51
|
Jeffreys S, Chambers JP, Yu JJ, Hung CY, Forsthuber T, Arulanandam BP. Insights into Acinetobacter baumannii protective immunity. Front Immunol 2022; 13:1070424. [PMID: 36466845 PMCID: PMC9716351 DOI: 10.3389/fimmu.2022.1070424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022] Open
Abstract
Acinetobacter baumannii is a nosocomic opportunistic Gram-negative bacteria known for its extensive drug-resistant phenotype. A. baumannii hospital-acquired infections are major contributors to increased costs and mortality observed during the COVID-19 pandemic. With few effective antimicrobials available for treatment of this pathogen, immune-based therapy becomes an attractive strategy to combat multi-drug resistant Acinetobacter infection. Immunotherapeutics is a field of growing interest with advances in vaccines and monoclonal antibodies providing insight into the protective immune response required to successfully combat this pathogen. This review focuses on current knowledge describing the adaptive immune response to A. baumannii, the importance of antibody-mediated protection, developments in cell-mediated protection, and their respective therapeutic application going forward. With A. baumannii’s increasing resistance to most current antimicrobials, elucidating an effective host adaptive immune response is paramount in the guidance of future immunotherapeutic development.
Collapse
Affiliation(s)
- Sean Jeffreys
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - James P. Chambers
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Jieh-Juen Yu
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Chiung-Yu Hung
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Thomas Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Bernard P. Arulanandam
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- *Correspondence: Bernard P. Arulanandam,
| |
Collapse
|
52
|
Scoffone VC, Irudal S, AbuAlshaar A, Piazza A, Trespidi G, Barbieri G, Makarov V, Migliavacca R, De Rossi E, Buroni S. Bactericidal and Anti-Biofilm Activity of the FtsZ Inhibitor C109 against Acinetobacter baumannii. Antibiotics (Basel) 2022; 11:1571. [PMID: 36358226 PMCID: PMC9687021 DOI: 10.3390/antibiotics11111571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 09/29/2023] Open
Abstract
In the last few years, Acinetobacter baumannii has ranked as a number one priority due to its Multi Drug Resistant phenotype. The different metabolic states, such as the one adopted when growing as biofilm, help the bacterium to resist a wide variety of compounds, placing the discovery of new molecules able to counteract this pathogen as a topic of utmost importance. In this context, bacterial cell division machinery and the conserved protein FtsZ are considered very interesting cellular targets. The benzothiadiazole compound C109 is able to inhibit bacterial growth and to block FtsZ GTPase and polymerization activities in Burkholderia cenocepacia, Pseudomonas aeruginosa, and Staphylococcus aureus. In this work, the activity of C109 was tested against a panel of antibiotic sensitive and resistant A. baumannii strains. Its ability to inhibit biofilm formation was explored, together with its activity against the A. baumannii FtsZ purified protein. Our results indicated that C109 has good MIC values against A. baumannii clinical isolates. Moreover, its antibiofilm activity makes it an interesting alternative treatment, effective against diverse metabolic states. Finally, its activity was confirmed against A. baumannii FtsZ.
Collapse
Affiliation(s)
- Viola Camilla Scoffone
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Samuele Irudal
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Aseel AbuAlshaar
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Aurora Piazza
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Vadim Makarov
- Research Center of Biotechnology RAS, 119071 Moscow, Russia
| | - Roberta Migliavacca
- Unit of Microbiology and Clinical Microbiology, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Edda De Rossi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
53
|
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20:657-670. [PMID: 35641670 PMCID: PMC9153222 DOI: 10.1038/s41579-022-00745-6] [Citation(s) in RCA: 255] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Trace metals are essential micronutrients required for survival across all kingdoms of life. From bacteria to animals, metals have critical roles as both structural and catalytic cofactors for an estimated third of the proteome, representing a major contributor to the maintenance of cellular homeostasis. The reactivity of metal ions engenders them with the ability to promote enzyme catalysis and stabilize reaction intermediates. However, these properties render metals toxic at high concentrations and, therefore, metal levels must be tightly regulated. Having evolved in close association with bacteria, vertebrate hosts have developed numerous strategies of metal limitation and intoxication that prevent bacterial proliferation, a process termed nutritional immunity. In turn, bacterial pathogens have evolved adaptive mechanisms to survive in conditions of metal depletion or excess. In this Review, we discuss mechanisms by which nutrient metals shape the interactions between bacterial pathogens and animal hosts. We explore the cell-specific and tissue-specific roles of distinct trace metals in shaping bacterial infections, as well as implications for future research and new therapeutic development.
Collapse
Affiliation(s)
- Caitlin C Murdoch
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
54
|
Lyons NS, Bogner AN, Tanner JJ, Sobrado P. Kinetic and Structural Characterization of a Flavin-Dependent Putrescine N-Hydroxylase from Acinetobacter baumannii. Biochemistry 2022; 61:2607-2620. [DOI: 10.1021/acs.biochem.2c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Noah S. Lyons
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Alexandra N. Bogner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
55
|
Stracquadanio S, Bonomo C, Marino A, Bongiorno D, Privitera GF, Bivona DA, Mirabile A, Bonacci PG, Stefani S. Acinetobacter baumannii and Cefiderocol, between Cidality and Adaptability. Microbiol Spectr 2022; 10:e0234722. [PMID: 36173300 PMCID: PMC9603721 DOI: 10.1128/spectrum.02347-22] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/07/2022] [Indexed: 01/04/2023] Open
Abstract
Among the bacterial species included in the ESKAPE group, Acinetobacter baumannii is of great interest due to its intrinsic and acquired resistance to many antibiotics and its ability to infect different body regions. Cefiderocol (FDC) is a novel cephalosporin that is active against Gram-negative bacteria, with promising efficacy for A. baumannii infections, but some studies have reported therapeutic failures even in the presence of susceptible strains. This study aims to investigate the interactions between FDC and 10 A. baumannii strains with different susceptibilities to this drug. We confirmed diverse susceptibility profiles, with resistance values close to the EUCAST-proposed breakpoints. The minimal bactericidal concentration (MBC)/MIC ratios demonstrated bactericidal activity of the drug, with ratio values of ≤4 for all of the strains except ATCC 19606; however, bacterial regrowth was evident after exposure to FDC, as were changes in the shapes of colonies and bacterial cells. A switch to a nonsusceptible phenotype in the presence of high FDC concentrations was found in 1 strain as an adaptation mechanism implemented to overcome the cidal activity of this antibiotic, which was confirmed by the presence of heteroresistant, unstable subpopulations in 8/10 samples. Genomic analyses revealed the presence of mutations in penicillin-binding protein 3 (PBP3) and TonB3 that were shared by all of the strains regardless of their resistance phenotype. Because our isolates harbored β-lactamase genes, β-lactamase inhibitors showed the ability to restore the antimicrobial activity of FDC despite the different nonsusceptibility levels of the tested strains. These in vitro results support the concept of using combination therapy to eliminate drug-adapted subpopulations and regain full FDC activity in this difficult-to-treat species. IMPORTANCE This work demonstrates the underrated presence of Acinetobacter baumannii heteroresistant subpopulations after exposure of A. baumannii strains to FDC and its instability. Both A. baumannii and FDC are of great interest for the scientific community, as well as for clinicians; the former represents a major threat to public health due to its resistance to antibiotics, with related costs of prolonged hospitalization, and the latter is a novel, promising cephalosporin currently under the magnifying glass.
