51
|
Santos Franco S, Raveh-Amit H, Kobolák J, Alqahtani MH, Mobasheri A, Dinnyes A. The crossroads between cancer stem cells and aging. BMC Cancer 2015; 15 Suppl 1:S1. [PMID: 25708542 PMCID: PMC4331724 DOI: 10.1186/1471-2407-15-s1-s1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The cancer stem cell (CSC) hypothesis suggests that only a subpopulation of cells within a tumour is responsible for the initiation and progression of neoplasia. The original and best evidence for the existence of CSCs came from advances in the field of haematological malignancies. Thus far, putative CSCs have been isolated from various solid and non-solid tumours and shown to possess self-renewal, differentiation, and cancer regeneration properties. Although research in the field is progressing extremely fast, proof of concept for the CSC hypothesis is still lacking and key questions remain unanswered, e.g. the cell of origin for these cells. Nevertheless, it is undisputed that neoplastic transformation is associated with genetic and epigenetic alterations of normal cells, and a better understanding of these complex processes is of utmost importance for developing new anti-cancer therapies. In the present review, we discuss the CSC hypothesis with special emphasis on age-associated alterations that govern carcinogenesis, at least in some types of tumours. We present evidence from the scientific literature for age-related genetic and epigenetic alterations leading to cancer and discuss the main challenges in the field.
Collapse
|
52
|
Pesce ER, Blatch GL, Edkins AL. Hsp40 Co-chaperones as Drug Targets: Towards the Development of Specific Inhibitors. TOPICS IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1007/7355_2015_92] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
53
|
Toma-Jonik A, Widlak W, Korfanty J, Cichon T, Smolarczyk R, Gogler-Piglowska A, Widlak P, Vydra N. Active heat shock transcription factor 1 supports migration of the melanoma cells via vinculin down-regulation. Cell Signal 2014; 27:394-401. [PMID: 25435429 DOI: 10.1016/j.cellsig.2014.11.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/23/2014] [Accepted: 11/06/2014] [Indexed: 12/17/2022]
Abstract
Heat shock transcription factor 1 (HSF1), the major regulator of stress response, is frequently activated in cancer and has an apparent role in malignant transformation. Here we analyzed the influence of the over-expression of a constitutively active transcriptionally-competent HSF1 mutant form on phenotypes of mouse and human melanoma cells. We observed that the expression of active HSF1 supported anchorage-independent growth in vitro, and metastatic spread in the animal model in vivo, although the proliferation rate of cancer cells was not affected. Furthermore, active HSF1 enhanced cell motility, reduced the adherence of cells to a fibronectin-coated surface, and affected the actin cytoskeleton. We found that although the expression of active HSF1 did not affect levels of epithelial-to-mesenchymal transition markers, it caused transcriptional down-regulation of vinculin, protein involved in cell motility, and adherence. Functional HSF1-binding sites were found in mouse and human Vcl/VCL genes, indicating a direct role of HSF1 in the regulation of this gene. An apparent association between HSF1-induced down-regulation of vinculin, increased motility, and a reduced adherence of cells suggests a possible mechanism of HSF1-mediated enhancement of the metastatic potential of cancer cells.
Collapse
Affiliation(s)
- Agnieszka Toma-Jonik
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Wieslawa Widlak
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Joanna Korfanty
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Tomasz Cichon
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Ryszard Smolarczyk
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Agnieszka Gogler-Piglowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Piotr Widlak
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| | - Natalia Vydra
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-101 Gliwice, Poland.
| |
Collapse
|
54
|
JIANG QIYING, ZHANG ZHI, HU YANZHONG, MA YUANFANG. Function of Hsf1 in SV40 T-antigen-transformed HEK293T cells. Mol Med Rep 2014; 10:3139-44. [DOI: 10.3892/mmr.2014.2619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 03/07/2014] [Indexed: 11/06/2022] Open
|
55
|
Barve A, Jin W, Cheng K. Prostate cancer relevant antigens and enzymes for targeted drug delivery. J Control Release 2014; 187:118-32. [PMID: 24878184 DOI: 10.1016/j.jconrel.2014.05.035] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/13/2014] [Accepted: 05/17/2014] [Indexed: 12/26/2022]
Abstract
Chemotherapy is one of the most widely used approaches in combating advanced prostate cancer, but its therapeutic efficacy is usually insufficient due to poor specificity and associated toxicity. Lack of targeted delivery to prostate cancer cells is also the primary obstacles in achieving feasible therapeutic effect of other promising agents including peptide, protein, and nucleic acid. Consequently, there remains a critical need for strategies to increase the selectivity of anti-prostate cancer agents. This review will focus on various prostate cancer-relevant antigens and enzymes that could be exploited for prostate cancer targeted drug delivery. Among various targeting strategies, active targeting is the most advanced approach to specifically deliver drugs to their designated cancer cells. In this approach, drug carriers are modified with targeting ligands that can specifically bind to prostate cancer-specific antigens. Moreover, there are several specific enzymes in the tumor microenvironment of prostate cancer that can be exploited for stimulus-responsive drug delivery systems. These systems can specifically release the active drug in the tumor microenvironment of prostate cancer, leading to enhanced tumor penetration efficiency.
Collapse
Affiliation(s)
- Ashutosh Barve
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City 64108, USA
| | - Wei Jin
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City 64108, USA
| | - Kun Cheng
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City 64108, USA.
| |
Collapse
|
56
|
Pavan S, Musiani D, Torchiaro E, Migliardi G, Gai M, Di Cunto F, Erriquez J, Olivero M, Di Renzo MF. HSP27 is required for invasion and metastasis triggered by hepatocyte growth factor. Int J Cancer 2014; 134:1289-1299. [DOI: 10.1002/ijc.28464] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The hepatocyte growth factor (HGF) also known as scatter factor activates cancer cell invasion and metastasis. We show that in ovarian cancer cells HGF induced the phosphorylation of the small heat shock protein of 27 kDa (HSP27) by activating the p38MAPK. HSP27 is increased in many cancers at advanced stage including ovarian cancer and associated with cancer resistance to therapy and poor patients' survival. The phosphorylation of HSP27 regulates both its chaperone activity and its control of cytoskeletal stability. We show that HSP27 was necessary for the remodeling of actin filaments induced by HGF and that motility in vitro depended on the p38MAPK‐MK2 axis. In vivo, HSP27 silencing impaired the ability of the highly metastatic, HGF‐secreting ovarian cancer cells to give rise to spontaneous metastases. This was due to defective motility across the vessel wall and reduced growth. Indeed, HSP27 silencing impaired the ability of circulating ovarian cancer cells to home to the lungs and to form experimental hematogenous metastases and the capability of cancer cells to grow as subcutaneous xenografts. Moreover, HSP27 suppression resulted in the sensitization of xenografts to low doses of the chemotherapeutic paclitaxel, likely because HSP27 protected microtubules from bundling caused by the drug. Altogether, these data show that the HSP27 is required for the proinvasive and prometastatic activity of HGF and suggest that HSP27 might be not only a marker of progression of ovarian cancer, but also a suitable target for therapy.
