheless, due to the inherent heterogeneity of the gut commensals and their unified co-existence with opportunistic pathobionts, it is utmost essential to highlight their functionalities in 'good or bad' gut in human wellness. We have specifically reviewed dietary lifestyle and infectious diseases linked with the gut bacterial consortia to delineate the ecobiotic approaches towards their treatment. This notably includes gut mucosal immunity mediated diseases such as Tuberculosis, IBD, CDI, Type 2 Diabetes, etc. Alongside of each dysbiosis, we have described the current therapeutic advancements of the pre- and probiotics derived from human microbiome studies to restore gut microbial homeostasis. With a continuous running debate on the role of microbiota in above mentioned diseases, we have collected numerous scientific evidences highlighting a previously unanticipated complex involvement of gut microbiome in the potential of human health.
Collapse
Affiliation(s)
- Nirjara Singhvi
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vipin Gupta
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Mohita Gaur
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Vishal Sharma
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Akshita Puri
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Gyanendra P. Dubey
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 75015 Paris, France
| | - Rup Lal
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003 India
| |
Collapse
|
53
|
Metaphylogenetic analysis of global sewage reveals that bacterial strains associated with human disease show less degree of geographic clustering. Sci Rep 2020; 10:3033. [PMID: 32080241 PMCID: PMC7033184 DOI: 10.1038/s41598-020-59292-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
Knowledge about the difference in the global distribution of pathogens and non-pathogens is limited. Here, we investigate it using a multi-sample metagenomics phylogeny approach based on short-read metagenomic sequencing of sewage from 79 sites around the world. For each metagenomic sample, bacterial template genomes were identified in a non-redundant database of whole genome sequences. Reads were mapped to the templates identified in each sample. Phylogenetic trees were constructed for each template identified in multiple samples. The countries from which the samples were taken were grouped according to different definitions of world regions. For each tree, the tendency for regional clustering was determined. Phylogenetic trees representing 95 unique bacterial templates were created covering 4 to 71 samples. Varying degrees of regional clustering could be observed. The clustering was most pronounced for environmental bacterial species and human commensals, and less for colonizing opportunistic pathogens, opportunistic pathogens and pathogens. No pattern of significant difference in clustering between any of the organism classifications and country groupings according to income were observed. Our study suggests that while the same bacterial species might be found globally, there is a geographical regional selection or barrier to spread for individual clones of environmental and human commensal bacteria, whereas this is to a lesser degree the case for strains and clones of human pathogens and opportunistic pathogens.
Collapse
|
54
|
Carugati M, Morlacchi LC, Peri AM, Alagna L, Rossetti V, Bandera A, Gori A, Blasi F. Challenges in the Diagnosis and Management of Bacterial Lung Infections in Solid Organ Recipients: A Narrative Review. Int J Mol Sci 2020; 21:E1221. [PMID: 32059371 PMCID: PMC7072844 DOI: 10.3390/ijms21041221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Respiratory infections pose a significant threat to the success of solid organ transplantation, and the diagnosis and management of these infections are challenging. The current narrative review addressed some of these challenges, based on evidence from the literature published in the last 20 years. Specifically, we focused our attention on (i) the obstacles to an etiologic diagnosis of respiratory infections among solid organ transplant recipients, (ii) the management of bacterial respiratory infections in an era characterized by increased antimicrobial resistance, and (iii) the development of antimicrobial stewardship programs dedicated to solid organ transplant recipients.
Collapse
Affiliation(s)
- Manuela Carugati
- Internal Medicine Department, Division of Infectious Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy; (A.M.P.); (L.A.); (A.B.); (A.G.)
