51
|
Vue Z, Gonzalez G, Stewart CA, Mehra S, Behringer RR. Volumetric imaging of the developing prepubertal mouse uterine epithelium using light sheet microscopy. Mol Reprod Dev 2018. [PMID: 29543367 DOI: 10.1002/mrd.22973] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Endometrial or uterine glands secrete substances essential for uterine receptivity to the embryo, implantation, conceptus survival, and growth. Adenogenesis is the process of gland formation within the stroma of the uterus. In the mouse, uterine gland formation initiates at postnatal day (P) 5. Uterine gland morphology is poorly understood because it is primarily based on two-dimensional (2D) histology. To more fully describe uterine gland morphogenesis, we generated three-dimensional (3D) models of postnatal uterine glands from P0 to P21, based on volumetric imaging using light sheet microscopy. At birth (P0), there were no glands. At P8, we found bud- and teardrop-shaped epithelial invaginations. By P11, the forming glands were elongated epithelial tubes. By P21, the elongated tubes had a sinuous morphology. These morphologies are homogeneously distributed along the anterior-posterior axis of the uterus. To facilitate uterine gland analyses, we propose a novel 3D staging system of uterine gland morphology during development in the prepubertal mouse. We define five uterine gland stages: Stage 1: bud; Stage 2: teardrop; Stage 3: elongated; Stage 4: sinuous; and Stage 5: primary branches. This staging system provides a standardized key to assess and quantify prepubertal uterine gland morphology that can be used for studies of uterine gland development and pathology. In addition, our studies suggest that gland formation initiation occurs during P8 and P11. However, between P11 and P21 gland formation initiation stops and all glands elongate and become sinuous. We also found that the mesometrial epithelium develops a unique morphology we term the uterine rail.
Collapse
Affiliation(s)
- Zer Vue
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Gonzalez
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - C Allison Stewart
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shyamin Mehra
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Richard R Behringer
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
52
|
Chang HJ, Teasley HE, Yoo JY, Kim TH, Jeong JW. Mitochondrial tumor suppressor 1 is a target of AT-rich interactive domain 1A and progesterone receptor in the murine uterus. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1176-1182. [PMID: 29642667 PMCID: PMC6043432 DOI: 10.5713/ajas.18.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/29/2018] [Indexed: 11/30/2022]
Abstract
Objective Progesterone receptor (PGR) and AT-rich interactive domain 1A (ARID1A) have important roles in the establishment and maintenance of pregnancy in the uterus. In present studies, we examined the expression of mitochondrial tumor suppressor 1 (MTUS1) in the murine uterus during early pregnancy as well as in response to ovarian steroid hormone treatment. Methods We performed quantitative reverse transcription polymerase chain reaction and immunohistochemistry analysis to investigate the regulation of MTUS1 by ARID1A and determined expression patterns of MTUS1 in the uterus during early pregnancy. Results The expression of MTUS1 was detected on day 0.5 of gestation (GD 0.5) and then gradually increased until GD 3.5 in the luminal and glandular epithelium. However, the expression of MTUS1 was significantly reduced in the uterine epithelial cells of Pgrcre/+Arid1af/f and Pgr knockout (PRKO) mice at GD 3.5. Furthermore, MTUS1 expression was remarkably induced after P4 treatment in the luminal and glandular epithelium of the wild-type mice. However, the induction of MTUS1 expression was not detected in uteri of Pgrcre/+Arid1af/f or PRKO mice treated with P4. Conclusion These results suggest that MTUS1 is a novel target gene by ARID1A and PGR in the uterine epithelial cells.