Collapse
Affiliation(s)
- Simona Pavan
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Daniele Musiani
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Erica Torchiaro
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Giorgia Migliardi
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Molecular Pharmacology Institute for Cancer Research at Candiolo Torino Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences Molecular Biotechnology Center University of Torino Torino Italy
| | - Ferdinando Di Cunto
- Department of Molecular Biotechnology and Health Sciences Molecular Biotechnology Center University of Torino Torino Italy
| | - Jessica Erriquez
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Martina Olivero
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| | - Maria Flavia Di Renzo
- Department of Oncology University of Torino, School of Medicine Torino Italy
- Laboratory of Cancer Genetics Institute for Cancer Research at Candiolo Torino Italy
| |
Collapse
|
57
|
Bodzek P, Partyka R, Damasiewicz-Bodzek A. Antibodies against Hsp60 and Hsp65 in the sera of women with ovarian cancer. J Ovarian Res 2014; 7:30. [PMID: 24618330 PMCID: PMC3984705 DOI: 10.1186/1757-2215-7-30] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/15/2014] [Indexed: 01/06/2023] Open
Abstract
Background The aim of this study was to evaluate the concentrations of IgG antibodies against Hsp60 and Hsp65 in sera of patients with ovarian cancer at various stages of clinical progress and for different histopathological types of disease. Methods Serum samples from 149 patients with ovarian carcinoma and 80 healthy women were investigated. The concentrations of anti-Hsp60 and anti-Hsp65 antibodies were determined using the enzyme-linked immunosorbent assay technique. Results The mean concentrations of anti-Hsp60 and anti-Hsp65 antibodies in the patients with ovarian cancer did not differ significantly from the mean levels in healthy women. Analysis in relation to the clinical progression stage showed that the concentrations of these antibodies were higher when the neoplastic process was less advanced and at early stages significantly higher than in control group. Mean concentrations of both antibodies were not significantly different in relation to the histological type of the ovarian cancer. The use of chemotherapy as a primary anticancer treatment did not cause a significant change in the concentration of anti-Hsp60 antibodies, but the mean level of anti-Hsp65 after this treatment was significantly higher than in control group. Conclusions The immunological response to Hsp60/65 is increased in early clinical stages of ovarian cancer and the level of anti-hsp60/65 antibodies may be then a helpful diagnostic marker. Even antibodies against highly homologous Hsps may be cross-reactive only partially and differ by some functional properties.
Collapse
Affiliation(s)
- Piotr Bodzek
- Department of Gynaecology, Obstetrics and Oncological Gynaecology, Medical University of Silesia, Batorego 15, 41-902 Bytom, Poland.
| | | | | |
Collapse
|
58
|
Le Bert N, Gasser S. Advances in NKG2D ligand recognition and responses by NK cells. Immunol Cell Biol 2014; 92:230-6. [PMID: 24445601 DOI: 10.1038/icb.2013.111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 02/06/2023]
Abstract
The natural killer (NK) group 2 member D (NKG2D) is an activating immune receptor expressed on NK cells, cytotoxic T cells and a subset of other T cells. It has an important role in the recognition and lysis of a variety of infected and tumor cells. Despite significant gains in our understanding of NKG2D, the relevance of NKG2D and its ligands in human diseases has only recently started to emerge. Here, we present an overview of the recent advances in NKG2D biology, discuss the expression of NKG2D ligands in cancer patients and evaluate the diagnostic and prognostic potential of NKG2D ligands.
Collapse
Affiliation(s)
- Nina Le Bert
- Immunology Programme, Department of Microbiology, National University of Singapore, Singapore
| | - Stephan Gasser
- Immunology Programme, Department of Microbiology, National University of Singapore, Singapore
| |
Collapse
|
59
|
Raynes R, Brunquell J, Westerheide SD. Stress Inducibility of SIRT1 and Its Role in Cytoprotection and Cancer. Genes Cancer 2013; 4:172-82. [PMID: 24020008 DOI: 10.1177/1947601913484497] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cells must continuously respond to stressful insults via the upregulation of cytoprotective pathways. The longevity factor and deacetylase SIRT1 plays a critical role in coordinating this cellular response to stress. SIRT1 activity and levels are regulated by cellular stressors, including metabolic, genotoxic, oxidative, and proteotoxic stress. As a stress sensor, SIRT1 impacts cell survival by deacetylating substrate proteins to drive the cell towards a cytoprotective pathway. Extreme stress conditions, however, can cause SIRT1 to lead cells down an apoptotic pathway instead. SIRT1 is frequently dysregulated in cancer cells and has been characterized to have a dual role as both an oncogene and a tumor suppressor, likely due to its pivotal function in regulating cytoprotection. Recently, the ability of SIRT1 to regulate HSF1-dependent induction of the heat shock response has highlighted another pathway through which SIRT1 can modulate cytoprotection. Activation of HSF1 results in the production of cytoprotective chaperones that can facilitate the transformed phenotype of cancer cells. In this review, we discuss the stress-dependent regulation of SIRT1. We highlight the role of SIRT1 in stress management and cytoprotection and emphasize SIRT1-dependent activation of HSF1 as a potential mechanism for cancer promotion.
Collapse
Affiliation(s)
- Rachel Raynes
- Department of Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | | | | |
Collapse
|
60
|
Sanghera SS, Skitzki JJ. Targeting the heat shock response in cancer: tipping the balance in transformed cells. Surg Oncol Clin N Am 2013; 22:665-84. [PMID: 24012394 DOI: 10.1016/j.soc.2013.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The elucidation of the heat shock response (HSR) as a mediator of cellular stress has created a framework for understanding how these processes may promote tumorigenesis. Furthermore, the identification of specific components of the HSR and how they are co-opted by cancer cells has led to the discovery of new therapeutic targets. A wide range of small molecule inhibitors of the HSR are in various stages of development for clinical application in patients with cancer. The introduction of these novel small molecule inhibitors offers the opportunity for synergy with existing therapies and the potential for highly targeted treatments.
Collapse
Affiliation(s)
- Sartaj S Sanghera
- Department of Surgical Oncology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | |
Collapse
|
61
|
Calderwood SK. HSF1, a versatile factor in tumorogenesis. Curr Mol Med 2013; 12:1102-7. [PMID: 22804234 DOI: 10.2174/156652412803306675] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/18/2012] [Accepted: 07/07/2012] [Indexed: 02/04/2023]
Abstract
HSF1 is an essential factor in the acute response to proteotoxic stress, in which it causes rapid transcription of heat shock protein (HSP) genes in order to permit survival of cells and restoration of global protein quality. In addition to this property however, HSF1 is chronically activated or overexpressed in a wide range of cancers and is essential for multiple pathways of malignant transformation. Studies in recent years indicate a remarkable pleiotropy in the properties of HSF1 in cancer. HSF1 functions as a transcription factor for HSP genes, reminiscent of its role in the stress response, and the resultant elevation in HSP levels leads to a reduction in programmed cell death and senescence and permits overexpression of mutated oncogenic protein clients required to fuel tumor growth. In addition HSF1 plays a role as a signal modulator, stimulating kinase activity, regulating energy metabolism and permitting the development of polyploidy in cancer cells. HSF1 can also function as an inhibitor of transcription and in cooperation with NuRD family factors can repress genes that oppose metastasis. Inhibitors of HSF1 are undergoing selection and future studies may see the testing of HSF1 as a target in cancer therapy.
Collapse
Affiliation(s)
- S K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
62
|
Lam RA, Chwee JY, Le Bert N, Sauer M, Pogge von Strandmann E, Gasser S. Regulation of self-ligands for activating natural killer cell receptors. Ann Med 2013; 45:384-94. [PMID: 23701136 DOI: 10.3109/07853890.2013.792495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are able to lyse infected and tumor cells while sparing healthy cells. Recognition of diseased cells by NK cells is governed by several activating and inhibitory receptors. We review numerous pathways that have been implicated in the regulation of self-ligands for activating receptors, including NKG2D, DNAM-1, LFA-1, NKp30, NKp44, NKp46, NKp65, and NKp80 found on NK cells and some T cells. Understanding how the regulation of self-encoded ligand expression is regulated may provide novel avenues for future therapeutic approaches to infections and cancer.