- Division of Infectious Diseases and International Health, Duke University, Durham, NC 27710, USA
| | - Letizia Corinna Morlacchi
- Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy; (L.C.M.); (V.R.); (F.B.)
| | - Anna Maria Peri
- Internal Medicine Department, Division of Infectious Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy; (A.M.P.); (L.A.); (A.B.); (A.G.)
| | - Laura Alagna
- Internal Medicine Department, Division of Infectious Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy; (A.M.P.); (L.A.); (A.B.); (A.G.)
| | - Valeria Rossetti
- Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy; (L.C.M.); (V.R.); (F.B.)
| | - Alessandra Bandera
- Internal Medicine Department, Division of Infectious Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy; (A.M.P.); (L.A.); (A.B.); (A.G.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Andrea Gori
- Internal Medicine Department, Division of Infectious Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy; (A.M.P.); (L.A.); (A.B.); (A.G.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
- Centre for Multidisciplinary Research in Health Science, 20122 Milano, Italy
| | - Francesco Blasi
- Internal Medicine Department, Respiratory Unit and Adult Cystic Fibrosis Center, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, 20122 Milano, Italy; (L.C.M.); (V.R.); (F.B.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | | |
Collapse
|
55
|
Baquero F, Coque TM, Martínez JL, Aracil-Gisbert S, Lanza VF. Gene Transmission in the One Health Microbiosphere and the Channels of Antimicrobial Resistance. Front Microbiol 2019; 10:2892. [PMID: 31921068 PMCID: PMC6927996 DOI: 10.3389/fmicb.2019.02892] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is a field in which the concept of One Health can best be illustrated. One Health is based on the definition of communication spaces among diverse environments. Antibiotic resistance is encoded by genes, however, these genes are propagated in mobile genetic elements (MGEs), circulating among bacterial species and clones that are integrated into the multiple microbiotas of humans, animals, food, sewage, soil, and water environments, the One Health microbiosphere. The dynamics and evolution of antibiotic resistance depend on the communication networks linking all these ecological, biological, and genetic entities. These communications occur by environmental overlapping and merging, a critical issue in countries with poor sanitation, but also favored by the homogenizing power of globalization. The overwhelming increase in the population of highly uniform food animals has contributed to the parallel increase in the absolute size of their microbiotas, consequently enhancing the possibility of microbiome merging between humans and animals. Microbial communities coalescence might lead to shared microbiomes in which the spread of antibiotic resistance (of human, animal, or environmental origin) is facilitated. Intermicrobiome communication is exerted by shuttle bacterial species (or clones within species) belonging to generalist taxa, able to multiply in the microbiomes of various hosts, including humans, animals, and plants. Their integration into local genetic exchange communities fosters antibiotic resistance gene flow, following the channels of accessory genome exchange among bacterial species. These channels delineate a topology of gene circulation, including dense clusters of species with frequent historical and recent exchanges. The ecological compatibility of these species, sharing the same niches and environments, determines the exchange possibilities. In summary, the fertility of the One Health approach to antibiotic resistance depends on the progress of understanding multihierarchical systems, encompassing communications among environments (macro/microaggregates), among microbiotas (communities), among bacterial species (clones), and communications among MGEs.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - José-Luis Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sonia Aracil-Gisbert
- Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
| | - Val F. Lanza
- Bioinformatics Unit, Ramón y Cajal University Hospital, Ramón y Cajal Institute for Health Research (IRYCIS), Madrid, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
56
|
Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat Microbiol 2019; 4:1432-1442. [PMID: 31439928 DOI: 10.1038/s41564-019-0503-9] [Citation(s) in RCA: 631] [Impact Index Per Article: 105.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
Several interconnected human, animal and environmental habitats can contribute to the emergence, evolution and spread of antibiotic resistance, and the health of these contiguous habitats (the focus of the One Health approach) may represent a risk to human health. Additionally, the expansion of resistant clones and antibiotic resistance determinants among human-associated, animal-associated and environmental microbiomes have the potential to alter bacterial population genetics at local and global levels, thereby modifying the structure, and eventually the productivity, of microbiomes where antibiotic-resistant bacteria can expand. Conversely, any change in these habitats (including pollution by antibiotics or by antibiotic-resistant organisms) may influence the structures of their associated bacterial populations, which might affect the spread of antibiotic resistance to, and among, the above-mentioned microbiomes. Besides local transmission among connected habitats-the focus of studies under the One Health concept-the transmission of resistant microorganisms might occur on a broader (even worldwide) scale, requiring coordinated Global Health actions. This Review provides updated information on the elements involved in the evolution and spread of antibiotic resistance at local and global levels, and proposes studies to be performed and strategies to be followed that may help reduce the burden of antibiotic resistance as well as its impact on human and planetary health.