Collapse
Affiliation(s)
- Stefano Stracquadanio
- Biomedical and Biotechnological Sciences Department, University of Catania, Catania, Italy
| | - Carmelo Bonomo
- Biomedical and Biotechnological Sciences Department, University of Catania, Catania, Italy
| | - Andrea Marino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Dafne Bongiorno
- Biomedical and Biotechnological Sciences Department, University of Catania, Catania, Italy
| | - Grete Francesca Privitera
- Department of Clinical and Experimental Medicine, Bioinformatics Unit, University of Catania, Catania, Italy
| | - Dalida Angela Bivona
- Biomedical and Biotechnological Sciences Department, University of Catania, Catania, Italy
| | - Alessia Mirabile
- Biomedical and Biotechnological Sciences Department, University of Catania, Catania, Italy
| | - Paolo Giuseppe Bonacci
- Biomedical and Biotechnological Sciences Department, University of Catania, Catania, Italy
| | - Stefania Stefani
- Biomedical and Biotechnological Sciences Department, University of Catania, Catania, Italy
| |
Collapse
|
56
|
Yang J, Wencewicz TA. In Vitro Reconstitution of Fimsbactin Biosynthesis from Acinetobacter baumannii. ACS Chem Biol 2022; 17:2923-2935. [PMID: 36122366 DOI: 10.1021/acschembio.2c00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Siderophores produced via nonribosomal peptide synthetase (NRPS) pathways serve as critical virulence factors for many pathogenic bacteria. Improved knowledge of siderophore biosynthesis guides the development of inhibitors, vaccines, and other therapeutic strategies. Fimsbactin A is a mixed ligand siderophore derived from human pathogenic Acinetobacter baumannii that contains phenolate-oxazoline, catechol, and hydroxamate metal chelating groups branching from a central l-Ser tetrahedral unit via amide and ester linkages. Fimsbactin A is derived from two molecules of l-Ser, two molecules of 2,3-dihydroxybenzoic acid (DHB), and one molecule of l-Orn and is a product of the fbs biosynthetic operon. Here, we report the complete in vitro reconstitution of fimsbactin A biosynthesis in a cell-free system using purified enzymes. We demonstrate the conversion of l-Orn to N1-acetyl-N1-hydroxy-putrescine (ahPutr) via ordered action of FbsJ (decarboxylase), FbsI (flavin N-monooxygenase), and FbsK (N-acetyltransferase). We achieve conversion of l-Ser, DHB, and l-Orn to fimsbactin A using FbsIJK in combination with the NRPS modules FbsEFGH. We also demonstrate chemoenzymatic conversion of synthetic ahPutr to fimsbactin A using FbsEFGH and establish the substrate selectivity for the NRPS adenylation domains in FbsH (DHB) and FbsF (l-Ser). We assign a role for the type II thioesterase FbsM in producing the shunt metabolite 2-(2,3-dihydroxyphenyl)-4,5-dihydrooxazole-4-carboxylic acid (DHB-oxa) via cleavage of the corresponding thioester intermediate that is tethered to NRPS peptidyl carrier domains during biosynthetic assembly. We propose a mechanism for branching NRPS-derived peptides via amide and ester linkages via the dynamic equilibration of N-DHB-Ser and O-DHB-Ser thioester intermediates via hydrolysis of DHB-oxa thioester intermediates. We also propose a genetic signature for NRPS "branching" in the presence of a terminating C-T-C motif (FbsG).
Collapse
Affiliation(s)
- Jinping Yang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
57
|
Iron Acquisition Mechanisms and Their Role in the Virulence of Acinetobacter baumannii. Infect Immun 2022; 90:e0022322. [PMID: 36066263 PMCID: PMC9584212 DOI: 10.1128/iai.00223-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential element for survival of most organisms. One mechanism of host defense is to tightly chelate iron to several proteins to limit its extracellular availability. This has forced pathogens such as Acinetobacter baumannii to adapt mechanisms for the acquisition and utilization of iron even in iron-limiting conditions. A. baumannii uses a variety of iron acquisition strategies to meet its iron requirements. It can lyse erythrocytes to harvest the heme molecules, use iron-chelating siderophores, and use outer membrane vesicles to acquire iron. Iron acquisition pathways, in general, have been seen to affect many other virulence factors such as cell adherence, cell motility, and biofilm formation. The knowledge gained from research on iron acquisition led to the synthesis of the antibiotic cefiderocol, which uses iron uptake pathways for entry into the cell with some success as a novel cephalosporin. Understanding the mechanisms of iron acquisition of A. baumannii allows for insight into clinical infections and offer potential targets for novel antibiotics or potentiators of current drugs.
Collapse
|
58
|
Sheldon JR, Himmel LE, Kunkle DE, Monteith AJ, Maloney KN, Skaar EP. Lipocalin-2 is an essential component of the innate immune response to Acinetobacter baumannii infection. PLoS Pathog 2022; 18:e1010809. [PMID: 36054235 PMCID: PMC9477428 DOI: 10.1371/journal.ppat.1010809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen and an emerging global health threat. Within healthcare settings, major presentations of A. baumannii include bloodstream infections and ventilator-associated pneumonia. The increased prevalence of ventilated patients during the COVID-19 pandemic has led to a rise in secondary bacterial pneumonia caused by multidrug resistant (MDR) A. baumannii. Additionally, due to its MDR status and the lack of antimicrobial drugs in the development pipeline, the World Health Organization has designated carbapenem-resistant A. baumannii to be its priority critical pathogen for the development of novel therapeutics. To better inform the design of new treatment options, a comprehensive understanding of how the host contains A. baumannii infection is required. Here, we investigate the innate immune response to A. baumannii by assessing the impact of infection on host gene expression using NanoString technology. The transcriptional profile observed in the A. baumannii infected host is characteristic of Gram-negative bacteremia and reveals expression patterns consistent with the induction of nutritional immunity, a process by which the host exploits the availability of essential nutrient metals to curtail bacterial proliferation. The gene encoding for lipocalin-2 (Lcn2), a siderophore sequestering protein, was the most highly upregulated during A. baumannii bacteremia, of the targets assessed, and corresponds to robust LCN2 expression in tissues. Lcn2-/- mice exhibited distinct organ-specific gene expression changes including increased transcription of genes involved in metal sequestration, such as S100A8 and S100A9, suggesting a potential compensatory mechanism to perturbed metal homeostasis. In vitro, LCN2 inhibits the iron-dependent growth of A. baumannii and induces iron-regulated gene expression. To elucidate the role of LCN2 in infection, WT and Lcn2-/- mice were infected with A. baumannii using both bacteremia and pneumonia models. LCN2 was not required to control bacterial growth during bacteremia but was protective against mortality. In contrast, during pneumonia Lcn2-/- mice had increased bacterial burdens in all organs evaluated, suggesting that LCN2 plays an important role in inhibiting the survival and dissemination of A. baumannii. The control of A. baumannii infection by LCN2 is likely multifactorial, and our results suggest that impairment of iron acquisition by the pathogen is a contributing factor. Modulation of LCN2 expression or modifying the structure of LCN2 to expand upon its ability to sequester siderophores may thus represent feasible avenues for therapeutic development against this pathogen. A lack of therapeutic options has prompted the World Health Organization to designate multidrug-resistant Acinetobacter baumannii as its priority critical pathogen for research into new treatment strategies. The mechanisms employed by A. baumannii to cause disease and the host tactics exercised to constrain infection are not fully understood. Here, we further characterize the innate immune response to A. baumannii infection. We identify nutritional immunity, a process where the availability of nutrient metals is exploited to restrain bacterial growth, as being induced during infection. The gene encoding for lipocalin-2 (Lcn2), a protein that can impede iron uptake by bacteria, is highly upregulated in infected mice, and corresponds to robust LCN2 detection in the tissues. We find that LCN2 is crucial to reducing mortality from A. baumannii bacteremia and inhibits dissemination of the pathogen during pneumonia. In wild-type and Lcn2-deficient mice, broader transcriptional profiling reveals expression patterns consistent with the known response to Gram-negative bacteremia. Although the role of LCN2 in infection is likely multifactorial, we find its antimicrobial effects are at least partly exerted by impairing iron acquisition by A. baumannii. Facets of nutritional immunity, such as LCN2, may be exploited as novel therapeutics in combating A. baumannii infection.
Collapse
Affiliation(s)
- Jessica R. Sheldon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lauren E. Himmel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew J. Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - K. Nichole Maloney
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
59
|
Suvaithenamudhan S, Ananth S, Mariappan V, Dhayabaran VV, Parthasarathy S, Ganesh PS, Shankar EM. In Silico Evaluation of Bioactive Compounds of Artemisia pallens Targeting the Efflux Protein of Multidrug-Resistant Acinetobacter baumannii (LAC-4 Strain). Molecules 2022; 27:molecules27165188. [PMID: 36014428 PMCID: PMC9414700 DOI: 10.3390/molecules27165188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the major representative aetiologies of recalcitrant nosocomial infections. Genotypic and phenotypic alterations in A. baumannii have resulted in a significant surge in multidrug resistance (MDR). Of all the factors responsible for the development of antimicrobial resistance (AMR), efflux protein pumps play a paramount role. In pursuit of a safe alternative for the prevention and control of A. baumannii infections, bioactive compounds from the aerial parts of the medicinal plant Artemisia pallens were studied. GC-MS analysis of the ethanol extract of A. pallens detected five major compounds: lilac alcohol A, spathulenol, lilac alcohol C, n-hexadecanoic acid, and vulgarin. In silico examinations were performed using the Schrödinger suite. Homology modelling was performed to predict the structure of the efflux protein of A. baumannii-LAC-4 strain (MDR Ab-EP). The identified bioactive compounds were analysed for their binding efficiency with MDR Ab-EP. High binding efficiency was observed with vulgarin with a glide score of −4.775 kcal/mol and stereoisomers of lilac alcohol A (−3.706 kcal/mol) and lilac alcohol C (−3.706 kcal/mol). Our molecular dynamic simulation studies unveiled the stability of the ligand–efflux protein complex. Vulgarin and lilac alcohol A possessed strong and stable binding efficiency with MDR Ab-EP. Furthermore, validation of the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the ligands strongly suggested that these compounds could serve as a lead molecule in the development of an alternate drug from A. pallens.