Collapse
Affiliation(s)
- Runyi A Lam
- Immunology Programme, Centre for Life Sciences, Department of Microbiology, National University of Singapore 117456, Singapore
| | | | | | | | | | | |
Collapse
|
63
|
The α crystallin domain of small heat shock protein b8 (Hspb8) acts as survival and differentiation factor in adult hippocampal neurogenesis. J Neurosci 2013; 33:5785-96. [PMID: 23536091 DOI: 10.1523/jneurosci.6452-11.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adult hippocampal neurogenesis is to a large degree controlled at the level of cell survival, and a number of potential mediators of this effect have been postulated. Here, we investigated the small heat shock protein Hspb8, which, because of its pleiotropic prosurvival effects in other systems, was considered a particularly promising candidate factor. Hspb8 is, for example, found in plaques of Alzheimer disease but exerts neuroprotective effects. We found that expression of Hspb8 increased during differentiation in vitro and was particularly associated with later stages (48-96 h) of differentiation. Gain-of-function and loss-of-function experiments supported the hypothesis that Hspb8 regulates cell survival of new neurons in vitro. In the dentate gyrus of adult mice in vivo, lentiviral overexpression of Hspb8 doubled the surviving cells and concomitantly promoted differentiation and net neurogenesis without affecting precursor cell proliferation. We also discovered that the truncated form of the crystallin domain of Hspb8 was sufficient to affect cell survival and neuronal differentiation in vitro and in vivo. Precursor cell experiments in vitro revealed that Hspb8 increases the phosphorylation of Akt and suggested that the prosurvival effect can be produced by a cell-autonomous mechanism. Analysis of hippocampal Hspb8 expression in mice of 69 strains of the recombinant inbred set BXD revealed that Hspb8 is a cis-acting gene whose expression was associated with clusters of transcript enriched in genes linked to growth factor signaling and apoptosis. Our results strongly suggest that Hspb8 and its α-crystallin domain might act as pleiotropic prosurvival factor in the adult hippocampus.
Collapse
|
64
|
Tabuchi Y, Kondo T. Targeting heat shock transcription factor 1 for novel hyperthermia therapy (review). Int J Mol Med 2013; 32:3-8. [PMID: 23636216 DOI: 10.3892/ijmm.2013.1367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/14/2013] [Indexed: 11/06/2022] Open
Abstract
Hyperthermia (HT) has shown promising antitumor effects against various types of malignant tumors, and its pleiotropic effects support its combined use with radiotherapy and/or chemotherapy. However, HT is rendered less effective by the acquisition of thermoresistance in tumors, which arises through the elevation of heat shock proteins (HSPs) or other tumor responses. In mammals, the induction of HSPs is principally regulated at the transcriptional level by the activation of heat shock transcription factor 1 (HSF1). This transactivator has been shown to be abundantly expressed in a wide variety of tumors in humans. In addition, HSF1 participates in the initiation, proliferation and maintenance of tumors. Of note, HSF1 silencing has been shown to prevent the progression of tumors and to enhance their sensitivity to HT. Here, we review the physiological and pathological roles of HSF1 in cancer cells, and discuss its potential as a therapeutic target for HT therapy.
Collapse
Affiliation(s)
- Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama 930-0194, Japan.
| | | |
Collapse
|
65
|
Zagouri F, Bournakis E, Koutsoukos K, Papadimitriou CA. Heat shock protein 90 (hsp90) expression and breast cancer. Pharmaceuticals (Basel) 2012; 5:1008-20. [PMID: 24280702 PMCID: PMC3816649 DOI: 10.3390/ph5091008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/30/2012] [Accepted: 09/10/2012] [Indexed: 01/08/2023] Open
Abstract
Hsp90 is an abundant protein in mammalian cells. It forms several discrete complexes, each containing distinct groups of co-chaperones that assist protein folding and refolding during stress, protein transport and degradation. It interacts with a variety of proteins that play key roles in breast neoplasia including estrogen receptors, tumor suppressor p53 protein, angiogenesis transcription factor HIF-1alpha, antiapoptotic kinase Akt, Raf-1 MAP kinase and a variety of receptor tyrosine kinases of the erbB family. Elevated Hsp90 expression has been documented in breast ductal carcinomas contributing to the proliferative activity of breast cancer cells; whilst a significantly decreased Hsp90 expression has been shown in infiltrative lobular carcinomas and lobular neoplasia. Hsp90 overexpression has been proposed as a component of a mechanism through which breast cancer cells become resistant to various stress stimuli. Therefore, pharmacological inhibition of HSPs can provide therapeutic opportunities in the field of cancer treatment. 17-allylamino,17-demethoxygeldanamycin is the first Hsp90 inhibitor that has clinically been investigated in phase II trial, yielding promising results in patients with HER2-overexpressing metastatic breast cancer, whilst other Hsp90 inhibitors (retaspimycin HCL, NVP-AUY922, NVP-BEP800, CNF2024/BIIB021, SNX-5422, STA-9090, etc.) are currently under evaluation.
Collapse
Affiliation(s)
- Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, School of Medicine, University of Athens, 80 Vas. Sofias Ave, 11528 Athens, Greece.
| | | | | | | |
Collapse
|
66
|
Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 2012; 87:19-48. [PMID: 22885793 DOI: 10.1007/s00204-012-0918-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (IMBECU), Scientific and Technological Center (CCT), CONICET, 5500 Mendoza, Argentina.
| | - Andre Patrick Arrigo
- Apoptosis Cancer and Development, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052-CNRS 5286, Claude Bernard University, Lyon-1, Cheney A Building, Centre Regional Léon Bérard, 28, rue Laennec 69008 LYON, France. ;
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA02215
| |
Collapse
|
67
|
West JD, Wang Y, Morano KA. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 2012; 25:2036-53. [PMID: 22799889 DOI: 10.1021/tx300264x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All cells have developed various mechanisms to respond and adapt to a variety of environmental challenges, including stresses that damage cellular proteins. One such response, the heat shock response (HSR), leads to the transcriptional activation of a family of molecular chaperone proteins that promote proper folding or clearance of damaged proteins within the cytosol. In addition to its role in protection against acute insults, the HSR also regulates lifespan and protects against protein misfolding that is associated with degenerative diseases of aging. As a result, identifying pharmacological regulators of the HSR has become an active area of research in recent years. Here, we review progress made in identifying small molecule activators of the HSR, what cellular targets these compounds interact with to drive response activation, and how such molecules may ultimately be employed to delay or reverse protein misfolding events that contribute to a number of diseases.
Collapse
Affiliation(s)
- James D West
- Biochemistry and Molecular Biology Program, Departments of Biology and Chemistry, The College of Wooster, Wooster, Ohio 44691, USA.
| | | | | |
Collapse
|
68
|
Zhao M, Shen F, Yin YX, Yang YY, Xiang DJ, Chen Q. Increased expression of heat shock protein 27 correlates with peritoneal metastasis in epithelial ovarian cancer. Reprod Sci 2012; 19:748-753. [PMID: 22534325 DOI: 10.1177/1933719111432875] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Ovarian cancer is the third most common gynecologic malignancy and the leading cause of death in gynecological cancer. Although the 5-year survival rate is increasing, peritoneal metastasis of ovarian cancer is still a problem because of no potential predictor. Heat shock proteins (HSPs) are a class of functionally related proteins that are highly expressed in many malignant cancers. Previous studies suggest high levels of HSP27 present in the serum of patients with ovarian cancer. In this study, we investigated whether the expression of HSP27 in epithelial ovarian cancer tissue was associated with peritoneal metastasis and whether HSP27 could be used as a potential predictor of peritoneal metastasis in epithelial ovarian cancer. Tissues from epithelial ovarian cancer with or without peritoneal metastasis were collected and the levels of HSP27 messenger RNA and protein determined by real-time polymerase chain reaction and Western blotting. Immunohistochemistry was used to determine the subcellular localization of HSP27. Immunohistochemistry images showed that HSP27 was highly expressed in the cytoplasm of epithelial cancer cells with peritoneal metastasis. Messenger RNA and protein levels of HSP27 were significantly increased in epithelial ovarian cancer with peritoneal metastasis compared with epithelial ovarian cancer without peritoneal metastasis. Higher expression of HSP27 correlated with poor clinical outcome. These data suggest that higher level of HSP27 was associated with peritoneal metastasis in epithelial ovarian cancer. Heat shock protein 27 may be a useful prognostic marker of poor survival and may provide a basis for the development of molecular therapeutics modulating this survival pathway.
