51
|
Schürch CM. Therapeutic Antibodies for Myeloid Neoplasms-Current Developments and Future Directions. Front Oncol 2018; 8:152. [PMID: 29868474 PMCID: PMC5968093 DOI: 10.3389/fonc.2018.00152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) such as antibody-drug conjugates, ligand-receptor antagonists, immune checkpoint inhibitors and bispecific T cell engagers have shown impressive efficacy in the treatment of multiple human cancers. Numerous therapeutic mAbs that have been developed for myeloid neoplasms, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), are currently investigated in clinical trials. Because AML and MDS originate from malignantly transformed hematopoietic stem/progenitor cells-the so-called leukemic stem cells (LSCs) that are highly resistant to most standard drugs-these malignancies frequently relapse and have a high disease-specific mortality. Therefore, combining standard chemotherapy with antileukemic mAbs that specifically target malignant blasts and particularly LSCs or utilizing mAbs that reinforce antileukemic host immunity holds great promise for improving patient outcomes. This review provides an overview of therapeutic mAbs for AML and MDS. Antibody targets, the molecular mechanisms of action, the efficacy in preclinical leukemia models, and the results of clinical trials are discussed. New developments and future studies of therapeutic mAbs in myeloid neoplasms will advance our understanding of the immunobiology of these diseases and enhance current therapeutic strategies.
Collapse
Affiliation(s)
- Christian M. Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
52
|
Abstract
Natural killer (NK) cells express an array of germ-line encoded receptors that are capable of triggering cytotoxicity. NK cells tend to express many members of a given family of signalling molecules. The presence of many activating receptors and many members of a given family of signalling molecules can enable NK cells to detect different kinds of target cells, and to mount different kinds of responses. This contributes also to the robustness of NK cells responses; cytotoxic functions of NK cells often remain unaffected in the absence of selected signalling molecules. NK cells express many MHC-I-specific inhibitory receptors. Signals from MHC-I-specific inhibitory receptors tightly control NK cell cytotoxicity and, paradoxically, maintain NK cells in a state of proper responsiveness. This review provides a brief overview of the events that underlie NK cell activation, and how signals from inhibitory receptors intercept NK cell activation to prevent inappropriate triggering of cytotoxicity.
Collapse
Affiliation(s)
- Santosh Kumar
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| |
Collapse
|
53
|
Sperk M, Zhang W, Nowak P, Neogi U. Plasma soluble factor following two decades prolonged suppressive antiretroviral therapy in HIV-1-positive males: A cross-sectional study. Medicine (Baltimore) 2018; 97:e9759. [PMID: 29384862 PMCID: PMC5805434 DOI: 10.1097/md.0000000000009759] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute human immunodeficiency virus (HIV) infection is associated with a marked induction of several pathways that are linked to inflammation and CD4 T-cell depletion. Many of these processes do not fully resolve on short-term combination antiretroviral therapy (cART) (<5 years), despite complete and durable suppression of viremia. The effects of long-term (>15 years) successful antiretroviral therapy (ART) and the linkage between levels of biomarkers remain unclear. Therefore, the present study aims to assess the host plasma proteome in a well-defined clinical material from HIV-1-positive male patients on successful long-term ART (>15 years) and compared them with age-matched healthy controls and treatment-naïve male patients with viremia in a cross-sectional manner.Plasma samples were obtained from 3 categories of age-matched HIV-1-positive male patients on long-term successfully (ART, n = 10) with a median (Interquartile range, IQR) of 19 (17-20) years, treatment-naïve patients with viremia (VP, n = 14), and HIV-1-negative persons (HC, n = 11). Plasma proteome was analyzed using the proximity extension assay targeting 92 factors. Statistical analyses were performed with GraphPad Prism v7, R-packages, and Qlucore Omics Explorer v3.2. Functional enrichment analysis was performed by Kyoto Encyclopedia of Genes and Genomes (KEGG), and interactions of specific molecules were identified using Path Designer integrated into Ingenuity Pathway Analysis (IPA).Group wise comparison identified 53 soluble factors, which differed between the groups (P < .05). Cluster analysis identified 13 discrete soluble factors (CD8A, CRTAM, CXCL13, EGF, CD5, CD40, CXCL9, Gal-1, IL12RB1, KLRD1, PD-1, CASP-8 and TNFRSF9) between the studied groups (adjusted P < .001). The long-term successfully ART-treated individuals clustered and networked with the HC while VPs clustered separately. All of the proinflammatory cytokines and chemokines were normalized back to levels of healthy controls in long-term successfully ART-treated individuals, but not the levels of KLRD1 and PGDFB.sKLRD1 that is involved in the regulation of natural killer cell (NK) mediated cytotoxicity, failed to be restored to the level of HIV-negative individuals despite successful long-term ART. Additional analysis of NK cells along with T-cell subsets can provide insights into the long-term effects of ART on the immune system.
Collapse
Affiliation(s)
- Maike Sperk
- Divison of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge
| | - Wang Zhang
- Divison of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge
- Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna
| | - Piotr Nowak
- Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ujjwal Neogi
- Divison of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge
- Science for Life Laboratory, Division of Proteomics and Nanobiotechnology, KTH Royal Institute of Technology, Solna
| |
Collapse
|
54
|
Benson DM, Caligiuri MA. Natural Killer Cell Immunity. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
55
|
Cruz-González DDJ, Gómez-Martin D, Layseca-Espinosa E, Baranda L, Abud-Mendoza C, Alcocer-Varela J, González-Amaro R, Monsiváis-Urenda AE. Analysis of the regulatory function of natural killer cells from patients with systemic lupus erythematosus. Clin Exp Immunol 2017; 191:288-300. [PMID: 29058308 DOI: 10.1111/cei.13073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2017] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells participate in the regulation of the immune response. However, the immunomodulatory function of NK cells in systemic lupus erythematosus (SLE) is not well understood. The aim of this study was to evaluate the regulatory function of NK cells in SLE patients and to identify the NK cells involved in the pathogenesis of this complex disease. We analysed the expression of NK receptors and co-stimulatory molecules in peripheral NK cells (CD3- CD56+ ) from SLE patients, as well as the numbers of human leucocyte antigen D-related (HLA-DR)/CD11c+ NK cells. In addition, NK cell regulatory function was assessed by the detection of NK cell-mediated dendritic cell (DC) lysis. We found that SLE patients showed increased numbers of immunoglobulin-like transcript 2 (ILT2)+ , CD86+ and CD134+ NK cells. Furthermore, NK cells from SLE patients induced higher levels of DC lysis. We were able to identify a new subset of NK cells co-expressing CD11c and HLA-DR. These atypical NK cells were increased in SLE patients when compared with controls. We have identified an expanded new subset of NK cells in SLE patients. This is the first study, to our knowledge, which demonstrates that NK cells in SLE patients have an altered phenotype with a high expression of receptors characteristic of dendritic cells. Our results suggest that the impairment in the regulatory function of NK cells, together with the increased number of DC-like NK cells, could play an important role in the development of SLE and highlight the importance of NK cells as a future therapeutic target.
Collapse
Affiliation(s)
- D de J Cruz-González
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí
| | - D Gómez-Martin
- Departamento de Reumatología e Inmunología, Instituto Nacional de Ciencias Médicas y Nutrición 'Salvador Zubirán', Ciudad de México
| | - E Layseca-Espinosa
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí
| | - L Baranda
- Unidad de Reumatología y Osteoporosis, Hospital Central 'Ignacio Morones Prieto', San Luis Potosí, Mexico
| | - C Abud-Mendoza
- Unidad de Reumatología y Osteoporosis, Hospital Central 'Ignacio Morones Prieto', San Luis Potosí, Mexico
| | - J Alcocer-Varela
- Departamento de Reumatología e Inmunología, Instituto Nacional de Ciencias Médicas y Nutrición 'Salvador Zubirán', Ciudad de México
| | - R González-Amaro
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí
| | - A E Monsiváis-Urenda
- Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí
| |
Collapse
|
56
|
Di Marco M, Schuster H, Backert L, Ghosh M, Rammensee HG, Stevanović S. Unveiling the Peptide Motifs of HLA-C and HLA-G from Naturally Presented Peptides and Generation of Binding Prediction Matrices. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:2639-2651. [PMID: 28904123 DOI: 10.4049/jimmunol.1700938] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/12/2017] [Indexed: 12/16/2023]
Abstract
The classical HLA-C and the nonclassical HLA-E and HLA-G molecules play important roles both in the innate and adaptive immune system. Starting already during embryogenesis and continuing throughout our lives, these three Ags exert major functions in immune tolerance, defense against infections, and anticancer immune responses. Despite these important roles, identification and characterization of the peptides presented by these molecules has been lacking behind the more abundant HLA-A and HLA-B gene products. In this study, we elucidated the peptide specificities of these HLA molecules using a comprehensive analysis of naturally presented peptides. To that end, the 15 most frequently expressed HLA-C alleles as well as HLA-E*01:01 and HLA-G*01:01 were transfected into lymphoblastoid C1R cells expressing low endogenous HLA. Identification of naturally presented peptides was performed by immunoprecipitation of HLA and subsequent analysis of HLA-bound peptides by liquid chromatographic tandem mass spectrometry. Peptide motifs of HLA-C unveil anchors in position 2 or 3 with high variances between allotypes, and a less variable anchor at the C-terminal end. The previously reported small ligand repertoire of HLA-E was confirmed within our analysis, and we could show that HLA-G combines a large ligand repertoire with distinct features anchoring peptides at positions 3 and 9, supported by an auxiliary anchor in position 1 and preferred residues in positions 2 and 7. The wealth of HLA ligands resulted in prediction matrices for octa-, nona-, and decamers. Matrices were validated in terms of their binding prediction and compared with the latest NetMHC prediction algorithm NetMHCpan-3.0, which demonstrated their predictive power.
Collapse
Affiliation(s)
- Moreno Di Marco
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Heiko Schuster
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
- Immatics Biotechnologies GmbH, 72076 Tübingen, Germany; and
| | - Linus Backert
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, Center for Bioinformatics, University of Tübingen, 72076 Tübingen, Germany
| | - Michael Ghosh
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany;
| |
Collapse
|
57
|
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017; 8:14049. [PMID: 28091601 PMCID: PMC5241818 DOI: 10.1038/ncomms14049] [Citation(s) in RCA: 4143] [Impact Index Per Article: 517.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023] Open
Abstract
Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3' mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.