Collapse
Affiliation(s)
- Suvaiyarasan Suvaithenamudhan
- Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, Tamil Nadu, India
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| | - Sivapunniyam Ananth
- Sivan Bioscience Research and Training Laboratory, Kumbakonam 612 401, Tamil Nadu, India
| | - Vanitha Mariappan
- Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| | - Victor Violet Dhayabaran
- Department of Biotechnology and Bioinformatics, Bishop Heber College, Tiruchirappalli 620 017, Tamil Nadu, India
| | - Subbiah Parthasarathy
- Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Pitchaipillai Sankar Ganesh
- Department of Microbiology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, Tamil Nadu, India
| | - Esaki Muthu Shankar
- Infection Biology, Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, Tamil Nadu, India
- Correspondence: (S.S.); (V.M.); (E.M.S.)
| |
Collapse
|
60
|
Chaudhuri S, Rasooli I, Oskouei RH, Pishgahi M, Jahangir A, Andisi VF, Schryvers AB. Hybrid antigens expressing surface loops of BauA from Acinetobacter baumannii are capable of inducing protection against infection. Front Immunol 2022; 13:933445. [PMID: 36045685 PMCID: PMC9420935 DOI: 10.3389/fimmu.2022.933445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a human bacterial pathogen of increasing concern in clinical settings due to the emergence of antibiotic resistant strains and the lack of effective therapeutics. Researchers have been exploring new treatment options such as novel drug candidates and vaccines to prevent severe infections and mortality. Bacterial surface antigens that are essential to A. baumannii for acquiring micronutrients (e.g. iron, zinc) from nutrient restricted environments are being considered as targets for vaccines or immunotherapy due to their crucial role for growth and pathogenesis in the human host. BauA, the outer membrane receptor for the siderophore acinetobactin was targeted for vaccine development in this study. Due to challenges in the commercial production of membrane proteins for vaccines, a novel hybrid antigen method developed by our group was used. Exposed loops of BauA were selected and displayed on a foreign scaffold to generate novel hybrid antigens designed to elicit an immune response against the native BauA protein. The potential epitopes were incorporated into a scaffold derived from the C-lobe of Neisseria meningitidis transferrin binding protein B (TbpB), named the loopless C-lobe (LCL). Hybrid proteins displaying three selected loops (5, 7 and 8) individually or in combination were designed and produced and evaluated in an A. baumannii murine sepsis model as vaccine antigens. Immunization with the recombinant BauA protein protected 100% of the mice while immunization with hybrid antigens displaying individual loops achieved between 50 and 100% protection. The LCL scaffold did not induce a protective immune response, enabling us to attribute the observed protection elicited by the hybrid antigens to the displayed loops. Notably, the mice immunized with the hybrid antigen displaying loop 7 were completely protected from infection. Taken together, these results suggest that our hybrid antigen approach is a viable method for generating novel vaccine antigens that target membrane surface proteins necessary for bacterial growth and pathogenesis and the loop 7 hybrid antigen can be a foundation for approaches to combat A. baumannii infections.
Collapse
Affiliation(s)
- Somshukla Chaudhuri
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran
| | | | | | - Abolfazl Jahangir
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Vahid Farshchi Andisi
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anthony B. Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Anthony B. Schryvers,
| |
Collapse
|
61
|
Dib K, El Banna A, Radulescu C, Lopez Campos G, Sheehan G, Kavanagh K. Histamine Produced by Gram-Negative Bacteria Impairs Neutrophil's Antimicrobial Response by Engaging the Histamine 2 Receptor. J Innate Immun 2022; 15:153-173. [PMID: 35858582 PMCID: PMC10643892 DOI: 10.1159/000525536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/12/2022] [Indexed: 11/19/2022] Open
Abstract
We found that histamine (10-9 M) did not have any effect on the in vitro capture of Escherichia coli by neutrophils but accelerated its intracellular killing. In contrast, histamine (10-6 M) delayed the capture of Escherichia coli by neutrophils and reduced the amounts of pHrodo zymosan particles inside acidic mature phagosomes. Histamine acted through the H4R and the H2R, which are coupled to the Src family tyrosine kinases or the cAMP/protein kinase A pathway, respectively. The protein kinase A inhibitor H-89 abrogated the delay in bacterial capture induced by histamine (10-6 M) and the Src family tyrosine kinase inhibitor PP2 blocked histamine (10-9 M) induced acceleration of bacterial intracellular killing and tyrosine phosphorylation of proteins. To investigate the role of histamine in pathogenicity, we designed an Acinetobacter baumannii strain deficient in histamine production (hdc::TOPO). Galleria mellonella larvae inoculated with the wild-type Acinetobacter baumannii ATCC 17978 strain (1.1 × 105 CFU) died rapidly (100% death within 40 h) but not when inoculated with the Acinetobacter baumannii hdc::TOPO mutant (10% mortality). The concentration of histamine rose in the larval haemolymph upon inoculation of the wild type but not the Acinetobacter baumannii hdc::TOPO mutant, such concentration of histamine blocks the ability of hemocytes from Galleria mellonella to capture Candida albicans in vitro. Thus, bacteria-producing histamine, by maintaining high levels of histamine, may impair neutrophil phagocytosis by hijacking the H2R.
Collapse
Affiliation(s)
- Karim Dib
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Amal El Banna
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Clara Radulescu
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Guillermo Lopez Campos
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
62
|
Synthesis and Characterization of Preacinetobactin and 5-Phenyl Preacinetobactin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123688. [PMID: 35744823 PMCID: PMC9227331 DOI: 10.3390/molecules27123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
We report the first total synthesis of 5-phenyl preacinetobactin and its characterization. The route was developed for the synthesis of preacinetobactin, the siderophore critical to the Gram-negative pathogen A. baumannii. It leverages a C5-substituted benzaldehyde as a key starting material and should enable the synthesis of similar analogs. 5-Phenyl preacinetobactin binds iron in a manner analogous to the natural siderophore, but it did not rescue growth in a strain of A. baumannii unable to produce preacinetobactin.
Collapse
|
63
|
Djahanschiri B, Di Venanzio G, Distel JS, Breisch J, Dieckmann MA, Goesmann A, Averhoff B, Göttig S, Wilharm G, Feldman MF, Ebersberger I. Evolutionarily stable gene clusters shed light on the common grounds of pathogenicity in the Acinetobacter calcoaceticus-baumannii complex. PLoS Genet 2022; 18:e1010020. [PMID: 35653398 PMCID: PMC9162365 DOI: 10.1371/journal.pgen.1010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Nosocomial pathogens of the Acinetobacter calcoaceticus-baumannii (ACB) complex are a cautionary example for the world-wide spread of multi- and pan-drug resistant bacteria. Aiding the urgent demand for novel therapeutic targets, comparative genomics studies between pathogens and their apathogenic relatives shed light on the genetic basis of human-pathogen interaction. Yet, existing studies are limited in taxonomic scope, sensing of the phylogenetic signal, and resolution by largely analyzing genes independent of their organization in functional gene clusters. Here, we explored more than 3,000 Acinetobacter genomes in a phylogenomic framework integrating orthology-based phylogenetic profiling and microsynteny conservation analyses. We delineate gene clusters in the type strain A. baumannii ATCC 19606 whose evolutionary conservation indicates a functional integration of the subsumed genes. These evolutionarily stable gene clusters (ESGCs) reveal metabolic pathways, transcriptional regulators residing next to their targets but also tie together sub-clusters with distinct functions to form higher-order functional modules. We shortlisted 150 ESGCs that either co-emerged with the pathogenic ACB clade or are preferentially found therein. They provide a high-resolution picture of genetic and functional changes that coincide with the manifestation of the pathogenic phenotype in the ACB clade. Key innovations are the remodeling of the regulatory-effector cascade connecting LuxR/LuxI quorum sensing via an intermediate messenger to biofilm formation, the extension of micronutrient scavenging systems, and the increase of metabolic flexibility by exploiting carbon sources that are provided by the human host. We could show experimentally that only members of the ACB clade use kynurenine as a sole carbon and energy source, a substance produced by humans to fine-tune the antimicrobial innate immune response. In summary, this study provides a rich and unbiased set of novel testable hypotheses on how pathogenic Acinetobacter interact with and ultimately infect their human host. It is a comprehensive resource for future research into novel therapeutic strategies. The spread of multi- and pan-drug resistant bacterial pathogens is a worldwide threat to human health. Understanding the genetics of host colonization and infection can substantially help in devising novel ways of treatment. Acinetobacter baumannii, a nosocomial pathogen ranked top by the World Health Organization in the list of bacteria for which novel therapeutic approaches are needed, is a prime example. Here, we have carved out the genetic make-up that distinguishes A. baumannii and its pathogenic next relatives from other and mostly apathogenic Acinetobacter species. We found a rich spectrum of pathways and regulatory modules that reveal how the pathogens have modified biofilm formation, iron scavenging, and their carbohydrate metabolism to adapt to their human host. Among these, the capability to metabolize kynurenine is particularly intriguing. Humans produce this substance to contain bacterial invaders and to fine-tune the innate immune response. But A. baumannii and closely related pathogens found a way to feed on kynurenine. This suggests that the pathogens might be able to dysregulate the human immune response. In summary, our study substantially deepens the understanding of how a highly critical pathogen interacts with its host, which substantially eases the identification of novel targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Bardya Djahanschiri
- Applied Bioinformatics Group, Inst. of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jesus S. Distel
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jennifer Breisch
- Inst. of Molecular Biosciences, Department of Molecular Microbiology and Bioenergetics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Gießen, Gießen, Germany
| | - Beate Averhoff
- Inst. of Molecular Biosciences, Department of Molecular Microbiology and Bioenergetics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | | | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst. of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
64
|
Nishimura B, Escalante J, Tuttobene MR, Subils T, Mezcord V, Pimentel C, Georgeos N, Pasteran F, Rodriguez C, Sieira R, Actis LA, Tolmasky ME, Bonomo RA, Ramirez MS. Acinetobacter baumannii response to cefiderocol challenge in human urine. Sci Rep 2022; 12:8763. [PMID: 35610334 PMCID: PMC9128776 DOI: 10.1038/s41598-022-12829-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Cefiderocol (CFDC) is a novel chlorocatechol-substituted siderophore antibiotic approved to treat complicated urinary tract infections (cUTI) and hospital-acquired and ventilator-acquired pneumonia (HAP/VAP). Previous work determined that albumin-rich human fluids increase the minimum inhibitory concentration (MICs) of Acinetobacter baumannii against CFDC and reduce the expression of genes related to iron uptake systems. This latter effect may contribute to the need for higher concentrations of CFDC to inhibit growth. The presence of human urine (HU), which contains low albumin concentrations, did not modify MIC values of two carbapenem-resistant A. baumannii. Levels of resistance to CFDC were not modified by HU in strain AMA40 but were reduced in strain AB5075. Expanding the studies to other carbapenem-resistant A. baumannii isolates showed that the presence of HU resulted in unmodified or reduced MIC of CDFC values. The expression of piuA, pirA, bauA, and bfnH determined by qRT-PCR was enhanced in A. baumannii AMA40 and AB5075 by the presence of HU in the culture medium. All four tested genes code for functions related to recognition and transport of ferric-siderophore complexes. The effect of HU on expression of pbp1, pbp3, blaOXA-51-like, blaADC, and blaNDM-1, genes associated with resistance to β-lactams, as well as genes coding for efflux pumps and porins was variable, showing dependence with the strain analyzed. We conclude that the lack of significant concentrations of albumin and free iron in HU makes this fluid behave differently from others we tested. Unlike other albumin rich fluids, the presence of HU does not impact the antibacterial activity of CFDC when tested against A. baumannii.
