51
|
Roessler J, Pich D, Krähling V, Becker S, Keppler OT, Zeidler R, Hammerschmidt W. SARS-CoV-2 and Epstein-Barr Virus-like Particles Associate and Fuse with Extracellular Vesicles in Virus Neutralization Tests. Biomedicines 2023; 11:2892. [PMID: 38001893 PMCID: PMC10669694 DOI: 10.3390/biomedicines11112892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The successful development of effective viral vaccines depends on well-known correlates of protection, high immunogenicity, acceptable safety criteria, low reactogenicity, and well-designed immune monitoring and serology. Virus-neutralizing antibodies are often a good correlate of protective immunity, and their serum concentration is a key parameter during the pre-clinical and clinical testing of vaccine candidates. Viruses are inherently infectious and potentially harmful, but we and others developed replication-defective SARS-CoV-2 virus-like-particles (VLPs) as surrogates for infection to quantitate neutralizing antibodies with appropriate target cells using a split enzyme-based approach. Here, we show that SARS-CoV-2 and Epstein-Barr virus (EBV)-derived VLPs associate and fuse with extracellular vesicles in a highly specific manner, mediated by the respective viral fusion proteins and their corresponding host receptors. We highlight the capacity of virus-neutralizing antibodies to interfere with this interaction and demonstrate a potent application using this technology. To overcome the common limitations of most virus neutralization tests, we developed a quick in vitro diagnostic assay based on the fusion of SARS-CoV-2 VLPs with susceptible vesicles to quantitate neutralizing antibodies without the need for infectious viruses or living cells. We validated this method by testing a set of COVID-19 patient serum samples, correlated the results with those of a conventional test, and found good sensitivity and specificity. Furthermore, we demonstrate that this serological assay can be adapted to a human herpesvirus, EBV, and possibly other enveloped viruses.
Collapse
Affiliation(s)
- Johannes Roessler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany; (J.R.); (R.Z.)
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Dagmar Pich
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| | - Verena Krähling
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35043 Marburg, Germany; (V.K.); (S.B.)
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Stephan Becker
- Institute of Virology, Faculty of Medicine, Philipps University Marburg, 35043 Marburg, Germany; (V.K.); (S.B.)
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35043 Marburg, Germany
| | - Oliver T. Keppler
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- COVID-19 Registry of the LMU Munich (CORKUM), LMU University Hospital, 81377 Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany
| | - Reinhard Zeidler
- Department of Otorhinolaryngology, University Hospital, Ludwig-Maximilians-Universität (LMU) München, 81377 Munich, Germany; (J.R.); (R.Z.)
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
- Institute of Structural Biology, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, 81377 Munich, Germany;
- German Centre for Infection Research (DZIF), Partner Site Munich, 81377 Munich, Germany;
| |
Collapse
|
52
|
Guo BC, Wu KH, Chen CY, Lin WY, Chang YJ, Lee TA, Lin MJ, Wu HP. Mesenchymal Stem Cells in the Treatment of COVID-19. Int J Mol Sci 2023; 24:14800. [PMID: 37834246 PMCID: PMC10573267 DOI: 10.3390/ijms241914800] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Since the emergence of the coronavirus disease 2019 (COVID-19) pandemic, many lives have been tragically lost to severe infections. The COVID-19 impact extends beyond the respiratory system, affecting various organs and functions. In severe cases, it can progress to acute respiratory distress syndrome (ARDS) and multi-organ failure, often fueled by an excessive immune response known as a cytokine storm. Mesenchymal stem cells (MSCs) have considerable potential because they can mitigate inflammation, modulate immune responses, and promote tissue regeneration. Accumulating evidence underscores the efficacy and safety of MSCs in treating severe COVID-19 and ARDS. Nonetheless, critical aspects, such as optimal routes of MSC administration, appropriate dosage, treatment intervals, management of extrapulmonary complications, and potential pediatric applications, warrant further exploration. These research avenues hold promise for enriching our understanding and refining the application of MSCs in confronting the multifaceted challenges posed by COVID-19.
Collapse
Affiliation(s)
- Bei-Cyuan Guo
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung Metro Harbor Hospital, Taichung 43503, Taiwan;
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| | - Wen-Ya Lin
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 43503, Taiwan
| | - Yu-Jun Chang
- Laboratory of Epidemiology and Biostastics, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Tai-An Lee
- Department of Emergency Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan;
| | - Mao-Jen Lin
- Division of Cardiology, Department of Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97002, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| |
Collapse
|
53
|
Guo H, Li A, Dong TY, Si HR, Hu B, Li B, Zhu Y, Shi ZL, Letko M. Isolation of ACE2-dependent and -independent sarbecoviruses from Chinese horseshoe bats. J Virol 2023; 97:e0039523. [PMID: 37655938 PMCID: PMC10537568 DOI: 10.1128/jvi.00395-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/30/2023] [Indexed: 09/02/2023] Open
Abstract
While the spike proteins from severe acute respiratory syndrome coronaviruses-1 and 2 (SARS-CoV and SARS-CoV-2) bind to host angiotensin-converting enzyme 2 (ACE2) to infect cells, the majority of bat sarbecoviruses cannot use ACE2 from any species. Despite their discovery almost 20 years ago, ACE2-independent sarbecoviruses have never been isolated from field samples, leading to the assumption these viruses pose little risk to humans. We have previously shown how spike proteins from a small group of ACE2-independent bat sarbecoviruses may possess the ability to infect human cells in the presence of exogenous trypsin. Here, we adapted our earlier findings into a virus isolation protocol and recovered two new ACE2-dependent viruses, RsYN2012 and RsYN2016A, as well as an ACE2-independent virus, RsHuB2019A. Although our stocks of RsHuB2019A rapidly acquired a tissue-culture adaption that rendered the spike protein resistant to trypsin, trypsin was still required for viral entry, suggesting limitations on the exogenous entry factors that support bat sarbecoviruses. Electron microscopy revealed that ACE2-independent sarbecoviruses have a prominent spike corona and share similar morphology to other coronaviruses. Our findings demonstrate a broader zoonotic threat posed by sarbecoviruses and shed light on the intricacies of coronavirus isolation and propagation in vitro. IMPORTANCE Several coronaviruses have been transmitted from animals to people, and 20 years of virus discovery studies have uncovered thousands of new coronavirus sequences in nature. Most of the animal-derived sarbecoviruses have never been isolated in culture due to cell incompatibilities and a poor understanding of the in vitro requirements for their propagation. Here, we built on our growing body of work characterizing viral entry mechanisms of bat sarbecoviruses in human cells and have developed a virus isolation protocol that allows for the exploration of these understudied viruses. Our protocol is robust and practical, leading to successful isolation of more sarbecoviruses than previous approaches and from field samples that had been collected over a 10-year longitudinal study.
Collapse
Affiliation(s)
- Hua Guo
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ang Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Tian-Yi Dong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Hao-Rui Si
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| |
Collapse
|
54
|
Vernia F, Ashktorab H, Cesaro N, Monaco S, Faenza S, Sgamma E, Viscido A, Latella G. COVID-19 and Gastrointestinal Tract: From Pathophysiology to Clinical Manifestations. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1709. [PMID: 37893427 PMCID: PMC10608106 DOI: 10.3390/medicina59101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023]
Abstract
Background: Since its first report in Wuhan, China, in December 2019, COVID-19 has become a pandemic, affecting millions of people worldwide. Although the virus primarily affects the respiratory tract, gastrointestinal symptoms are also common. The aim of this narrative review is to provide an overview of the pathophysiology and clinical manifestations of gastrointestinal COVID-19. Methods: We conducted a systematic electronic search of English literature up to January 2023 using Medline, Scopus, and the Cochrane Library, focusing on papers that analyzed the role of SARS-CoV-2 in the gastrointestinal tract. Results: Our review highlights that SARS-CoV-2 directly infects the gastrointestinal tract and can cause symptoms such as diarrhea, nausea/vomiting, abdominal pain, anorexia, loss of taste, and increased liver enzymes. These symptoms result from mucosal barrier damage, inflammation, and changes in the microbiota composition. The exact mechanism of how the virus overcomes the acid gastric environment and leads to the intestinal damage is still being studied. Conclusions: Although vaccination has increased the prevalence of less severe symptoms, the long-term interaction with SARS-CoV-2 remains a concern. Understanding the interplay between SARS-CoV-2 and the gastrointestinal tract is essential for future management of the virus.
Collapse
Affiliation(s)
- Filippo Vernia
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Hassan Ashktorab
- Department of Medicine, Gastroenterology Division, Howard University College of Medicine, Washington, DC 20060, USA
| | - Nicola Cesaro
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Sabrina Monaco
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Susanna Faenza
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Emanuele Sgamma
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Angelo Viscido
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| | - Giovanni Latella
- Gastroenterology Unit, Division of Gastroenterology, Hepatology, and Nutrition, Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100 L'Aquila, Italy
| |
Collapse
|
55
|
Przybyszewska-Podstawka A, Czapiński J, Kałafut J, Rivero-Müller A. Synthetic circuits based on split Cas9 to detect cellular events. Sci Rep 2023; 13:14988. [PMID: 37696879 PMCID: PMC10495424 DOI: 10.1038/s41598-023-41367-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023] Open
Abstract
Synthetic biology involves the engineering of logic circuit gates that process different inputs to produce specific outputs, enabling the creation or control of biological functions. While CRISPR has become the tool of choice in molecular biology due to its RNA-guided targetability to other nucleic acids, it has not been frequently applied to logic gates beyond those controlling the guide RNA (gRNA). In this study, we present an adaptation of split Cas9 to generate logic gates capable of sensing biological events, leveraging a Cas9 reporter (EGxxFP) to detect occurrences such as cancer cell origin, epithelial to mesenchymal transition (EMT), and cell-cell fusion. First, we positioned the complementing halves of split Cas9 under different promoters-one specific to cancer cells of epithelial origin (phCEA) and the other a universal promoter. The use of self-assembling inteins facilitated the reconstitution of the Cas9 halves. Consequently, only cancer cells with an epithelial origin activated the reporter, exhibiting green fluorescence. Subsequently, we explored whether this system could detect biological processes such as epithelial to mesenchymal transition (EMT). To achieve this, we designed a logic gate where one half of Cas9 is expressed under the phCEA, while the other is activated by TWIST1. The results showed that cells undergoing EMT effectively activated the reporter. Next, we combined the two inputs (epithelial origin and EMT) to create a new logic gate, where only cancer epithelial cells undergoing EMT activated the reporter. Lastly, we applied the split-Cas9 logic gate as a sensor of cell-cell fusion, both in induced and naturally occurring scenarios. Each cell type expressed one half of split Cas9, and the induction of fusion resulted in the appearance of multinucleated syncytia and the fluorescent reporter. The simplicity of the split Cas9 system presented here allows for its integration into various cellular processes, not only as a sensor but also as an actuator.
Collapse
Affiliation(s)
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
| |
Collapse
|
56
|
Jawaid MZ, Baidya A, Mahboubi-Ardakani R, Davis RL, Cox DL. SARS-CoV-2 omicron spike simulations: broad antibody escape, weakened ACE2 binding, and modest furin cleavage. Microbiol Spectr 2023; 11:e0121322. [PMID: 37650619 PMCID: PMC10580870 DOI: 10.1128/spectrum.01213-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/07/2023] [Indexed: 09/01/2023] Open
Abstract
The recent emergence of the omicron variant of the SARS-CoV-2 virus with large numbers of mutations has raised concern about a potential new surge in infections. Here we use molecular dynamics to study the biophysics of the interface of the BA1 and BA2 omicron spike protein binding to (i) the ACE2 receptor protein, (ii) antibodies from all known binding regions, and (iii) the furin binding domain. Our simulations suggest that while there is a significant reduction of antibody (Ab) binding strength corresponding to escape, the omicron spikes pay a cost in terms of weaker receptor binding as measured by interfacial hydrogen bonds (H-bond). The furin cleavage domain (FCD) is the same or weaker binding than the delta variant, suggesting lower fusogenicity resulting in less viral load and disease intensity than the delta variant. IMPORTANCE The BA1 and BA2 and closely related BA2.12.2 and BA.5 omicron variants of SARS-CoV-2 dominate the current global infection landscape. Given the high number of mutations, particularly those which will lead to antibody escape, it is important to establish accurate methods that can guide developing health policy responses that identify at a fundamental level whether omicron and its variants are more threatening than its predecessors, especially delta. The importance of our work is to demonstrate that simple in silico simulations can predict biochemical binding details of the omicron spike protein that have epidemiological consequences, especially for binding to the cells and for fusing the viral membrane with the cells. In each case, we predicted weaker binding of the omicron spike, which agreed with subsequent experimental results. Future virology experiments will be needed to test these predictions further.