Collapse
|
57
|
Morley VJ, Woods RJ, Read AF. Bystander Selection for Antimicrobial Resistance: Implications for Patient Health. Trends Microbiol 2019; 27:864-877. [PMID: 31288975 PMCID: PMC7079199 DOI: 10.1016/j.tim.2019.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
Antimicrobial therapy promotes resistance emergence in target infections and in off-target microbiota. Off-target resistance emergence threatens patient health when off-target populations are a source of future infections, as they are for many important drug-resistant pathogens. However, the health risks of antimicrobial exposure in off-target populations remain largely unquantified, making rational antibiotic stewardship challenging. Here, we discuss the contribution of bystander antimicrobial exposure to the resistance crisis, the implications for antimicrobial stewardship, and some novel opportunities to limit resistance evolution while treating target pathogens.
Collapse
Affiliation(s)
- Valerie J Morley
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Robert J Woods
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Andrew F Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, The Pennsylvania State University, University Park, PA, USA; Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
58
|
Di Venanzio G, Flores-Mireles AL, Calix JJ, Haurat MF, Scott NE, Palmer LD, Potter RF, Hibbing ME, Friedman L, Wang B, Dantas G, Skaar EP, Hultgren SJ, Feldman MF. Urinary tract colonization is enhanced by a plasmid that regulates uropathogenic Acinetobacter baumannii chromosomal genes. Nat Commun 2019; 10:2763. [PMID: 31235751 PMCID: PMC6591400 DOI: 10.1038/s41467-019-10706-y] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/24/2019] [Indexed: 12/18/2022] Open
Abstract
Multidrug resistant (MDR) Acinetobacter baumannii poses a growing threat to global health. Research on Acinetobacter pathogenesis has primarily focused on pneumonia and bloodstream infections, even though one in five A. baumannii strains are isolated from urinary sites. In this study, we highlight the role of A. baumannii as a uropathogen. We develop the first A. baumannii catheter-associated urinary tract infection (CAUTI) murine model using UPAB1, a recent MDR urinary isolate. UPAB1 carries the plasmid pAB5, a member of the family of large conjugative plasmids that represses the type VI secretion system (T6SS) in multiple Acinetobacter strains. pAB5 confers niche specificity, as its carriage improves UPAB1 survival in a CAUTI model and decreases virulence in a pneumonia model. Comparative proteomic and transcriptomic analyses show that pAB5 regulates the expression of multiple chromosomally-encoded virulence factors besides T6SS. Our results demonstrate that plasmids can impact bacterial infections by controlling the expression of chromosomal genes. Acinetobacter baumannii is generally considered an opportunistic pathogen. Here, Di Venanzio et al. develop a mouse model of catheter-associated urinary tract infection and show that a plasmid confers niche specificity to an A. baumannii urinary isolate by regulating the expression of chromosomal genes.