Collapse
Affiliation(s)
- Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Marisel R Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario, Argentina
| | - Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Nardin Georgeos
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Fernando Pasteran
- National Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Cecilia Rodriguez
- Centro de Referencia Para Lactobacilos (CERELA), CONICET, Tucumán, Argentina
| | | | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Robert A Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - María Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
65
|
Hubloher JJ, van der Sande L, Müller V. Na + homeostasis in Acinetobacter baumannii is facilitated via the activity of the Mrp antiporter. Environ Microbiol 2022; 24:4411-4424. [PMID: 35535800 DOI: 10.1111/1462-2920.16039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
The human opportunistic pathogen Acinetobacter baumannii is a global threat to healthcare institutions worldwide, since it developed very efficient strategies to evade host defense and to adapt to the different environmental conditions of the host. This worked focused on the importance of Na+ homeostasis in A. baumannii with regards to pathobiological aspects. In silico studies revealed a homologue of a multicomponent Na+ /H+ antiporter system. Inactivation of the Mrp antiporter through deletion of the first gene (mrpA') resulted in a mutant that was sensitive to increasing pH values. Furthermore, the strain was highly sensitive to increasing Na+ and Li+ concentrations. Increasing Na+ sensitivity is thought to be responsible for growth impairment in human fluids. Furthermore, deletion of mrpA' is associated with energetic defects, inhibition of motility and survival under anoxic and dry conditions.
Collapse
Affiliation(s)
- Josephine Joy Hubloher
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Lisa van der Sande
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| |
Collapse
|
66
|
Le C, Pimentel C, Pasteran F, Tuttobene MR, Subils T, Escalante J, Nishimura B, Arriaga S, Carranza A, Mezcord V, Vila AJ, Corso A, Actis LA, Tolmasky ME, Bonomo RA, Ramírez MS. Human Serum Proteins and Susceptibility of Acinetobacter baumannii to Cefiderocol: Role of Iron Transport. Biomedicines 2022; 10:600. [PMID: 35327400 PMCID: PMC8945497 DOI: 10.3390/biomedicines10030600] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 01/10/2023] Open
Abstract
Cefiderocol, a recently introduced antibiotic, has a chemical structure that includes a cephalosporin that targets cell wall synthesis and a chlorocatechol siderophore moiety that facilitates cell penetration by active iron transporters. Analysis of the effect that human serum, human serum albumin, and human pleural fluid had on growing Acinetobacter baumannii showed that genes related to iron uptake were down-regulated. At the same time, β-lactamase genes were expressed at higher levels. The minimum inhibitory concentrations of this antimicrobial in A. baumannii cells growing in the presence of human serum, human serum albumin, or human pleural fluid were higher than those measured when these fluids were absent from the culture medium. These results correlate with increased expression levels of β-lactamase genes and the down-regulation of iron uptake-related genes in cultures containing human serum, human serum albumin, or human pleural fluid. These modifications in gene expression could explain the less-than-ideal clinical response observed in patients with pulmonary or bloodstream A. baumannii infections. The exposure of the infecting cells to the host's fluids could cause reduced cefiderocol transport capabilities and increased resistance to β-lactams. The regulation of genes that could impact the A. baumannii susceptibility to cefiderocol, or other antibacterials, is an understudied phenomenon that merits further investigation.
Collapse
Affiliation(s)
- Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Fernando Pasteran
- National/Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires C1282, Argentina; (F.P.); (A.C.)
| | - Marisel R. Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario S2000, Argentina;
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario S2000, Argentina;
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2002, Argentina;
| | - Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Susana Arriaga
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Aimee Carranza
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Vyanka Mezcord
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario S2000, Argentina;
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario S2000, Argentina
| | - Alejandra Corso
- National/Regional Reference Laboratory for Antimicrobial Resistance (NRL), Servicio Antimicrobianos, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Buenos Aires C1282, Argentina; (F.P.); (A.C.)
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, OH 45056, USA;
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| | - Robert A. Bonomo
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Maria Soledad Ramírez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (C.L.); (C.P.); (J.E.); (B.N.); (S.A.); (A.C.); (V.M.); (M.E.T.)
| |
Collapse
|
67
|
Genetic Diversity of Antimicrobial Resistance and Key Virulence Features in Two Extensively Drug-Resistant Acinetobacter baumannii Isolates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052870. [PMID: 35270562 PMCID: PMC8910769 DOI: 10.3390/ijerph19052870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023]
Abstract
In recent decades, Acinetobacter baumannii emerged as a major infective menace in healthcare settings due to scarce therapeutic options to treat infections. Therefore, undertaking genome comparison analyses of multi-resistant A. baumannii strains could aid the identification of key bacterial determinants to develop innovative anti-virulence approaches. Following genome sequencing, we performed a molecular characterization of key genes and genomic comparison of two A. baumannii strains, #36 and #150, with selected reference genomes. Despite a different antibiotic resistance gene content, the analyzed strains showed a very similar antibiogram profile. Interestingly, the lack of some important virulence determinants (i.e., bap, ata and omp33–36) did not abrogate their adhesive abilities to abiotic and biotic surfaces, as reported before; indeed, strains retained these capacities, although to a different extent, suggesting the presence of distinct vicarious genes. Conversely, secretion systems, lipopolysaccharide (LPS), capsule and iron acquisition systems were highly similar to A. baumannii reference strains. Overall, our analyses increased our knowledge on A. baumannii genomic content and organization as well as the genomic events occurring in nosocomial isolates to better fit into changing healthcare environments.