Collapse
Affiliation(s)
| | | | | | - Paul Ryvkin
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | | | - Ryan Wilson
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | | | | | | | - Junjie Zhu
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | - Mark T Gregory
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Joe Shuga
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | | | - Jason G Underwood
- 10x Genomics Inc., Pleasanton, California, 94566, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | - Paul W Wyatt
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | | | | | | | - Kevin D Ness
- 10x Genomics Inc., Pleasanton, California, 94566, USA
| | - Lan W Beppu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - H Joachim Deeg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Christopher McFarland
- Seattle Cancer Care Alliance Clinical Immunogenetics Laboratory, Seattle, Washington 98109, USA
| | - Keith R Loeb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | - William J Valente
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Medical Scientist Training Program, University of Washington School of Medicine, Seattle, Washington 98195, USA.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington 98195, USA
| | - Nolan G Ericson
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Emily A Stevens
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Jerald P Radich
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | - Jason H Bielas
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.,Department of Pathology, University of Washington, Seattle, Washington 98195, USA.,Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington 98195, USA.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
58
|
NCR1 is an activating receptor expressed on a subset of canine NK cells. Vet Immunol Immunopathol 2016; 177:7-15. [DOI: 10.1016/j.vetimm.2016.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/24/2022]
|
59
|
Development of a Modular Assay for Detailed Immunophenotyping of Peripheral Human Whole Blood Samples by Multicolor Flow Cytometry. Int J Mol Sci 2016; 17:ijms17081316. [PMID: 27529227 PMCID: PMC5000713 DOI: 10.3390/ijms17081316] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/18/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
The monitoring of immune cells gained great significance in prognosis and prediction of therapy responses. For analyzing blood samples, the multicolor flow cytometry has become the method of choice as it combines high specificity on single cell level with multiple parameters and high throughput. Here, we present a modular assay for the detailed immunophenotyping of blood (DIoB) that was optimized for an easy and direct application in whole blood samples. The DIoB assay characterizes 34 immune cell subsets that circulate the peripheral blood including all major immune cells such as T cells, B cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), neutrophils, eosinophils, and basophils. In addition, it evaluates their functional state and a few non-leukocytes that also have been associated with the outcome of cancer therapy. This DIoB assay allows a longitudinal and close-meshed monitoring of a detailed immune status in patients requiring only 2.0 mL of peripheral blood and it is not restricted to peripheral blood mononuclear cells. It is currently applied for the immune monitoring of patients with glioblastoma multiforme (IMMO-GLIO-01 trial, NCT02022384), pancreatic cancer (CONKO-007 trial, NCT01827553), and head and neck cancer (DIREKHT trial, NCT02528955) and might pave the way for immune biomarker identification for prediction and prognosis of therapy outcome.
Collapse
|
60
|
Bigley AB, Rezvani K, Shah N, Sekine T, Balneger N, Pistillo M, Agha N, Kunz H, O'Connor DP, Bollard CM, Simpson RJ. Latent cytomegalovirus infection enhances anti-tumour cytotoxicity through accumulation of NKG2C+ NK cells in healthy humans. Clin Exp Immunol 2016; 185:239-51. [PMID: 26940026 PMCID: PMC4955006 DOI: 10.1111/cei.12785] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
Cytomegalovirus (CMV) infection markedly expands NKG2C+/NKG2A- NK cells, which are potent killers of infected cells expressing human leucocyte antigen (HLA)-E. As HLA-E is also over-expressed in several haematological malignancies and CMV has been linked to a reduced risk of leukaemic relapse, we determined the impact of latent CMV infection on NK cell cytotoxicity against four tumour target cell lines with varying levels of HLA-E expression. NK cell cytotoxicity against K562 (leukaemia origin) and U266 (multiple myeloma origin) target cells was strikingly greater in healthy CMV-seropositive donors than seronegative donors and was associated strongly with target cell HLA-E and NK cell NKG2C expression. NK cell cytotoxicity against HLA-E transfected lymphoma target cells (221.AEH) was ∼threefold higher with CMV, while NK cell cytotoxicity against non-transfected 721.221 cells was identical between the CMV groups. NK cell degranulation (CD107a(+) ) and interferon (IFN)-γ production to 221.AEH cells was localized almost exclusively to the NKG2C subset, and antibody blocking of NKG2C completely eliminated the effect of CMV on NK cell cytotoxicity against 221.AEH cells. Moreover, 221.AEH feeder cells and interleukin (IL)-15 were found to expand NKG2C(+) /NKG2A(-) NK cells preferentially from CMV-seronegative donors and increase NK cell cytotoxicity against HLA-E(+) tumour cell lines. We conclude that latent CMV infection enhances NK cell cytotoxicity through accumulation of NKG2C(+) NK cells, which may be beneficial in preventing the initiation and progression of haematological malignancies characterized by high HLA-E expression.
Collapse
Affiliation(s)
- A. B. Bigley
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - K. Rezvani
- Department of Stem Cell Transplantation, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - N. Shah
- Department of Stem Cell Transplantation, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - T. Sekine
- Department of Stem Cell Transplantation, Division of Cancer MedicineThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - N. Balneger
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - M. Pistillo
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - N. Agha
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - H. Kunz
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - D. P. O'Connor
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| | - C. M. Bollard
- Program for Cell Enhancement and Technologies for Immunotherapy, Sheikh Zayed Institute for Pediatric Surgical Innovation and Center for Cancer and Immunology ResearchChildren's National Health SystemWashingtonDCUSA
| | - R. J. Simpson
- Laboratory of Integrated Physiology, Department of Health and Human PerformanceUniversity of HoustonHoustonTXUSA
| |
Collapse
|
61
|
Shevtsov M, Multhoff G. Heat Shock Protein-Peptide and HSP-Based Immunotherapies for the Treatment of Cancer. Front Immunol 2016; 7:171. [PMID: 27199993 PMCID: PMC4850156 DOI: 10.3389/fimmu.2016.00171] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/18/2016] [Indexed: 01/23/2023] Open
Abstract
Intracellular residing heat shock proteins (HSPs) with a molecular weight of approximately 70 and 90 kDa function as molecular chaperones that assist folding/unfolding and transport of proteins across membranes and prevent protein aggregation after environmental stress. In contrast to normal cells, tumor cells have higher cytosolic heat shock protein 70 and Hsp90 levels, which contribute to tumor cell propagation, metastasis, and protection against apoptosis. In addition to their intracellular chaperoning functions, extracellular localized and membrane-bound HSPs have been found to play key roles in eliciting antitumor immune responses by acting as carriers for tumor-derived immunogenic peptides, as adjuvants for antigen presentation, or as targets for the innate immune system. The interaction of HSP–peptide complexes or peptide-free HSPs with receptors on antigen-presenting cells promotes the maturation of dendritic cells, results in an upregulation of major histocompatibility complex class I and class II molecules, induces secretion of pro- and anti-inflammatory cytokines, chemokines, and immune modulatory nitric oxides, and thus integrates adaptive and innate immune phenomena. Herein, we aim to recapitulate the history and current status of HSP-based immunotherapies and vaccination strategies in the treatment of cancer.
Collapse
Affiliation(s)
- Maxim Shevtsov
- Department of Radiation Oncology, Klinikum rechts der Isar, TU München, Munich, Germany; Institute of Cytology of Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, TU München , Munich , Germany
| |
Collapse
|
62
|
Yabu JM, Siebert JC, Maecker HT. Immune Profiles to Predict Response to Desensitization Therapy in Highly HLA-Sensitized Kidney Transplant Candidates. PLoS One 2016; 11:e0153355. [PMID: 27078882 PMCID: PMC4831845 DOI: 10.1371/journal.pone.0153355] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/29/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Kidney transplantation is the most effective treatment for end-stage kidney disease. Sensitization, the formation of human leukocyte antigen (HLA) antibodies, remains a major barrier to successful kidney transplantation. Despite the implementation of desensitization strategies, many candidates fail to respond. Current progress is hindered by the lack of biomarkers to predict response and to guide therapy. Our objective was to determine whether differences in immune and gene profiles may help identify which candidates will respond to desensitization therapy. METHODS AND FINDINGS Single-cell mass cytometry by time-of-flight (CyTOF) phenotyping, gene arrays, and phosphoepitope flow cytometry were performed in a study of 20 highly sensitized kidney transplant candidates undergoing desensitization therapy. Responders to desensitization therapy were defined as 5% or greater decrease in cumulative calculated panel reactive antibody (cPRA) levels, and non-responders had 0% decrease in cPRA. Using a decision tree analysis, we found that a combination of transitional B cell and regulatory T cell (Treg) frequencies at baseline before initiation of desensitization therapy could distinguish responders from non-responders. Using a support vector machine (SVM) and longitudinal data, TRAF3IP3 transcripts and HLA-DR-CD38+CD4+ T cells could also distinguish responders from non-responders. Combining all assays in a multivariate analysis and elastic net regression model with 72 analytes, we identified seven that were highly interrelated and eleven that predicted response to desensitization therapy. CONCLUSIONS Measuring baseline and longitudinal immune and gene profiles could provide a useful strategy to distinguish responders from non-responders to desensitization therapy. This study presents the integration of novel translational studies including CyTOF immunophenotyping in a multivariate analysis model that has potential applications to predict response to desensitization, select candidates, and personalize medicine to ultimately improve overall outcomes in highly sensitized kidney transplant candidates.