Collapse
Affiliation(s)
- M Zhao
- Department of Gynaecology, Wuxi Maternity and Child Health Hospital Affiliated Nanjing Medical University, Wuxi, China.
| | | | | | | | | | | |
Collapse
|
69
|
Watson KD, Lai CY, Qin S, Kruse DE, Lin YC, Seo JW, Cardiff RD, Mahakian LM, Beegle J, Ingham ES, Curry FR, Reed RK, Ferrara KW. Ultrasound increases nanoparticle delivery by reducing intratumoral pressure and increasing transport in epithelial and epithelial-mesenchymal transition tumors. Cancer Res 2012; 72:1485-93. [PMID: 22282664 DOI: 10.1158/0008-5472.can-11-3232] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Acquisition of the epithelial-mesenchymal transition (EMT) tumor phenotype is associated with impaired chemotherapeutic delivery and a poor prognosis. In this study, we investigated the application of therapeutic ultrasound methods available in the clinic to increase nanotherapeutic particle accumulation in epithelial and EMT tumors by labeling particles with a positron emission tomography tracer. Epithelial tumors were highly vascularized with tight cell-cell junctions, compared with EMT tumors where cells displayed an irregular, elongated shape with loosened cell-cell adhesions and a reduction in E-cadherin and cytokeratins 8/18 and 19. Without ultrasound, the accumulation of liposomal nanoparticles administered to tumors in vivo was approximately 1.5 times greater in epithelial tumors than EMT tumors. When ultrasound was applied, both nanoaccumulation and apparent tumor permeability were increased in both settings. Notably, ultrasound effects differed with thermal and mechanical indices, such that increasing the thermal ultrasound dose increased nanoaccumulation in EMT tumors. Taken together, our results illustrate how ultrasound can be used to enhance nanoparticle accumulation in tumors by reducing their intratumoral pressure and increasing their vascular permeability.
Collapse
Affiliation(s)
- Katherine D Watson
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Protein kinase A regulates molecular chaperone transcription and protein aggregation. PLoS One 2011; 6:e28950. [PMID: 22216146 PMCID: PMC3245242 DOI: 10.1371/journal.pone.0028950] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 11/17/2011] [Indexed: 12/25/2022] Open
Abstract
Heat shock factor 1 (HSF1) regulates one of the major pathways of protein quality control and is essential for deterrence of protein-folding disorders, particularly in neuronal cells. However, HSF1 activity declines with age, a change that may open the door to progression of neurodegenerative disorders such as Huntington's disease. We have investigated mechanisms of HSF1 regulation that may become compromised with age. HSF1 binds stably to the catalytic domain of protein kinase A (PKAcα) and becomes phosphorylated on at least one regulatory serine residue (S320). We show here that PKA is essential for effective transcription of HSP genes by HSF1. PKA triggers a cascade involving HSF1 binding to the histone acetylase p300 and positive translation elongation factor 1 (p-TEFb) and phosphorylation of the c-terminal domain of RNA polymerase II, a key mechanism in the downstream steps of HSF1-mediated transcription. This cascade appears to play a key role in protein quality control in neuronal cells expressing aggregation-prone proteins with long poly-glutamine (poly-Q) tracts. Such proteins formed inclusion bodies that could be resolved by HSF1 activation during heat shock. Resolution of the inclusions was inhibited by knockdown of HSF1, PKAcα, or the pTEFb component CDK9, indicating a key role for the HSF1-PKA cascade in protein quality control.
Collapse
|
71
|
Sterrenberg JN, Blatch GL, Edkins AL. Human DNAJ in cancer and stem cells. Cancer Lett 2011; 312:129-42. [PMID: 21925790 DOI: 10.1016/j.canlet.2011.08.019] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/15/2011] [Accepted: 08/17/2011] [Indexed: 12/12/2022]
Abstract
The heat shock protein 40kDa (HSP40/DNAJ) co-chaperones constitute the largest and most diverse sub-group of the heat shock protein (HSP) family. DNAJ are widely accepted as regulators of HSP70 function, but also have roles as co-chaperones for the HSP90 chaperone machine, and a growing number of biological functions that may be independent of either of these chaperones. The DNAJ proteins are differentially expressed in human tissues and demonstrate the capacity to function to both promote and suppress cancer development by acting as chaperones for tumour suppressors or oncoproteins. We review the current literature on the function and expression of DNAJ in cancer, stem cells and cancer stem cells. Combining data from gene expression, proteomics and studies in other systems, we propose that DNAJ will be key regulators of cancer, stem cell and possibly cancer stem cell function. The diversity of DNAJ and their assorted roles in a range of biological functions means that selected DNAJ, provided there is limited redundancy and that a specific link to malignancy can be established, may yet provide an attractive target for specific and selective drug design for the development of anti-cancer treatments.
Collapse
Affiliation(s)
- Jason N Sterrenberg
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown South Africa
| | | | | |
Collapse
|
72
|
Diao D, Wang L, Zhang JX, Chen D, Liu H, Wei Y, Lu J, Peng J, Wang J. Mitogen/extracellular signal-regulated kinase kinase-5 promoter region polymorphisms affect the risk of sporadic colorectal cancer in a southern Chinese population. DNA Cell Biol 2011; 31:342-9. [PMID: 21861603 DOI: 10.1089/dna.2011.1232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitogen/extracellular signal-regulated kinase kinase-5 (MEK5), which belongs to a network of mitogen-activated protein kinase pathways, play a pivotal role in carcinogenesis. The purpose of this study was to investigate whether variants in the MEK5 gene promoter were involved in susceptivity of individuals to sporadic colorectal cancer (CRC). In the present hospital-based case-control study of 737 patients with sporadic CRC and 703 healthy control subjects in a southern Chinese population, the two polymorphisms of MEK5 promoter (i.e., rs7172582C>T and rs3743354T>C) were genotyped by TaqMan assay. There were significant differences between cases and controls in the genotype and allele distribution of the MEK5 gene rs3743354T>C polymorphism. The rs3743354 CC genotype was associated with a significantly decreased risk of CRC when compared with the TT genotype (adjusted odds ratios [ORs]=0.43; 95% confidence interval [CI], 0.24-0.77). Compared to the T allele, a significant correlation was detected between the presence of the C allele and decreased risk of CRC (adjusted OR=0.79; 95% CI, 0.61-0.94). The decreased risk of CRC associated with rs3743354 variant genotypes (i.e., CT+CC) was found in the smoker subgroup (adjusted OR=0.63; 95% CI=0.45-0.88). Further, environmental factors, including smoking and drinking, interacted with rs3743354C variant genotypes to reduce CRC risk. Western blot analysis showed that the levels of MEK5 protein in sporadic CRC neoplastic tissues and adjacent normal colorectal epithelium tissues were lower in the carriers of rs3743354 CC genotypes than that in those with rs3743354 TT genotypes or those with rs3743354 TC genotypes. However, no significant association was found between the rs7172582C>T polymorphism and risk of CRC. These data indicate that the rs3743354 polymorphism in the MEK5 promoter may affect the risk of developing CRC.