Collapse
|
68
|
Kumar A, Yang T, Chakravorty S, Majumdar A, Nairn BL, Six DA, Marcondes Dos Santos N, Price SL, Lawrenz MB, Actis LA, Marques M, Russo TA, Newton SM, Klebba PE. Fluorescent sensors of siderophores produced by bacterial pathogens. J Biol Chem 2022; 298:101651. [PMID: 35101443 PMCID: PMC8921320 DOI: 10.1016/j.jbc.2022.101651] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Taihao Yang
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Somnath Chakravorty
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA; Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Aritri Majumdar
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, St. Paul, Minnesota, USA
| | - David A Six
- Department of Biology, Venatorx Pharmaceuticals, Inc, Malvern, Pennsylvania, USA
| | - Naara Marcondes Dos Santos
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Marilis Marques
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Thomas A Russo
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo School of Medicine, Buffalo, New York, USA
| | - Salete M Newton
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA
| | - Phillip E Klebba
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
69
|
Pan P, Wang X, Chen Y, Chen Q, Yang Y, Wei C, Cheng T, Wan H, Yu D. Effect of Hcp Iron Ion Regulation on the Interaction Between Acinetobacter baumannii With Human Pulmonary Alveolar Epithelial Cells and Biofilm Formation. Front Cell Infect Microbiol 2022; 12:761604. [PMID: 35281445 PMCID: PMC8905654 DOI: 10.3389/fcimb.2022.761604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Acinetobacter baumannii is a type of bacterial nosocomial infection with severe drug resistance. Hemolysin co-regulated protein (Hcp) is a marker of activated type VI secretion system (T6SS), a key secretory system that promotes Gram-negative bacteria colonization, adhesion, and invasion of host cells. Hcp is also regulated by iron ions (Fe). In this study, an ATCC17978 hcp deletion strain (ATCC17978Δhcp), an hcp complement strain (ATCC17978Δhcp+), and an A. baumannii–green fluorescent protein (GFP) strain were constructed and used to investigate the role of hcp in bacterial adhesion to cells (human pulmonary alveolar epithelial cells (HPAEpiC)) and biofilm formation. Our results indicate that the inhibitory concentrations of the three A. baumannii strains (ATCC17978 wild type, ATCC17978Δhcp, and ATCC17978Δhcp+) were drug-sensitive strains. A. baumannii hcp gene and iron ions might be involved in promoting the formation of a biofilm and host–bacteria interaction. Iron ions affected the ability of A. baumannii to adhere to cells, as there was no significant difference in the bacterial numbers when assessing the adhesion of the three strains to HPAEpiC in the presence of iron ion concentrations of 0 μM (F = 3.1800, p = 0.1144), 25 μM (F = 2.067, p = 0.2075), 100 μM (F = 30.52, p = 0.0007), and 400 μM (F = 17.57, p = 0.0031). The three strains showed significant differences in their ability to adhere to HPAEpiC. The numbers of bacteria adhesion to HPAEpiC were ATCC17978Δhcp>ATCC17978Δhcp+>ATCC17978 in descending order. Hcp gene was positively regulated by iron ions in the bacteria–cells’ co-culture. It is speculated that the effect of iron ions on the interaction between A. baumannii and HPAEpiC might be related to the transport function of hcp and bacterial immune escape mechanisms.
Collapse
Affiliation(s)
- Ping Pan
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolei Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Qiong Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunxing Yang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxing Wei
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tongtong Cheng
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haitong Wan, ; Daojun Yu,
| | - Daojun Yu
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haitong Wan, ; Daojun Yu,
| |
Collapse
|
70
|
Abstract
Acinetobacter baumannii is an important hospital-associated pathogen that causes antibiotic resistant infections and reoccurring hospital outbreaks. A. baumannii’s ability to asymptomatically colonize patients is a risk factor for infection and exacerbates its spread. However, there is little information describing the mechanisms it employs to colonize patients. A. baumannii often colonizes the upper respiratory tract and skin. Antibiotic use is a risk factor for colonization and infection suggesting that A. baumannii likely competes with commensal bacteria to establish a niche. To begin to investigate this possibility, we cocultured A. baumannii and commensal bacteria of the upper respiratory tract and skin. In conditions that mimic iron starvation experienced in the host, we observed that A. baumannii inhibits Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus haemolyticus and Corynebacterium striatum. Then using an ordered transposon library screen we identified the A. baumannii siderophore acinetobactin as the causative agent of the inhibition phenotype. Using mass spectrometry, we show that acinetobactin is released from A. baumannii under our coculture conditions and that purified acinetobactin can inhibit C. striatum and S. hominis. Together our data suggest that acinetobactin may provide a competitive advantage for A. baumannii over some respiratory track and skin commensal bacteria and possibly support its ability to colonize patients. IMPORTANCE The ability of Acinetobacter baumannii to asymptomatically colonize patients is a risk factor for infection and exacerbates its clinical spread. However, there is minimal information describing how A. baumannii asymptomatically colonizes patients. Here we provide evidence that A. baumannii can inhibit the growth of many skin and upper respiratory commensal bacteria through iron competition and identify acinetobactin as the molecule supporting its nutritional advantage. Outcompeting endogenous commensals through iron competition may support the ability of A. baumannii to colonize and spread among patients.
Collapse
|
71
|
Chang EK, Miller M, Shahin K, Batac F, Field CL, Duignan P, Struve C, Byrne BA, Murray MJ, Greenwald K, Smith WA, Ziccardi M, Soto E. Genetics and pathology associated with Klebsiella pneumoniae and Klebsiella spp. isolates from North American Pacific coastal marine mammals. Vet Microbiol 2022; 265:109307. [DOI: 10.1016/j.vetmic.2021.109307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/30/2021] [Accepted: 12/11/2021] [Indexed: 01/01/2023]
|
72
|
Robin B, Nicol M, Le H, Tahrioui A, Schaumann A, Vuillemenot JB, Vergoz D, Lesouhaitier O, Jouenne T, Hardouin J, Potron A, Perrot V, Dé E. MacAB-TolC Contributes to the Development of Acinetobacter baumannii Biofilm at the Solid–Liquid Interface. Front Microbiol 2022; 12:785161. [PMID: 35095797 PMCID: PMC8792954 DOI: 10.3389/fmicb.2021.785161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Acinetobacter baumannii has emerged as one of the most problematic bacterial pathogens responsible for hospital-acquired and community infections worldwide. Besides its high capacity to acquire antibiotic resistance mechanisms, it also presents high adhesion abilities on inert and living surfaces leading to biofilm development. This lifestyle confers additional protection against various treatments and allows it to persist for long periods in various hospital niches. Due to their remarkable antimicrobial tolerance, A. baumannii biofilms are difficult to control and ultimately eradicate. Further insights into the mechanism of biofilm development will help to overcome this challenge and to develop novel antibiofilm strategies. To unravel critical determinants of this sessile lifestyle, the proteomic profiles of two A. baumannii strains (ATTC17978 and SDF) grown in planktonic stationary phase or in mature solid–liquid (S-L) biofilm were compared using a semiquantitative proteomic study. Of interest, among the 69 common proteins determinants accumulated in the two strains at the S-L interface, we sorted out the MacAB-TolC system. This tripartite efflux pump played a role in A. baumannii biofilm formation as demonstrated by using ΔmacAB-tolC deletion mutant. Complementary approaches allowed us to get an overview of the impact of macAB-tolC deletion in A. baumannii physiology. Indeed, this efflux pump appeared to be involved in the envelope stress response occurring in mature biofilm. It contributes to maintain wild type (WT) membrane rigidity and provides tolerance to high osmolarity conditions. In addition, this system is probably involved in the maintenance of iron and sulfur homeostasis. MacAB-TolC might help this pathogen face and adapt to deleterious conditions occurring in mature biofilms. Increasing our knowledge of A. baumannii biofilm formation will undoubtedly help us develop new therapeutic strategies to tackle this emerging threat to human health.
Collapse
Affiliation(s)
- Brandon Robin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Marion Nicol
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Hung Le
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | - Ali Tahrioui
- Normandie Univ, UNIROUEN, LMSM EA4312, Evreux, France
| | - Annick Schaumann
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | | | - Delphine Vergoz
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
| | | | - Thierry Jouenne
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- PISSARO Proteomic Facility, IRIB, Mont-Saint-Aignan, France
| | - Anaïs Potron
- UMR 6249 Chrono-Environnement, CNRS-Université de Bourgogne/Franche-Comté, Besançon, France
| | - Valérie Perrot
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- *Correspondence: Valérie Perrot,
| | - Emmanuelle Dé
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, Polymers, Biopolymers, Surfaces Laboratory, Rouen, France
- Emmanuelle Dé,
| |
Collapse
|
73
|
Acinetobacter baumannii regulates its stress responses via the BfmRS two-component regulatory system. J Bacteriol 2021; 204:e0049421. [PMID: 34871031 DOI: 10.1128/jb.00494-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is a common nosocomial pathogen that utilizes numerous mechanisms to aid its survival in both the environment and in the host. Coordination of such mechanisms requires an intricate regulatory network. We report here that A. baumannii can directly regulate several stress-related pathways via the two-component regulatory system, BfmRS. Similar to previous studies, results from transcriptomic analysis showed that mutation of the BfmR response regulator causes dysregulation of genes required for the oxidative stress response, the osmotic stress response, the misfolded protein/heat shock response, Csu pili/fimbriae production, and capsular polysaccharide biosynthesis. We also found that the BfmRS system is involved in controlling siderophore biosynthesis and transport, and type IV pili production. We provide evidence that BfmR binds to various stress-related promoter regions and show that BfmR alone can directly activate transcription of some stress-related genes. Additionally, we show that the BfmS sensor kinase acts as a BfmR phosphatase to negatively regulate BfmR activity. This work highlights the importance of the BfmRS system in promoting survival of A. baumannii. Importance Acinetobacter baumannii is a nosocomial pathogen that has extremely high rates of multidrug resistance. This organism's ability to endure stressful conditions is a key part of its ability to spread in the hospital environment and cause infections. Unlike other members of the γ-proteobacteria, A. baumannii does not encode a homolog of the RpoS sigma factor to coordinate its stress response. Here, we demonstrate that the BfmRS two-component system directly controls the expression of multiple stress resistance genes. Our findings suggest that BfmRS is central to a unique scheme of general stress response regulation by A. baumannii.