Collapse
Affiliation(s)
- Julie M Yabu
- Department of Medicine, Stanford University School of Medicine, Palo Alto, CA, United States of America
| | | | - Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Palo Alto, CA, United States of America
| |
Collapse
|
63
|
Iwaszko M, Świerkot J, Kolossa K, Jeka S, Wiland P, Bogunia-Kubik K. Polymorphisms within the human leucocyte antigen-E gene and their associations with susceptibility to rheumatoid arthritis as well as clinical outcome of anti-tumour necrosis factor therapy. Clin Exp Immunol 2015; 182:270-7. [PMID: 26307125 PMCID: PMC4636889 DOI: 10.1111/cei.12696] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 12/13/2022] Open
Abstract
Involvement of the non-classical human leucocyte antigen-E (HLA-E) in both innate and acquired immune response suggests its possible role in development of autoimmune pathologies. This study was undertaken to investigate relationships between the HLA-E gene single nucleotide polymorphisms (SNPs) and a risk of rheumatoid arthritis (RA), as well as to evaluate a potential of these polymorphisms to modulate clinical outcome of anti-tumour necrosis factor (TNF) treatment in female patients. A total of 223 female patients with RA receiving anti-TNF biological therapy and 134 female healthy subjects were enrolled into the study. Genotypings for two SNPs within the HLA-E gene (rs1264457 HLA-E*01:01/01:03; rs1059510 HLA-E*01:03:01/01:03:02) were performed using a polymerase chain reaction (PCR) amplification employing LightSNiP assays. Clinical response was evaluated according to the European League Against Rheumatism (EULAR) criteria at 12 and 24 weeks after initiation of the therapy. The frequency of the HLA-E*01:01/01:01 genotype was decreased significantly in RA patients in comparison to controls (P = 0.031). The presence of the HLA-E*01:01/01:01 genotype in patients correlated with better EULAR response after 12 weeks of anti-TNF treatment, while 01:03 allele carriers were generally unresponsive to the treatment (P = 0.014). The HLA-E*01:03/01:03 genotype was also over-represented among non-responding patients in comparison to HLA-E*01:01/01:01 homozygotes (P = 0.021). With respect to the HLA-E rs1059510 variation, a better response after 12 weeks was observed more frequently in patients carrying the HLA-E*01:03:01/01:03:01 genotype than other genotypes (P = 0.009). The results derived from this study imply that HLA-E polymorphisms may influence RA susceptibility and affect clinical outcome of anti-TNF therapy in female RA patients.
Collapse
Affiliation(s)
- M Iwaszko
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland
| | - J Świerkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical UniversityWroclaw
| | - K Kolossa
- Clinical Department of Rheumatology and Connective Tissue Diseases, Hospital University Number 2 Jana BizielaBydgoszcz, Poland
| | - S Jeka
- Clinical Department of Rheumatology and Connective Tissue Diseases, Hospital University Number 2 Jana BizielaBydgoszcz, Poland
| | - P Wiland
- Department of Rheumatology and Internal Medicine, Wroclaw Medical UniversityWroclaw
| | - K Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWroclaw, Poland
| |
Collapse
|
64
|
Picardi A, Mengarelli A, Marino M, Gallo E, Benevolo M, Pescarmona E, Cocco R, Fraioli R, Tremante E, Petti MC, De Fabritiis P, Giacomini P. Up-regulation of activating and inhibitory NKG2 receptors in allogeneic and autologous hematopoietic stem cell grafts. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:98. [PMID: 26361968 PMCID: PMC4567793 DOI: 10.1186/s13046-015-0213-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/25/2015] [Indexed: 11/10/2022]
Abstract
Background Hematopoietic Stem Cell Transplantation (HSCT) is known to induce the inhibitory immune receptor NKG2A on NK cells of donor origin. This occurs in allogeneic recipients, in both the haploidentical and HLA-matched settings. Methods To gain further insight, not only NKG2A, but also the activating receptors NKG2C and NKG2D were assessed by flow cytometry. Immunophenotyping was carried out not only on CD56+ but also on CD8+ lymphocytes from leukemia and lymphoma patients, receiving both HLA-matched (n = 7) and autologous (n = 5) HSCT grafts. Moreover, cognate NKG2 ligands (HLA-E, MICA, ULBP-1, ULBP-2 and ULBP-3) were assessed by immunohistochemistry in diagnostic biopsies from three autotransplanted patients, and at relapse in one case. Results All the NKG2 receptors were simultaneously up-regulated in all the allotransplanted patients on CD8+ and/or CD56+ cells between 30 and 90 days post-transplant, coinciding with, or following, allogeneic engraftment. Up-regulation was of lesser entity and restricted to CD8+ cells in the autotransplantation setting. The phenotypic expression ratio between activating and inhibitory NKG2 receptors was remarkably similar in all the patients, except two outliers (a long survivor and a short survivor) who surprisingly displayed a similar NKG2 activation immunophenotype. Tumor expression of 2 to 3 out of the 5 tested NKG2 ligands was observed in 3/3 diagnostic biopsies, and 3 ligands were up-regulated post-transplant in a patient. Conclusions Altogether, these results are consistent with a dual (activation-inhibition) NK cell re-education mode, an innate-like T cell re-tuning, and a ligand:receptor interplay between the tumor and the immune system following HSCT including, most interestingly, the up-regulation of several activating NKG2 ligands. Turning the immune receptor balance toward activation on both T and NK cells of donor origin may complement ex vivo NK cell expansion/activation strategies in unmanipulated patients. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0213-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alessandra Picardi
- Hematology, University of Roma Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.
| | - Andrea Mengarelli
- Hematology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Mirella Marino
- Pathology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Enzo Gallo
- Pathology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Maria Benevolo
- Pathology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Edoardo Pescarmona
- Pathology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Roberta Cocco
- Laboratory of Clinical Pathology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy. .,Present address: Laboratory of Clinical Pathology, ASL Lanciano-Vasto-Chieti, Via Anello 66016, Guardiagrele, CH, Italy.
| | - Rocco Fraioli
- Laboratory of Immunology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Elisa Tremante
- Laboratory of Immunology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Maria Concetta Petti
- Hematology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| | - Paolo De Fabritiis
- Hematology, University of Roma Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.
| | - Patrizio Giacomini
- Laboratory of Immunology, Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
65
|
Dunphy SE, Guinan KJ, Chorcora CN, Jayaraman J, Traherne JA, Trowsdale J, Pende D, Middleton D, Gardiner CM. 2DL1, 2DL2 and 2DL3 all contribute to KIR phenotype variability on human NK cells. Genes Immun 2015; 16:301-10. [PMID: 25950617 DOI: 10.1038/gene.2015.15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/06/2015] [Accepted: 03/31/2015] [Indexed: 01/16/2023]
Abstract
Natural killer (NK) cells are lymphocytes that function as part of the innate immune system. Their activity is controlled by a range of inhibitory and activating receptors, including the important killer-cell immunoglobulin-like receptors (KIR). The KIR are a multi-gene family of receptors that interact with the human leukocyte antigen (HLA) class I family of molecules and are characterised by extensive allelic polymorphism. Their expression on the cell surface of NK cells is highly variable, but the factors responsible for this variability are not yet clearly understood. In the current study, we investigated KIR expression in a healthy human cohort that we had previously characterised in depth at a genetic level, with KIR allele typing and HLA class I ligand genotypes available for all donors (n=198). Allelic polymorphism significantly affected the phenotypic expression of all KIR analysed, whereas HLA ligand background influenced the expression levels of 2DL1 and 2DL3. In particular, we found that although 2DL2 may influence 2DL1 expression, this appears to be owing to variation in 2DL1 copy number. Finally, the inhibitory receptor LILRB1 had higher expression levels in individuals with B/B KIR genotypes, suggesting a possible relationship between KIR and non-KIR receptors, which serves to balance NK cell activation potential.
Collapse
Affiliation(s)
- S E Dunphy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin 2, Ireland
| | - K J Guinan
- Current address: BioAtlantis Ltd., Kerry Technology Park, Tralee, Co. Kerry, Ireland
| | - C Ní Chorcora
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin 2, Ireland
| | - J Jayaraman
- Cambridge Institute for Medical Research, University of Cambridge; Division of Immunology, Cambridge, UK
| | - J A Traherne
- 1] Cambridge Institute for Medical Research, University of Cambridge; Division of Immunology, Cambridge, UK [2] Department of Pathology, University of Cambridge, Cambridge, UK
| | - J Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - D Pende
- Immunology Laboratory, IRCCS AOU San Martino-IST, Largo Rosanna Benzi 10, Genova, Italy
| | - D Middleton
- Transplant Immunology Laboratory, Royal Liverpool University Hospital, Liverpool, UK
| | - C M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Trinity College, Dublin 2, Ireland
| |
Collapse
|
66
|
Kita S, Matsubara H, Kasai Y, Tamaoki T, Okabe Y, Fukuhara H, Kamishikiryo J, Krayukhina E, Uchiyama S, Ose T, Kuroki K, Maenaka K. Crystal structure of extracellular domain of human lectin-like transcript 1 (LLT1), the ligand for natural killer receptor-P1A. Eur J Immunol 2015; 45:1605-13. [DOI: 10.1002/eji.201545509] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/01/2015] [Accepted: 03/26/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Shunsuke Kita
- Laboratory of Biomolecular Science; Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Haruki Matsubara
- Laboratory of Biomolecular Science; Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
- Department of Materials Structure Science; Structural Biology Research Center; Photon Factory; Institute of Materials Structure Science; High Energy Accelerator Research Organization (KEK); The Graduate University for Advanced Studies; Tsukuba Ibaraki Japan
| | - Yoshiyuki Kasai
- Laboratory of Biomolecular Science; Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Takaharu Tamaoki
- Laboratory of Biomolecular Science; Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Yuki Okabe
- Laboratory of Biomolecular Science; Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
- Research Center for Hepatitis and Immunology; National Center for Global Health and Medicine; 1-7-1 Kohnodai Ichikawa Chiba Japan
| | - Hideo Fukuhara
- Laboratory of Biomolecular Science; Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Jun Kamishikiryo
- Faculty of Pharmacy and Pharmaceutical Sciences; Fukuyama University; Fukuyama Japan
| | - Elena Krayukhina
- Department of Biotechnology; Graduate School of Engineering; Osaka University; Osaka Japan
- U-Medico Corporation; Osaka Japan
| | - Susumu Uchiyama
- Department of Biotechnology; Graduate School of Engineering; Osaka University; Osaka Japan
| | - Toyoyuki Ose
- Laboratory of Biomolecular Science; Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Kimiko Kuroki
- Laboratory of Biomolecular Science; Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science; Faculty of Pharmaceutical Sciences; Hokkaido University; Sapporo Japan
| |
Collapse
|
67
|
Hosseini E, Schwarer AP, Ghasemzadeh M. Do human leukocyte antigen E polymorphisms influence graft-versus-leukemia after allogeneic hematopoietic stem cell transplantation? Exp Hematol 2015; 43:149-57. [PMID: 25434712 DOI: 10.1016/j.exphem.2014.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/16/2014] [Accepted: 11/19/2014] [Indexed: 12/18/2022]
Abstract
Hematopoietic-stem-cell transplantation (HSCT) is complicated by histocompatibility-dependent immune responses such as graft-versus-host disease, relapse, and graft rejection. The severity of these common adverse effects is directly related to the degree of human leukocyte antigen (HLA) incompatibility. In addition to the key role of classic HLA matching in influencing HSCT outcome, several lines of evidence suggest an important role for nonclassic major histocompatibility complex class I molecule, HLA-E. The interaction of HLA-E with NKG2A, its main receptor on natural killer cells, modulates cell-mediated cytotoxicity and cytokine production, an important role in innate immune responses. In addition, the HLA-E molecule can present peptides to different subtypes of T cells that may either support graft-versus-leukemia effects or be involved in bridging innate and acquired immunity. To date, the role of HLA-E and its polymorphisms in HSCT outcomes such as graft-versus-host disease, transplant-related mortality, and improved survival has been published by a number of groups. In addition, these data suggest an association between HLA-E polymorphisms and relapse. Whether the engagement of the HLA-E molecule in the modulation of donor T cells is involved in the graft-versus-leukemia effect, or whether a different mechanism of HLA-E dependent reduction of relapse is involved, requires further investigation.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran; Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia
| | - Anthony P Schwarer
- Department of Immunology, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Australia
| | - Mehran Ghasemzadeh
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
68
|
Johnson EC, Cepurna WO, Choi D, Choe TE, Morrison JC. Radiation pretreatment does not protect the rat optic nerve from elevated intraocular pressure-induced injury. Invest Ophthalmol Vis Sci 2014; 56:412-9. [PMID: 25525172 DOI: 10.1167/iovs.14-15094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Optic nerve injury has been found to be dramatically reduced in a genetic mouse glaucoma model following exposure to sublethal, head-only irradiation. In this study, the same radiation treatment was used prior to experimental induction of elevated intraocular pressure (IOP) to determine if radiation is neuroprotective in another glaucoma model. METHODS Episcleral vein injection of hypertonic saline was used to elevate IOP unilaterally in two groups of rats: (1) otherwise untreated and (2) radiation pretreated, n > 25/group. Intraocular pressure histories were collected for 5 weeks, when optic nerves were prepared and graded for injury. Statistical analyses were used to compare IOP history and nerve injury. The density of microglia and macrophages in two nerve head regions was determined by Iba1 immunolabeling. RESULTS Mean and peak IOP elevations were not different between the two glaucoma model groups. Mean optic nerve injury grades were not different in glaucoma model optic nerves and were equivalent to approximately 35% of axons degenerating. Nerves selected for lower mean or peak IOP elevations did not differ in optic nerve injury. Similarly, nerves selected for lower injury grade did not differ in IOP exposure. By multiple regression modeling, nerve injury grade was most significantly associated with mean IOP (P < 0.002). There was no significant effect of radiation treatment. Iba1+ cell density was not altered by radiation treatment. CONCLUSIONS In contrast to previous observations in a mouse genetic glaucoma model, head-only irradiation offers the adult rat optic nerve no protection from optic nerve degeneration due to chronic, experimentally induced IOP elevation.