Collapse
Affiliation(s)
- M. Zaki Jawaid
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - A. Baidya
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | - R. Mahboubi-Ardakani
- Department of Physics and Astronomy, University of California, Davis, California, USA
| | | | - Daniel L. Cox
- Department of Physics and Astronomy, University of California, Davis, California, USA
- Protein Architects Corp, Penn Valley, Pennsylvania, USA
| |
Collapse
|
57
|
Cicka D, Niu Q, Qui M, Qian K, Miller E, Fan D, Mo X, Ivanov AA, Sarafianos SG, Du Y, Fu H. TMPRSS2 and SARS-CoV-2 SPIKE interaction assay for uHTS. J Mol Cell Biol 2023; 15:mjad017. [PMID: 36921991 PMCID: PMC10399917 DOI: 10.1093/jmcb/mjad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
SARS-CoV-2, the coronavirus that causes the disease COVID-19, has claimed millions of lives over the past 2 years. This demands rapid development of effective therapeutic agents that target various phases of the viral replication cycle. The interaction between host transmembrane serine protease 2 (TMPRSS2) and viral SPIKE protein is an important initial step in SARS-CoV-2 infection, offering an opportunity for therapeutic development of viral entry inhibitors. Here, we report the development of a time-resolved fluorescence/Förster resonance energy transfer (TR-FRET) assay for monitoring the TMPRSS2-SPIKE interaction in lysate from cells co-expressing these proteins. The assay was configured in a 384-well-plate format for high-throughput screening with robust assay performance. To enable large-scale compound screening, we further miniaturized the assay into 1536-well ultrahigh-throughput screening (uHTS) format. A pilot screen demonstrated the utilization of the assay for uHTS. Our optimized TR-FRET uHTS assay provides an enabling platform for expanded screening campaigns to discover new classes of small-molecule inhibitors that target the SPIKE and TMPRSS2 protein-protein interaction.
Collapse
Affiliation(s)
- Danielle Cicka
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School of Emory University, Atlanta, GA 30322, USA
| | - Qiankun Niu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Min Qui
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kun Qian
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric Miller
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Dacheng Fan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiulei Mo
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Andrey A Ivanov
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
58
|
Madahar V, Dang R, Zhang Q, Liu C, Rodgers VGJ, Liao J. Human Post-Translational SUMOylation Modification of SARS-CoV-2 Nucleocapsid Protein Enhances Its Interaction Affinity with Itself and Plays a Critical Role in Its Nuclear Translocation. Viruses 2023; 15:1600. [PMID: 37515286 PMCID: PMC10384427 DOI: 10.3390/v15071600] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Viruses, such as Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), infect hosts and take advantage of host cellular machinery for genome replication and new virion production. Identifying and elucidating host pathways for viral infection is critical for understanding the development of the viral life cycle and novel therapeutics. The SARS-CoV-2 N protein is critical for viral RNA (vRNA) genome packaging in new virion formation. Using our quantitative Förster energy transfer/Mass spectrometry (qFRET/MS) coupled method and immunofluorescence imaging, we identified three SUMOylation sites of the SARS-CoV-2 N protein. We found that (1) Small Ubiquitin-like modifier (SUMO) modification in Nucleocapsid (N) protein interaction affinity increased, leading to enhanced oligomerization of the N protein; (2) one of the identified SUMOylation sites, K65, is critical for its nuclear translocation. These results suggest that the host human SUMOylation pathway may be critical for N protein functions in viral replication and pathology in vivo. Thus, blocking essential host pathways could provide a novel strategy for future anti-viral therapeutics development, such as for SARS-CoV-2 and other viruses.
Collapse
Affiliation(s)
- Vipul Madahar
- Department of Bioengineering, College of Engineering, Bourns College of Engineering, University of California at Riverside, Riverside, CA 92521, USA
| | - Runrui Dang
- Department of Bioengineering, College of Engineering, Bourns College of Engineering, University of California at Riverside, Riverside, CA 92521, USA
| | - Quanqing Zhang
- Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA 92521, USA
- Department of Botany, College of Natural & Agricultural Sciences, University of California at Riverside, Riverside, CA 92521, USA
| | - Chuchu Liu
- Department of Bioengineering, College of Engineering, Bourns College of Engineering, University of California at Riverside, Riverside, CA 92521, USA
| | - Victor G J Rodgers
- Department of Bioengineering, College of Engineering, Bourns College of Engineering, University of California at Riverside, Riverside, CA 92521, USA
- Biomedical Science, School of Medicine, University of California at Riverside, Riverside, CA 92521, USA
| | - Jiayu Liao
- Department of Bioengineering, College of Engineering, Bourns College of Engineering, University of California at Riverside, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California at Riverside, Riverside, CA 92521, USA
- Biomedical Science, School of Medicine, University of California at Riverside, Riverside, CA 92521, USA
| |
Collapse
|
59
|
Reuter N, Chen X, Kropff B, Peter AS, Britt WJ, Mach M, Überla K, Thomas M. SARS-CoV-2 Spike Protein Is Capable of Inducing Cell-Cell Fusions Independent from Its Receptor ACE2 and This Activity Can Be Impaired by Furin Inhibitors or a Subset of Monoclonal Antibodies. Viruses 2023; 15:1500. [PMID: 37515187 PMCID: PMC10384293 DOI: 10.3390/v15071500] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was responsible for the COVID-19 pandemic, efficiently spreads cell-to-cell through mechanisms facilitated by its membrane glycoprotein spike. We established a dual split protein (DSP) assay based on the complementation of GFP and luciferase to quantify the fusogenic activity of the SARS-CoV-2 spike protein. We provide several lines of evidence that the spike protein of SARS-CoV-2, but not SARS-CoV-1, induced cell-cell fusion even in the absence of its receptor, angiotensin-converting enzyme 2 (ACE2). This poorly described ACE2-independent cell fusion activity of the spike protein was strictly dependent on the proteasomal cleavage of the spike by furin while TMPRSS2 was dispensable. Previous and current variants of concern (VOCs) differed significantly in their fusogenicity. The Delta spike was extremely potent compared to Alpha, Beta, Gamma and Kappa, while the Omicron spike was almost devoid of receptor-independent fusion activity. Nonetheless, for all analyzed variants, cell fusion was dependent on furin cleavage and could be pharmacologically inhibited with CMK. Mapping studies revealed that amino acids 652-1273 conferred the ACE2-independent fusion activity of the spike. Unexpectedly, residues proximal to the furin cleavage site were not of major relevance, whereas residue 655 critically regulated fusion. Finally, we found that the spike's fusion activity in the absence of ACE2 could be inhibited by antibodies directed against its N-terminal domain (NTD) but not by antibodies targeting its receptor-binding domain (RBD). In conclusion, our BSL-1-compatible DSP assay allowed us to screen for inhibitors or antibodies that interfere with the spike's fusogenic activity and may therefore contribute to both rational vaccine design and development of novel treatment options against SARS-CoV-2.
Collapse
Affiliation(s)
- Nina Reuter
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Xiaohan Chen
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Barbara Kropff
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Antonia Sophia Peter
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - William J Britt
- Departments of Pediatrics, Microbiology and Neurobiology, Children's Hospital of Alabama, School of Medicine, University of Alabama, Birmingham, AL 35233-1771, USA
| | - Michael Mach
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Klaus Überla
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Marco Thomas
- Virologisches Institut, Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
60
|
Cervantes M, Hess T, Morbioli GG, Sengar A, Kasson PM. The ACE2 receptor accelerates but is not biochemically required for SARS-CoV-2 membrane fusion. Chem Sci 2023; 14:6997-7004. [PMID: 37389252 PMCID: PMC10306070 DOI: 10.1039/d2sc06967a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
The SARS-CoV-2 coronavirus infects human cells via the ACE2 receptor. Structural evidence suggests that ACE2 may not just serve as an attachment factor but also conformationally activate the SARS-CoV-2 spike protein for membrane fusion. Here, we test that hypothesis directly, using DNA-lipid tethering as a synthetic attachment factor in place of ACE2. We find that SARS-CoV-2 pseudovirus and virus-like particles are capable of membrane fusion without ACE2 if activated with an appropriate protease. Thus, ACE2 is not biochemically required for SARS-CoV-2 membrane fusion. However, addition of soluble ACE2 speeds up the fusion reaction. On a per-spike level, ACE2 appears to promote activation for fusion and then subsequent inactivation if an appropriate protease is not present. Kinetic analysis suggests at least two rate-limiting steps for SARS-CoV-2 membrane fusion, one of which is ACE2 dependent and one of which is not. Since ACE2 serves as a high-affinity attachment factor on human cells, the possibility to replace it with other factors implies a flatter fitness landscape for host adaptation by SARS-CoV-2 and future related coronaviruses.
Collapse
Affiliation(s)
- Marcos Cervantes
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Tobin Hess
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Giorgio G Morbioli
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Anjali Sengar
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
| | - Peter M Kasson
- Departments of Molecular Physiology and Biomedical Engineering, University of Virginia Charlottesville VA 22908 USA
- Science for Life Laboratory and Department of Molecular and Cellular Biology, Uppsala University Uppsala SE 75123 USA
| |
Collapse
|
61
|
Ye X, Ling X, Wu M, Bai G, Yuan M, Rao L. Improving Soluble Expression of SARS-CoV-2 Spike Priming Protease TMPRSS2 with an Artificial Fusing Protein. Int J Mol Sci 2023; 24:10475. [PMID: 37445653 DOI: 10.3390/ijms241310475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
SARS-CoV-2 relies on the recognition of the spike protein by the host cell receptor ACE2 for cellular entry. In this process, transmembrane serine protease 2 (TMPRSS2) plays a pivotal role, as it acts as the principal priming agent catalyzing spike protein cleavage to initiate the fusion of the cell membrane with the virus. Thus, TMPRSS2 is an ideal pharmacological target for COVID-19 therapy development, and the effective production of high-quality TMPRSS2 protein is essential for basic and pharmacological research. Unfortunately, as a mammalian-originated protein, TMPRSS2 could not be solubly expressed in the prokaryotic system. In this study, we applied different protein engineering methods and found that an artificial protein XXA derived from an antifreeze protein can effectively promote the proper folding of TMPRSS2, leading to a significant improvement in the yield of its soluble form. Our study also showed that the fused XXA protein did not influence the enzymatic catalytic activity; instead, it greatly enhanced TMPRSS2's thermostability. Therefore, our strategy for increasing TMPRSS2 expression would be beneficial for the large-scale production of this stable enzyme, which would accelerate aniti-SARS-CoV-2 therapeutics development.
Collapse
Affiliation(s)
- Xiao Ye
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China
| | - Xue Ling
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Min Wu
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guijie Bai
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Yuan
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Lang Rao
- National Technology Innovation Center of Synthetic Biology, Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
62
|
Gaynor KU, Vaysburd M, Harman MAJ, Albecka A, Jeffrey P, Beswick P, Papa G, Chen L, Mallery D, McGuinness B, Van Rietschoten K, Stanway S, Brear P, Lulla A, Ciazynska K, Chang VT, Sharp J, Neary M, Box H, Herriott J, Kijak E, Tatham L, Bentley EG, Sharma P, Kirby A, Han X, Stewart JP, Owen A, Briggs JAG, Hyvönen M, Skynner MJ, James LC. Multivalent bicyclic peptides are an effective antiviral modality that can potently inhibit SARS-CoV-2. Nat Commun 2023; 14:3583. [PMID: 37328472 PMCID: PMC10275983 DOI: 10.1038/s41467-023-39158-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/26/2023] [Indexed: 06/18/2023] Open
Abstract
COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles' inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses.
Collapse
Affiliation(s)
- Katherine U Gaynor
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Marina Vaysburd
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Maximilian A J Harman
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Anna Albecka
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Phillip Jeffrey
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Paul Beswick
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Guido Papa
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Liuhong Chen
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Donna Mallery
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Brian McGuinness
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | | | - Steven Stanway
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom
| | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Katarzyna Ciazynska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Veronica T Chang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Jo Sharp
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Megan Neary
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Helen Box
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Jo Herriott
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Edyta Kijak
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Lee Tatham
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Eleanor G Bentley
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Parul Sharma
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Adam Kirby
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Ximeng Han
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - James P Stewart
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - Andrew Owen
- University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| | - John A G Briggs
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
- Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Michael J Skynner
- Bicycle Therapeutics, Portway Building, Granta Park, Cambridge, CB21 6GS, United Kingdom.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
63
|
Bolesławska I, Kowalówka M, Bolesławska-Król N, Przysławski J. Ketogenic Diet and Ketone Bodies as Clinical Support for the Treatment of SARS-CoV-2-Review of the Evidence. Viruses 2023; 15:1262. [PMID: 37376562 PMCID: PMC10326824 DOI: 10.3390/v15061262] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
One of the proposed nutritional therapies to support drug therapy in COVID-19 is the use of a ketogenic diet (KD) or ketone bodies. In this review, we summarized the evidence from tissue, animal, and human models and looked at the mechanisms of action of KD/ketone bodies against COVID-19. KD/ketone bodies were shown to be effective at the stage of virus entry into the host cell. The use of β-hydroxybutyrate (BHB), by preventing the metabolic reprogramming associated with COVID-19 infection and improving mitochondrial function, reduced glycolysis in CD4+ lymphocytes and improved respiratory chain function, and could provide an alternative carbon source for oxidative phosphorylation (OXPHOS). Through multiple mechanisms, the use of KD/ketone bodies supported the host immune response. In animal models, KD resulted in protection against weight loss and hypoxemia, faster recovery, reduced lung injury, and resulted in better survival of young mice. In humans, KD increased survival, reduced the need for hospitalization for COVID-19, and showed a protective role against metabolic abnormalities after COVID-19. It appears that the use of KD and ketone bodies may be considered as a clinical nutritional intervention to assist in the treatment of COVID-19, despite the fact that numerous studies indicate that SARS-CoV-2 infection alone may induce ketoacidosis. However, the use of such an intervention requires strong scientific validation.