Collapse
|
74
|
Abstract
Iron (Fe) plays important roles in both essential cellular processes and virulence pathways for many bacteria. Consequently, Fe withholding by the human innate immune system is an effective form of defense against bacterial infection. In this Perspective, we review recent studies that have established a foundation for our understanding of the impact of the metal-sequestering host defense protein calprotectin (CP) on bacterial Fe homeostasis. We also discuss two recently uncovered strategies for bacterial adaptation to Fe withholding by CP. Together, these studies provide insight into how Fe sequestration by CP affects bacterial pathogens that include Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. Overall, recent studies suggest that Fe withholding by CP may have implications for bacterial survival and virulence in the host, and further explorations that directly address this possibility present an important area for discovery.
Collapse
Affiliation(s)
- Adunoluwa O. Obisesan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily M. Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
75
|
Beiranvand S, Doosti A, Mirzaei SA. Putative novel B-cell vaccine candidates identified by reverse vaccinology and genomics approaches to control Acinetobacter baumannii serotypes. INFECTION GENETICS AND EVOLUTION 2021; 96:105138. [PMID: 34793968 DOI: 10.1016/j.meegid.2021.105138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 11/26/2022]
Abstract
In the last decade, Multi-drug resistance (MDR)-associated infections of Acinetobacter baumannii have grown worldwide. A cost-effective preventative strategy against this bacterium is vaccination. This study has presented five novel vaccine candidates against A. baumannii produced using the reverse vaccinology method. BLASTn was done to identify the most conserved antigens. PSORTb 3.0.2 was run to predict the subcellular localization of the proteins. The initial screening and antigenicity evaluation were performed using Vaxign. The ccSOL omics was also employed to predict protein solubility. The cross-membrane localization of the protein was predicted using PRED-TMBB. B cell epitope prediction was made for immunogenicity using the IEDB and BepiPred-2.0 database. Eventually, BLASTp was done to verify the extent of similarity to the human proteome to exclude the possibility of autoimmunity. Proteins failing to comply with the set parameters were filtered at each step. In silico, potential vaccines against 21 A. baumannii strains were identified using reverse vaccinology and subtractive genomic techniques. Based on the above criteria, out of the initial 15 A. baumannii proteins selected for screening, nine exposed/secreted/membrane proteins, i.e., Pfsr, LptE, OmpH, CarO, CsuB, CdiB, MlaA, FhuE, and were the most promising candidates. Their solubility and antigenicity were also examined and found to be more than 0.45 and 0.6, respectively. Based on the results, LptE was selected with the highest average antigenic score of 1.043 as the best protein, followed by FimF and Pfsr with scores of 1.022 and 1.014, respectively. In the end, five proteins were verified as promising candidates. Overall, the targets identified herein may be utilized in future strategies to control A. baumannii worldwide.
Collapse
Affiliation(s)
- Sheida Beiranvand
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Seyed Abbas Mirzaei
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
76
|
Monteith AJ, Skaar EP. The impact of metal availability on immune function during infection. Trends Endocrinol Metab 2021; 32:916-928. [PMID: 34483037 PMCID: PMC8516721 DOI: 10.1016/j.tem.2021.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022]
Abstract
Nutrient transition metals are required cofactors for many proteins to perform functions necessary for life. As such, the concentration of nutrient metals is carefully maintained to retain critical biological processes while limiting toxicity. During infection, invading bacterial pathogens must acquire essential metals, such as zinc, manganese, iron, and copper, from the host to colonize and cause disease. To combat this, the host exploits the essentiality and toxicity of nutrient metals by producing factors that limit metal availability, thereby starving pathogens or accumulating metals in excess to intoxicate the pathogen in a process termed 'nutritional immunity'. As a result of inflammation, a heterogeneous environment containing both metal-replete and -deplete niches is created, in which nutrient metal availability may have an underappreciated role in regulating immune cell function during infection. How the host manipulates nutrient metal availability during infection, and the downstream effects that nutrient metals and metal-sequestering proteins have on immune cell function, are discussed in this review.
Collapse
Affiliation(s)
- Andrew J Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, & Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
77
|
Bateman TJ, Shah M, Ho TP, Shin HE, Pan C, Harris G, Fegan JE, Islam EA, Ahn SK, Hooda Y, Gray-Owen SD, Chen W, Moraes TF. A Slam-dependent hemophore contributes to heme acquisition in the bacterial pathogen Acinetobacter baumannii. Nat Commun 2021; 12:6270. [PMID: 34725337 PMCID: PMC8560813 DOI: 10.1038/s41467-021-26545-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
Nutrient acquisition systems are often crucial for pathogen growth and survival during infection, and represent attractive therapeutic targets. Here, we study the protein machinery required for heme uptake in the opportunistic pathogen Acinetobacter baumannii. We show that the hemO locus, which includes a gene encoding the heme-degrading enzyme, is required for high-affinity heme acquisition from hemoglobin and serum albumin. The hemO locus includes a gene coding for a heme scavenger (HphA), which is secreted by a Slam protein. Furthermore, heme uptake is dependent on a TonB-dependent receptor (HphR), which is important for survival and/or dissemination into the vasculature in a mouse model of pulmonary infection. Our results indicate that A. baumannii uses a two-component receptor system for the acquisition of heme from host heme reservoirs.
Collapse
Affiliation(s)
- Thomas J Bateman
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Megha Shah
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Timothy Pham Ho
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Greg Harris
- National Research Council Canada, Human Health Therapeutics (HHT) Research Center, Ottawa, ON, Canada
| | - Jamie E Fegan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Epshita A Islam
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Sang Kyun Ahn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yogesh Hooda
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Wangxue Chen
- National Research Council Canada, Human Health Therapeutics (HHT) Research Center, Ottawa, ON, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
78
|
Ribeiro M, Sousa CA, Simões M. Harnessing microbial iron chelators to develop innovative therapeutic agents. J Adv Res 2021; 39:89-101. [PMID: 35777919 PMCID: PMC9263657 DOI: 10.1016/j.jare.2021.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/24/2021] [Accepted: 10/27/2021] [Indexed: 01/19/2023] Open
Abstract
Microbial iron chelators as a new route to develop inspiring antimicrobials. Siderophore-mimicking antibiotics as a pathogen-targeted strategy. Effectiveness of iron chelators on antibiotic-resistant Gram-negative bacteria. Iron chelators and the treatment of iron overload diseases. Iron chelators as powerful tools for cancer therapy.
Background Aim of Review Key Scientific Concepts of Review
Collapse
|
79
|
Abstract
The human pathogen Acinetobacter baumannii produces and utilizes acinetobactin for iron assimilation. Although two isomeric structures of acinetobactin, one featuring an oxazoline (Oxa) and the other with an isoxazolidinone (Isox) at the core, have been identified, their differential roles as virulence factors for successful infection have yet to be established. This study provides direct evidence that Oxa supplies iron more efficiently than Isox, primarily owing to its specific recognition by the cognate outer membrane receptor, BauA. The other components in the acinetobactin uptake machinery appear not to discriminate these isomers. Interestingly, Oxa was found to form a stable iron complex that is resistant to release of the chelated iron upon competition by Isox, despite their comparable apparent affinities to Fe(III). In addition, both Oxa and Isox were found to be competent iron chelators successfully scavenging iron from host metal sequestering proteins responsible for nutritional immunity. These observations collectively led us to propose a new model for acinetobactin-based iron assimilation at infection sites. Namely, Oxa is the principal siderophore mediating the core Fe(III) supply chain for A. baumannii, whereas Isox plays a minor role in the iron delivery and, alternatively, functions as an auxiliary iron collector that channels the iron pool toward Oxa. The unique siderophore utilization mechanism proposed here represents an intriguing strategy for pathogen adaptation under the various nutritional stresses encountered at infection sites.
Collapse
|
80
|
Conde-Pérez K, Vázquez-Ucha JC, Álvarez-Fraga L, Ageitos L, Rumbo-Feal S, Martínez-Guitián M, Trigo-Tasende N, Rodríguez J, Bou G, Jiménez C, Beceiro A, Poza M. In-Depth Analysis of the Role of the Acinetobactin Cluster in the Virulence of Acinetobacter baumannii. Front Microbiol 2021; 12:752070. [PMID: 34675911 PMCID: PMC8524058 DOI: 10.3389/fmicb.2021.752070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is a multidrug-resistant pathogen that represents a serious threat to global health. A. baumannii possesses a wide range of virulence factors that contribute to the bacterial pathogenicity. Among them, the siderophore acinetobactin is one of the most important, being essential for the development of the infection. In this study we performed an in-depth analysis of the acinetobactin cluster in the strain A. baumannii ATCC 17978. For this purpose, nineteen individual isogenic mutant strains were generated, and further phenotypical analysis were performed. Individual mutants lacking the biosynthetic genes entA, basG, basC, basD, and basB showed a significant loss in virulence, due to the disruption in the acinetobactin production. Similarly, the gene bauA, coding for the acinetobactin receptor, was also found to be crucial for the bacterial pathogenesis. In addition, the analysis of the ΔbasJ/ΔfbsB double mutant strain demonstrated the high level of genetic redundancy between siderophores where the role of specific genes of the acinetobactin cluster can be fulfilled by their fimsbactin redundant genes. Overall, this study highlights the essential role of entA, basG, basC, basD, basB and bauA in the pathogenicity of A. baumannii and provides potential therapeutic targets for the design of new antivirulence agents against this microorganism.