Collapse
Affiliation(s)
- Elaine C Johnson
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - William O Cepurna
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Dongseok Choi
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States Public Health & Preventive Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Tiffany E Choe
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - John C Morrison
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
69
|
Galazka G, Jurewicz A, Domowicz M, Cannella B, Raine CS, Selmaj K. HINT1 peptide/Hsp70 complex induces NK-cell-dependent immunoregulation in a model of autoimmune demyelination. Eur J Immunol 2014; 44:3026-44. [PMID: 25092109 DOI: 10.1002/eji.201444694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/26/2014] [Accepted: 07/31/2014] [Indexed: 12/29/2022]
Abstract
Heat shock proteins (Hsps) interact with the immune system and have been shown to contribute to immunoregulation. As efficient chaperones, Hsps bind many peptides and these complexes have many yet-to-be-clarified functions. We have shown that Hsp70 is complexed within the mouse CNS with peptide CLAFHDISPQAPTHFLVIPK derived from histidine triad nucleotide-binding protein-1 (HINT1₃₈₋₅₇/Hsp70). Only this complex, in contrast to other peptides complexed with Hsp70, was able to prevent experimental autoimmune encephalomyelitis (EAE) by induction of immunoregulatory mechanisms dependent on NK cells. Pretreatment of proteolipid protein peptide ₁₃₉₋₁₅₁(PLP₁₃₉₋₁₅₁) sensitized SJL/J mice with HINT1₃₈₋₅₇/Hsp70 prevented the development of EAE, suppressed PLP₁₃₉₋₁₅₁-induced T-cell proliferation, and blocked secretion of IL-17. HINT1₃₈₋₅₇ /Hsp70 stimulation of NK cells depended on synergistic activation of two NK-cell receptors, CD94 and NKG2D. NK cells with depleted CD94 or with blocked NKG2D did not inhibit PLP₁₃₉₋₁₅₁-induced spleen cell (SC) proliferation. The HINT1₃₈₋₅₇/Hsp70 complex enhanced surface expression of the NKG2D ligand-H60. Downstream signaling of CD94 and NKG2D converged at the adaptor proteins DAP10 and DAP12, and in response to HINT1₃₈₋₅₇ /Hsp70 stimulation, expression of DAP10 and DAP12 was significantly increased in NK cells. Thus, we have shown that the HINT1₃₈₋₅₇ /Hsp70 complex affects NK-cell function by enhancing NK-cell-dependent immunoregulation in the EAE model of autoimmune demyelination.
Collapse
Affiliation(s)
- Grazyna Galazka
- Department of Neurology, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
70
|
Nair KS, Barbay J, Smith RS, Masli S, John SWM. Determining immune components necessary for progression of pigment dispersing disease to glaucoma in DBA/2J mice. BMC Genet 2014; 15:42. [PMID: 24678736 PMCID: PMC3974199 DOI: 10.1186/1471-2156-15-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/06/2014] [Indexed: 12/02/2022] Open
Abstract
Background The molecular mechanisms causing pigment dispersion syndrome (PDS) and the pathway(s) by which it progresses to pigmentary glaucoma are not known. Mutations in two melanosomal protein genes (Tyrp1b and GpnmbR150X) are responsible for pigment dispersing iris disease, which progresses to intraocular pressure (IOP) elevation and subsequent glaucoma in DBA/2J mice. Melanosomal defects along with ocular immune abnormalities play a role in the propagation of pigment dispersion and progression to IOP elevation. Here, we tested the role of specific immune components in the progression of the iris disease and high IOP. Results We tested the role of NK cells in disease etiology by genetically modifying the B6.D2-GpnmbR150XTyrp1b strain, which develops the same iris disease as DBA/2J mice. Our findings demonstrate that neither diminishing NK mediated cytotoxic activity (Prf1 mutation) nor NK cell depletion (Il2rg mutation) has any influence on the severity or timing of GpnmbR150XTyrp1b mediated iris disease. Since DBA/2J mice are deficient in CD94, an important immune modulator that often acts as an immune suppressor, we generated DBA/2J mice sufficient in CD94. Sufficiency of CD94 failed to alter either the iris disease or the subsequent IOP elevation. Additionally CD94 status had no detected effect on glaucomatous optic nerve damage. Conclusion Our previous data implicate immune components in the manifestation of pigment dispersion and/or IOP elevation in DBA/2J mice. The current study eliminates important immune components, specifically NK cells and CD94 deficiency, as critical in the progression of iris disease and glaucoma. This narrows the field of possible immune components responsible for disease progression.
Collapse
Affiliation(s)
| | | | | | | | - Simon W M John
- Howard Hughes Medical Institute, The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
71
|
Schellekens J, Gagne K, Marsh SGE. Natural killer cells and killer-cell immunoglobulin-like receptor polymorphisms: their role in hematopoietic stem cell transplantation. Methods Mol Biol 2014; 1109:139-58. [PMID: 24473783 DOI: 10.1007/978-1-4614-9437-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Natural killer (NK) cells are important effector cells in the early control of infected, malignant, and "nonself" cells. Various receptor families are involved in enabling NK cells to detect and efficiently eliminate these target cells. The killer-cell immunoglobulin-like receptor (KIR) family is a set of receptors that are very polymorphic with regard to gene content, expression level, and expression pattern. KIRs are responsible for the induction of a NK cell alloreactive response through their interaction with HLA class I molecules. The role of NK cells in hematopoietic stem cell transplantation (HSCT) has been studied for many years, and induction of antileukemic responses by donor NK cells has been reported. Conflicting data still exist on the exact circumstances in which the KIR repertoire affects and influences clinical outcome after HSCT. More large-scale studies are needed on well-defined cohorts to unravel the mechanism of action of the NK cell-mediated alloresponse in an HSCT setting.
Collapse
|
72
|
Abstract
Sialyl Lewis X (sLeX) antigen, Neu5Acα2,3Galβ1,4(Fucα1,3)GlcNAc-R, is expressed on the glycoproteins in sera or the surface of the cells and the expression of sLeX is enhanced in various conditions such as the inflammation and cancer. SLeX in the serum is utilized as a tumor marker. To clarify the roles of sLeX on secreted glycoproteins in vivo, we investigate the regulation of natural killer (NK) cell-dependent cytotoxicity through sLeX. NK cells express many receptors to kill the target cells such as cancerous cells and non-self, and their protein ligands have been elucidated. Of the killer lectin-like receptors (KLRs) on NK cells, several have been reported to recognize glycans. Using recombinant extracellular domains of KLRs (rKLRs: rNKG2A, C, D and rCD94), we evaluated their glycan ligand specificity and binding affinities using EIA methods. We clarified that all of these rKLRs can bind to high sLeX-expressing glycoprotein and heparin, heparan sulfate and highly sulfated polysaccharides and that glycan binding sites on NKG2D are mostly overlapped with those of protein ligands. In this review, we show the recent findings concerning the glycan ligands of these KLRs.