Collapse
Affiliation(s)
- Izabela Bolesławska
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Magdalena Kowalówka
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| | - Natasza Bolesławska-Król
- Student Society of Radiotherapy, Collegium Medicum, University of Zielona Gora, Zyta 28, 65-046 Zielona Góra, Poland;
| | - Juliusz Przysławski
- Department of Bromatology, Poznan University of Medical Sciences, 60-806 Poznan, Poland; (M.K.); (J.P.)
| |
Collapse
|
64
|
Ma Y, Li P, Hu Y, Qiu T, Wang L, Lu H, Lv K, Xu M, Zhuang J, Liu X, He S, He B, Liu S, Liu L, Wang Y, Yue X, Zhai Y, Luo W, Mai H, Kuang Y, Chen S, Ye F, Zhou N, Zhao W, Chen J, Chen S, Xiong X, Shi M, Pan JA, Chen YQ. Spike substitution T813S increases Sarbecovirus fusogenicity by enhancing the usage of TMPRSS2. PLoS Pathog 2023; 19:e1011123. [PMID: 37196033 DOI: 10.1371/journal.ppat.1011123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/30/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023] Open
Abstract
SARS-CoV Spike (S) protein shares considerable homology with SARS-CoV-2 S, especially in the conserved S2 subunit (S2). S protein mediates coronavirus receptor binding and membrane fusion, and the latter activity can greatly influence coronavirus infection. We observed that SARS-CoV S is less effective in inducing membrane fusion compared with SARS-CoV-2 S. We identify that S813T mutation is sufficient in S2 interfering with the cleavage of SARS-CoV-2 S by TMPRSS2, reducing spike fusogenicity and pseudoparticle entry. Conversely, the mutation of T813S in SARS-CoV S increased fusion ability and viral replication. Our data suggested that residue 813 in the S was critical for the proteolytic activation, and the change from threonine to Serine at 813 position might be an evolutionary feature adopted by SARS-2-related viruses. This finding deepened the understanding of Spike fusogenicity and could provide a new perspective for exploring Sarbecovirus' evolution.
Collapse
Affiliation(s)
- Yong Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Pengbin Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yunqi Hu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lixiang Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hongjie Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kexin Lv
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Mengxin Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jiaxin Zhuang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xue Liu
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Suhua He
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Bing He
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shuning Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinyu Yue
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yanmei Zhai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Wanyu Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Haoting Mai
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yu Kuang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Shifeng Chen
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Feng Ye
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Na Zhou
- The 74(th) Group Army Hospital, Guangzhou, China
| | - Wenjing Zhao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jun Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shoudeng Chen
- Molecular Imaging Center, Guangdong Provincial Key Laboratory of Biomedical Imaging, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Mang Shi
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Sun Yat-sen University, Guanzhou, China
| |
Collapse
|
65
|
Zabiegala A, Kim Y, Chang KO. Roles of host proteases in the entry of SARS-CoV-2. ANIMAL DISEASES 2023; 3:12. [PMID: 37128508 PMCID: PMC10125864 DOI: 10.1186/s44149-023-00075-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023] Open
Abstract
The spike protein (S) of SARS-CoV-2 is responsible for viral attachment and entry, thus a major factor for host susceptibility, tissue tropism, virulence and pathogenicity. The S is divided with S1 and S2 region, and the S1 contains the receptor-binding domain (RBD), while the S2 contains the hydrophobic fusion domain for the entry into the host cell. Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various cleavage sites. In this article, we review host proteases including furin, trypsin, transmembrane protease serine 2 (TMPRSS2) and cathepsins in the activation of SARS-CoV-2 S. Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin. The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2, and the binding triggers further conformational changes and exposure of the S2' site to proteases such as type II transmembrane serine proteases (TTPRs) including TMPRSS2. In the presence of TMPRSS2 on the target cells, SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane. In the absence of TMPRSS2, SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry. Additional host proteases involved in the cleavage of the S were discussed. This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2, and discussed the dual roles of such inhibitors in virus replication.
Collapse
Affiliation(s)
- Alexandria Zabiegala
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| |
Collapse
|
66
|
Kim SH, Kearns FL, Rosenfeld MA, Votapka L, Casalino L, Papanikolas M, Amaro RE, Freeman R. SARS-CoV-2 evolved variants optimize binding to cellular glycocalyx. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101346. [PMID: 37077408 PMCID: PMC10080732 DOI: 10.1016/j.xcrp.2023.101346] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023]
Abstract
Viral variants of concern continue to arise for SARS-CoV-2, potentially impacting both methods for detection and mechanisms of action. Here, we investigate the effect of an evolving spike positive charge in SARS-CoV-2 variants and subsequent interactions with heparan sulfate and the angiotensin converting enzyme 2 (ACE2) in the glycocalyx. We show that the positively charged Omicron variant evolved enhanced binding rates to the negatively charged glycocalyx. Moreover, we discover that while the Omicron spike-ACE2 affinity is comparable to that of the Delta variant, the Omicron spike interactions with heparan sulfate are significantly enhanced, giving rise to a ternary complex of spike-heparan sulfate-ACE2 with a large proportion of double-bound and triple-bound ACE2. Our findings suggest that SARS-CoV-2 variants evolve to be more dependent on heparan sulfate in viral attachment and infection. This discovery enables us to engineer a second-generation lateral-flow test strip that harnesses both heparin and ACE2 to reliably detect all variants of concern, including Omicron.
Collapse
Affiliation(s)
- Sang Hoon Kim
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| | - Fiona L Kearns
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Lane Votapka
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Lorenzo Casalino
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Micah Papanikolas
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California, San Diego, 4238 Urey Hall, MC-0340, La Jolla, CA 92093-0340, USA
| | - Ronit Freeman
- Department of Applied Physical Sciences, University of North Carolina - Chapel Hill, 1112 Murray Hall, CB#3050, Chapel Hill, NC 27599-2100, USA
| |
Collapse
|
67
|
Borghi M, Gallinaro A, Pirillo MF, Canitano A, Michelini Z, De Angelis ML, Cecchetti S, Tinari A, Falce C, Mariotti S, Capocefalo A, Chiantore MV, Iacobino A, Di Virgilio A, van Gils MJ, Sanders RW, Lo Presti A, Nisini R, Negri D, Cara A. Different configurations of SARS-CoV-2 spike protein delivered by integrase-defective lentiviral vectors induce persistent functional immune responses, characterized by distinct immunogenicity profiles. Front Immunol 2023; 14:1147953. [PMID: 37090707 PMCID: PMC10113491 DOI: 10.3389/fimmu.2023.1147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Several COVID-19 vaccine strategies utilizing new formulations for the induction of neutralizing antibodies (nAbs) and T cell immunity are still under evaluation in preclinical and clinical studies. Here we used Simian Immunodeficiency Virus (SIV)-based integrase defective lentiviral vector (IDLV) delivering different conformations of membrane-tethered Spike protein in the mouse immunogenicity model, with the aim of inducing persistent nAbs against multiple SARS-CoV-2 variants of concern (VoC). Spike modifications included prefusion-stabilizing double proline (2P) substitutions, mutations at the furin cleavage site (FCS), D614G mutation and truncation of the cytoplasmic tail (delta21) of ancestral and Beta (B.1.351) Spike, the latter mutation to markedly improve IDLV membrane-tethering. BALB/c mice were injected once with IDLV delivering the different forms of Spike or the recombinant trimeric Spike protein with 2P substitutions and FCS mutations in association with a squalene-based adjuvant. Anti-receptor binding domain (RBD) binding Abs, nAbs and T cell responses were detected up to six months from a single immunization with escalating doses of vaccines in all mice, but with different levels and kinetics. Results indicated that IDLV delivering the Spike protein with all the combined modifications, outperformed the other candidates in terms of T cell immunity and level of both binding Abs and nAbs soon after the single immunization and persistence over time, showing the best capacity to neutralize all formerly circulating VoC Alpha, Beta, Gamma and Delta. Although present, the lowest response was detected against Omicron variants (BA.1, BA.2 and BA.4/5), suggesting that the magnitude of immune evasion may be related to the higher genetic distance of Omicron as indicated by increased number of amino acid substitutions in Spike acquired during virus evolution.
Collapse
Affiliation(s)
- Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Andrea Canitano
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Zuleika Michelini
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Cecchetti
- Confocal Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Tinari
- Center for Gender Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Falce
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Sabrina Mariotti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Capocefalo
- Department of Veterinary Public Health & Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | - Angelo Iacobino
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Di Virgilio
- Center for Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | | | - Roberto Nisini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Donatella Negri, ; Andrea Cara,
| | - Andrea Cara
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Donatella Negri, ; Andrea Cara,
| |
Collapse
|
68
|
Zhang Y, You L, Zou Y, He X, Wu S, Yang F, Xu X, Pei X, Chen J. Epidemiology and Molecular Characterizations of Coronavirus from Companion Animals Living in Chengdu, Southwest China. Transbound Emerg Dis 2023; 2023:5056492. [PMID: 40303734 PMCID: PMC12017059 DOI: 10.1155/2023/5056492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2025]
Abstract
The recent COVID-19 pandemic has once again caught the attention of people on the probable zoonotic transmission from animals to humans, but the role of companion animals in the coronavirus (CoV) epidemiology still remains unknown. The present study was aimed to investigate epidemiology and molecular characterizations of CoVs from companion animals in Chengdu city, Southwest China. 523 clinical samples from 393 animals were collected from one veterinary hospital between 2020 and 2021, and the presence of CoVs was detected by end-point PCR using pan-CoV assay targeting the RdRp gene. Partial and complete S genes were sequenced for further genotyping and genetic diversity analysis. A total of 162 (31.0%, 162/523) samples and 146 (37.2%, 146/393) animals were tested positive for CoVs. The positive rate in rectal swabs was higher than that in eye/nose/mouth swabs and ascitic fluid but was not statistically different between clinically healthy and diseased ones. Genotyping identified twenty-two feline enteric coronavirus (FCoV) I, four canine enteric coronavirus (CECoV) I, fourteen CECoV IIa, and one CECoV IIb, respectively. Eight complete S genes, including one canine respiratory coronavirus (CRCoV) strain, were successfully obtained. FCoV strains (F21071412 and F21061627) were more closely related to CECoV strains than CRCoV, and C21041821-2 showed potential recombination event. In addition, furin cleavage site between S1 and S2 was identified in two strains. The study supplemented epidemiological information and natural gene pool of CoVs from companion animals. Further understanding of other functional units of CoVs is needed, so as to contribute to the prevention and control of emerging infectious diseases.
Collapse
Affiliation(s)
- Yingying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, China
| | - Lan You
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, China
- West China Tianfu Hospital, Sichuan University, 3966#, Section 2, South Second Section, Tianfu Avenue, Chengdu 610200, Sichuan, China
| | - Yue Zou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, China
| | - Xun He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, China
- Chengdu Center for Disease Control and Prevention, 4#, Longxiang Road, Chengdu 610041, Sichuan, China
| | - Shanshan Wu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, China
| | - Fen Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, China
| | - Xin Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, China
| | - Xiaofang Pei
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, China
| | - Jiayi Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 16#, Section 3, Renmin Road South, Chengdu, 610041, Sichuan, China
| |
Collapse
|
69
|
Cheng Y, Zheng D, Zhang D, Guo D, Wang Y, Liu W, Liang L, Hu J, Luo T. Molecular recognition of SARS-CoV-2 spike protein with three essential partners: exploring possible immune escape mechanisms of viral mutants. J Mol Model 2023; 29:109. [PMID: 36964244 PMCID: PMC10038388 DOI: 10.1007/s00894-023-05509-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/10/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE The COVID-19 epidemic is raging around the world, with the emergence of viral mutant strains such as Delta and Omicron, posing severe challenges to people's health and quality of life. A full understanding life cycle of the virus in host cells helps to reveal inactivation mechanism of antibody and provide inspiration for the development of a new-generation vaccines. METHODS In this work, molecular recognitions and conformational changes of SARS-CoV-2 spike protein mutants (i.e., Delta, Mu, and Omicron) and three essential partners (i.e., membrane receptor hACE2, protease TMPRSS2, and antibody C121) both were compared and analyzed using molecular simulations. RESULTS Water basin and binding free energy calculations both show that the three mutants possess higher affinity for hACE2 than WT, exhibiting stronger virus transmission. The descending order of cleavage ability by TMPRSS2 is Mu, Delta, Omicron, and WT, which is related to the new S1/S2 cutting site induced by transposition effect. The inefficient utilization of TMPRSS2 by Omicron is consistent with its primary entry into cells via the endosomal pathway. In addition, RBD-directed antibody C121 showed obvious resistance to Omicron, which may have originated from high fluctuation of approaching angles, high flexibility of I472-F490 loop, and reduced binding ability. CONCLUSIONS According to the overall characteristics of the three mutants, high infectivity, high immune escape, and low virulence may be the future evolutionary selection of SARS-CoV-2. In a word, this work not only proposes the possible resistance mechanism of SARS-CoV-2 mutants, but also provides theoretical guidance for the subsequent drug design against COVID-19 based on S protein structure.