Collapse
Affiliation(s)
- Dechang Diao
- Guangdong Provincal Hospital of Traditional Chinese Medicine (the postdoctoral mobile research station of Guangzhou University of Traditional Chinese Medicine), Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Fang F, Chang R, Yang L. Heat shock factor 1 promotes invasion and metastasis of hepatocellular carcinoma in vitro and in vivo. Cancer 2011; 118:1782-94. [PMID: 22009757 DOI: 10.1002/cncr.26482] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/07/2011] [Accepted: 07/08/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Heat shock factor 1 (HSF1) is a powerful, multifaceted modifier of carcinogenesis. However, the clinical significance and biologic function of HSF1 in hepatocellular carcinoma (HCC) remain unknown. METHODS Quantitative reverse transcriptase-polymerase chain reaction analysis, Western blot analysis, and immunohistochemical staining were used to detect expression levels of HSF1, and its correlation with clinicopathologic parameters and the prognosis for patients with HCC were analyzed. In addition, the biologic function and molecular mechanisms of HSF1 in HCC were investigated in vitro and in vivo. RESULTS HSF1 levels were elevated predominantly in HCC, especially in venous emboli from HCC (P < .05), and high expression levels of HSF1 were correlated significantly with multiple nodules, venous invasion, absence of capsular formation, and high Edmondson-Steiner grade as well as poor overall survival and disease-free survival in patients with HCC (P < .05). Multivariate Cox regression analysis revealed that high HSF1 expression was an independent prognostic factor for overall survival in patients with HCC (relative risk, 4.874; P < .001). Finally, HSF1 was capable of promoting HCC cell migration and invasion in vitro and in vivo by facilitating the expression and phosphorylation of heat shock protein 27. CONCLUSIONS Collectively, the current findings suggested that HSF1 may serve as a novel prognostic marker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Feng Fang
- Department of Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | |
Collapse
|
74
|
Implication of heat shock factors in tumorigenesis: therapeutical potential. Cancers (Basel) 2011; 3:1158-81. [PMID: 24212658 PMCID: PMC3756408 DOI: 10.3390/cancers3011158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 02/23/2011] [Indexed: 12/17/2022] Open
Abstract
Heat Shock Factors (HSF) form a family of transcription factors (four in mammals) which were named according to the discovery of their activation by a heat shock. HSFs trigger the expression of genes encoding Heat Shock Proteins (HSPs) that function as molecular chaperones, contributing to establish a cytoprotective state to various proteotoxic stresses and in pathological conditions. Increasing evidence indicates that this ancient transcriptional protective program acts genome-widely and performs unexpected functions in the absence of experimentally defined stress. Indeed, HSFs are able to re-shape cellular pathways controlling longevity, growth, metabolism and development. The most well studied HSF, HSF1, has been found at elevated levels in tumors with high metastatic potential and is associated with poor prognosis. This is partly explained by the above-mentioned cytoprotective (HSP-dependent) function that may enable cancer cells to adapt to the initial oncogenic stress and to support malignant transformation. Nevertheless, HSF1 operates as major multifaceted enhancers of tumorigenesis through, not only the induction of classical heat shock genes, but also of “non-classical” targets. Indeed, in cancer cells, HSF1 regulates genes involved in core cellular functions including proliferation, survival, migration, protein synthesis, signal transduction, and glucose metabolism, making HSF1 a very attractive target in cancer therapy. In this review, we describe the different physiological roles of HSFs as well as the recent discoveries in term of non-cogenic potential of these HSFs, more specifically associated to the activation of “non-classical” HSF target genes. We also present an update on the compounds with potent HSF1-modulating activity of potential interest as anti-cancer therapeutic agents.
Collapse
|
75
|
Langmár Z, Vleskó G. A hősokkfehérjék lehetséges szerepe a petefészekrák kezelésében. Orv Hetil 2011; 152:92-5. [DOI: 10.1556/oh.2011.29024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
76
|
Weng D, Calderwood SK, Gong J. Preparation of a heat-shock protein 70-based vaccine from DC-tumor fusion cells. Methods Mol Biol 2011; 787:255-65. [PMID: 21898241 DOI: 10.1007/978-1-61779-295-3_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have developed an enhanced molecular chaperone-based vaccine through rapid isolation of heat-shock protein 70 peptide complexes (Hsp70.PC) after the fusion of tumor and dendritic cells (DCs) (Hsp70.PC-F). In this approach, the tumor antigens are introduced into the antigen-processing machinery of dendritic cells through the cell fusion process and, thus, we can obtain antigenic tumor peptides or their intermediates that have been processed by dendritic cells. Our results show that Hsp70.PC-F has increased immunogenicity compared to preparations from tumor cells alone and, therefore, constitutes an improved formulation of chaperone protein-based tumor vaccine.
Collapse
Affiliation(s)
- Desheng Weng
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | | |
Collapse
|
77
|
Zhang Y, Chou SD, Murshid A, Prince TL, Schreiner S, Stevenson MA, Calderwood SK. The role of heat shock factors in stress-induced transcription. Methods Mol Biol 2011; 787:21-32. [PMID: 21898224 DOI: 10.1007/978-1-61779-295-3_2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heat shock proteins (HSPs) are rapidly induced after stresses, such as heat shock, and accumulate at high concentrations in cells. HSP induction involves a family of heat shock transcription factors that bind the heat shock elements of the HSP genes and mediate transcription in trans. We discuss methods for the study of HSP binding to HSP promoters and the consequent increases in HSP gene expression in vitro and in vivo.
Collapse
Affiliation(s)
- Yue Zhang
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
78
|
Giusti L, Cetani F, Ciregia F, Da Valle Y, Donadio E, Giannaccini G, Banti C, Pardi E, Saponaro F, Basolo F, Berti P, Miccoli P, Pinchera A, Marcocci C, Lucacchini A. A proteomic approach to study parathyroid glands. MOLECULAR BIOSYSTEMS 2010; 7:687-99. [PMID: 21180715 DOI: 10.1039/c0mb00191k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parathyroid tumours are heterogeneous and in some cases the diagnosis may be difficult using histological features. In this study we used a two-dimensional electrophoresis (2D)/mass spectrometry (MS)-based approach to examine the global changes of parathyroid adenoma tissues protein profile compared to the parathyroid normal tissues. Validation of protein expression was performed by immunoblotting using specific antibodies. Ingenuity software was used to identify the biological processes to which these proteins belong and to construct a potential network. A total of 30 proteins were found to be differentially expressed, of which 22 resulted in being over-expressed. Proteins identified by 2D/MS/MS proteomics were classified into functional categories and a major change (≥ 2-fold) in terms of expression was found in proteins involved in response to biotic stimuli, cell organization and signal transduction. After Ingenuity analysis, 14-3-3 ζ/δ appears to be a key protein in the network of parathyroid adenoma, where it is linked to other proteins such as annexin A2, B box and SPRY domain-containing protein (BSPRY), p53 and epidermal growth factor receptor (EGFR). Our results suggest that the proteomic approach was able to differentiate the protein profiles of normal parathyroid and parathyroid adenoma and identify a panel of proteins which are differentially expressed. The functional role of these proteins in the network of intracellular pathways is discussed.
Collapse
Affiliation(s)
- Laura Giusti
- Department of Psychiatry, Neurobiology, Pharmacology and Biotechnology, Via, Bonanno 6, 56126 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Hyperthermia has been known to induce malformations in numerous animal models as well being associated with human abnormalities. This was apparent particularly when the hyperthermia exposure was during the early stages of neural development. Although it was recognized relatively early that these exposures induced cell death, the specific molecular mechanism of how a brief heat exposure was translated in to specific cellular functions remains largely unknown. While our understanding of the events that govern how cells react to heat, or stresses in general, has increased, there is much that remains undiscovered. In this brief review, animal and clinical observations are outlined as are some of the scientific explorations that were undertaken to characterize, define, and better understand the morphological, biochemical, and molecular effects of hyperthermia on the developing embryo.
Collapse
Affiliation(s)
- Gregory D Bennett
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198-5805, USA.