Collapse
Affiliation(s)
- Kelly Conde-Pérez
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Juan C Vázquez-Ucha
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Laura Álvarez-Fraga
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Lucía Ageitos
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Soraya Rumbo-Feal
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Marta Martínez-Guitián
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Noelia Trigo-Tasende
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Jaime Rodríguez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Germán Bou
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Carlos Jiménez
- Centro de Investigaciones Científicas Avanzadas (CICA) y Departamento de Química, Facultad de Ciencias, Agrupación Estratégica CICA-INIBIC, Universidad de A Coruña, A Coruña, Spain
| | - Alejandro Beceiro
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Margarita Poza
- Servicio de Microbiología del Complejo Hospitalario Universitario de A Coruña (CHUAC), Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain.,Microbiome and Health, Faculty of Science, University of A Coruña, A Coruña, Spain
| |
Collapse
|
81
|
Kumar S, Anwer R, Azzi A. Virulence Potential and Treatment Options of Multidrug-Resistant (MDR) Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9102104. [PMID: 34683425 PMCID: PMC8541637 DOI: 10.3390/microorganisms9102104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen which is undoubtedly known for a high rate of morbidity and mortality in hospital-acquired infections. A. baumannii causes life-threatening infections, including; ventilator-associated pneumonia (VAP), meningitis, bacteremia, and wound and urinary tract infections (UTI). In 2017, the World Health Organization listed A. baumannii as a priority-1 pathogen. The prevalence of A. baumannii infections and outbreaks emphasizes the direct need for the use of effective therapeutic agents for treating such infections. Available antimicrobials, such as; carbapenems, tigecycline, and colistins have insufficient effectiveness due to the appearance of multidrug-resistant strains, accentuating the need for alternative and novel therapeutic remedies. To understand and overcome this menace, the knowledge of recent discoveries on the virulence factors of A. baumannii is needed. Herein, we summarized the role of various virulence factors, including; outer membrane proteins, efflux pumps, biofilm, penicillin-binding proteins, and siderophores/iron acquisition systems. We reviewed the recent scientific literature on different A. baumannii virulence factors and the effective antimicrobial agents for the treatment and management of bacterial infections.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India;
| | - Razique Anwer
- Department of Pathology, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia;
| | - Arezki Azzi
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13317-4233, Saudi Arabia
- Correspondence:
| |
Collapse
|
82
|
Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol Biol Rep 2021; 48:6987-6998. [PMID: 34460060 PMCID: PMC8403534 DOI: 10.1007/s11033-021-06690-6] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii has become a major concern for scientific attention due to extensive antimicrobial resistance. This resistance causes an increase in mortality rate because strains resistant to antimicrobial agents are a major challenge for physicians and healthcare workers regarding the eradication of either hospital or community-based infections. These strains with emerging resistance are a serious issue for patients in the intensive care unit (ICU). Antibiotic resistance has increased because of the acquirement of mobile genetic elements such as transposons, plasmids, and integrons and causes the prevalence of multidrug resistance strains (MDR). In addition, an increase in carbapenem resistance, which is used as last line antibiotic treatment to eliminate infections with multidrug-resistant Gram-negative bacteria, is a major concern. Carbapenems resistant A. baumannii (CR-Ab) is a worldwide problem. Because these strains are often resistant to all other commonly used antibiotics. Therefore, pathogenic multi-drug resistance A. baumannii (MDR-Ab) associated infections become hard to eradicate. Plasmid-mediated resistance causes outbreaks of extensive drug-resistant. A. baumannii (XDR-Ab). In addition, recent outbreaks relating to livestock and community settings illustrate the existence of large MDR-Ab strain reservoirs within and outside hospital settings. The purpose of this review, proper monitoring, prevention, and treatment are required to control (XDR-Ab) infections. Attachment, the formation of biofilms and the secretion of toxins, and low activation of inflammatory responses are mechanisms used by pathogenic A. baumannii strain. This review will discuss some aspects associated with antibiotics resistance in A. baumannii as well as cover briefly phage therapy as an alternative therapeutic treatment.
Collapse
Affiliation(s)
- Susan Ibrahim
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| | - Nadal Al-Saryi
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| | - Israa M S Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq.
| | - Sarah Naji Aziz
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| |
Collapse
|
83
|
Bohac TJ, Fang L, Banas VS, Giblin DE, Wencewicz TA. Synthetic Mimics of Native Siderophores Disrupt Iron Trafficking in Acinetobacter baumannii. ACS Infect Dis 2021; 7:2138-2151. [PMID: 34110766 DOI: 10.1021/acsinfecdis.1c00119] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many pathogenic bacteria biosynthesize and excrete small molecule metallophores, known as siderophores, that are used to extract ferric iron from host sources to satisfy nutritional need. Native siderophores are often structurally complex multidentate chelators that selectively form high-affinity octahedral ferric iron complexes with defined chirality recognizable by cognate protein receptors displayed on the bacterial cell surface. Simplified achiral analogues can serve as synthetically tractable siderophore mimics with potential utility as chemical probes and therapeutic agents to better understand and treat bacterial infections, respectively. Here, we demonstrate that synthetic spermidine-derived mixed ligand bis-catecholate monohydroxamate siderophores (compounds 1-3) are versatile structural and biomimetic analogues of two native siderophores, acinetobactin and fimsbactin, produced by Acinetobacter baumannii, a multidrug-resistant Gram-negative human pathogen. The metal-free and ferric iron complexes of the synthetic siderophores are growth-promoting agents of A. baumannii, while the Ga(III)-complexes are potent growth inhibitors of A. baumannii with MIC values <1 μM. The synthetic siderophores compete with native siderophores for uptake in A. baumannii and maintain comparable apparent binding affinities for ferric iron (KFe) and the siderophore-binding protein BauB (Kd). Our findings provide new insight to guide the structural fine-tuning of these compounds as siderophore-based therapeutics targeting pathogenic strains of A. baumannii.
Collapse
Affiliation(s)
- Tabbetha J. Bohac
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Luting Fang
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Victoria S. Banas
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Daryl E. Giblin
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
84
|
Valentino H, Korasick DA, Bohac TJ, Shapiro JA, Wencewicz TA, Tanner JJ, Sobrado P. Structural and Biochemical Characterization of the Flavin-Dependent Siderophore-Interacting Protein from Acinetobacter baumannii. ACS OMEGA 2021; 6:18537-18547. [PMID: 34308084 PMCID: PMC8296543 DOI: 10.1021/acsomega.1c03047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/23/2021] [Indexed: 05/09/2023]
Abstract
Acinetobacter baumannii is an opportunistic pathogen with a high mortality rate due to multi-drug-resistant strains. The synthesis and uptake of the iron-chelating siderophores acinetobactin (Acb) and preacinetobactin (pre-Acb) have been shown to be essential for virulence. Here, we report the kinetic and structural characterization of BauF, a flavin-dependent siderophore-interacting protein (SIP) required for the reduction of Fe(III) bound to Acb/pre-Acb and release of Fe(II). Stopped-flow spectrophotometric studies of the reductive half-reaction show that BauF forms a stable neutral flavin semiquinone intermediate. Reduction with NAD(P)H is very slow (k obs, 0.001 s-1) and commensurate with the rate of reduction by photobleaching, suggesting that NAD(P)H are not the physiological partners of BauF. The reduced BauF was oxidized by Acb-Fe (k obs, 0.02 s-1) and oxazole pre-Acb-Fe (ox-pre-Acb-Fe) (k obs, 0.08 s-1), a rigid analogue of pre-Acb, at a rate 3-11 times faster than that with molecular oxygen alone. The structure of FAD-bound BauF was solved at 2.85 Å and was found to share a similarity to Shewanella SIPs. The biochemical and structural data presented here validate the role of BauF in A. baumannii iron assimilation and provide information important for drug design.