Collapse
Affiliation(s)
- Yan Cheng
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China
| | - Dan Zheng
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China
| | - Derong Zhang
- School of Marxism, Chengdu Vocational & Technical College of Industry, Chengdu, China
| | - Du Guo
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China
| | - Yueteng Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Wei Liu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Li Liang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
| | - Ting Luo
- Breast Disease Center, West China Hospital, Sichuan University, Cancer CenterChengdu, 610000, China.
| |
Collapse
|
70
|
Wang T, Zhai Y, Xue H, Zhou W, Ding Y, Nie H. Regulation of Epithelial Sodium Transport by SARS-CoV-2 Is Closely Related with Fibrinolytic System-Associated Proteins. Biomolecules 2023; 13:biom13040578. [PMID: 37189326 DOI: 10.3390/biom13040578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Dyspnea and progressive hypoxemia are the main clinical features of patients with coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pulmonary pathology shows diffuse alveolar damage with edema, hemorrhage, and the deposition of fibrinogens in the alveolar space, which are consistent with the Berlin Acute Respiratory Distress Syndrome Criteria. The epithelial sodium channel (ENaC) is a key channel protein in alveolar ion transport and the rate-limiting step for pulmonary edema fluid clearance, the dysregulation of which is associated with acute lung injury/acute respiratory distress syndrome. The main protein of the fibrinolysis system, plasmin, can bind to the furin site of γ-ENaC and induce it to an activation state, facilitating pulmonary fluid reabsorption. Intriguingly, the unique feature of SARS-CoV-2 from other β-coronaviruses is that the spike protein of the former has the same furin site (RRAR) with ENaC, suggesting that a potential competition exists between SARS-CoV-2 and ENaC for the cleavage by plasmin. Extensive pulmonary microthrombosis caused by disorders of the coagulation and fibrinolysis system has also been seen in COVID-19 patients. To some extent, high plasmin (ogen) is a common risk factor for SARS-CoV-2 infection since an increased cleavage by plasmin accelerates virus invasion. This review elaborates on the closely related relationship between SARS-CoV-2 and ENaC for fibrinolysis system-related proteins, aiming to clarify the regulation of ENaC under SARS-CoV-2 infection and provide a novel reference for the treatment of COVID-19 from the view of sodium transport regulation in the lung epithelium.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yiman Zhai
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hao Xue
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Wei Zhou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang 110122, China
| |
Collapse
|
71
|
Gonzalez-Rodriguez E, Zol-Hanlon M, Bineva-Todd G, Marchesi A, Skehel M, Mahoney KE, Roustan C, Borg A, Di Vagno L, Kjær S, Wrobel AG, Benton DJ, Nawrath P, Flitsch SL, Joshi D, González-Ramírez A, Wilkinson KA, Wilkinson RJ, Wall EC, Hurtado-Guerrero R, Malaker SA, Schumann B. O-Linked Sialoglycans Modulate the Proteolysis of SARS-CoV-2 Spike and Likely Contribute to the Mutational Trajectory in Variants of Concern. ACS CENTRAL SCIENCE 2023; 9:393-404. [PMID: 36968546 PMCID: PMC10037455 DOI: 10.1021/acscentsci.2c01349] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Indexed: 06/18/2023]
Abstract
The emergence of a polybasic cleavage motif for the protease furin in SARS-CoV-2 spike has been established as a major factor for human viral transmission. The region N-terminal to that motif is extensively mutated in variants of concern (VOCs). Besides furin, spikes from these variants appear to rely on other proteases for maturation, including TMPRSS2. Glycans near the cleavage site have raised questions about proteolytic processing and the consequences of variant-borne mutations. Here, we identify that sialic acid-containing O-linked glycans on Thr678 of SARS-CoV-2 spike influence furin and TMPRSS2 cleavage and posit O-linked glycosylation as a likely driving force for the emergence of VOC mutations. We provide direct evidence that the glycosyltransferase GalNAc-T1 primes glycosylation at Thr678 in the living cell, an event that is suppressed by mutations in the VOCs Alpha, Delta, and Omicron. We found that the sole incorporation of N-acetylgalactosamine did not impact furin activity in synthetic O-glycopeptides, but the presence of sialic acid reduced the furin rate by up to 65%. Similarly, O-glycosylation with a sialylated trisaccharide had a negative impact on TMPRSS2 cleavage. With a chemistry-centered approach, we substantiate O-glycosylation as a major determinant of spike maturation and propose disruption of O-glycosylation as a substantial driving force for VOC evolution.
Collapse
Affiliation(s)
- Edgar Gonzalez-Rodriguez
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Mia Zol-Hanlon
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Signalling
and Structural Biology Lab, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Ganka Bineva-Todd
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
| | - Andrea Marchesi
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| | - Mark Skehel
- Proteomics
Science Technology Platform, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Keira E. Mahoney
- Department
of Chemistry, Yale University, 275 Prospect Street, 06511 New Haven, Connecticut, United States
| | - Chloë Roustan
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Annabel Borg
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Lucia Di Vagno
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Proteomics
Science Technology Platform, The Francis
Crick Institute, NW1 1AT London, United Kingdom
| | - Svend Kjær
- Structural
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Antoni G. Wrobel
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Donald J. Benton
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Philipp Nawrath
- Structural
Biology of Disease Processes Laboratory, Francis Crick Institute, NW1 1AT London, United Kingdom
| | - Sabine L. Flitsch
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, M1 7DN Manchester, United Kingdom
| | - Dhira Joshi
- Chemical
Biology Science Technology Platform, The
Francis Crick Institute, NW1 1AT London, United Kingdom
| | | | - Katalin A. Wilkinson
- Tuberculosis
Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Wellcome
Centre for Infectious Diseases Research in Africa, University of Cape Town, 7925 Observatory, Cape Town, South Africa
| | - Robert J. Wilkinson
- Tuberculosis
Laboratory, The Francis Crick Institute, NW1 1AT London, United Kingdom
- Wellcome
Centre for Infectious Diseases Research in Africa, University of Cape Town, 7925 Observatory, Cape Town, South Africa
- Department
of Infectious Diseases, Imperial College
London, W12 0NN London, United Kingdom
- Institute
of Infectious Disease and Molecular Medicine and Department of Medicine, University of Cape Town, 7925 Observatory, Cape Town, South Africa
| | - Emma C. Wall
- The Francis
Crick Institute, NW1 1AT London, United Kingdom
- University
College London Hospitals (UCLH) Biomedical Research Centre, W1T 7DN London, United Kingdom
| | - Ramón Hurtado-Guerrero
- Institute
of Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain
- Copenhagen
Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Fundación
ARAID, 50018 Zaragoza, Spain
| | - Stacy A. Malaker
- Department
of Chemistry, Yale University, 275 Prospect Street, 06511 New Haven, Connecticut, United States
| | - Benjamin Schumann
- Chemical
Glycobiology Laboratory, The Francis Crick
Institute, NW1 1AT London, United Kingdom
- Department
of Chemistry, Imperial College London, W12 0BZ London, United Kingdom
| |
Collapse
|
72
|
Muñoz-Basagoiti J, Monteiro FLL, Krumpe LRH, Armario-Najera V, Shenoy SR, Perez-Zsolt D, Westgarth HJ, Villorbina G, Bomfim LM, Raïch-Regué D, Nogueras L, Henrich CJ, Gallemí M, Moreira FRR, Torres P, Wilson J, D’arc M, Marfil S, Herlinger AL, Pradenas E, Higa LM, Portero-Otin M, Trinité B, Twyman RM, Capell T, Tanuri A, Blanco J, Izquierdo-Useros N, Rech EL, Christou P, O’Keefe BR. Cyanovirin-N binds to select SARS-CoV-2 spike oligosaccharides outside of the receptor binding domain and blocks infection by SARS-CoV-2. Proc Natl Acad Sci U S A 2023; 120:e2214561120. [PMID: 36853940 PMCID: PMC10013841 DOI: 10.1073/pnas.2214561120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped positive stranded RNA virus which has caused the recent deadly pandemic called COVID-19. The SARS-CoV-2 virion is coated with a heavily glycosylated Spike glycoprotein which is responsible for attachment and entry into target cells. One, as yet unexploited strategy for preventing SARS-CoV-2 infections, is the targeting of the glycans on Spike. Lectins are carbohydrate-binding proteins produced by plants, algae, and cyanobacteria. Some lectins can neutralize enveloped viruses displaying external glycoproteins, offering an alternative therapeutic approach for the prevention of infection with virulent β-coronaviruses, such as SARS-CoV-2. Here we show that the cyanobacterial lectin cyanovirin-N (CV-N) can selectively target SARS-CoV-2 Spike oligosaccharides and inhibit SARS-CoV-2 infection in vitro and in vivo. CV-N neutralizes Delta and Omicron variants in vitro better than earlier circulating viral variants. CV-N binds selectively to Spike with a Kd as low as 15 nM and a stoichiometry of 2 CV-N: 1 Spike but does not bind to the receptor binding domain (RBD). Further mapping of CV-N binding sites on Spike shows that select high-mannose oligosaccharides in the S1 domain of Spike are targeted by CV-N. CV-N also reduced viral loads in the nares and lungs in vivo to protect hamsters against a lethal viral challenge. In summary, we present an anti-coronavirus agent that works by an unexploited mechanism and prevents infection by a broad range of SARS-CoV-2 strains.
Collapse
Affiliation(s)
| | - Fábio Luís Lima Monteiro
- Laboratory of Molecular Virology, Institute of Biology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro21941-90, Brazil
| | - Lauren R. H. Krumpe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD21702
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Victoria Armario-Najera
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Lleida25198, Spain
| | - Shilpa R. Shenoy
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD21702
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Daniel Perez-Zsolt
- IrsiCaixa Acquired Immune Deficiency Syndrome Research Institute, Badalona08916, Spain
| | - Harrison James Westgarth
- Laboratory of Molecular Virology, Institute of Biology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro21941-90, Brazil
| | - Gemma Villorbina
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Lleida25198, Spain
| | - Larissa Maciel Bomfim
- Laboratory of Molecular Virology, Institute of Biology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro21941-90, Brazil
| | - Dàlia Raïch-Regué
- IrsiCaixa Acquired Immune Deficiency Syndrome Research Institute, Badalona08916, Spain
| | - Lara Nogueras
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Lleida25198, Spain
| | - Curtis J. Henrich
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD21702
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Marçal Gallemí
- IrsiCaixa Acquired Immune Deficiency Syndrome Research Institute, Badalona08916, Spain
| | - Filipe Romero Rebello Moreira
- Laboratory of Molecular Virology, Institute of Biology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro21941-90, Brazil
| | - Pascual Torres
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Lleida25198, Spain
| | - Jennifer Wilson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD21702
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD21702
| | - Mirela D’arc
- Laboratory of Diversity and Viral Diseases, Institute of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro21941-90, Brazil
| | - Silvia Marfil
- IrsiCaixa Acquired Immune Deficiency Syndrome Research Institute, Badalona08916, Spain
| | - Alice Laschuk Herlinger
- Laboratory of Molecular Virology, Institute of Biology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro21941-90, Brazil
| | - Edwards Pradenas
- IrsiCaixa Acquired Immune Deficiency Syndrome Research Institute, Badalona08916, Spain
| | - Luiza Mendonça Higa
- Laboratory of Molecular Virology, Institute of Biology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro21941-90, Brazil
| | - Manuel Portero-Otin
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Lleida25198, Spain
| | - Benjamin Trinité
- IrsiCaixa Acquired Immune Deficiency Syndrome Research Institute, Badalona08916, Spain
| | | | - Teresa Capell
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Lleida25198, Spain
| | - Amilcar Tanuri
- Laboratory of Molecular Virology, Institute of Biology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro21941-90, Brazil
| | - Julià Blanco
- IrsiCaixa Acquired Immune Deficiency Syndrome Research Institute, Badalona08916, Spain
- Germans Trias i Pujol Research Institute, Badalona08916, Spain
- Centro de Investigación Biomédica en Red Enfermedades Infecciosas, Madrid28029, Spain
- Universitat de Vic - Universitat Central de Catalunya, Vic08500, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa Acquired Immune Deficiency Syndrome Research Institute, Badalona08916, Spain
- Germans Trias i Pujol Research Institute, Badalona08916, Spain
- Centro de Investigación Biomédica en Red Enfermedades Infecciosas, Madrid28029, Spain
| | - Elibio L. Rech
- Embrapa Genetic Resources and Biotechnology National Institute of Science and Technology in Synthetic Biology, Brasília70770-917, Brazil
| | - Paul Christou
- Department of Crop and Forest Sciences, University of Lleida-Agrotecnio Center, Lleida25198, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona08010, Spain
| | - Barry R. O’Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD21702
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, MD21702
| |
Collapse
|
73
|
Oudit GY, Wang K, Viveiros A, Kellner MJ, Penninger JM. Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic. Cell 2023; 186:906-922. [PMID: 36787743 PMCID: PMC9892333 DOI: 10.1016/j.cell.2023.01.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
ACE2 is the indispensable entry receptor for SARS-CoV and SARS-CoV-2. Because of the COVID-19 pandemic, it has become one of the most therapeutically targeted human molecules in biomedicine. ACE2 serves two fundamental physiological roles: as an enzyme, it alters peptide cascade balance; as a chaperone, it controls intestinal amino acid uptake. ACE2's tissue distribution, affected by co-morbidities and sex, explains the broad tropism of coronaviruses and the clinical manifestations of SARS and COVID-19. ACE2-based therapeutics provide a universal strategy to prevent and treat SARS-CoV-2 infections, applicable to all SARS-CoV-2 variants and other emerging zoonotic coronaviruses exploiting ACE2 as their cellular receptor.