| |
Collapse
|
80
|
Silencing HSF1 by short hairpin RNA decreases cell proliferation and enhances sensitivity to hyperthermia in human melanoma cell lines. J Dermatol Sci 2010; 60:187-92. [DOI: 10.1016/j.jdermsci.2010.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 09/21/2010] [Accepted: 09/29/2010] [Indexed: 11/19/2022]
|
81
|
Murshid A, Chou SD, Prince T, Zhang Y, Bharti A, Calderwood SK. Protein kinase A binds and activates heat shock factor 1. PLoS One 2010; 5:e13830. [PMID: 21085490 PMCID: PMC2976705 DOI: 10.1371/journal.pone.0013830] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 10/18/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Many inducible transcription factors are regulated through batteries of posttranslational modifications that couple their activity to inducing stimuli. We have studied such regulation of Heat Shock Factor 1 (HSF1), a key protein in control of the heat shock response, and a participant in carcinogenisis, neurological health and aging. As the mechanisms involved in the intracellular regulation of HSF1 in good health and its dysregulation in disease are still incomplete we are investigating the role of posttranslational modifications in such regulation. METHODOLOGY/PRINCIPAL FINDINGS In a proteomic study of HSF1 binding partners, we have discovered its association with the pleiotropic protein kinase A (PKA). HSF1 binds avidly to the catalytic subunit of PKA, (PKAcα) and becomes phosphorylated on a novel serine phosphorylation site within its central regulatory domain (serine 320 or S320), both in vitro and in vivo. Intracellular PKAcα levels and phosphorylation of HSF1 at S320 were both required for HSF1 to be localized to the nucleus, bind to response elements in the promoter of an HSF1 target gene (hsp70.1) and activate hsp70.1 after stress. Reduction in PKAcα levels by small hairpin RNA led to HSF1 exclusion from the nucleus, its exodus from the hsp70.1 promoter and decreased hsp70.1 transcription. Likewise, null mutation of HSF1 at S320 by alanine substitution for serine led to an HSF1 species excluded from the nucleus and deficient in hsp70.1 activation. CONCLUSIONS These findings of PKA regulation of HSF1 through S320 phosphorylation add to our knowledge of the signaling networks converging on this factor and may contribute to elucidating its complex roles in the stress response and understanding HSF1 dysregulation in disease.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shiuh-Dih Chou
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Thomas Prince
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Yue Zhang
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ajit Bharti
- Stress Response Center, Boston University Medical Center, Boston, Massachusetts, United States of America
| | - Stuart K. Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
82
|
Abstract
The heat shock response was originally characterized as the induction of a set of major heat shock proteins encoded by heat shock genes. Because heat shock proteins act as molecular chaperones that facilitate protein folding and suppress protein aggregation, this response plays a major role in maintaining protein homeostasis. The heat shock response is regulated mainly at the level of transcription by heat shock factors (HSFs) in eukaryotes. HSF1 is a master regulator of the heat shock genes in mammalian cells, as is HSF3 in avian cells. HSFs play a significant role in suppressing protein misfolding in cells and in ameliorating the progression of Caenorhabditis elegans, Drosophila and mouse models of protein-misfolding disorders, by inducing the expression of heat shock genes. Recently, numerous HSF target genes were identified, such as the classical heat shock genes and other heat-inducible genes, called nonclassical heat shock genes in this study. Importance of the expression of the nonclassical heat shock genes was evidenced by the fact that mouse HSF3 and chicken HSF1 play a substantial role in the protection of cells from heat shock without inducing classical heat shock genes. Furthermore, HSF2 and HSF4, as well as HSF1, shown to have roles in development, were also revealed to be necessary for the expression of certain nonclassical heat shock genes. Thus, the heat shock response regulated by the HSF family should consist of the induction of classical as well as of nonclassical heat shock genes, both of which might be required to maintain protein homeostasis.
Collapse
|
83
|
Chen J, Emara N, Solomides C, Parekh H, Simpkins H. Resistance to platinum-based chemotherapy in lung cancer cell lines. Cancer Chemother Pharmacol 2010; 66:1103-11. [PMID: 20953859 PMCID: PMC2957658 DOI: 10.1007/s00280-010-1268-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE A series of six lung cancer cell lines of different cell origin (including small cell and mesothelioma) were characterized immunohistochemically and the role of a series of protein candidates previously implicated in drug resistance were investigated. METHODS These include colony-forming and cell growth assays, immunohistochemistry, siRNA knockouts, real-time PCR and western blots. RESULTS No correlation was found with AKT, HO-1, HO-2, GRP78, 14-3-3zeta and ERCC1 levels and cisplatin nor oxaliplatin cytotoxicity, but an association was observed with levels of the enzyme, dihydrodiol dehydrogenase (DDH); an enzyme previously implicated in the development of platinum resistance. The relationship appeared to hold true for those cell lines derived from lung epithelial primary tumors but not for the neuroendocrine/small-cell and mesothelioma cell lines. siRNA knockouts to DDH-1 and DDH-2 were prepared with the cell line exhibiting the greatest resistance to cisplatin (A549) resulting in marked decreases in the DDH isoforms as assessed by real-time PCR, western blot and enzymatic activity. The DDH-1 knockout was far more sensitive to cisplatin than the DDH-2 knockout. CONCLUSION Thus, sensitivity to cisplatin appeared to be associated with DDH levels in epithelial lung cancer cell lines with the DDH-1 isoform producing the greatest effect. Results in keeping with transfection experiments with ovarian and other cell lines.
Collapse
Affiliation(s)
- Jianli Chen
- North Shore-Long Island Jewish Health System, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|
84
|
Cohen M, Dromard M, Petignat P. Heat shock proteins in ovarian cancer: A potential target for therapy. Gynecol Oncol 2010; 119:164-6. [PMID: 20580418 DOI: 10.1016/j.ygyno.2010.05.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 11/26/2022]
|
85
|
Rylander MN, Feng Y, Zimmermann K, Diller KR. Measurement and mathematical modeling of thermally induced injury and heat shock protein expression kinetics in normal and cancerous prostate cells. Int J Hyperthermia 2010; 26:748-64. [DOI: 10.3109/02656736.2010.486778] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
86
|
Wang H, Xing J, Wang F, Han W, Ren H, Wu T, Chen W. Expression of Hsp27 and Hsp70 in lymphocytes and plasma in healthy workers and coal miners with lung cancer. ACTA ACUST UNITED AC 2010; 30:415-20. [DOI: 10.1007/s11596-010-0441-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Indexed: 01/24/2023]
|
87
|
Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 2010; 11:545-55. [PMID: 20628411 PMCID: PMC3402356 DOI: 10.1038/nrm2938] [Citation(s) in RCA: 1034] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heat shock factors (HSFs) are essential for all organisms to survive exposures to acute stress. They are best known as inducible transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Four members of the HSF family are also important for normal development and lifespan-enhancing pathways, and the repertoire of HSF targets has thus expanded well beyond the heat shock genes. These unexpected observations have uncovered complex layers of post-translational regulation of HSFs that integrate the metabolic state of the cell with stress biology, and in doing so control fundamental aspects of the health of the proteome and ageing.
Collapse
Affiliation(s)
- Malin Akerfelt
- Department of Biosciences, Abo Akademi University, BioCity, 20520 Turku, Finland
| | | | | |
Collapse
|
88
|
Fleron M, Greffe Y, Musmeci D, Massart AC, Hennequiere V, Mazzucchelli G, Waltregny D, De Pauw-Gillet MC, Castronovo V, De Pauw E, Turtoi A. Novel post-digest isotope coded protein labeling method for phospho- and glycoproteome analysis. J Proteomics 2010; 73:1986-2005. [PMID: 20601274 DOI: 10.1016/j.jprot.2010.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 06/02/2010] [Accepted: 06/03/2010] [Indexed: 11/19/2022]
Abstract
In the field of proteomics there is an apparent lack of reliable methodology for quantification of posttranslational modifications. Present study offers a novel post-digest ICPL quantification strategy directed towards characterization of phosphorylated and glycosylated proteins. The value of the method is demonstrated based on the comparison of two prostate related metastatic cell lines originating from two distinct metastasis sites (PC3 and LNCaP). The method consists of protein digestion, ICPL labeling, mixing of the samples, PTM enrichment and MS-analysis. Phosphorylated peptides were isolated using TiO(2), whereas the enrichment of glycosylated peptides was performed using hydrazide based chemistry. Isolated PTM peptides were analyzed along with non enriched sample using 2D-(SCX-RP)-Nano-HPLC-MS/MS instrumentation. Taken together the novel ICPL labeling method offered a significant improvement of the number of identified (∼600 individual proteins) and quantified proteins (>95%) in comparison to the classical ICPL method. The results were validated using alternative protein quantification strategies as well as label-free MS quantification method. On the biological level, the comparison of PC3 and LNCaP cells has shown specific modulation of proteins implicated in the fundamental process related to metastasis dissemination. Finally, a preliminary study involving clinically relevant autopsy cases reiterated the potential biological value of the discovered proteins.