Collapse
Affiliation(s)
- Koji Higai
- Department of Clinical Chemistry, School of Pharmaceutical Sciences, Toho University, Chiba, Japan.
| | | |
Collapse
|
73
|
Hudspeth K, Silva-Santos B, Mavilio D. Natural cytotoxicity receptors: broader expression patterns and functions in innate and adaptive immune cells. Front Immunol 2013; 4:69. [PMID: 23518691 PMCID: PMC3603285 DOI: 10.3389/fimmu.2013.00069] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/03/2013] [Indexed: 01/29/2023] Open
Abstract
Natural cytotoxicity receptors (NCRs) have been classically defined as activating receptors delivering potent signals to Natural Killer (NK) cells in order to lyze harmful cells and to produce inflammatory cytokines. Indeed, the elicitation of NK cell effector functions after engagement of NCRs with their ligands on tumor or virus infected cells without the need for prior antigen recognition is one of the main mechanisms that allow a rapid clearance of target cells. The three known NCRs, NKp46, NKp44, and NKp30, comprise a family of germ-line encoded Ig-like trans-membrane (TM) receptors. Until recently, NCRs were thought to be NK cell specific surface molecules, thus making it possible to easily distinguish NK cells from phenotypically similar cell types. Moreover, it has also been found that the surface expression of NKp46 is conserved on NK cells across mammalian species. This discovery allowed for the use of NKp46 as a reliable marker to identify NK cells in different animal models, a comparison that was not possible before due to the lack of a common and comprehensive receptor repertoire between different species. However, several studies over the recent few years indicated that NCR expression is not exclusively confined to NK cells, but is also present on populations of T as well as of NK-like lymphocytes. These insights raised the hypothesis that the induced expression of NCRs on certain T cell subsets is governed by defined mechanisms involving the engagement of the T cell receptor (TCR) and the action of pro-inflammatory cytokines. In turn, the acquisition of NCRs by T cell subsets is also associated with a functional independence of these Ig-like TM receptors from TCR signaling. Here, we review these novel findings with respect to NCR-mediated functions of NK cells and we also discuss the functional consequences of NCR expression on non-NK cells, with a particular focus on the T cell compartment.
Collapse
Affiliation(s)
- Kelly Hudspeth
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center Rozzano, Milan, Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan Milan, Italy
| | | | | |
Collapse
|
74
|
Hromadnikova I, Pirkova P, Sedlackova L. Influence of in vitro IL-2 or IL-15 alone or in combination with Hsp-70-derived 14-mer peptide (TKD) on the expression of NK cell activatory and inhibitory receptors. Mediators Inflamm 2013; 2013:405295. [PMID: 23476104 PMCID: PMC3588175 DOI: 10.1155/2013/405295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 12/11/2022] Open
Abstract
NK cells represent a potential tool for adoptive immunotherapy against tumors. Membrane-bound Hsp70 acts as a tumor-specific marker enhancing NK cell activity. Using flow cytometry the effect of in vitro stimulation with IL-2 or IL-15 alone or in combination with Hsp70-derived 14-mer peptide (TKD) on cell surface expression of NK activatory receptors (CD16, NKG2D, NKG2C, NKp46, NKp44, NKp30, KIR2DL4, DNAM-1, and LAMP1) and NK inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2, and NKR-P1A) in healthy individuals was studied. Results were expressed as the percentage of receptor expressing cells and the amount of receptor expressed by CD3(-)CD56(+) cellular population. CD94, NKG2D, NKp44, NKp30, KIR2DL4, DNAM-1, LAMP1, NKG2A, and NKR-P1A were upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD. KIR2DL2/L3 was upregulated only by IL-15 and IL-15/TKD. Concurrently, an increase in a number of NK cells positive for CD94, NKp44, NKp30, KIR2DL4, and LAMP1 was observed. IL-15 and IL-15/TKD caused also cell number rise positive for KIR2DL2/L3 and NKR-P1A. Cell number positive for NKG2C and NKG2A was increased only by IL-2 and IL-2/TKD. The diverse effect of IL-2 or IL-15 w or w/o TKD on cell surface expression was observed in CD16, NKp46, and LIR1/ILT-2.
Collapse
MESH Headings
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cells, Cultured
- HSP70 Heat-Shock Proteins/chemistry
- Humans
- Interleukin-15/pharmacology
- Interleukin-2/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lysosomal Membrane Proteins/metabolism
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Natural Cytotoxicity Triggering Receptor 1/metabolism
- Natural Cytotoxicity Triggering Receptor 2/metabolism
- Natural Cytotoxicity Triggering Receptor 3/metabolism
- Peptides/chemistry
- Peptides/pharmacology
- Receptors, IgG/metabolism
- Receptors, KIR2DL2
- Receptors, KIR2DL4/metabolism
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00 Prague, Czech Republic.
| | | | | |
Collapse
|
75
|
Clark GF, Schust DJ. Manifestations of immune tolerance in the human female reproductive tract. Front Immunol 2013; 4:26. [PMID: 23407606 PMCID: PMC3570961 DOI: 10.3389/fimmu.2013.00026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/22/2013] [Indexed: 12/22/2022] Open
Abstract
Like other mucosal surfaces (e.g., the gastrointestinal tract, the respiratory tract), the human female reproductive tract acts as an initial barrier to foreign antigens. In this role, the epithelial surface and subepithelial immune cells must balance protection against pathogenic insults against harmful inflammatory reactions and acceptance of particular foreign antigens. Two common examples of these acceptable foreign antigens are the fetal allograft and human semen/sperm. Both are purposely deposited into the female genital tract and appropriate immunologic response to these non-self antigens is essential to the survival of the species. In light of the weight of this task, it is not surprising that multiple, redundant and overlapping mechanisms are involved. For instance, cells at the immunologic interface between self (female reproductive tract epithelium) and non-self (placental trophoblast cells or human sperm) express glycosylation patterns that mimic those on many metastatic cancer cells and successful pathogens. The cytokine/chemokine milieu at this interface is altered through endocrine and immunologic mechanisms to favor tolerance of non-self. The “foreign” cells themselves also play an integral role in their own immunologic acceptance, since sperm and placental trophoblast cells are unusual and unique in their antigen presenting molecule expression patterns. Here, we will discuss these and other mechanisms that allow the human female reproductive tract to perform this delicate and indispensible balancing act.
Collapse
Affiliation(s)
- Gary F Clark
- Department of Obstetrics, Gynecology and Women's Health, Division of Reproductive Medicine and Fertility, University of Missouri Columbia, MO, USA
| | | |
Collapse
|
76
|
Vidal SM, Khakoo SI, Biron CA. Natural killer cell responses during viral infections: flexibility and conditioning of innate immunity by experience. Curr Opin Virol 2012; 1:497-512. [PMID: 22180766 DOI: 10.1016/j.coviro.2011.10.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells mediate innate defense against viral infections, but the mechanisms in place to access their functions as needed during diverse challenges while limiting collateral damage are poorly understood. Recent molecular characterization of effects mediated through infection-induced inhibitory/activating NK receptor-ligand pairs and cytokines are providing new insights into pathways regulating their responses and revealing unexpected consequences for NK cell subset effects, maintenance, proliferation and function through times overlapping with adaptive and long-lived immunity. The observations define flexible pathways for experience-induced 'conditioning' and challenge narrowly defined roles for NK cells and innate immunity as first responders with prescribed functions. They suggest that individual experiences as well as genes influence the innate immune resources available to fight off an infection.
Collapse
Affiliation(s)
- Silvia M Vidal
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
77
|
Bossard C, Bézieau S, Matysiak-Budnik T, Volteau C, Laboisse CL, Jotereau F, Mosnier JF. HLA-E/β2 microglobulin overexpression in colorectal cancer is associated with recruitment of inhibitory immune cells and tumor progression. Int J Cancer 2012; 131:855-63. [PMID: 21953582 DOI: 10.1002/ijc.26453] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/05/2011] [Indexed: 01/13/2023]
Abstract
The host immune response plays a major role in colorectal carcinoma (CRC) progression. A mechanism of tumor immune escape might involve expression of the human leucocyte antigen (HLA)-E/β2m on tumor cells. The inhibitory effect of HLA-E/β2m on CD8+ cytotoxic T lymphocytes and natural killer (NK) cells is mediated by the main HLA-E receptor CD94/NKG2A. As the pathophysiological relevance of this mechanism in CRC remains unknown, this prompted us to examine, in situ, in a series of 80 CRC (i) the HLA-E and β2m coexpression by tumor cells, (ii) the density of CD8+, cytotoxic, CD244+ and NKP46+ intraepithelial tumor-infiltrating lymphocyte (IEL-TIL) and (iii) the expression of CD94/NKG2 receptor on IEL-TIL. These data were then correlated to patient survival. We provided (i) the in situ demonstration of HLA-E/β2m overexpression by tumor cells in 21% of CRC characterized by an overrepresentation of signet ring cell carcinomas, mucinous carcinomas and medullary carcinomas, (ii) the significant association between HLA-E/β2m overexpression by tumor cells and increased density of CD8+ cytotoxic, CD244+ and CD94+ IEL-TIL and (iii) finally, the unfavorable prognosis associated with HLA-E/β2m overexpression by tumor cells. Our findings show that HLA-E/β2m overexpression is a surrogate marker of poor prognosis and point to a novel mechanism of tumor immune escape in CRC in restraining inhibitory IEL-TIL.
Collapse
|
78
|
Kaur G, Trowsdale J, Fugger L. Natural killer cells and their receptors in multiple sclerosis. ACTA ACUST UNITED AC 2012; 136:2657-76. [PMID: 22734127 DOI: 10.1093/brain/aws159] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immune system has crucial roles in the pathogenesis of multiple sclerosis. While the adaptive immune cell subsets, T and B cells, have been the main focus of immunological research in multiple sclerosis, it is now important to realize that the innate immune system also has a key involvement in regulating autoimmune responses in the central nervous system. Natural killer cells are innate lymphocytes that play vital roles in a diverse range of infections. There is evidence that they influence a number of autoimmune conditions. Recent studies in multiple sclerosis and its murine model, experimental autoimmune encephalomyelitis, are starting to provide some understanding of the role of natural killer cells in regulating inflammation in the central nervous system. Natural killer cells express a diverse range of polymorphic cell surface receptors, which interact with polymorphic ligands; this interaction controls the function and the activation status of the natural killer cell. In this review, we discuss evidence for the role of natural killer cells in multiple sclerosis and experimental autoimmune encephalomyelitis. We consider how a change in the balance of signals received by the natural killer cell influences its involvement in the ensuing immune response, in relation to multiple sclerosis.