Collapse
Affiliation(s)
- Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Max J Kellner
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
74
|
Brevini T, Maes M, Webb GJ, John BV, Fuchs CD, Buescher G, Wang L, Griffiths C, Brown ML, Scott WE, Pereyra-Gerber P, Gelson WTH, Brown S, Dillon S, Muraro D, Sharp J, Neary M, Box H, Tatham L, Stewart J, Curley P, Pertinez H, Forrest S, Mlcochova P, Varankar SS, Darvish-Damavandi M, Mulcahy VL, Kuc RE, Williams TL, Heslop JA, Rossetti D, Tysoe OC, Galanakis V, Vila-Gonzalez M, Crozier TWM, Bargehr J, Sinha S, Upponi SS, Fear C, Swift L, Saeb-Parsy K, Davies SE, Wester A, Hagström H, Melum E, Clements D, Humphreys P, Herriott J, Kijak E, Cox H, Bramwell C, Valentijn A, Illingworth CJR, Dahman B, Bastaich DR, Ferreira RD, Marjot T, Barnes E, Moon AM, Barritt AS, Gupta RK, Baker S, Davenport AP, Corbett G, Gorgoulis VG, Buczacki SJA, Lee JH, Matheson NJ, Trauner M, Fisher AJ, Gibbs P, Butler AJ, Watson CJE, Mells GF, Dougan G, Owen A, Lohse AW, Vallier L, Sampaziotis F. FXR inhibition may protect from SARS-CoV-2 infection by reducing ACE2. Nature 2023; 615:134-142. [PMID: 36470304 PMCID: PMC9977684 DOI: 10.1038/s41586-022-05594-0] [Citation(s) in RCA: 186] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Preventing SARS-CoV-2 infection by modulating viral host receptors, such as angiotensin-converting enzyme 2 (ACE2)1, could represent a new chemoprophylactic approach for COVID-19 that complements vaccination2,3. However, the mechanisms that control the expression of ACE2 remain unclear. Here we show that the farnesoid X receptor (FXR) is a direct regulator of ACE2 transcription in several tissues affected by COVID-19, including the gastrointestinal and respiratory systems. We then use the over-the-counter compound z-guggulsterone and the off-patent drug ursodeoxycholic acid (UDCA) to reduce FXR signalling and downregulate ACE2 in human lung, cholangiocyte and intestinal organoids and in the corresponding tissues in mice and hamsters. We show that the UDCA-mediated downregulation of ACE2 reduces susceptibility to SARS-CoV-2 infection in vitro, in vivo and in human lungs and livers perfused ex situ. Furthermore, we reveal that UDCA reduces the expression of ACE2 in the nasal epithelium in humans. Finally, we identify a correlation between UDCA treatment and positive clinical outcomes after SARS-CoV-2 infection using retrospective registry data, and confirm these findings in an independent validation cohort of recipients of liver transplants. In conclusion, we show that FXR has a role in controlling ACE2 expression and provide evidence that modulation of this pathway could be beneficial for reducing SARS-CoV-2 infection, paving the way for future clinical trials.
Collapse
Affiliation(s)
- Teresa Brevini
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
| | - Mailis Maes
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gwilym J Webb
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Binu V John
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | - Claudia D Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gustav Buescher
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Lu Wang
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Chelsea Griffiths
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Marnie L Brown
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - William E Scott
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - William T H Gelson
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Scott Dillon
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Jo Sharp
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Megan Neary
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Box
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Lee Tatham
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - James Stewart
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Paul Curley
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Henry Pertinez
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Sally Forrest
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | | | - Mahnaz Darvish-Damavandi
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Victoria L Mulcahy
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - James A Heslop
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Olivia C Tysoe
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | | | | | - Thomas W M Crozier
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Johannes Bargehr
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Sara S Upponi
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Corrina Fear
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Lisa Swift
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Susan E Davies
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Axel Wester
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Espen Melum
- Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Research Institute of Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Hybrid Technology Hub Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | | | - Jo Herriott
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edyta Kijak
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Helen Cox
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Chloe Bramwell
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Anthony Valentijn
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Christopher J R Illingworth
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK
| | - Bassam Dahman
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Dustin R Bastaich
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA, USA
| | - Raphaella D Ferreira
- Division of Gastroenterology and Hepatology, University of Miami and Miami VA Health System, Miami, FL, USA
| | - Thomas Marjot
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Oxford Liver Unit, Translational Gastroenterology Unit, Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxford, UK
| | - Andrew M Moon
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Alfred S Barritt
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
| | - Ravindra K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Gareth Corbett
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Simon J A Buczacki
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Joo-Hyeon Lee
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA
- NHS Blood and Transplant, Cambridge, UK
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrew J Fisher
- Transplant and Regenerative Medicine Laboratory, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Gibbs
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Andrew J Butler
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christopher J E Watson
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- National Institute of Health Research (NIHR) Cambridge Biomedical Research Centre, and the NIHR Blood and Transplant Research Unit (BTRU) at the University of Cambridge in collaboration with Newcastle University and in partnership with NHS Blood and Transplant (NHSBT), Cambridge, UK
| | - George F Mells
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Academic Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Owen
- Centre of Excellence in Long-acting Therapeutics (CELT), Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ludovic Vallier
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Wellcome Sanger Institute, Hinxton, UK.
- Berlin Institute of Health (BIH), BIH Centre for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
75
|
Jaiswal D, Kumar U, Gaur V, Salunke DM. Epitope-directed anti-SARS-CoV-2 scFv engineered against the key spike protein region could block membrane fusion. Protein Sci 2023; 32:e4575. [PMID: 36691733 PMCID: PMC9926471 DOI: 10.1002/pro.4575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
The newly emerged SARS-CoV-2 causing coronavirus disease (COVID-19) resulted in >500 million infections. A great deal about the molecular processes of virus infection in the host is getting uncovered. Two sequential proteolytic cleavages of viral spike protein by host proteases are prerequisites for the entry of the virus into the host cell. The first cleavage occurs at S1/S2 site by the furin protease, and the second cleavage at a fusion activation site, the S2' site, by the TMPRSS2 protease. S2' cleavage site is present in the S2 domain of spike protein followed by a fusion peptide. Given the S2' site to be conserved among all the SARS-CoV-2 variants, we chose an S2' epitope encompassing the S2' cleavage site and generated single-chain antibodies (scFvs) through an exhaustive phage display library screening. Crystal structure of a scFv in complex with S2' epitope was determined. Incidentally, S2' epitope in the scFv bound structure adopts an alpha-helical conformation equivalent to the conformation of the epitope in the spike protein. Furthermore, these scFvs can bind to the spike protein expressed either in vitro or on the mammalian cell surface. We illustrate a molecular model based on structural and biochemical insights into the antibody-S2' epitope interaction emphasizing scFvs mediated blocking of virus entry into the host cell by restricting the access of TMPRSS2 protease and consequently inhibiting the S2' cleavage competitively.
Collapse
Affiliation(s)
- Deepika Jaiswal
- International Centre for Genetic Engineering and BiotechnologyNew DelhiDelhiIndia
| | - Ujjwal Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiDelhiIndia
| | - Vineet Gaur
- National Institute of Plant Genome ResearchNew DelhiDelhiIndia
| | - Dinakar M. Salunke
- International Centre for Genetic Engineering and BiotechnologyNew DelhiDelhiIndia
| |
Collapse
|
76
|
Diallo I, Jacob RA, Vion E, Kozak RA, Mossman K, Provost P. Altered microRNA Transcriptome in Cultured Human Airway Cells upon Infection with SARS-CoV-2. Viruses 2023; 15:v15020496. [PMID: 36851710 PMCID: PMC9962802 DOI: 10.3390/v15020496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Numerous proteomic and transcriptomic studies have been carried out to better understand the current multi-variant SARS-CoV-2 virus mechanisms of action and effects. However, they are mostly centered on mRNAs and proteins. The effect of the virus on human post-transcriptional regulatory agents such as microRNAs (miRNAs), which are involved in the regulation of 60% of human gene activity, remains poorly explored. Similar to research we have previously undertaken with other viruses such as Ebola and HIV, in this study we investigated the miRNA profile of lung epithelial cells following infection with SARS-CoV-2. At the 24 and 72 h post-infection time points, SARS-CoV-2 did not drastically alter the miRNome. About 90% of the miRNAs remained non-differentially expressed. The results revealed that miR-1246, miR-1290 and miR-4728-5p were the most upregulated over time. miR-196b-5p and miR-196a-5p were the most downregulated at 24 h, whereas at 72 h, miR-3924, miR-30e-5p and miR-145-3p showed the highest level of downregulation. In the top significantly enriched KEGG pathways of genes targeted by differentially expressed miRNAs we found, among others, MAPK, RAS, P13K-Akt and renin secretion signaling pathways. Using RT-qPCR, we also showed that SARS-CoV-2 may regulate several predicted host mRNA targets involved in the entry of the virus into host cells (ACE2, TMPRSS2, ADAM17, FURIN), renin-angiotensin system (RAS) (Renin, Angiotensinogen, ACE), innate immune response (IL-6, IFN1β, CXCL10, SOCS4) and fundamental cellular processes (AKT, NOTCH, WNT). Finally, we demonstrated by dual-luciferase assay a direct interaction between miR-1246 and ACE-2 mRNA. This study highlights the modulatory role of miRNAs in the pathogenesis of SARS-CoV-2.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Rajesh Abraham Jacob
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Elodie Vion
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Robert A. Kozak
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Karen Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Department of Medicine, McMaster University, Hamilton, ON L8S 4K1, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
77
|
Capistrano KJ, Richner J, Schwartz J, Mukherjee SK, Shukla D, Naqvi AR. Host microRNAs exhibit differential propensity to interact with SARS-CoV-2 and variants of concern. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166612. [PMID: 36481486 PMCID: PMC9721271 DOI: 10.1016/j.bbadis.2022.166612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
A significant number of SARS-CoV-2-infected individuals naturally overcome viral infection, suggesting the existence of a potent endogenous antiviral mechanism. As an innate defense mechanism, microRNA (miRNA) pathways in mammals have evolved to restrict viruses, besides regulating endogenous mRNAs. In this study, we systematically examined the complete repertoire of human miRNAs for potential binding sites on SARS-CoV-2 Wuhan-Hu-1, Beta, Delta, and Omicron. Human miRNA and viral genome interaction were analyzed using RNAhybrid 2.2 with stringent parameters to identify highly bonafide miRNA targets. Using publicly available data, we filtered for miRNAs expressed in lung epithelial cells/tissue and oral keratinocytes, concentrating on the miRNAs that target SARS-CoV-2 S protein mRNAs. Our results show a significant loss of human miRNA and SARS-CoV-2 interactions in Omicron (130 miRNAs) compared to Wuhan-Hu-1 (271 miRNAs), Beta (279 miRNAs), and Delta (275 miRNAs). In particular, hsa-miR-3150b-3p and hsa-miR-4784 show binding affinity for S protein of Wuhan strain but not Beta, Delta, and Omicron. Loss of miRNA binding sites on N protein was also observed for Omicron. Through Ingenuity Pathway Analysis (IPA), we examined the experimentally validated and highly predicted functional role of these miRNAs. We found that hsa-miR-3150b-3p and hsa-miR-4784 have several experimentally validated or highly predicted target genes in the Toll-like receptor, IL-17, Th1, Th2, interferon, and coronavirus pathogenesis pathways. Focusing on the coronavirus pathogenesis pathway, we found that hsa-miR-3150b-3p and hsa-miR-4784 are highly predicted to target MAPK13. Exploring miRNAs to manipulate viral genome/gene expression can provide a promising strategy with successful outcomes by targeting specific VOCs.
Collapse
Affiliation(s)
- Kristelle J Capistrano
- Mucosal Immunology Lab, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Justin Richner
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Joel Schwartz
- Molecular Pathology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Sunil K Mukherjee
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, India
| | - Deepak Shukla
- Department of Microbiology and Immunology, College of Medicine, University of Illinois Chicago, Chicago 60612, IL, USA; Department of Ophthalmology and Visual Sciences, Ocular Virology Laboratory, University of Illinois Chicago, Chicago 60612, IL, USA
| | - Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois Chicago, Chicago 60612, IL, USA.
| |
Collapse
|
78
|
Mesner D, Reuschl AK, Whelan MVX, Bronzovich T, Haider T, Thorne LG, Ragazzini R, Bonfanti P, Towers GJ, Jolly C. SARS-CoV-2 evolution influences GBP and IFITM sensitivity. Proc Natl Acad Sci U S A 2023; 120:e2212577120. [PMID: 36693093 PMCID: PMC9945951 DOI: 10.1073/pnas.2212577120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 01/25/2023] Open
Abstract
SARS-CoV-2 spike requires proteolytic processing for viral entry. A polybasic furin-cleavage site (FCS) in spike, and evolution toward an optimized FCS by dominant variants of concern (VOCs), are linked to enhanced infectivity and transmission. Here we show interferon-inducible restriction factors Guanylate-binding proteins (GBP) 2 and 5 interfere with furin-mediated spike cleavage and inhibit the infectivity of early-lineage isolates Wuhan-Hu-1 and VIC. By contrast, VOCs Alpha and Delta escape restriction by GBP2/5 that we map to the spike substitution D614G present in these VOCs. Despite inhibition of spike cleavage, these viruses remained sensitive to plasma membrane IFITM1, but not endosomal IFITM2 and 3, consistent with a preference for TMPRSS2-dependent plasma membrane entry. Strikingly, we find that Omicron is unique among VOCs, being sensitive to restriction factors GBP2/5, and also IFITM1, 2, and 3. Using chimeric spike mutants, we map the Omicron phenotype and show that the S1 domain determines Omicron's sensitivity to GBP2/5, whereas the S2' domain determines its sensitivity to endosomal IFITM2/3 and preferential use of TMPRSS2-independent entry. We propose that evolution of SARS-CoV-2 for the D614G substitution has allowed for escape from GBP restriction factors, but the selective pressures on Omicron for spike changes that mediate antibody escape, and altered tropism, have come at the expense of increased sensitivity to innate immune restriction factors that target virus entry.