Collapse
Affiliation(s)
- M Fleron
- Histology-Cytology Laboratory, Department of Biomedical and Preclinical Sciences, University of Liege, B-4000 Liege, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Liu MH, Wang MC, Gao N, Li Y, Jiang WG. Expression and clinical significance of glucose regulated proteins GRP78 and GRP94 in human colon cancer. Chin J Cancer Res 2010. [DOI: 10.1007/s11670-010-0042-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
90
|
Ruan W, Wang Y, Ma Y, Xing X, Lin J, Cui J, Lai M. HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:41. [PMID: 20433702 PMCID: PMC2873425 DOI: 10.1186/1756-9966-29-41] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 04/30/2010] [Indexed: 01/12/2023]
Abstract
Background In our previous study, it was well defined that IGFBP7 was an important tumor suppressor gene in colorectal cancer (CRC). We aimed to uncover the downstream molecules responsible for IGFBP7's behaviour in this study. Methods Differentially expressed protein profiles between PcDNA3.1(IGFBP7)-transfected RKO cells and the empty vector transfected controls were generated by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) identification. The selected differentially expressed protein induced by IGFBP7 was confirmed by western blot and ELISA. The biological behaviour of the protein was explored by cell growth assay and colony formation assay. Results Six unique proteins were found differentially expressed in PcDNA3.1(IGFBP7)-transfected RKO cells, including albumin (ALB), 60 kDa heat shock protein(HSP60), Actin cytoplasmic 1 or 2, pyruvate kinase muscle 2(PKM2), beta subunit of phenylalanyl-tRNA synthetase(FARSB) and hypothetical protein. The downregulation of HSP60 by IGFBP7 was confirmed by western blot and ELISA. Recombinant human HSP60 protein could increase the proliferation rate and the colony formation ability of PcDNA3.1(IGFBP7)-RKO cells. Conclusion HSP60 was an important downstream molecule of IGFBP7. The downregulation of HSP60 induced by IGFBP7 may be, at least in part, responsible for IGFBP7's tumor suppressive biological behaviour in CRC.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Pathology, School of Medicine, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China
| | | | | | | | | | | | | |
Collapse
|
91
|
Bao BY, Lin VC, Huang SH, Pao JB, Chang TY, Lu TL, Lan YH, Chen LM, Ting WC, Yang WH, Hsieh CJ, Huang SP. Clinical significance of tumor necrosis factor receptor superfamily member 11b polymorphism in prostate cancer. Ann Surg Oncol 2010; 17:1675-81. [PMID: 20204532 DOI: 10.1245/s10434-010-0994-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Bone metastases are the most critical complication of prostate cancer (PCa), resulting in severe morbidity and mortality. Tumor necrosis factor receptor superfamily member 11b (TNFRSF11B) is a critical regulator between PCa cells and the bone environment. Recently, TNFRSF11B rs10505346 has been implicated in PCa risk in the Cancer Genetic Markers of Susceptibility genomewide association study. However, the association between this variant and biochemical failure in PCa patients receiving radical prostatectomy (RP) has not been determined. METHODS Associations of TNFRSF11B rs10505346 with age at diagnosis, preoperative prostate-specific antigen (PSA) level, Gleason score, pathologic stage, surgical margin, and PSA recurrence were evaluated in a cohort of 314 localized PCa patients receiving RP. The prognostic significance on PSA recurrence was assessed by Kaplan-Meier analysis and Cox regression model. RESULTS The mean level of preoperative PSA and the relative risks of PSA recurrence after RP were lower in individuals with T allele than in those with the G allele at TNFRSF11B rs10505346 (P = 0.019 and 0.014, respectively). The T allele of rs10505346 remained a protective factor against PSA recurrence (P = 0.022) in multivariate Cox regression model after considering all clinicopathological risk factors except PSA level. CONCLUSIONS Our data suggest that TNFRSF11B rs10505346 is associated with PSA level and might be a prognostic factor for the recurrence of PSA in PCa patients receiving RP.
Collapse
Affiliation(s)
- Bo-Ying Bao
- Department of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Heat shock proteins (HSP) and heat shock factor 1 (HSF1), key factors in the heat shock response (HSR) have been implicated in the etiology of breast cancer. At least two members of the HSP family, Hsp27 and Hsp70 undergo significant increases in cellular concentration during the transformation of mammary cells. These changes result in HSP-mediated inhibition of tumour cell inactivation through blockade of the apoptosis and replicative senescence pathways. The increases in HSP thus mediate two of the common hallmarks of cancer and favour cell birth over cell death. In addition, Hsp90 plays a role in facilitating transformation by stabilising the mutated and over-expressed oncoproteins found in breast tumours, and permitting the activation of growth stimulatory and transforming pathways in the absence of growth factors. HSF1 appears to play a similar role as a facilitator of transformation in mammary carcinoma. Induction of some facets of the HSR in breast cancer cells therefore leads to growth stimulation and inhibits cell death. Pharmacological targeting of HSP and HSF1 is therefore indicated and in the case of Hsp90, inhibitory drugs are undergoing clinical trial for treatment of breast carcinoma and other cancers.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
93
|
Abstract
Cell surface expression of glucose-regulated protein 78 (GRP78) occurs in several types of cancer; however, its role in the behavior of primary cutaneous melanoma is not well studied. The association of cell surface GRP78 with other proteins such as MTJ1 stimulates cell proliferation. In this study, we characterized the pattern of expression of GRP78 and MTJ1 in invasive primary cutaneous melanomas and analyzed the relationships between the pattern of expression and various clinicopathological parameters. We found two patterns of GRP78 expression in invasive primary cutaneous melanoma. One pattern showed a gradual fading of protein expression from superficial to deeper levels within the same tumor. The second pattern of expression showed a similar fading with an abrupt regaining of expression at the deep invasive edge of the melanoma. These two distinct patterns of GRP78 expression correlated with both patient survival and depth of tumor invasion. A moderate MTJ1 expression was found to be associated with decreased patient survival; however, no significant associations were observed between patterns of GRP78 and MTJ1 expression. Our study (1) describes two distinct patterns of GRP78 in invasive primary cutaneous melanoma, (2) inversely correlates regain of GRP78 expression with patient survival, and (3) suggests a modifying effect of MTJ1 on GRP78 in enhancing tumor aggressiveness.
Collapse
|
94
|
Kim EH, Lee YJ, Bae S, Lee JS, Kim J, Lee YS. Heat shock factor 1-mediated aneuploidy requires a defective function of p53. Cancer Res 2009; 69:9404-12. [PMID: 19934326 DOI: 10.1158/0008-5472.can-09-1411] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Because heat shock factor 1 (HSF1) phosphorylation by Plk1 has been previously reported to be involved in mitotic regulation and p53 function may be involved in this mitotic regulation, we have further examined HSF1 functions in mitotic regulation according to p53 status. Nocodazole-mediated aneuploidy was increased in p53-defective (p53Mut) cells; however, it was not increased in p53 wild-type (p53WT) cells. Phosphorylation of HSF1 at Ser216 was increased in p53Mut cells with increased stability of securin and cyclin B1 in mitosis compared with p53WT cells. The interaction of p53 with Plk1 that was shown in p53WT cells and that induced normal mitotic checkpoint function was not observed in p53Mut cells; instead, the binding of HSF1 with Plk1 and HSF1 phosphorylation at Ser216 were seen in p53Mut cells, which resulted in increased aneuploidy production. Moreover, the interaction affinity of Cdc20 with Mad2 was inhibited in p53Mut cells, whereas the interaction between Cdc20 and HSF1 was increased. From the data, it was suggested that HSF1-mediated aneuploidy was more facilitated in p53-defective cells, indicating the importance of novel mechanisms for p53 function in HSF1-mediated mitotic regulation and genomic instability.
Collapse
Affiliation(s)
- Eun-Ho Kim
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
95
|
Mambula SS, Calderwood SK. Heat induced release of Hsp70 from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. Int J Hyperthermia 2009; 22:575-85. [PMID: 17079215 DOI: 10.1080/02656730600976042] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Heat shock protein 70 (HSP70) is released from tumour cells and stimulates a potent anti-tumour immune response. METHODS This study examined the role of hyperthermia, including heating conditions from the fever range, the hyperthermia range and the thermal ablation range, in HSP70 release from prostate carcinoma cells. It has observed HSP70 release from human prostate carcinoma cell lines (PC-3 and LNCaP) treated with hyperthermia. RESULTS The effects of hyperthermia were complex and appeared to involve at least two mechanisms for HSP70 release. Hyperthermia at 40 degrees C strongly stimulated HSP70 release by an active secretion pathway. However, as temperatures were increased, this rapid secretion pathway became progressively inhibited and by a temperature of 55 degrees C, active secretion was abolished. However, when cells exposed to these heating conditions were allowed to recover at 37 degrees C for 24 h after heating, HSP70 release was observed at the high ablation temperature range and this appeared to be related to a concomitant damage to the plasma membrane. CONCLUSIONS Thus, at least two mechanisms contribute to HSP70 release during hyperthermia and the relative contribution from each pathway depends on the temperature conditions.