Collapse
Affiliation(s)
- Gurman Kaur
- MRC Human Immunology Unit, Nuffield Department of Medicine, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | | | | |
Collapse
|
79
|
Xin X, Higai K, Imaizumi Y, Suzuki C, Ito K, Itoh A, Matsumoto S, Azuma Y, Matsumoto K. Natural killer group 2A (NKG2A) and natural killer group 2C (NKG2C) bind to sulfated glycans and α2,3-NeuAc-containing glycoproteins. Biol Pharm Bull 2011; 34:480-5. [PMID: 21467632 DOI: 10.1248/bpb.34.480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Killer lectin-like receptors on natural killer (NK) cells mediate cytotoxicity through glycans on target cells. We prepared recombinant glutathione S-transferase-fused extracellular lectin-like domains (AA 94-231) of natural killer group 2A (NKG2A) (rGST-NKG2A) and NKG2C (rGST-NKG2C) and determined the binding of these receptors to plates coated with heparin-conjugated bovine serum albumin (heparin-BSA) and glycoproteins. rGST-NKG2A and rGST-NKG2C directly bound to heparin-BSA with K(d) values of 20 and 40 nM, respectively. Binding of rGST-NKG2A and rGST-NKG2C to heparin-BSA was suppressed in the presence of soluble heparin, heparan sulfate, fucoidan, λ-carrageenan, and dextran sulfate. 2-O-Sulfate residues in heparin were essential for the binding of rGST-NKG2A and rGST-NKG2C. Moreover, rGST-NKG2A and rGST-NKG2C bound to multimeric sialyl Lewis X expressing transferrin secreted by HepG2 cells with K(d) values of 80 and 114 nM, respectively. This is the first report showing that NKG2A and NKG2C bind to heparin and α2,3-NeuAc-containing glycoproteins.
Collapse
Affiliation(s)
- Xin Xin
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Iwaszko M, Bogunia-Kubik K. Clinical significance of the HLA-E and CD94/NKG2 interaction. Arch Immunol Ther Exp (Warsz) 2011; 59:353-67. [PMID: 21800130 DOI: 10.1007/s00005-011-0137-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 04/26/2011] [Indexed: 11/26/2022]
Abstract
HLA-E belongs to the non-classical HLA (class Ib family) broadly defined by a limited polymorphism and a restricted pattern of cellular expression. So far, only two functional alleles differing at only one amino acid position (non-synonymous mutation) in the α2 heavy chain domain, where an arginine in position 107 in HLA-E*0101 is replaced by a glycine in HLA-E*0103, have been reported. The interaction between non-classical HLA-E molecule and CD94/NKG2A receptor plays a crucial role in the immunological response involving natural killer (NK) cells and cytotoxic T lymphocytes. All proteins forming CD94/NKG2 receptors are encoded by genes situated in the same cluster on chromosome 12, allowing tight control over the order of their expression. The inhibitory members of the NKG2 receptor family are available on the cell surface before activating the members to prevent autoimmune incidents during immune cells' ontogenesis. In the present review, the potential role of this interaction in viral infection, pregnancy and transplantation of allogeneic hematopoietic stem cells (HSC) is presented and discussed. The review will also include the effect of HLA-E polymorphism on the outcome of HSC transplants in humans.
Collapse
Affiliation(s)
- Milena Iwaszko
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | |
Collapse
|
81
|
Sanchez-Correa B, Morgado S, Gayoso I, Bergua JM, Casado JG, Arcos MJ, Bengochea ML, Duran E, Solana R, Tarazona R. Human NK cells in acute myeloid leukaemia patients: analysis of NK cell-activating receptors and their ligands. Cancer Immunol Immunother 2011; 60:1195-205. [PMID: 21644031 PMCID: PMC11028638 DOI: 10.1007/s00262-011-1050-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/21/2011] [Indexed: 12/22/2022]
Abstract
Natural killer (NK) cell activation is strictly regulated to ensure that healthy cells are preserved, but tumour-transformed or virus-infected cells are recognized and eliminated. To carry out this selective killing, NK cells have an ample repertoire of receptors on their surface. Signalling by inhibitory and activating receptors by interaction with their ligands will determine whether the NK cell becomes activated and kills the target cell. Here, we show reduced expression of NKp46, NKp30, DNAM-1, CD244 and CD94/NKG2C activating receptors on NK cells from acute myeloid leukaemia patients. This reduction may be induced by chronic exposure to their ligands on leukaemic blasts. The analysis of ligands for NK cell-activating receptors showed that leukaemic blasts from the majority of patients express ligands for NK cell-activating receptors. DNAM-1 ligands are frequently expressed on blasts, whereas the expression of the NKG2D ligand MICA/B is found in half of the patients and CD48, a ligand for CD244, in only one-fourth of the patients. The decreased expression of NK cell-activating receptors and/or the heterogeneous expression of ligands for major receptors on leukaemic blasts can lead to an inadequate tumour immunosurveillance by NK cells. A better knowledge of the activating receptor repertoire on NK cells and their putative ligands on blasts together with the possibility to modulate their expression will open new possibilities for the use of NK cells in immunotherapy against leukaemia.
Collapse
MESH Headings
- Animals
- Cytotoxicity, Immunologic
- Gene Expression Regulation, Neoplastic
- Humans
- Immunomodulation
- Immunotherapy
- Killer Cells, Natural/immunology
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/therapy
- Ligands
- Receptors, Natural Killer Cell/genetics
- Receptors, Natural Killer Cell/immunology
- Receptors, Natural Killer Cell/metabolism
- Signal Transduction/immunology
- Tumor Escape
Collapse
Affiliation(s)
- Beatriz Sanchez-Correa
- Immunology Unit, Department of Physiology, Faculty of Veterinary, University of Extremadura, Avenida de la Universidad s/n, 10003 Caceres, Spain
| | - Sara Morgado
- Immunology Unit, Department of Physiology, Faculty of Veterinary, University of Extremadura, Avenida de la Universidad s/n, 10003 Caceres, Spain
| | - Inmaculada Gayoso
- Immunology Unit, Instituto Maimonides para la Investigacion Biomedica de Cordoba (IMIBIC)-University of Cordoba-Hospital Reina Sofia, Cordoba, Spain
| | - Juan M. Bergua
- Department of Hematology, Hospital San Pedro de Alcantara, Caceres, Spain
| | - Javier G. Casado
- Immunology Unit, Department of Physiology, Faculty of Veterinary, University of Extremadura, Avenida de la Universidad s/n, 10003 Caceres, Spain
| | - Maria Jose Arcos
- Department of Hematology, Hospital San Pedro de Alcantara, Caceres, Spain
| | | | - Esther Duran
- Histology and Pathology Unit, Faculty of Veterinary, University of Extremadura, Caceres, Spain
| | - Rafael Solana
- Immunology Unit, Instituto Maimonides para la Investigacion Biomedica de Cordoba (IMIBIC)-University of Cordoba-Hospital Reina Sofia, Cordoba, Spain
| | - Raquel Tarazona
- Immunology Unit, Department of Physiology, Faculty of Veterinary, University of Extremadura, Avenida de la Universidad s/n, 10003 Caceres, Spain
| |
Collapse
|
82
|
Parham P, Norman PJ, Abi-Rached L, Guethlein LA. Variable NK cell receptors exemplified by human KIR3DL1/S1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:11-9. [PMID: 21690332 PMCID: PMC3223120 DOI: 10.4049/jimmunol.0902332] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Variegated expression of variable NK cell receptors for polymorphic MHC class I broadens the range of an individual's NK cell response and the capacity for populations and species to survive disease epidemics and population bottlenecks. On evolutionary time scales, this component of immunity is exceptionally dynamic, unstable, and short-lived, being dependent on coevolution of ligands and receptors subject to varying, competing selection pressures. Consequently these systems of variable NK cell receptors are largely species specific and have recruited different classes of glycoprotein, even within the primate order of mammals. Such disparity helps to explain substantial differences in NK cell biology between humans and animal models, for which the population genetics is largely ignored. KIR3DL1/S1, which recognizes the Bw4 epitope of HLA-A and -B and is the most extensively studied of the variable NK cell receptors, exemplifies how variation in all possible parameters of function is recruited to diversify the human NK cell response.
Collapse
MESH Headings
- Alleles
- Animals
- Disease Models, Animal
- Evolution, Molecular
- HLA-B Antigens/genetics
- HLA-B Antigens/immunology
- HLA-B Antigens/metabolism
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Phylogeny
- Receptors, KIR3DL1/genetics
- Receptors, KIR3DL1/immunology
- Receptors, KIR3DL1/metabolism
- Receptors, KIR3DS1/genetics
- Receptors, KIR3DS1/immunology
- Receptors, KIR3DS1/metabolism
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Paul J. Norman
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Laurent Abi-Rached
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| | - Lisbeth A. Guethlein
- Department of Structural Biology, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
83
|
Kaplan A, Kotzer S, Almeida CR, Kohen R, Halpert G, Salmon-Divon M, Köhler K, Höglund P, Davis DM, Mehr R. Simulations of the NK cell immune synapse reveal that activation thresholds can be established by inhibitory receptors acting locally. THE JOURNAL OF IMMUNOLOGY 2011; 187:760-73. [PMID: 21690326 DOI: 10.4049/jimmunol.1002208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cell activation is regulated by a balance between activating and inhibitory signals. To address the question of how these signals are spatially integrated, we created a computer simulation of activating and inhibitory NK cell immunological synapse (NKIS) assembly, implementing either a "quantity-based" inhibition model or a "distance-based" inhibition model. The simulations mimicked the observed molecule distributions in inhibitory and activating NKIS and yielded several new insights. First, the total signal is highly influenced by activating complex dissociation rates but not by adhesion and inhibitory complex dissociation rates. Second, concerted motion of receptors in clusters significantly accelerates NKIS maturation. Third, when the potential of a cis interaction between Ly49 receptors and MHC class I on murine NK cells was added to the model, the integrated signal as a function of receptor and ligand numbers was only slightly increased, at least up to the level of 50% cis-bound Ly49 receptors reached in the model. Fourth, and perhaps most importantly, the integrated signal behavior obtained when using the distance-based inhibition signal model was closer to the experimentally observed behavior, with an inhibition radius of the order 3-10 molecules. Microscopy to visualize Vav activation in NK cells on micropatterned surfaces of activating and inhibitory strips revealed that Vav is only locally activated where activating receptors are ligated within a single NK cell contact. Taken together, these data are consistent with a model in which inhibitory receptors act locally; that is, that every bound inhibitory receptor acts on activating receptors within a certain radius around it.