Collapse
Affiliation(s)
- Dejan Mesner
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Ann-Kathrin Reuschl
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Matthew V. X. Whelan
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Taylor Bronzovich
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Tafhima Haider
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, E1 2ATLondon, UK
| | - Lucy G. Thorne
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Roberta Ragazzini
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, LondonNW1 1AT, UK
| | - Paola Bonfanti
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
- Epithelial Stem Cell Biology and Regenerative Medicine Laboratory, The Francis Crick Institute, LondonNW1 1AT, UK
| | - Greg J. Towers
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, WC1E 6BTLondon, UK
| |
Collapse
|
79
|
Gillespie PF, Wang Y, Hofmann C, Kuczynski LE, Winters MA, Teyral JL, Tubbs CM, Shiflett K, Patel N, Rustandi RR. Understanding the Spike Protein in COVID-19 Vaccine in Recombinant Vesicular Stomatitis Virus (rVSV) Using Automated Capillary Western Blots. ACS OMEGA 2023; 8:3319-3328. [PMID: 36685032 PMCID: PMC9843631 DOI: 10.1021/acsomega.2c06937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral agent that is responsible for the coronavirus disease-2019 (COVID-19) pandemic. One of the live virus vaccine candidates Merck and Co., Inc. was developing to help combat the pandemic was V590. V590 was a live-attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV) in which the envelope VSV glycoprotein (G protein) gene was replaced with the gene for the SARS-CoV-2 spike protein (S protein), the protein responsible for viral binding and fusion to the cell membrane. To assist with product and process development, a quantitative Simple Western (SW) assay was successfully developed and phase-appropriately qualified to quantitate the concentration of S protein expressed in V590 samples. A strong correlation was established between potency and S-protein concentration, which suggested that the S-protein SW assay could be used as a proxy for virus productivity optimization with faster data turnaround time (3 h vs 3 days). In addition, unlike potency, the SW assay was able to provide a qualitative profile assessment of the forms of S protein (S protein, S1 subunit, and S multimer) to ensure appropriate levels of S protein were maintained throughout process and product development. Finally, V590 stressed stability studies suggested that time and temperature contributed to the instability of S protein demonstrated by cleavage into its subunits, S1 and S2, and aggregation into S multimer. Both of which could potentially have a deleterious effect on the vaccine immunogenicity.
Collapse
Affiliation(s)
- Paul F. Gillespie
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Yanjie Wang
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Carl Hofmann
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Laura E. Kuczynski
- Vaccine
Process Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Michael A. Winters
- Vaccine
Process Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Jennifer L. Teyral
- Research
CMC Statistics, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Christopher M. Tubbs
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Kelsey Shiflett
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Nisarg Patel
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| | - Richard R. Rustandi
- Analytical
Research Development, Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania19486, United States
| |
Collapse
|
80
|
Szpulak A, Garlak U, Ćwirko H, Witkowska B, Rombel-Bryzek A, Witkowska D. SARS-CoV-2 and its impact on the cardiovascular and digestive systems - The interplay between new virus variants and human cells. Comput Struct Biotechnol J 2023; 21:1022-1029. [PMID: 36694807 PMCID: PMC9850860 DOI: 10.1016/j.csbj.2023.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
Since infection with the novel coronavirus SARS-CoV-2 first emerged in Wuhan, China, in December 2019, the world has been battling the pandemic COVID-19. Patients of all ages and genders are now becoming infected with the new coronavirus variant (Omicron) worldwide, and its subvariants continue to pose a threat to health and life. This article provides a literature review of cardiovascular and gastrointestinal complications resulting from SARS-CoV-2 infection. COVID-19 primarily caused respiratory symptoms, but complications can affect many vital organs. SARS-CoV-2 binds to a human cell receptor (angiotensin-converting enzyme 2 - ACE2) that is predominantly expressed primarily in the heart and gastrointestinal tract, which is why we focused on complications in these organs. Since the high transmissibility of Omicron and its ability to evade the immune system have raised worldwide concern, we have tried to summarise the current knowledge about its development from a structural point of view and to highlight the differences in its binding to human receptors and proteases compared to previous VOC.
Collapse
Affiliation(s)
- Angelika Szpulak
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland
| | - Urszula Garlak
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland
| | - Hanna Ćwirko
- Faculty of Medicine, Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland
| | - Bogusława Witkowska
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland
| | | | - Danuta Witkowska
- Institute of Health Sciences, University of Opole, Katowicka 68, 45-060 Opole, Poland
| |
Collapse
|
81
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
82
|
Sohaei D, Hollenberg M, Janket SJ, Diamandis EP, Poda G, Prassas I. The therapeutic relevance of the Kallikrein-Kinin axis in SARS-cov-2-induced vascular pathology. Crit Rev Clin Lab Sci 2023; 60:25-40. [PMID: 35930434 DOI: 10.1080/10408363.2022.2102578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While coronavirus disease 2019 (COVID-19) begins as a respiratory infection, it progresses as a systemic disease involving multiorgan microthromboses that underly the pathology. SARS-CoV-2 enters host cells via attachment to the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is widely expressed in a multitude of tissues, including the lung (alveolar cells), heart, intestine, kidney, testis, gallbladder, vasculature (endothelial cells), and immune cells. Interference in ACE2 signaling could drive the aforementioned systemic pathologies, such as endothelial dysfunction, microthromboses, and systemic inflammation, that are typically seen in patients with severe COVID-19. ACE2 is a component of the renin-angiotensin system (RAS) and is intimately associated with the plasma kallikrein-kinin system (KKS). As many papers are published on the role of ACE and ACE2 in COVID-19, we will review the role of bradykinin, and more broadly the KSS, in SARS-CoV-2-induced vascular dysfunction. Furthermore, we will discuss the possible therapeutic interventions that are approved and in development for the following targets: coagulation factor XII (FXII), tissue kallikrein (KLK1), plasma kallikrein (KLKB1), bradykinin (BK), plasminogen activator inhibitor (PAI-1), bradykinin B1 receptor (BKB1R), bradykinin B2 receptor (BKB2R), ACE, furin, and the NLRP3 inflammasome. Understanding these targets may prove of value in the treatment of COVID-19 as well as in other virus-induced coagulopathies in the future.
Collapse
Affiliation(s)
- Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Morley Hollenberg
- Department of Medicine, Faculty of Medicine, University of Calgary, Alberta, Canada
| | - Sok-Ja Janket
- Translational Oral Medicine Section, Forsyth Institute, Cambridge, MA, USA
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
83
|
Chan K, Farias AG, Lee H, Guvenc F, Mero P, Brown KR, Ward H, Billmann M, Aulakh K, Astori A, Haider S, Marcon E, Braunschweig U, Pu S, Habsid A, Yan Tong AH, Christie-Holmes N, Budylowski P, Ghalami A, Mubareka S, Maguire F, Banerjee A, Mossman KL, Greenblatt J, Gray-Owen SD, Raught B, Blencowe BJ, Taipale M, Myers C, Moffat J. Survival-based CRISPR genetic screens across a panel of permissive cell lines identify common and cell-specific SARS-CoV-2 host factors. Heliyon 2023; 9:e12744. [PMID: 36597481 PMCID: PMC9800021 DOI: 10.1016/j.heliyon.2022.e12744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
SARS-CoV-2 depends on host cell components for infection and replication. Identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection and replication. If druggable, host factor dependencies may present an attractive strategy for anti-viral therapy. In this study, we performed genome wide CRISPR knockout screens in Vero E6 cells and four human cell lines including Calu-3, UM-UC-4, HEK-293 and HuH-7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while other host genes identified were largely cell line specific, including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, immune-related pathways, and chromatin modification. Notably, the chromatin modifier gene KMT2C in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed.
Collapse
Affiliation(s)
- Katherine Chan
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Corresponding author
| | - Adrian Granda Farias
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Hunsang Lee
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Furkan Guvenc
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Patricia Mero
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Kevin R. Brown
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Henry Ward
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Maximilian Billmann
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Kamaldeep Aulakh
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Audrey Astori
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Shahan Haider
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Edyta Marcon
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Ulrich Braunschweig
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Shuye Pu
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Andrea Habsid
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Amy Hin Yan Tong
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| | - Natasha Christie-Holmes
- Combined Containment Level 3 Unit, Temerty Faculty of Medicine, University of Toronto Toronto, Ontario, Canada, M5S3E1
| | - Patrick Budylowski
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Ayoob Ghalami
- Office of Environmental Health & Safety, University of Toronto, Toronto, Ontario, Canada
| | - Samira Mubareka
- Sunnybrook Research Institute, Toronto, Ontario, Canada, M5S3E1,Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Finlay Maguire
- Department of Community Health and Epidemiology, Faculty of Medicine Dalhousie University, Halifax, Nova Scotia, Canada,Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Karen L. Mossman
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jack Greenblatt
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Brian Raught
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Benjamin J. Blencowe
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Mikko Taipale
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Jason Moffat
- Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1,Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, Ontario, Canada, M5S1A8,Institute for Biomedical Engineering, Rosebrugh Building, 164 College Street, Room 407, University of Toronto, Toronto, Ontario, Canada, M5S3G9,Corresponding author. Donnelly Center, 160 College Street, University of Toronto, Toronto, Ontario, Canada, M5S3E1
| |
Collapse
|
84
|
Khattab ESAEH, Ragab A, Abol-Ftouh MA, Elhenawy AA. Therapeutic strategies for Covid-19 based on molecular docking and dynamic studies to the ACE-2 receptors, Furin, and viral spike proteins. J Biomol Struct Dyn 2022; 40:13291-13309. [PMID: 34647855 PMCID: PMC8544674 DOI: 10.1080/07391102.2021.1989036] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 is a pandemic virus that caused infections and deaths in many world countries, including the Middle East. The virus-infected human cells by binding via ACE-2 receptor through the Spike protein of the virus with Furin's help causing cell membrane fusion leading to Covid-19-cell entry. No registered drugs or vaccines are triggering this pandemic viral disease yet. Our present work is based on molecular docking and dynamics simulation that performed to spike protein-ACE-2 interface complex, ACE-2 receptor, Spike protein (RBD), and Furin as targets for new small molecules. These drugs target new potential therapies to show their probabilities toward the active sites of mentioned proteins, strongly causing inhibition and/or potential therapy for covid-19. All target proteins were estimated against new target compounds under clinical trials and repurposing drugs currently present. Possibilities of those molecules and potential therapeutics acting on a certain target were predicted. MD simulations over 200 ns with molecular mechanics-generalized Born surface area (MMGBSA) binding energy calculations were performed. The structural and energetic analyses demonstrated the stability of the ligands-MPros complex. Our present work will introduce new visions of some biologically active molecules for further studies in-vitro and in-vivo for Covid-19, repurposing of these molecules should be taking place under clinical works and offering different strategies for drugs repurposing against Covid-19 diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt,CONTACT Ahmed Ragab ; Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo11884, Egypt
| | - Mahmoud A. Abol-Ftouh
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt,Mahmoud A. Abol-Ftouh Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo11884, Egypt
| | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
85
|
Guo C, Tsai SJ, Ai Y, Li M, Anaya E, Pekosz A, Cox A, Gould SJ. The D614G mutation redirects SARS-CoV-2 spike to lysosomes and suppresses deleterious traits of the furin cleavage site insertion mutation. SCIENCE ADVANCES 2022; 8:eade5085. [PMID: 36563151 PMCID: PMC9788772 DOI: 10.1126/sciadv.ade5085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) egress occurs by lysosomal exocytosis. We show that the Spike D614G mutation enhances Spike trafficking to lysosomes, drives Spike-mediated reprogramming of lysosomes, and reduces cell surface Spike expression by ~3-fold. D614G is not a human-specific adaptation. Rather, it is an adaptation to the earlier furin cleavage site insertion (FCSI) mutation that occurred at the genesis of SARS-CoV-2. While advantageous to the virus, furin cleavage of spike has deleterious effects on spike structure and function, inhibiting its trafficking to lysosomes and impairing its infectivity by the transmembrane serine protease 2(TMPRSS2)-independent, endolysosomal pathway. D614G restores spike trafficking to lysosomes and enhances the earliest events in SARS-CoV-2 infectivity, while spike mutations that restore SARS-CoV-2's TMPRSS2-independent infectivity restore spike's trafficking to lysosomes. Together, these and other results show that D614G is an intragenic suppressor of deleterious traits linked to the FCSI and lend additional support to the endolysosomal model of SARS-CoV-2 egress and entry.