Collapse
Affiliation(s)
- Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Ana L Flores-Mireles
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, 63110, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Juan J Calix
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M Florencia Haurat
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Institute for Infection and Immunity, University of Melbourne at the Peter Doherty, Parkville, Victoria, 3010, Australia
| | - Lauren D Palmer
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Robert F Potter
- The Edison Family Center for Genome Sciences and System Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Michael E Hibbing
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Laura Friedman
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Microbiología, Buenos Aires, C1113AAD, Argentina
| | - Bin Wang
- The Edison Family Center for Genome Sciences and System Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Gautam Dantas
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA.,The Edison Family Center for Genome Sciences and System Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63105, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology and Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
59
|
Bortolami A, Zendri F, Maciuca EI, Wattret A, Ellis C, Schmidt V, Pinchbeck G, Timofte D. Diversity, Virulence, and Clinical Significance of Extended-Spectrum β-Lactamase- and pAmpC-Producing Escherichia coli From Companion Animals. Front Microbiol 2019; 10:1260. [PMID: 31231344 PMCID: PMC6560200 DOI: 10.3389/fmicb.2019.01260] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 11/26/2022] Open
Abstract
Escherichia coli are opportunistic pathogens with the potential to cause a variety of infections in both humans and animals and in many cases have developed antimicrobial resistance. In this study, we characterized extended-spectrum cephalosporin resistant (ESCR) E. coli isolates from diseased companion animals (dogs, cats, and horses) and related the results to clinical findings. ESCR E. coli clinical isolates obtained over a 6-year period were screened for extended-spectrum β-lactamase (ESBL) and/or plasmid mediated AmpC (pAmpC) and virulence markers likely to be associated with extraintestinal pathogenic E. coli (ExPEC). ESBL and/or pAmpC genetic determinants were identified in 79.9% of the ESCR E. coli isolates with bla CTX-M genes being the most common ESBL genotype of which bla CTX-M-15, bla CTX-M-14, and bla CTX-M-55 were the most prevalent. In addition, bla CMY -2 was the most common genotype identified amongst pAmpC producing isolates. Phylogenetic group typing showed that B2 was the most prevalent phylogroup among the ESCR E. coli isolates, followed by the closely related phylogroups D and F which are also associated with extra-intestinal infections. ESCR was also identified in phylogroups commonly regarded as commensals (B1, A, and C). Virulence factor (VF) scores >2 were mostly present amongst isolates in phylogroup B2. Higher virulence scores were found in isolates lacking ESBL/pAmpC resistance genes compared with those carrying both genes (p < 0.05). Five of phylogroup B2 isolates, were typed to the pandemic virulent O25b-ST131 clone and three ST131 isolates carrying bla CTX-M-15 belonged to the subclade C2/H30Rx whilst one isolate carrying bla CTX-M-27 typed to the recently described sub-clade C1-M27. MLST typing also identified other sequence types commonly associated with infections in humans (ST410, ST10, and ST648). Most ESCR E. coli isolates obtained in pure growth were cultured from normally sterile body sites (mostly from urinary tract infections, UTIs) whilst only a small proportion were obtained from body sites populated with commensal flora (p < 0.0001). Our study has shown that ExPEC ESBL/pAmpC producing E. coli isolates are common amongst companion animal isolates and are associated with colonization and infection. In addition, their isolation from a normally sterile site is likely to be clinically significant and warrants antimicrobial treatment.
Collapse
Affiliation(s)
- Alessio Bortolami
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Flavia Zendri
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Elena Iuliana Maciuca
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Andy Wattret
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Christine Ellis
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Vanessa Schmidt
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Neston, United Kingdom
- Department of Small Animal Clinical Science, Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
| | - Gina Pinchbeck
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Neston, United Kingdom
| | - Dorina Timofte
- Department of Veterinary Pathology and Public Health, Institute of Veterinary Science, University of Liverpool, Neston, United Kingdom
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
60
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
61
|
Friberg IM, Taylor JD, Jackson JA. Diet in the Driving Seat: Natural Diet-Immunity-Microbiome Interactions in Wild Fish. Front Immunol 2019; 10:243. [PMID: 30837993 PMCID: PMC6389695 DOI: 10.3389/fimmu.2019.00243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022] Open
Abstract
Natural interactions between the diet, microbiome, and immunity are largely unstudied. Here we employ wild three-spined sticklebacks as a model, combining field observations with complementary experimental manipulations of diet designed to mimic seasonal variation in the wild. We clearly demonstrate that season-specific diets are a powerful causal driver of major systemic immunophenotypic variation. This effect occurred largely independently of the bulk composition of the bacterial microbiome (which was also driven by season and diet) and of host condition, demonstrating neither of these, per se, constrain immune allocation in healthy individuals. Nonetheless, through observations in multiple anatomical compartments, differentially exposed to the direct effects of food and immunity, we found evidence of immune-driven control of bacterial community composition in mucus layers. This points to the interactive nature of the host-microbiome relationship, and is the first time, to our knowledge, that this causal chain (diet → immunity → microbiome) has been demonstrated in wild vertebrates. Microbiome effects on immunity were not excluded and, importantly, we identified outgrowth of potentially pathogenic bacteria (especially mycolic-acid producing corynebacteria) as a consequence of the more animal-protein-rich summertime diet. This may provide part of the ultimate explanation (and possibly a proximal cue) for the dramatic immune re-adjustments that we saw in response to diet change.