Collapse
Affiliation(s)
- Asya Kaplan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Higai K, Suzuki C, Imaizumi Y, Xin X, Azuma Y, Matsumoto K. Binding affinities of NKG2D and CD94 to sialyl Lewis X-expressing N-glycans and heparin. Biol Pharm Bull 2011; 34:8-12. [PMID: 21212510 DOI: 10.1248/bpb.34.8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lectin-like receptors natural killer group 2D (NKG2D) and CD94 on natural killer (NK) cells bind to α2,3-NeuAc-containing N-glycans and heparin/heparan sulfate (HS). Using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rGST-NKG2Dlec) and CD94 (rGST-CD94lec), we evaluated their binding affinities (K(d)) to high sialyl Lewis X (sLeX)-expressing transferrin secreted by HepG2 cells (HepTf) and heparin-conjugated bovine serum albumin (Heparin-BSA), using quartz crystal microbalance (QCM) and enzyme immunoassay (EIA) microplate methods. K(d) values obtained by linear reciprocal plots revealed good coincidence between the two methods. K(d) values of rGST-NKG2Dlec obtained by QCM and EIA, respectively, were 1.19 and 1.11 µM for heparin-BSA >0.30 and 0.20 µM for HepTf, while those of rGST-CD94lec were 1.31 and 1.45 µM for HepTf >0.37 and 0.36 µM for heparin-BSA. These results suggested that these glycans can interact with NKG2D and CD94 to modulate NK cell-dependent cytotoxicity.
Collapse
Affiliation(s)
- Koji Higai
- Department of Clinical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 247–8510, Japan.
| | | | | | | | | | | |
Collapse
|
85
|
The phylogenetic origins of natural killer receptors and recognition: relationships, possibilities, and realities. Immunogenetics 2010; 63:123-41. [PMID: 21191578 DOI: 10.1007/s00251-010-0506-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/16/2010] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells affect a form of innate immunity that recognizes and eliminates cells that are infected with certain viruses or have undergone malignant transformation. In mammals, this recognition can be mediated through immunoglobulin- (Ig) and/or lectin-type NK receptors (NKRs). NKR genes in mammals range from minimally polymorphic single-copy genes to complex multigene families that exhibit high levels of haplotypic complexity and exhibit significant interspecific variation. Certain single-copy NKR genes that are present in one mammal are present as expanded multigene families in other mammals. These observations highlight NKRs as one of the most rapidly evolving eukaryotic gene families and likely reflect the influence of pathogens, especially viruses, on their evolution. Although well characterized in human and mice, cytotoxic cells that are functionally similar to NK cells have been identified in species ranging from birds to reptiles, amphibians and fish. Although numerous receptors have been identified in non-mammalian vertebrates that share structural relationships with mammalian NKRs, functionally defining these lower vertebrate molecules as NKRs is confounded by methodological and interpretive complexities. Nevertheless, several lines of evidence suggest that NK-type function or its equivalent has sustained a long evolutionary history throughout vertebrate species.
Collapse
|
86
|
Hair follicle is a target of stress hormone and autoimmune reactions. J Dermatol Sci 2010; 60:67-73. [DOI: 10.1016/j.jdermsci.2010.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 09/21/2010] [Indexed: 11/16/2022]
|
87
|
Parham P, Abi-Rached L, Matevosyan L, Moesta AK, Norman PJ, Older Aguilar AM, Guethlein LA. Primate-specific regulation of natural killer cells. J Med Primatol 2010; 39:194-212. [PMID: 20618586 DOI: 10.1111/j.1600-0684.2010.00432.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Natural killer (NK) cells are circulating lymphocytes that function in innate immunity and placental reproduction. Regulating both development and function of NK cells is an array of variable and conserved receptors that interact with major histocompatibility complex (MHC) class I molecules. Families of lectin-like and immunoglobulin-like receptors are determined by genes in the natural killer complex (NKC) and leukocyte receptor complex (LRC), respectively. As a consequence of the strong, varying pressures on the immune and reproductive systems, NK cell receptors and their MHC class I ligands evolve rapidly, are highly diverse and exhibit dramatic species-specific differences. The variable, polymorphic family of killer cell immunoglobulin-like receptors (KIR) that regulate human NK cell development and function arose recently, from a single-copy gene during the evolution of simian primates. Our studies of KIR and MHC class I genes in representative species show how these two unlinked but functionally intertwined genetic complexes have co-evolved. In humans, combinations of KIR and HLA class I factors are associated with infectious diseases, including HIV/AIDS, autoimmunity, reproductive success and the outcome of therapeutic transplantation. The extraordinary, and unanticipated, divergence of human NK cell receptors and MHC class I ligands from their mouse counterparts can in part explain the difficulties experienced in finding informative mouse models for human diseases. Non-human primate models have far greater potential, but to realize their promise will first require more complete definition of the genetics and function of KIR and MHC variation in non-human primate species, at a level comparable to that achieved for the human species.
Collapse
Affiliation(s)
- Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
88
|
Older Aguilar AM, Guethlein LA, Adams EJ, Abi-Rached L, Moesta AK, Parham P. Coevolution of killer cell Ig-like receptors with HLA-C to become the major variable regulators of human NK cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:4238-51. [PMID: 20805421 DOI: 10.4049/jimmunol.1001494] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interactions between HLA class I and killer cell Ig-like receptors (KIRs) diversify human NK cell responses. Dominant KIR ligands are the C1 and C2 epitopes of MHC-C, a young locus restricted to humans and great apes. C1- and C1-specific KIRs evolved first, being present in orangutan and functionally like their human counterparts. Orangutans lack C2 and C2-specific KIRs, but have a unique C1+C2-specific KIR that binds equally to C1 and C2. A receptor with this specificity likely provided the mechanism by which C2-KIR interaction evolved from C1-KIR while avoiding a nonfunctional intermediate, that is, either orphan receptor or ligand. Orangutan inhibitory MHC-C-reactive KIRs pair with activating receptors of identical avidity and specificity, contrasting with the selective attenuation of human activating KIRs. The orangutan C1-specific KIR reacts or cross-reacts with all four polymorphic epitopes (C1, C2, Bw4, and A3/11) recognized by human KIRs, revealing their structural commonality. Saturation mutagenesis at specificity-determining position 44 demonstrates that KIRs are inherently restricted to binding just these four epitopes, either individually or in combination. This restriction frees most HLA-A and HLA-B variants to be dedicated TCR ligands, not subject to conflicting pressures from the NK cell and T cell arms of the immune response.
Collapse
|
89
|
Yu J, Wei M, Mao H, Zhang J, Hughes T, Mitsui T, Park IK, Hwang C, Liu S, Marcucci G, Trotta R, Benson DM, Caligiuri MA. CD94 defines phenotypically and functionally distinct mouse NK cell subsets. THE JOURNAL OF IMMUNOLOGY 2009; 183:4968-74. [PMID: 19801519 DOI: 10.4049/jimmunol.0900907] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Understanding of heterogeneous NK subsets is important for the study of NK cell biology and development, and for the application of NK cell-based therapies in the treatment of disease. Here we demonstrate that the surface expression of CD94 can distinctively divide mouse NK cells into two approximately even CD94(low) and CD94(high) subsets in all tested organs and tissues. The CD94(high) NK subset has significantly greater capacity to proliferate, produce IFN-gamma, and lyse target cells than does the CD94(low) subset. The CD94(high) subset has exclusive expression of NKG2A/C/E, higher expression of CD117 and CD69, and lower expression of Ly49D (activating) and Ly49G2 (inhibitory). In vivo, purified mouse CD94(low) NK cells become CD94(high) NK cells, but not vice versa. Collectively, our data suggest that CD94 is an Ag that can be used to identify functionally distinct NK cell subsets in mice and could also be relevant to late-stage mouse NK cell development.
Collapse
Affiliation(s)
- Jianhua Yu
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood 2009; 115:274-81. [PMID: 19897577 DOI: 10.1182/blood-2009-04-215491] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human CD56(bright) natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-gamma (IFN-gamma) production, but little cytotoxicity. CD56(dim) NK cells have high KIR expression, produce little IFN-gamma, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56(bright) to a CD56(dim) phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94(high)CD56(dim) NK cells express CD62L, CD2, and KIR at levels between CD56(bright) and CD94(low)CD56(dim) NK cells. CD94(high)CD56(dim) NK cells produce less monokine-induced IFN-gamma than CD56(bright) NK cells but much more than CD94(low)CD56(dim) NK cells because of differential interleukin-12-mediated STAT4 phosphorylation. CD94(high)CD56(dim) NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56(bright) NK cells but lower than CD94(low)CD56(dim) NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56(dim) NK cells identifies a functional and likely developmental intermediary between CD56(bright) and CD94(low)CD56(dim) NK cells. This supports the notion that, in vivo, human CD56(bright) NK cells progress through a continuum of differentiation that ends with a CD94(low)CD56(dim) phenotype.
Collapse
|
91
|
Danzer M, Polin H, Pröll J, Haunschmid R, Hofer K, Stabentheiner S, Hackl C, Kasparu H, König J, Hauser H, Binder M, Weiss R, Gabriel C, Krieger O. Clinical significance of HLA-E*0103 homozygosity on survival after allogeneic hematopoietic stem-cell transplantation. Transplantation 2009; 88:528-32. [PMID: 19696636 DOI: 10.1097/tp.0b013e3181b0e79e] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Hematopoietic stem-cell transplantation is a well-established treatment in various hematologic malignancies, but the outcome depends on disease relapse, infections, and the development and severity of acute and chronic graft-versus-host disease. Some evidence has revealed an important role for the nonclassical major histocompatibility complex class I molecules in transplantation, most notably human leukocyte antigen (HLA)-E. This study evaluates the impact of HLA-E alleles on transplantation outcome after HLA-matched allogeneic HSCT. METHODS We genotyped DNA for HLA-E polymorphism from 83 recipients and their respective donors by real-time polymerase chain reaction after melting curve analysis and compared the results with clinical outcome. RESULTS HLA-E*0103 homozygous patients showed a higher probability of overall survival (P=0.003) and disease-free survival (P=0.001) in a univariate model. Cox regression analysis confirmed HLA-E*0103, 0103 (P=0.006; relative risk 1.12; 95% confidence interval 0.31-1.94) and early stage of disease (P=0.005; relative risk 1.16; 95% confidence interval 0.45-1.86) as independent factors improving overall survival. Moreover, homozygosity for HLA-E*0103 was associated with a significant decreased incidence of transplant-related mortality (P=0.01). CONCLUSIONS We found an association between HLA-E*0103 homozygosity and the significant reduction of transplant-related mortality in related and unrelated HSCT. The risk of posttransplant complications was significantly reduced when the donor possesses the HLA-E*0103, 0103 genotype, and this was translated in a better overall survival.