Collapse
Affiliation(s)
- Hye Jin Chang
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.,Health Promotion Center, Seoul National University Bundang Hospital, Seongnam 132620, Korea
| | - Hanna E Teasley
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.,Department of Biology, Kalamazoo College, Kalamazoo MI 49006, USA
| | - Jung-Yoon Yoo
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae Hoon Kim
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jae-Wook Jeong
- Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| |
Collapse
|
53
|
Placental development during early pregnancy in sheep: Progesterone and estrogen receptor protein expression. Theriogenology 2018; 114:273-284. [PMID: 29665573 DOI: 10.1016/j.theriogenology.2018.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 02/08/2023]
Abstract
The aim of this study was to evaluate the pattern of protein expression of the steroid receptor isoforms of nuclear progesterone receptors (PGR) A and B, and estrogen receptors (ESR1 and 2) in utero-placental compartments during early pregnancy. Utero-placental tissues were collected from days 14-30 (n = 4 ewes/day), and uterine tissues were collected from non-pregnant ewes on day 10 after estrus (n = 4). Cross sections of formalin-fixed and paraffin embedded tissues were immunofluorescently stained to detect PGRAB, PGRB, ESR1 and ESR2, followed by image generation of entire cross-sections of uterine and utero-placental tissues, confocal imaging of individual uterine and utero-placental compartments, and image and statistical analyses. PGRAB, PGRB, ESR1 and ESR2 were detected in several compartments of uterine and utero-placental tissues. Quantitative image analysis of staining intensity demonstrated that compared to non-pregnant controls 1) expression of PGRAB and PGRB was less in luminal epithelium and endometrial glands from day 14-16 till 30; 2) PGRAB expression tended to be greater in endometrial and myometrial blood vessels on days 28 and/or 30; 3) PGRB expression in myometrum was lower on days 16 and 28; 4) ESR1 in endometrial stroma was lower in all days of pregnancy; 5) ESR2 expression was similar in all compartments and not affected by pregnancy stage; and 6) in FM, expression of steroid receptors was similar. Thus, we have demonstrated spatial and temporal expression of nuclear PGR and ESR isoforms in utero-placental compartments during early pregnancy.
Collapse
|
54
|
Teasley HE, Chang HJ, Kim TH, Ku BJ, Jeong JW. Expression of PIK3IP1 in the murine uterus during early pregnancy. Biochem Biophys Res Commun 2018; 495:2553-2558. [PMID: 29289536 DOI: 10.1016/j.bbrc.2017.12.154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 12/26/2017] [Indexed: 11/28/2022]
Abstract
The ovarian steroid hormones, estrogen (E2) and progesterone (P4), are essential regulators of uterine functions necessary for development, embryo implantation, and normal pregnancy. ARID1A plays an important role in steroid hormone signaling in endometrial function and pregnancy. In previous studies, using high density DNA microarray analysis, we identified phosphatidylinositol-3-kinase interacting protein 1 (Pik3ip1) as one of the genes up-regulated by ARID1A. In the present study, we performed real-time qPCR and immunohistochemistry analysis to investigate the regulation of PIK3IP1 by ARID1A and determine expression patterns of PIK3IP1 in the uterus during early pregnancy. The expression of PIK3IP1 was strong at the uterine epithelial and stromal cells of the control mice. However, expression of PIK3IP1 was remarkably reduced in the Pgrcre/+Arid1af/f mice and progesterone receptor knock-out (PRKO) mice. During early pregnancy, PIK3IP1 expression was strong at day 2.5 of gestation (GD 2.5) and then slightly decreased at GD 3.5 at the epithelium and stroma. After implantation, PIK3IP1 expression was detected at the secondary decidualization zone. To determine the ovarian steroid hormone regulation of PIK3IP1, we examined the expression of PIK3IP1 in ovariectomized control, Pgrcre/+Arid1af/f, and PRKO mice treated with P4 or E2. P4 treatment increased the PIK3IP1 expression at the luminal and glandular epithelium of control mice. However, the PIK3IP1 induction was decreased in both the Pgrcre/+Arid1af/f and PRKO mice, compared to controls. Our results identified PIK3IP1 as a novel target of ARID1A and PGR in the murine uterus.
Collapse
Affiliation(s)
- Hanna E Teasley
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI 49503, USA; Department of Biology, Kalamazoo College, Kalamazoo, MI, USA
| | - Hye Jin Chang
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI 49503, USA; Health Promotion Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI 49503, USA
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI 49503, USA.
| |
Collapse
|
55
|
Dhiman VK, Bolt MJ, White KP. Nuclear receptors in cancer — uncovering new and evolving roles through genomic analysis. Nat Rev Genet 2017; 19:160-174. [DOI: 10.1038/nrg.2017.102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
56
|
A Gata2-Dependent Transcription Network Regulates Uterine Progesterone Responsiveness and Endometrial Function. Cell Rep 2017; 17:1414-1425. [PMID: 27783953 DOI: 10.1016/j.celrep.2016.09.093] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/15/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023] Open
Abstract
Altered progesterone responsiveness leads to female infertility and cancer, but underlying mechanisms remain unclear. Mice with uterine-specific ablation of GATA binding protein 2 (Gata2) are infertile, showing failures in embryo implantation, endometrial decidualization, and uninhibited estrogen signaling. Gata2 deficiency results in reduced progesterone receptor (PGR) expression and attenuated progesterone signaling, as evidenced by genome-wide expression profiling and chromatin immunoprecipitation. GATA2 not only occupies at and promotes expression of the Pgr gene but also regulates downstream progesterone responsive genes in conjunction with the PGR. Additionally, Gata2 knockout uteri exhibit abnormal luminal epithelia with ectopic TRP63 expressing squamous cells and a cancer-related molecular profile in a progesterone-independent manner. Lastly, we found a conserved GATA2-PGR regulatory network in both human and mice based on gene signature and path analyses using gene expression profiles of human endometrial tissues. In conclusion, uterine Gata2 regulates a key regulatory network of gene expression for progesterone signaling at the early pregnancy stage.