Collapse
Affiliation(s)
- Salamatu S Mambula
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
96
|
Abstract
Heat shock proteins (HSPs) are a highly conserved family of proteins which inhabit almost all subcellular locations and cellular membranes. Depending on their location, these proteins perform a variety of chaperoning functions including folding of newly synthesised polypeptides. HSPs also play a major role in the protection of cells against stressful and injury-inciting stimuli. By virtue of this protective function, HSPs have been shown to prevent acinar cell injury in acute pancreatitis. Also, the levels of HSPs have been shown to be markedly elevated in various forms of cancers when compared with non-transformed cells. Further, inhibition of HSPs has been shown to induce apoptotic cell death in cancer cells suggesting that inhibition of HSPs has a potential to emerge as novel anti-cancer therapy, either as monotherapy or in combination with other chemotherapeutic agents. Several studies have suggested that HSPs can interact with and inhibit both intrinsic and extrinsic pathways of apoptosis at multiple sites. Besides the anti-apoptotic role of HSPs, recent studies suggest that they play a role in the generation of anti-cancer immunity, and attempts have been made to utilise this property of HSPs in the generation of anti-cancer vaccines. The anti-apoptotic function and mechanism of various subtypes of HSPs as well as the current status of anti-HSP therapy are discussed in this review.
Collapse
Affiliation(s)
- V Dudeja
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
97
|
Whitesell L, Lindquist S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert Opin Ther Targets 2009; 13:469-78. [PMID: 19335068 DOI: 10.1517/14728220902832697] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND In mammals, the cytoprotective heat-shock response is regulated primarily by heat shock factor 1 (HSF1). Unfortunately, the effects of HSF1 also support the ability of cancer cells to accommodate imbalances in signaling and alterations in DNA, protein and energy metabolism associated with oncogenesis. The malignant lifestyle confers dependence on this 'non-oncogene', suggesting a therapeutic role for HSF1 inhibitors. OBJECTIVE/METHODS We begin with an overview of how HSF1 affects cancer biology and how its activity is regulated. We then summarize progress in discovery and development of HSF1 inhibitors, their current limitations and potential as anticancer agents with a fundamentally different scope of action from other clinically validated modulators of protein homeostasis. RESULTS/CONCLUSIONS It is likely that within the next 5 years usable inhibitors of HSF1 will be identified and in early pre-clinical evaluation.
Collapse
Affiliation(s)
- Luke Whitesell
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA.
| | | |
Collapse
|
98
|
Codarin E, Renzone G, Poz A, Avellini C, Baccarani U, Lupo F, di Maso V, Crocè SL, Tiribelli C, Arena S, Quadrifoglio F, Scaloni A, Tell G. Differential Proteomic Analysis of Subfractioned Human Hepatocellular Carcinoma Tissues. J Proteome Res 2009; 8:2273-84. [DOI: 10.1021/pr8009275] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erika Codarin
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Giovanni Renzone
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Alessandra Poz
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Avellini
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Umberto Baccarani
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Francesco Lupo
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Vittorio di Maso
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Saveria Lory Crocè
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Claudio Tiribelli
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Simona Arena
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Franco Quadrifoglio
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Andrea Scaloni
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| | - Gianluca Tell
- Department of Biomedical Sciences and Technologies, University of Udine, 33100 Udine, Italy, Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy, Department of Clinical Pathology, University of Udine, 33100 Udine, Italy, Department of Surgery & Transplantation, University of Udine, 33100 Udine, Italy, Azienda Ospedaliero Universitaria, Molinette, 10100 Torino, Italy, and Centro Studi Fegato, AREA Science Park, 34012 Trieste, Italy
| |
Collapse
|
99
|
Yuan JX, Xiao LJ, Lu CL, Zhang XS, Liu T, Chen M, Hu ZY, Gao F, Liu YX. Increased expression of heat shock protein 105 in rat uterus of early pregnancy and its significance in embryo implantation. Reprod Biol Endocrinol 2009; 7:23. [PMID: 19284651 PMCID: PMC2667524 DOI: 10.1186/1477-7827-7-23] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 03/13/2009] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Heat shock proteins (Hsps) are a set of highly conserved proteins, Hsp105, has been suggested to play a role in reproduction. METHODS Spatio-temporal expression of Hsp105 in rat uterus during peri-implantation period was examined by immunohistochemistry and Western blot, pseudopregnant uterus was used as control. Injection of antisense oligodeoxynucleotides to Hsp105 into pregnant rat uteri was carried out to look at effect of Hsp105 on embryo implantation. RESULTS Expression of Hsp105 was mainly in the luminal epithelium on day 1 of pregnancy, and reached a peak level on day 5, whereas in stroma cells, adjacent to the implanting embryo, the strongest expression of Hsp105 was observed on day 6. The immunostaining profile in the uterus was consistent with that obtained by Western blot in the early pregnancy. In contrast, no obvious peak level of Hsp105 was observed in the uterus of pseudopregnant rat on day 5 or day 6. Furthermore, injection of antisense oligodeoxynucleotides to Hsp105 into the rat uterine horn on day 3 of pregnancy obviously suppressed the protein expression as expected and reduced number of the implanted embryos as compared with the control. CONCLUSION Temporal and spatial changes in Hsp105 expression in pregnant rat uterus may play a physiological role in regulating embryo implantation.
Collapse
Affiliation(s)
- Jin-Xiang Yuan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Li-Juan Xiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Cui-Ling Lu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xue-Sen Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Tao Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Min Chen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Zhao-Yuan Hu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fei Gao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yi-Xun Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
100
|
Giaginis C, Daskalopoulou SS, Vgenopoulou S, Sfiniadakis I, Kouraklis G, Theocharis SE. Heat Shock Protein-27, -60 and -90 expression in gastric cancer: association with clinicopathological variables and patient survival. BMC Gastroenterol 2009; 9:14. [PMID: 19203381 PMCID: PMC2644705 DOI: 10.1186/1471-230x-9-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Accepted: 02/09/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Heat shock proteins (HSPs) are ubiquitous, highly conserved proteins across all the species and play essential roles in maintaining protein stability within the cells under normal conditions, while preventing stress-induced cellular damage. HSPs were also overexpressed in various types of cancer, being associated with tumor cell proliferation, differentiation and apoptosis. The aim of the present study was to evaluate the clinical significance of HSP -27, -60, and -90 expression in gastric carcinoma. METHODS HSP -27, -60, and -90 proteins expression was assessed immunohistochemically in tumoral samples of 66 gastric adenocarcinoma patients and was statistically analyzed in relation to various clinicopathological characteristics, tumor proliferative capacity and patients' survival. RESULTS HSP-27, -60, -90 proteins were abundantly expressed in gastric adenocarcinoma cases examined. HSP-27 expression was significantly associated with tumor size (pT, P = 0.026), the presence of organ metastases (pM, P = 0.046) and pStage (P = 0.041), while HSP-27 staining intensity with nodal status (pN, P = 0.042). HSP-60 expression was significantly associated with patients' sex (P = 0.011), while HSP-60 staining intensity with patients' age (P = 0.027) and tumor histopathological grade (P = 0.031). HSP-90 expression was not associated with any of the clinicopathological parameters examined; however, HSP-90 staining intensity was significantly associated with tumor size (pT, P = 0.020). High HSP-90 expression was significantly associated with longer overall survival times in univariate analysis (log-rank test, P = 0.033), being also identified as an independent prognostic factor in multivariate analysis (P = 0.026). CONCLUSION HSP-27, -60, and -90 were associated with certain clinicopathological parameters which are crucial for the management of gastric adenocarcinoma patient. HSP-90 expression may also be an independent prognostic indicator in gastric adenocarcinoma patients.
Collapse
Affiliation(s)
- Constantinos Giaginis
- Department of Forensic Medicine and Toxicology, Medical School, University of Athens, Athens, Greece.
| | | | | | | | | | | |
Collapse
|