Collapse
Affiliation(s)
- Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Shang-Jui Tsai
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Yiwei Ai
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Maggie Li
- Department of Microbiology and Immunology, Johns Hopkins University, School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Eduardo Anaya
- Department of Microbiology and Immunology, Johns Hopkins University, School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- Department of Microbiology and Immunology, Johns Hopkins University, School of Public Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | - Andrea Cox
- Department of Medicine, Department of Microbiology and Immunology, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Stephen J. Gould
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| |
Collapse
|
86
|
Development of Fluorescence-Tagged SARS-CoV-2 Virus-like Particles by a Tri-Cistronic Vector Expression System for Investigating the Cellular Entry of SARS-CoV-2. Viruses 2022; 14:v14122825. [PMID: 36560829 PMCID: PMC9786960 DOI: 10.3390/v14122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2) has caused the pandemic that began late December 2019. The co-expression of SARS-CoV-2 structural proteins in cells could assemble into several types of virus-like particles (VLPs) without a viral RNA genome. VLPs containing S proteins with the structural and functional properties of authentic virions are safe materials to exploit for virus-cell entry and vaccine development. In this study, to generate SARS-CoV-2 VLPs (SCoV2-SEM VLPs) composed of three structural proteins including spike (S), envelop (E) protein and membrane (M) protein, a tri-cistronic vector expression system was established in a cell line co-expressing SARS-CoV-2 S, E and M proteins. The SCoV2-SEM VLPs were harvested from the cultured medium, and three structure proteins were confirmed by Western blot assay. A negative-stain TEM assay demonstrated the size of the SCoV2-SEM VLPs with a diameter of about 90 nm. To further characterize the infectious properties of SCoV2-SEM VLPs, the VLPs (atto647N-SCoV2-SEM VLPs) were fluorescence-labeled by conjugation with atto-647N and visualized under confocal microscopy at a single-particle resolution. The results of the infection assay revealed that atto647N-SCoV2-SEM VLPs attached to the surface of the HEK293T cells at the pre-binding phase in a ACE2-dependent manner. At the post-infection phase, atto647N-SCoV2-SEM VLPs either fused with the cellular membrane or internalized into the cytoplasm with mCherry-rab5-positive early endosomes. Moreover, fusion with the cellular membrane and the internalization with early endosomes could be inhibited by the treatment of camostat (a pharmacological inhibitor of TMPRSS2) and chlorpromazine (an endocytosis inhibitor), respectively. These results elucidated that SCoV2-SEM VLPs behave similarly to the authentic live SARS-CoV-2 virus, suggesting that the development of SCoV2-SEM VLPs provide a realistic and safe experimental model for studying the infectious mechanism of SARS-CoV-2.
Collapse
|
87
|
Lei S, Chen X, Wu J, Duan X, Men K. Small molecules in the treatment of COVID-19. Signal Transduct Target Ther 2022; 7:387. [PMID: 36464706 PMCID: PMC9719906 DOI: 10.1038/s41392-022-01249-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 12/11/2022] Open
Abstract
The outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Collapse
Affiliation(s)
- Sibei Lei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xiaohua Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jieping Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ke Men
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
88
|
McCann N, Castellino FJ. Cell Entry and Unusual Replication of SARS-CoV-2. Curr Drug Targets 2022; 23:1539-1554. [PMID: 36239725 DOI: 10.2174/1389450124666221014102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND SARS-CoV-2 is the causative virus for the CoVID-19 pandemic that has frequently mutated to continue to infect and resist available vaccines. Emerging new variants of the virus have complicated notions of immunity conferred by vaccines versus immunity that results from infection. While we continue to progress from epidemic to endemic as a result of this collective immunity, the pandemic remains a morbid and mortal problem. OBJECTIVE The SARS-CoV-2 virus has a very complex manner of replication. The spike protein, one of the four structural proteins of the encapsulated virus, is central to the ability of the virus to penetrate cells to replicate. The objective of this review is to summarize these complex features of viral replication. METHODS A review of the recent literature was performed on the biology of SARS-CoV-2 infection from published work from PubMed and works reported to preprint servers, e.g., bioRxiv and medRxiv. RESULTS AND CONCLUSION The complex molecular and cellular biology involved in SARS-CoV-2 replication and the origination of >30 proteins from a single open reading frame (ORF) have been summarized, as well as the structural biology of spike protein, a critical factor in the cellular entry of the virus, which is a necessary feature for it to replicate and cause disease.
Collapse
Affiliation(s)
- Nathan McCann
- Department of Chemistry and Biochemistry and W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46530, USA
| | - Francis J Castellino
- Department of Chemistry and Biochemistry and W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46530, USA
| |
Collapse
|
89
|
Zhang Y, Zhang L, Wu J, Yu Y, Liu S, Li T, Li Q, Ding R, Wang H, Nie J, Cui Z, Wang Y, Huang W, Wang Y. A second functional furin site in the SARS-CoV-2 spike protein. Emerg Microbes Infect 2022; 11:182-194. [PMID: 34856891 PMCID: PMC8741242 DOI: 10.1080/22221751.2021.2014284] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ubiquitously-expressed proteolytic enzyme furin is closely related to the pathogenesis of SARS-CoV-2 and therefore represents a key target for antiviral therapy. Based on bioinformatic analysis and pseudovirus tests, we discovered a second functional furin site located in the spike protein. Furin still increased the infectivity of mutated SARS-CoV-2 pseudovirus in 293T-ACE2 cells when the canonical polybasic cleavage site (682-686) was deleted. However, K814A mutation eliminated the enhancing effect of furin on virus infection. Furin inhibitor prevented infection by 682-686-deleted SARS-CoV-2 in 293T-ACE2-furin cells, but not the K814A mutant. K814A mutation did not affect the activity of TMPRSS2 and cathepsin L but did impact the cleavage of S2 into S2' and cell-cell fusion. Additionally, we showed that this functional furin site exists in RaTG13 from bat and PCoV-GD/GX from pangolin. Therefore, we discovered a new functional furin site that is pivotal in promoting SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yue Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
- National Vaccine & Serum Institute, Beijing, People's Republic of China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Yuanling Yu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Shuo Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Tao Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Ruxia Ding
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Haixin Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Zhimin Cui
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Yulin Wang
- National Vaccine & Serum Institute, Beijing, People's Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
- Lead Contact
| |
Collapse
|
90
|
Focus on Marine Animal Safety and Marine Bioresources in Response to the SARS-CoV-2 Crisis. Int J Mol Sci 2022; 23:ijms232315136. [PMID: 36499463 PMCID: PMC9737530 DOI: 10.3390/ijms232315136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/18/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
SARS-CoV-2 as a zoonotic virus has significantly affected daily life and social behavior since its outbreak in late 2019. The concerns over its transmission through different media directly or indirectly have evoked great attention about the survival of SARS-CoV-2 virions in the environment and its potential infection of other animals. To evaluate the risk of infection by SARS-CoV-2 and to counteract the COVID-19 disease, extensive studies have been performed to understand SARS-CoV-2 biogenesis and its pathogenesis. This review mainly focuses on the molecular architecture of SARS-CoV-2, its potential for infecting marine animals, and the prospect of drug discovery using marine natural products to combat SARS-CoV-2. The main purposes of this review are to piece together progress in SARS-CoV-2 functional genomic studies and antiviral drug development, and to raise our awareness of marine animal safety on exposure to SARS-CoV-2.
Collapse
|
91
|
Mao B, Le-Trilling VTK, Wang K, Mennerich D, Hu J, Zhao Z, Zheng J, Deng Y, Katschinski B, Xu S, Zhang G, Cai X, Hu Y, Wang J, Lu M, Huang A, Tang N, Trilling M, Lin Y. Obatoclax inhibits SARS-CoV-2 entry by altered endosomal acidification and impaired cathepsin and furin activity in vitro. Emerg Microbes Infect 2022; 11:483-497. [PMID: 34989664 PMCID: PMC8843317 DOI: 10.1080/22221751.2022.2026739] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/25/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has set off a global pandemic. There is an urgent unmet need for safe, affordable, and effective therapeutics against COVID-19. In this regard, drug repurposing is considered as a promising approach. We assessed the compounds that affect the endosomal acidic environment by applying human angiotensin-converting enzyme 2 (hACE2)- expressing cells infected with a SARS-CoV-2 spike (S) protein-pseudotyped HIV reporter virus and identified that obatoclax resulted in the strongest inhibition of S protein-mediated virus entry. The potent antiviral activity of obatoclax at nanomolar concentrations was confirmed in different human lung and intestinal cells infected with the SARS-CoV-2 pseudotype system as well as clinical virus isolates. Furthermore, we uncovered that obatoclax executes a double-strike against SARS-CoV-2. It prevented SARS-CoV-2 entry by blocking endocytosis of virions through diminished endosomal acidification and the corresponding inhibition of the enzymatic activity of the endosomal cysteine protease cathepsin L. Additionally, obatoclax impaired the SARS-CoV-2 S-mediated membrane fusion by targeting the MCL-1 protein and reducing furin protease activity. In accordance with these overarching mechanisms, obatoclax blocked the virus entry mediated by different S proteins derived from several SARS-CoV-2 variants of concern such as, Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2). Taken together, our results identified obatoclax as a novel effective antiviral compound that keeps SARS-CoV-2 at bay by blocking both endocytosis and membrane fusion. Our data suggested that obatoclax should be further explored as a clinical drug for the treatment of COVID-19.
Collapse
Affiliation(s)
- Binli Mao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | | | - Kai Wang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Denise Mennerich
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jie Hu
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiaxin Zheng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yingying Deng
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Benjamin Katschinski
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shilei Xu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Guiji Zhang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuefei Cai
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yuan Hu
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jianwei Wang
- Department of Immunology, College of Basic Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ni Tang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), Department of Infectious Diseases, The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
92
|
Lustig G, Ganga Y, Rodel H, Tegally H, Jackson L, Cele S, Khan K, Jule Z, Reedoy K, Karim F, Bernstein M, Moosa MYS, Archary D, de Oliveira T, Lessells R, Abdool Karim SS, Sigal A. SARS-CoV-2 evolves increased infection elicited cell death and fusion in an immunosuppressed individual. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.11.23.22282673. [PMID: 36451879 PMCID: PMC9709797 DOI: 10.1101/2022.11.23.22282673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The milder clinical manifestations of Omicron infection relative to pre-Omicron SARS CoV-2 raises the possibility that extensive evolution results in reduced pathogenicity. To test this hypothesis, we quantified induction of cell fusion and cell death in SARS CoV-2 evolved from ancestral virus during long-term infection. Both cell fusion and death were reduced in Omicron BA.1 infection relative to ancestral virus. Evolved virus was isolated at different times during a 6-month infection in an immunosuppressed individual with advanced HIV disease. The virus isolated 16 days post-reported symptom onset induced fusogenicity and cell death at levels similar to BA.1. However, fusogenicity was increased in virus isolated at 6 months post-symptoms to levels intermediate between BA.1 and ancestral SARS-CoV-2. Similarly, infected cell death showed a graded increase from earlier to later isolates. These results may indicate that, at least by the cellular measures used here, evolution in long-term infection does not necessarily attenuate the virus.
Collapse
Affiliation(s)
- Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Yashica Ganga
- Africa Health Research Institute, Durban, South Africa
| | - Hylton Rodel
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Division of Infection and Immunity, University College London, London, UK
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
| | | | - Sandile Cele
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Zesuliwe Jule
- Africa Health Research Institute, Durban, South Africa
| | - Kajal Reedoy
- Africa Health Research Institute, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Mahomed-Yunus S Moosa
- Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Derseree Archary
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
- Department of Global Health, University of Washington, Seattle, USA
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Alex Sigal
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
93
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
94
|
Gupta RK, Mlcochova P. Cyclin D3 restricts SARS-CoV-2 envelope incorporation into virions and interferes with viral spread. EMBO J 2022; 41:e111653. [PMID: 36161661 PMCID: PMC9539236 DOI: 10.15252/embj.2022111653] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023] Open
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents a great threat to human health. The interplay between the virus and host plays a crucial role in successful virus replication and transmission. Understanding host-virus interactions are essential for the development of new COVID-19 treatment strategies. Here, we show that SARS-CoV-2 infection triggers redistribution of cyclin D1 and cyclin D3 from the nucleus to the cytoplasm, followed by proteasomal degradation. No changes to other cyclins or cyclin-dependent kinases were observed. Further, cyclin D depletion was independent of SARS-CoV-2-mediated cell cycle arrest in the early S phase or S/G2/M phase. Cyclin D3 knockdown by small-interfering RNA specifically enhanced progeny virus titres in supernatants. Finally, cyclin D3 co-immunoprecipitated with SARS-CoV-2 envelope (E) and membrane (M) proteins. We propose that cyclin D3 impairs the efficient incorporation of envelope protein into virions during assembly and is depleted during SARS-CoV-2 infection to restore efficient assembly and release of newly produced virions.