Collapse
|
57
|
Grazul-Bilska AT, Thammasiri J, Kraisoon A, Reyaz A, Bass CS, Kaminski SL, Navanukraw C, Redmer DA. Expression of progesterone receptor protein in the ovine uterus during the estrous cycle: Effects of nutrition, arginine and FSH. Theriogenology 2017; 108:7-15. [PMID: 29175682 DOI: 10.1016/j.theriogenology.2017.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/14/2022]
Abstract
To evaluate expression of progesterone receptor (PGR) AB in follicle stimulating hormone (FSH)-treated or non-treated sheep administered with arginine (Arg) or saline (Sal) fed a control (C), excess (O) or restricted (U) diet, uterine tissues were collected at the early, mid and/or late luteal phases. In exp. 1, ewes from each diet were randomly assigned to one of two treatments, Arg or Sal administration three times daily from day 0 of the first estrous cycle until uterine tissue collection. In exp. 2, ewes were injected twice daily with FSH on days 13-15 of the first estrous cycle. Uterine tissues were immunostained to detect PGR followed by image analysis. PGR were detected in luminal epithelium (LE), endometrial glands (EG), endometrial stroma (ES), myometrium (Myo), and endometrial and myometrial blood vessels. The percentage of PR-positive cells and/or intensity of staining were affected by phase of the estrous cycle, plane of nutrition, and/or FSH but not by Arg. In exp. 1, percentage of PGR-positive cells in LE and EG but not in ES and Myo was greater at the early and mid than late luteal phase, was not affected by plane of nutrition, and was similar in LE and EG. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in LE, EG and Myo, and was the greatest in LE, less in EG, and least in ES and Myo. In exp. 2, percentage of PGR-positive cells in LE, EG, ES and Myo was affected by phase of the estrous cycle, but not by plane of nutrition; was greater at the early than mid luteal phase; and was greatest in LE and EG, less in luminal (superficial) ES and Myo and least in deep ES. Intensity of staining was affected by phase of the estrous cycle and plane of nutrition in all compartments but ES, and was the greatest in LE and luminal EG, less in deep EG, and least in ES and Myo. Comparison of data for FSH (superovulated) and Sal-treated (non-superovulated) ewes demonstrated that FSH affected PR expression in all evaluated uterine compartments depending on plane of nutrition and phase of the estrous cycle. Thus, PGR are differentially distributed in uterine compartments, and PGR expression is affected by nutritional plane and FSH, but not Arg depending on phase of the estrous cycle. Such changes in dynamics of PGR expression indicate that diet plays a regulatory role and that FSH-treatment may alter uterine functions.
Collapse
Affiliation(s)
- Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Jiratti Thammasiri
- Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Aree Kraisoon
- Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Arshi Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Casie S Bass
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Samantha L Kaminski
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Chainarong Navanukraw
- Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Dale A Redmer
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
58
|
Kuokkanen S, Zhu L, Pollard JW. Xenografted tissue models for the study of human endometrial biology. Differentiation 2017; 98:62-69. [PMID: 29156254 DOI: 10.1016/j.diff.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 01/10/2023]
Abstract
The human endometrium undergoes extensive morphological, biochemical and molecular changes under the influence of female sex steroid hormones. Besides the fact that estrogen stimulates endometrial cell proliferation and progesterone inhibits this proliferation and induces differentiation, there is limited knowledge about precise molecular mechanisms underlying human endometrial biology. The importance of paracrine signaling in endometrial physiology explains why in vitro culture of endometrial cells has been challenging. Researchers, therefore, have developed alternative experimental in vivo models for the study of endometrial biology. The objective of this review is to summarize the recent developments and work on these in vivo endometrial research models. The in vivo recombinant tissue models in which wild-type endometrial cells are combined with endometrial cells from a gene-targeted mouse strain followed by xenografting to host mice have been critical in confirming the significance of paracrine signaling between the epithelium and stroma in the growth regulation of the endometrium. Additionally, these studies have uncovered differences between the mouse and human, emphasizing the need for the development of experimental models specifically of the human endometrium. Recently, xenotransplants of human endometrial fragments into the subcutaneous space of host mice and endometrial xenografts of dissociated and recombined epithelial and stromal cells beneath the kidney capsule of immunodeficient host mice have proven to be highly promising tools for in vivo research of endometrial functions. For the first time, the latter approach provides an immense opportunity for the application of genome engineering, such as targeted ablation of endometrial genes for example by using CRISPR/CAS9 system. This research will begin to elucidate the functional role of specific genes in this complex tissue. Another advantage of xenotransplantation and xenograft models of the human endometrium is their use to investigate endometrial effects of new compounds and drugs without needing to give them to women. Underpinning the molecular mechanisms underlying endometrial functions is critical to ultimately advance our understanding of endometrial pathophysiology and develop targeted therapies to prevent and cure endometrial pathologies as well as enhance endometrial function when it is desired for fertility.