Collapse
Affiliation(s)
- Hannah Valentino
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David A. Korasick
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Tabbetha J. Bohac
- Department
of Chemistry, Washington University in Saint
Louis, St. Louis, Missouri 63130, United States
| | - Justin A. Shapiro
- Department
of Chemistry, Washington University in Saint
Louis, St. Louis, Missouri 63130, United States
| | - Timothy A. Wencewicz
- Department
of Chemistry, Washington University in Saint
Louis, St. Louis, Missouri 63130, United States
| | - John J. Tanner
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department
of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Pablo Sobrado
- Department
of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
85
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
86
|
Hose AJ, Pagani G, Karvonen AM, Kirjavainen PV, Roduit C, Genuneit J, Schmaußer-Hechfellner E, Depner M, Frei R, Lauener R, Riedler J, Schaub B, Fuchs O, von Mutius E, Divaret-Chauveau A, Pekkanen J, Ege MJ. Excessive Unbalanced Meat Consumption in the First Year of Life Increases Asthma Risk in the PASTURE and LUKAS2 Birth Cohorts. Front Immunol 2021; 12:651709. [PMID: 33986744 PMCID: PMC8111016 DOI: 10.3389/fimmu.2021.651709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/26/2021] [Indexed: 11/30/2022] Open
Abstract
A higher diversity of food items introduced in the first year of life has been inversely related to subsequent development of asthma. In the current analysis, we applied latent class analysis (LCA) to systematically assess feeding patterns and to relate them to asthma risk at school age. PASTURE (N=1133) and LUKAS2 (N=228) are prospective birth cohort studies designed to evaluate protective and risk factors for atopic diseases, including dietary patterns. Feeding practices were reported by parents in monthly diaries between the 4th and 12th month of life. For 17 common food items parents indicated frequency of feeding during the last 4 weeks in 4 categories. The resulting 153 ordinal variables were entered in a LCA. The intestinal microbiome was assessed at the age of 12 months by 16S rRNA sequencing. Data on feeding practice with at least one reported time point was available in 1042 of the 1133 recruited children. Best LCA model fit was achieved by the 4-class solution. One class showed an elevated risk of asthma at age 6 as compared to the other classes (adjusted odds ratio (aOR): 8.47, 95% CI 2.52–28.56, p = 0.001) and was characterized by daily meat consumption and rare consumption of milk and yoghurt. A refined LCA restricted to meat, milk, and yoghurt confirmed the asthma risk effect of a particular class in PASTURE and independently in LUKAS2, which we thus termed unbalanced meat consumption (UMC). The effect of UMC was particularly strong for non-atopic asthma and asthma irrespectively of early bronchitis (aOR: 17.0, 95% CI 5.2–56.1, p < 0.001). UMC fostered growth of iron scavenging bacteria such as Acinetobacter (aOR: 1.28, 95% CI 1.00-1.63, p = 0.048), which was also related to asthma (aOR: 1.55, 95% CI 1.18-2.03, p = 0.001). When reconstructing bacterial metabolic pathways from 16S rRNA sequencing data, biosynthesis of siderophore group nonribosomal peptides emerged as top hit (aOR: 1.58, 95% CI 1.13-2.19, p = 0.007). By a data-driven approach we found a pattern of overly meat consumption at the expense of other protein sources to confer risk of asthma. Microbiome analysis of fecal samples pointed towards overgrowth of iron-dependent bacteria and bacterial iron metabolism as a potential explanation.
Collapse
Affiliation(s)
- Alexander J Hose
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Giulia Pagani
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Anne M Karvonen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Pirkka V Kirjavainen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Caroline Roduit
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Department of Immunology, Children's Hospital, University of Zürich, Zürich, Switzerland.,Department of Allergology, Childrens Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Jon Genuneit
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.,Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Elisabeth Schmaußer-Hechfellner
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Depner
- Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Remo Frei
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Pediatric Pulmonology, Bern University Hospital, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Roger Lauener
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland.,Department of Allergology, Childrens Hospital of Eastern Switzerland, St. Gallen, Switzerland.,Department of Allergology, University of Zurich, Zurich, Switzerland.,School of Medicine, University of St Gallen, St Gallen, Switzerland
| | - Josef Riedler
- Department of Pediatric and Adolescent Medicine, Children's Hospital, Schwarzach, Austria
| | - Bianca Schaub
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Comprehensive Pneumology Center (CPCM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Fuchs
- Division of Paediatric Pulmonology and Allergology, Department of Paediatrics, University Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Erika von Mutius
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Institute for Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Comprehensive Pneumology Center (CPCM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Amandine Divaret-Chauveau
- Pediatric Allergy Department, Children's Hospital, University Hospital of Nancy, Vandoeuvre les Nancy, France.,EA 3450 DevAH, Faculty of Medecine, University of Lorraine, Vandoeuvre les Nancy, France.,Department of Respiratory Disease, UMR/CNRS 6249 Chrono-environnement, University Hospital of Besançon, Besançon, France
| | - Juha Pekkanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland.,Department of Public Health, University of Helsinki, University of Helsinki, Helsinki, Finland
| | - Markus J Ege
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Comprehensive Pneumology Center (CPCM), Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
87
|
Pimentel C, Le C, Tuttobene MR, Subils T, Martinez J, Sieira R, Papp-Wallace KM, Keppetipola N, Bonomo RA, Actis LA, Tolmasky ME, Ramirez MS. Human Pleural Fluid and Human Serum Albumin Modulate the Behavior of a Hypervirulent and Multidrug-Resistant (MDR) Acinetobacter baumannii Representative Strain. Pathogens 2021; 10:pathogens10040471. [PMID: 33924559 PMCID: PMC8069197 DOI: 10.3390/pathogens10040471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen capable of causing serious infections associated with high rates of morbidity and mortality. Due to its antimicrobial drug resistance profile, A. baumannii is categorized as an urgent priority pathogen by the Centers for Disease Control and Prevention in the United States and a priority group 1 critical microorganism by the World Health Organization. Understanding how A. baumannii adapts to different host environments may provide critical insights into strategically targeting this pathogen with novel antimicrobial and biological therapeutics. Exposure to human fluids was previously shown to alter the gene expression profile of a highly drug-susceptible A. baumannii strain A118 leading to persistence and survival of this pathogen. Herein, we explore the impact of human pleural fluid (HPF) and human serum albumin (HSA) on the gene expression profile of a highly multi-drug-resistant strain of A. baumannii AB5075. Differential expression was observed for ~30 genes, whose products are involved in quorum sensing, quorum quenching, iron acquisition, fatty acid metabolism, biofilm formation, secretion systems, and type IV pilus formation. Phenotypic and further transcriptomic analysis using quantitative RT-PCR confirmed RNA-seq data and demonstrated a distinctive role of HSA as the molecule involved in A. baumannii’s response.
Collapse
Affiliation(s)
- Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
| | - Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
| | - Marisel R. Tuttobene
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
| | - Tomas Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario S2002LRK, Argentina;
| | - Jasmine Martinez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
| | - Rodrigo Sieira
- Fundación Instituto Leloir—IIBBA CONICET, Buenos Aires C1405BWE, Argentina;
| | - Krisztina M. Papp-Wallace
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (K.M.P.-W.); (R.A.B.)
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Niroshika Keppetipola
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831-3599, USA;
| | - Robert A. Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, USA; (K.M.P.-W.); (R.A.B.)
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH 44106, USA
| | - Luis A. Actis
- Department of Microbiology, Miami University, Oxford, OH 45056, USA;
| | - Marcelo E. Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA 92831-3599, USA; (C.P.); (C.L.); (M.R.T.); (J.M.); (M.E.T.)
- Correspondence: ; Tel.: +1-657-278-4562
| |
Collapse
|
88
|
Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens 2021; 10:pathogens10040387. [PMID: 33804894 PMCID: PMC8063835 DOI: 10.3390/pathogens10040387] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is regarded as a life-threatening pathogen associated with community-acquired and nosocomial infections, mainly pneumonia. The rise in the number of A. baumannii antibiotic-resistant strains reduces effective therapies and increases mortality. Bacterial comparative genomic studies have unraveled the innate and acquired virulence factors of A. baumannii. These virulence factors are involved in antibiotic resistance, environmental persistence, host-pathogen interactions, and immune evasion. Studies on host–pathogen interactions revealed that A. baumannii evolved different mechanisms to adhere to in order to invade host respiratory cells as well as evade the host immune system. In this review, we discuss current data on A. baumannii genetic features and virulence factors. An emphasis is given to the players in host–pathogen interaction in the respiratory tract. In addition, we report recent investigations into host defense systems using in vitro and in vivo models, providing new insights into the innate immune response to A. baumannii infections. Increasing our knowledge of A. baumannii pathogenesis may help the development of novel therapeutic strategies based on anti-adhesive, anti-virulence, and anti-cell to cell signaling pathways drugs.
Collapse
|
89
|
Oliveira F, Rohde H, Vilanova M, Cerca N. The Emerging Role of Iron Acquisition in Biofilm-Associated Infections. Trends Microbiol 2021; 29:772-775. [PMID: 33707049 DOI: 10.1016/j.tim.2021.02.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
A possible association between iron and biofilm formation has been explored for a long time. Here, we focus on major recent advances that shed light on the mechanisms behind this relationship and discuss how siderophore-mediated iron acquisition may impact the virulence of important nosocomial pathogens.
Collapse
Affiliation(s)
- Fernando Oliveira
- Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Manuel Vilanova
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 4200-135, Porto, Portugal; ICBAS-UP, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|