Collapse
Affiliation(s)
- Ida M Friberg
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Joe D Taylor
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| |
Collapse
|
62
|
Label-Free SERS Discrimination and In Situ Analysis of Life Cycle in Escherichia coli and Staphylococcus epidermidis. BIOSENSORS-BASEL 2018; 8:bios8040131. [PMID: 30558342 PMCID: PMC6315751 DOI: 10.3390/bios8040131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 11/17/2022]
Abstract
Surface enhanced Raman spectroscopy (SERS) has been proven suitable for identifying and characterizing different bacterial species, and to fully understand the chemically driven metabolic variations that occur during their evolution. In this study, SERS was exploited to identify the cellular composition of Gram-positive and Gram-negative bacteria by using mesoporous silicon-based substrates decorated with silver nanoparticles. The main differences between the investigated bacterial strains reside in the structure of the cell walls and plasmatic membranes, as well as their biofilm matrix, as clearly noticed in the corresponding SERS spectrum. A complete characterization of the spectra was provided in order to understand the contribution of each vibrational signal collected from the bacterial culture at different times, allowing the analysis of the bacterial populations after 12, 24, and 48 h. The results show clear features in terms of vibrational bands in line with the bacterial growth curve, including an increasing intensity of the signals during the first 24 h and their subsequent decrease in the late stationary phase after 48 h of culture. The evolution of the bacterial culture was also confirmed by fluorescence microscope images.
Collapse
|
63
|
Abstract
E. coli ST131 is an important extraintestinal pathogen that can colonize the gastrointestinal tracts of humans and food animals. Here, we combined detection of accessory traits associated with avian adaptation (ColV plasmids) with high-resolution phylogenetics to quantify the portion of human infections caused by ST131 strains of food animal origin. Our results suggest that one ST131 sublineage—ST131-H22—has become established in poultry populations around the world and that meat may serve as a vehicle for human exposure and infection. ST131-H22 is just one of many E. coli lineages that may be transmitted from food animals to humans. Additional studies that combine detection of host-associated accessory elements with phylogenetics may allow us to quantify the total fraction of human extraintestinal infections attributable to food animal E. coli strains. Escherichia coli sequence type 131 (ST131) has emerged rapidly to become the most prevalent extraintestinal pathogenic E. coli clones in circulation today. Previous investigations appeared to exonerate retail meat as a source of human exposure to ST131; however, these studies focused mainly on extensively multidrug-resistant ST131 strains, which typically carry allele 30 of the fimH type 1 fimbrial adhesin gene (ST131-H30). To estimate the frequency of extraintestinal human infections arising from foodborne ST131 strains without bias toward particular sublineages or phenotypes, we conducted a 1-year prospective study of E. coli from meat products and clinical cultures in Flagstaff, Arizona. We characterized all isolates by multilocus sequence typing, fimH typing, and core genome phylogenetic analyses, and we screened isolates for avian-associated ColV plasmids as an indication of poultry adaptation. E. coli was isolated from 79.8% of the 2,452 meat samples and 72.4% of the 1,735 culture-positive clinical samples. Twenty-seven meat isolates were ST131 and belonged almost exclusively (n = 25) to the ST131-H22 lineage. All but 1 of the 25 H22 meat isolates were from poultry products, and all but 2 carried poultry-associated ColV plasmids. Of the 1,188 contemporaneous human clinical E. coli isolates, 24 were ST131-H22, one-quarter of which occurred in the same high-resolution phylogenetic clades as the ST131-H22 meat isolates and carried ColV plasmids. Molecular clock analysis of an international ST131-H22 genome collection suggested that ColV plasmids have been acquired at least six times since the 1940s and that poultry-to-human transmission is not limited to the United States.
Collapse
|