Collapse
Affiliation(s)
- Ravi K Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID)CambridgeUK
- Department of MedicineUniversity of CambridgeCambridgeUK
- Africa Health Research InstituteDurbanSouth Africa
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID)CambridgeUK
- Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
95
|
Hao Y, Wang Y, Wang M, Zhou L, Shi J, Cao J, Wang D. The origins of COVID-19 pandemic: A brief overview. Transbound Emerg Dis 2022; 69:3181-3197. [PMID: 36218169 PMCID: PMC9874793 DOI: 10.1111/tbed.14732] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 02/06/2023]
Abstract
The novel coronavirus disease (COVID-19) outbreak that emerged at the end of 2019 has now swept the world for more than 2 years, causing immeasurable damage to the lives and economies of the world. It has drawn so much attention to discovering how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated and entered the human body. The current argument revolves around two contradictory theories: a scenario of laboratory spillover events and human contact with zoonotic diseases. Here, we reviewed the transmission, pathogenesis, possible hosts, as well as the genome and protein structure of SARS-CoV-2, which play key roles in the COVID-19 pandemic. We believe the coronavirus was originally transmitted to human by animals rather than by a laboratory leak. However, there still needs more investigations to determine the source of the pandemic. Understanding how COVID-19 emerged is vital to developing global strategies for mitigating future outbreaks.
Collapse
Affiliation(s)
- Ying‐Jian Hao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Yu‐Lan Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Mei‐Yue Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Lan Zhou
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Jian‐Yun Shi
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - Ji‐Min Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| | - De‐Ping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of PhysiologyShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
96
|
Reactive Centre Loop Mutagenesis of SerpinB3 to Target TMPRSS2 and Furin: Inhibition of SARS-CoV-2 Cell Entry and Replication. Int J Mol Sci 2022; 23:ijms232012522. [PMID: 36293378 PMCID: PMC9604144 DOI: 10.3390/ijms232012522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 virus can utilize host cell proteases to facilitate cell entry, whereby the Spike (S) protein is cleaved at two specific sites to enable membrane fusion. Furin, transmembrane protease serine 2 (TMPRSS2), and cathepsin L (CatL) are the major proteases implicated, and are thus targets for anti-viral therapy. The human serpin (serine protease inhibitor) alpha-1 antitrypsin (A1AT) shows inhibitory activity for TMPRSS2, and has previously been found to suppress cell infection with SARS-CoV-2. Here, we have generated modified serpin inhibitors with increased specificity for these cellular proteases. Using SerpinB3 (SCCA-1), a cross-class inhibitor of CatL, as a scaffold, we have designed and produced reactive centre loop (RCL) variants to more specifically target both furin and TMPRSS2. Two further variants were generated by substituting the RCL P7–P1 with the spike protein S1/S2 cleavage site from either SARS-CoV-2 alpha or delta (P681R) sequences. Altered inhibitory specificity of purified recombinant proteins was verified in protease assays, with attenuated CatL inhibition and gain of furin or TMPRSS2 inhibition, as predicted, and modified serpins were shown to block S protein cleavage in vitro. Furthermore, the serpin variants were able to inhibit S-pseudoparticle entry into A549-ACE2-TMPRSS2 cells and suppress SARS-CoV-2 replication in Vero E6 cells expressing TMPRSS2. The construct designed to inhibit TMPRSS2 (B3-TMP) was most potent. It was more effective than A1AT for TMPRSS2 enzyme inhibition (with an eighteen-fold improvement in the second order inhibition rate constant) and for blocking SARS-CoV-2 viral replication. These findings advance the potential for serpin RCL mutagenesis to generate new inhibitors, and may lead to novel anti-viral biological molecules.
Collapse
|
97
|
Amidei A, Dobrovolny HM. Estimation of virus-mediated cell fusion rate of SARS-CoV-2. Virology 2022; 575:91-100. [PMID: 36088794 PMCID: PMC9449781 DOI: 10.1016/j.virol.2022.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 12/22/2022]
Abstract
Several viruses have the ability to form large multinucleated cells known as syncytia. Many properties of syncytia and the role they play in the evolution of a viral infection are not well understood. One basic question that has not yet been answered is how quickly syncytia form. We use a novel mathematical model of cell-cell fusion assays and apply it to experimental data from SARS-CoV-2 fusion assays to provide the first estimates of virus-mediated cell fusion rate. We find that for SARS-CoV2, the fusion rate is in the range of 6 × 10-4-12×10-4/h. We also use our model to compare fusion rates when the protease TMPRSS2 is overexpressed (2-4 times larger fusion rate), when the protease furin is removed (one third the original fusion rate), and when the spike protein is altered (1/10th the original fusion rate). The use of mathematical models allows us to provide additional quantitative information about syncytia formation.
Collapse
Affiliation(s)
- Ava Amidei
- Department of Chemistry & Biochemistry, Texas Christian University, Fort Worth, TX, USA
| | - Hana M Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX, USA.
| |
Collapse
|
98
|
McCrone JT, Hill V, Bajaj S, Pena RE, Lambert BC, Inward R, Bhatt S, Volz E, Ruis C, Dellicour S, Baele G, Zarebski AE, Sadilek A, Wu N, Schneider A, Ji X, Raghwani J, Jackson B, Colquhoun R, O'Toole Á, Peacock TP, Twohig K, Thelwall S, Dabrera G, Myers R, Faria NR, Huber C, Bogoch II, Khan K, du Plessis L, Barrett JC, Aanensen DM, Barclay WS, Chand M, Connor T, Loman NJ, Suchard MA, Pybus OG, Rambaut A, Kraemer MUG. Context-specific emergence and growth of the SARS-CoV-2 Delta variant. Nature 2022; 610:154-160. [PMID: 35952712 PMCID: PMC9534748 DOI: 10.1038/s41586-022-05200-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/05/2022] [Indexed: 02/01/2023]
Abstract
The SARS-CoV-2 Delta (Pango lineage B.1.617.2) variant of concern spread globally, causing resurgences of COVID-19 worldwide1,2. The emergence of the Delta variant in the UK occurred on the background of a heterogeneous landscape of immunity and relaxation of non-pharmaceutical interventions. Here we analyse 52,992 SARS-CoV-2 genomes from England together with 93,649 genomes from the rest of the world to reconstruct the emergence of Delta and quantify its introduction to and regional dissemination across England in the context of changing travel and social restrictions. Using analysis of human movement, contact tracing and virus genomic data, we find that the geographic focus of the expansion of Delta shifted from India to a more global pattern in early May 2021. In England, Delta lineages were introduced more than 1,000 times and spread nationally as non-pharmaceutical interventions were relaxed. We find that hotel quarantine for travellers reduced onward transmission from importations; however, the transmission chains that later dominated the Delta wave in England were seeded before travel restrictions were introduced. Increasing inter-regional travel within England drove the nationwide dissemination of Delta, with some cities receiving more than 2,000 observable lineage introductions from elsewhere. Subsequently, increased levels of local population mixing-and not the number of importations-were associated with the faster relative spread of Delta. The invasion dynamics of Delta depended on spatial heterogeneity in contact patterns, and our findings will inform optimal spatial interventions to reduce the transmission of current and future variants of concern, such as Omicron (Pango lineage B.1.1.529).
Collapse
Affiliation(s)
- John T McCrone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Verity Hill
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Sumali Bajaj
- Department of Zoology, University of Oxford, Oxford, UK
| | | | - Ben C Lambert
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Rhys Inward
- Department of Zoology, University of Oxford, Oxford, UK
- MRC Centre of Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK
| | - Samir Bhatt
- MRC Centre of Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Erik Volz
- MRC Centre of Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK
| | - Christopher Ruis
- Molecular Immunity Unit, Department of Medicine, Cambridge University, Cambridge, UK
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | | | | | - Neo Wu
- Google, Mountain View, CA, USA
| | | | - Xiang Ji
- Department of Mathematics, School of Science and Engineering, Tulane University, New Orleans, LA, USA
| | | | - Ben Jackson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Rachel Colquhoun
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Áine O'Toole
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
- UK Health Security Agency, London, UK
| | | | | | | | | | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, UK
- MRC Centre of Global Infectious Disease Analysis, Jameel Institute for Disease and Emergency Analytics, Imperial College London, London, UK
- Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | - Isaac I Bogoch
- Divisions of Internal Medicine and Infectious Diseases, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Kamran Khan
- BlueDot, Toronto, Ontario, Canada
- Department of Medicine, Division of Infectious Diseases, University of Toronto, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, Ontario, Canada
| | - Louis du Plessis
- Department of Zoology, University of Oxford, Oxford, UK
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wendy S Barclay
- Department of Infectious Disease, Imperial College London, London, UK
| | | | - Thomas Connor
- Pathogen Genomics Unit, Public Health Wales NHS Trust, Cardiff, UK
- School of Biosciences, The Sir Martin Evans Building, Cardiff University, Cardiff, UK
- Quadram Institute, Norwich, UK
| | - Nicholas J Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Marc A Suchard
- Departments of Biostatistics, Biomathematics and Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Pathobiology and Population Sciences, Royal Veterinary College London, London, UK.
- Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK.
| | - Moritz U G Kraemer
- Department of Zoology, University of Oxford, Oxford, UK.
- Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| |
Collapse
|
99
|
Abstract
SARS-CoV-2, the virus that causes coronavirus disease (COVID)-19, has become a persistent global health threat. Individuals who are symptomatic for COVID-19 frequently exhibit respiratory illness, which is often accompanied by neurological symptoms of anosmia and fatigue. Mounting clinical data also indicate that many COVID-19 patients display long-term neurological disorders postinfection such as cognitive decline, which emphasizes the need to further elucidate the effects of COVID-19 on the central nervous system. In this review article, we summarize an emerging body of literature describing the impact of SARS-CoV-2 infection on central nervous system (CNS) health and highlight important areas of future investigation.
Collapse
Affiliation(s)
- Nick R. Natale
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
- Global Biothreats Graduate Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
100
|
Berry F, Morin‐Dewaele M, Majidipur A, Jamet T, Bartier S, Ignjatovic E, Toniutti D, Gaspar Lopes J, Soyeux‐Porte P, Maillé P, Saldana C, Brillet R, Ahnou N, Softic L, Couturaud B, Huet É, Ahmed‐Belkacem A, Fourati S, Louis B, Coste A, Béquignon É, de la Taille A, Destouches D, Vacherot F, Pawlotsky J, Firlej V, Bruscella P. Proviral role of human respiratory epithelial cell-derived small extracellular vesicles in SARS-CoV-2 infection. J Extracell Vesicles 2022; 11:e12269. [PMID: 36271885 PMCID: PMC9587708 DOI: 10.1002/jev2.12269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/20/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
Small Extracellular Vesicles (sEVs) are 50-200 nm in diameter vesicles delimited by a lipid bilayer, formed within the endosomal network or derived from the plasma membrane. They are secreted in various biological fluids, including airway nasal mucus. The goal of this work was to understand the role of sEVs present in the mucus (mu-sEVs) produced by human nasal epithelial cells (HNECs) in SARS-CoV-2 infection. We show that uninfected HNECs produce mu-sEVs containing SARS-CoV-2 receptor ACE2 and activated protease TMPRSS2. mu-sEVs cleave prefusion viral Spike proteins at the S1/S2 boundary, resulting in higher proportions of prefusion S proteins exposing their receptor binding domain in an 'open' conformation, thereby facilitating receptor binding at the cell surface. We show that the role of nasal mu-sEVs is to complete prefusion Spike priming performed by intracellular furin during viral egress from infected cells. This effect is mediated by vesicular TMPRSS2 activity, rendering SARS-CoV-2 virions prone to entry into target cells using the 'early', TMPRSS2-dependent pathway instead of the 'late', cathepsin-dependent route. These results indicate that prefusion Spike priming by mu-sEVs in the nasal cavity plays a role in viral tropism. They also show that nasal mucus does not protect from SARS-CoV-2 infection, but instead facilitates it.
Collapse
Affiliation(s)
- François Berry
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Margot Morin‐Dewaele
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Amene Majidipur
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Thibaud Jamet
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Sophie Bartier
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Eva Ignjatovic
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Donatella Toniutti
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Jeanne Gaspar Lopes
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Pascale Soyeux‐Porte
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Pascale Maillé
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of PathologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Carolina Saldana
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance,Department of OncologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Rozenn Brillet
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Nazim Ahnou
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Laurent Softic
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Benoit Couturaud
- Institute of Chemistry and Materials (ICMPE)Univ Paris Est Creteil, CNRS UMR7182CréteilFrance
| | - Éric Huet
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Abdelhakim Ahmed‐Belkacem
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| | - Slim Fourati
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of VirologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Bruno Louis
- Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - André Coste
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Émilie Béquignon
- Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Intercommunal de CréteilCréteilFrance,Department of ENT and Cervico‐Facial SurgeryAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Department of PulmonologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance,Institut Mondor de Recherche Biomédicale, INSERM U955, CNRS EMR 7000, Team “Biomechanics and Respiratory System”Univ Paris Est CreteilCréteilFrance
| | - Alexandre de la Taille
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance,Department of UrologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Damien Destouches
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Francis Vacherot
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Jean‐Michel Pawlotsky
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance,Department of VirologyAP‐HP, Centre Hospitalier Universitaire Henri MondorCréteilFrance
| | - Virginie Firlej
- Team “Therapeutic Resistance in Prostate Cancer” (TRePCa)Univ Paris Est CreteilCréteilFrance
| | - Patrice Bruscella
- Institut Mondor de Recherche Biomédicale, INSERM U955, Team “Viruses, Hepatology, Cancer”Univ Paris Est CreteilCréteilFrance
| |
Collapse
|