Collapse
Affiliation(s)
- Martin Danzer
- Red Cross Transfusion Service of Upper Austria, Linz, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Masilamani M, Peruzzi G, Borrego F, Coligan JE. Endocytosis and intracellular trafficking of human natural killer cell receptors. Traffic 2009; 10:1735-44. [PMID: 19719476 DOI: 10.1111/j.1600-0854.2009.00973.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural killer (NK) cells play a vital role in the defense against viral infections and tumor development. NK cell function is primarily regulated by the sum of signals from a broad array of activation and inhibitory receptors. Key to generating the input level of either activating or inhibitory signals is the maintenance of receptor expression levels on the cell surface. Although the mechanisms of endocytosis and trafficking for some cell surface receptors, such as transferrin receptor and certain immune receptors, are very well known, that is not the situation for receptors expressed by NK cells. Recent studies have uncovered that endocytosis and trafficking routes characteristic for specific activation and inhibitory receptors can regulate the functional responses of NK cells. In this review, we summarize the current knowledge of receptor endocytosis and trafficking, and integrate this with our current understanding of NK cell receptor trafficking.
Collapse
Affiliation(s)
- Madhan Masilamani
- The Jaffe Food Allergy Institute, Department of Pediatrics, Mount Sinai School of Medicine, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
93
|
Johansson S, Salmon-Divon M, Johansson MH, Pickman Y, Brodin P, Kärre K, Mehr R, Höglund P. Probing natural killer cell education by Ly49 receptor expression analysis and computational modelling in single MHC class I mice. PLoS One 2009; 4:e6046. [PMID: 19557128 PMCID: PMC2699029 DOI: 10.1371/journal.pone.0006046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 04/16/2009] [Indexed: 01/17/2023] Open
Abstract
Murine natural killer (NK) cells express inhibitory Ly49 receptors for MHC class I molecules, which allows for “missing self” recognition of cells that downregulate MHC class I expression. During murine NK cell development, host MHC class I molecules impose an “educating impact” on the NK cell pool. As a result, mice with different MHC class I expression display different frequency distributions of Ly49 receptor combinations on NK cells. Two models have been put forward to explain this impact. The two-step selection model proposes a stochastic Ly49 receptor expression followed by selection for NK cells expressing appropriate receptor combinations. The sequential model, on the other hand, proposes that each NK cell sequentially expresses Ly49 receptors until an interaction of sufficient magnitude with self-class I MHC is reached for the NK cell to mature. With the aim to clarify which one of these models is most likely to reflect the actual biological process, we simulated the two educational schemes by mathematical modelling, and fitted the results to Ly49 expression patterns, which were analyzed in mice expressing single MHC class I molecules. Our results favour the two-step selection model over the sequential model. Furthermore, the MHC class I environment favoured maturation of NK cells expressing one or a few self receptors, suggesting a possible step of positive selection in NK cell education. Based on the predicted Ly49 binding preferences revealed by the model, we also propose, that Ly49 receptors are more promiscuous than previously thought in their interactions with MHC class I molecules, which was supported by functional studies of NK cell subsets expressing individual Ly49 receptors.
Collapse
Affiliation(s)
- Sofia Johansson
- Department of Microbiology Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Imaizumi Y, Higai K, Suzuki C, Azuma Y, Matsumoto K. NKG2D and CD94 bind to multimeric alpha2,3-linked N-acetylneuraminic acid. Biochem Biophys Res Commun 2009; 382:604-8. [PMID: 19303396 DOI: 10.1016/j.bbrc.2009.03.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/13/2009] [Indexed: 12/30/2022]
Abstract
Killer lectin-like receptors on natural killer cells mediate cytotoxicity through glycans on target cells including the sialyl Lewis X antigen (sLeX). We investigated whether NK group 2D (NKG2D) and CD94 can bind to sialylated N-linked glycans, using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rNKG2Dlec) and CD94 (rCD94lec). Both rNKG2Dlec and rCD94lec bound to plates coated with high-sLeX-expressing transferrin secreted by HepG2 cells (HepTF). The binding of rNKG2Dlec and rCD94lec to HepTF was markedly suppressed by treatment of HepTF with neuraminidase and in the presence of N-acetylneuraminic acid. Moreover, rNKG2Dlec and rCD94lec bound to alpha2,3-sialylated human alpha(1)-acid glycoprotein (AGP) but not to alpha2,6-sialylated AGP. Mutagenesis revealed that (152)Y of NKG2D and (144)F and (160)N of CD94 were critical for HepTF binding. This is the first report that NKG2D and CD94 bind to alpha2,3-sialylated but not to alpha2,6-sialylated multi-antennary N-glycans.
Collapse
Affiliation(s)
- Yuzo Imaizumi
- Department of Clinical Chemistry, School of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 247-8510, Japan
| | | | | | | | | |
Collapse
|
95
|
Meresse B, Cerf-Bensussan N. Innate T cell responses in human gut. Semin Immunol 2009; 21:121-9. [PMID: 19231234 DOI: 10.1016/j.smim.2009.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 01/20/2009] [Indexed: 01/27/2023]
Abstract
One arm of the gut-associated immune system is represented by a vast collection of T lymphocytes which participate in the subtle interplay between innate and adaptive immune mechanisms and maintain homeostasis at the main body external surface. Mounting data are providing exciting new insight into the innate-like mechanisms which enable intestinal T cells to rapidly sense local conditions and which broaden the spectrum of their functions and regulation at this strategic location. Herein we discuss how innate-like T cell recognition by unconventional T cell subsets and expression of innate NK receptors might modulate immune T cell responses in the human normal or diseased intestine.
Collapse
Affiliation(s)
- Bertrand Meresse
- INSERM U793, Université Paris Descartes, Medical School, 156 rue de Vaugirard, 75737 Paris Cedex 15, France.
| | | |
Collapse
|
96
|
Biassoni R. Human natural killer receptors, co-receptors, and their ligands. CURRENT PROTOCOLS IN IMMUNOLOGY 2009; Chapter 14:14.10.1-14.10.40. [PMID: 19235767 DOI: 10.1002/0471142735.im1410s84] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last 20 years, the study of human natural killer (NK) cells has moved from the first molecular characterizations of very few receptor molecules to the identification of a plethora of receptors displaying surprisingly divergent functions. Our laboratory has contributed to the description of inhibitory receptors and their signaling pathways, important in fine regulation in many cell types, but unknown until their discovery in the NK cells. Inhibitory function is central to regulating NK-mediated cytolysis, with different molecular structures evolving during speciation to assure its persistence. Only in the last ten years has it become possible to characterize the NK triggering receptors mediating natural cytotoxicity, leading to an appreciation of the existence of a cellular interaction network between effectors of both natural and adaptive immunity. This report reviews the contemporary history of molecular studies of receptors and ligands involved in NK cell function, characterizing the ligands of the triggering receptor and the mechanisms for finely regulating their expression in pathogen-infected or tumor cells.
Collapse
Affiliation(s)
- Roberto Biassoni
- Instituto Giannina Gaslini, Laboratory of Molecular Medicine, Genova, Italy
| |
Collapse
|
97
|
Abstract
The applications of chemotherapy for the treatment of AML have been unchanged over the past three decades, with only 30% of patients demonstrating disease-free survival (DFS) [118]. Despite achieving CR following induction chemotherapy, the majority of patients relapse and succumb to their disease [6]. In view of the limitations encountered by cytarabine/anthracycline based regimes, attention has shifted to immunotherapy as a means to treat AML and provide significant long-term DFS. This chapter will discuss the role of the immune system and recent advances in immunotherapy for the treatment of AML, focusing on cellular and non-cellular approaches.
Collapse
|
98
|
Abstract
Natural killer (NK) cells and invariant natural killer T (iNKT) cells are two distinctive lymphocyte populations, each possessing its own unique features. Although NK cells are innate lymphocytes with cytotoxic property, they play an immunoregulatory role in the pathogenesis of autoimmune diseases. NKT cells are T cells expressing invariant TCR a-chains, which are known to bridge innate and adaptive arms of the immune system. Accumulating data now support active involvement of these cells in multiple sclerosis (MS). However, unlike professionally committed regulatory cells such as Foxp3(+) regulatory T cells, NK, and iNKT cells have dual potential of acting as either protective or pathogenic lymphocytes depending on the disease setting, adding complexity to the interpretation of data obtained from human and rodent studies. They are potential therapeutic targets in MS, and further in-depth understanding of these cells will lead to designing new strategies to overcome the disabling disease MS.
Collapse
|
99
|
Molldrem J, Riddell S. Understanding and enhancing the graft-versus-leukemia effect after hematopoietic stem cell transplantation. Cancer Treat Res 2009; 144:187-208. [PMID: 19779869 DOI: 10.1007/978-0-387-78580-6_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jeffrey Molldrem
- Transplant Immunology, M.D. Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
100
|
Peruzzi G, Masilamani M, Borrego F, Coligan JE. Endocytosis as a mechanism of regulating natural killer cell function: unique endocytic and trafficking pathway for CD94/NKG2A. Immunol Res 2009; 43:210-22. [PMID: 18979076 PMCID: PMC2752144 DOI: 10.1007/s12026-008-8072-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Natural killer (NK) cells are lymphocytes generally recognized as sentinels of the innate immune system due to their inherent capacity to deal with diseased (stressed) cells, including malignant and infected. This ability to recognize many potentially pathogenic situations is due to the expression of a diverse panel of activation receptors. Because NK cell activation triggers an aggressive inflammatory response, it is important to have a means of throttling this response. Hence, NK cells also express a panel of inhibitory receptors that recognize ligands expressed by "normal" cells. Little or nothing is known about the endocytosis and trafficking of NK cell receptors, which are of great relevance to understanding how NK cells maintain the appropriate balance of activating and inhibitory receptors on their cell surface. In this review, we focus on the ITIM-containing inhibitory receptor CD94/NKG2A showing that it is endocytosed by a previously undescribed macropinocytic-like process that may be related to the maintenance of its surface expression.
Collapse
Affiliation(s)
- Giovanna Peruzzi
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Twinbrook II, Room 205, MS 8180 12441 Parklawn Drive, Rockville, MD 20852, USA
| | | | | | | |
Collapse
|