Collapse
Affiliation(s)
- Satu Kuokkanen
- Department of Obstetrics and Gynecology&Women's Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States
| | - Liyin Zhu
- Department of Obstetrics and Gynecology&Women's Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States; Department of Developmental&Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jeffrey W Pollard
- Department of Obstetrics and Gynecology&Women's Health, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States; Department of Developmental&Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States; MRC Centre for Reproductive Health, University of Edinburgh, UK.
| |
Collapse
|
59
|
Zhang LY, Mi H, Yan JK, Yan XX, Yang L. Pregnancy-associated changes in expression of progesterone receptor and progesterone-induced blocking factor genes in bone marrow of ewes. Anim Reprod Sci 2017; 186:77-84. [DOI: 10.1016/j.anireprosci.2017.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 09/05/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
|
60
|
Abstract
At implantation, with the acquisition of a receptive phenotype in the uterine epithelium, an initial tenuous attachment of embryonic trophectoderm initiates reorganisation of epithelial polarity to enable stable embryo attachment and the differentiation of invasive trophoblasts. In this Cell Science at a Glance article, we describe cellular and molecular events during the epithelial phase of implantation in rodent, drawing on morphological studies both in vivo and in vitro, and genetic models. Evidence is emerging for a repertoire of transcription factors downstream of the master steroidal regulators estrogen and progesterone that coordinate alterations in epithelial polarity, delivery of signals to the stroma and epithelial cell death or displacement. We discuss what is known of the cell interactions that occur during implantation, before considering specific adhesion molecules. We compare the rodent data with our much more limited knowledge of the human system, where direct mechanistic evidence is hard to obtain. In the accompanying poster, we represent the embryo-epithelium interactions in humans and laboratory rodents, highlighting similarities and differences, as well as depict some of the key cell biological events that enable interstitial implantation to occur.
Collapse
Affiliation(s)
- John D Aplin
- Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| | - Peter T Ruane
- Maternal and Fetal Health Research Group, Manchester Academic Health Sciences Centre, St Mary's Hospital, University of Manchester, Manchester M13 9WL, UK
| |
Collapse
|
61
|
Δ 4-3-ketosteroids as a new class of substrates for the cytosolic sulfotransferases. Biochim Biophys Acta Gen Subj 2017; 1861:2883-2890. [PMID: 28782626 DOI: 10.1016/j.bbagen.2017.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/08/2017] [Accepted: 08/02/2017] [Indexed: 01/08/2023]
Abstract
Cytosolic sulfotransferase (SULT)-mediated sulfation is generally known to involve the transfer of a sulfonate group from the active sulfate, 3'-phosphoadenosine 5'-phosphosulfate (PAPS), to a hydroxyl group or an amino group of a substrate compound. We report here that human SULT2A1, in addition to being able to sulfate dehydroepiandrosterone (DHEA) and other hydroxysteroids, could also catalyze the sulfation of Δ4-3-ketosteroids, which carry no hydroxyl groups in their chemical structure. Among a panel of Δ4-3-ketosteroids tested as substrates, 4-androstene-3,17-dione and progesterone were found to be sulfated by SULT2A1. Mass spectrometry analysis and structural modeling supported a reaction mechanism which involves the isomerization of Δ4-3-ketosteroids from the keto form to an enol form, prior to being subjected to sulfation. Results derived from this study suggested a potential role of SULT2A1 as a Δ4-3-ketosteroid sulfotransferase in steroid metabolism.
Collapse
|
62
|
Yoo JY, Ahn JI, Kim TH, Yu S, Ahn JY, Lim JM, Jeong JW. G-protein coupled receptor 64 is required for decidualization of endometrial stromal cells. Sci Rep 2017; 7:5021. [PMID: 28694502 PMCID: PMC5503986 DOI: 10.1038/s41598-017-05165-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 05/25/2017] [Indexed: 01/08/2023] Open
Abstract
Although GPR64 has an important role for male fertility, its physiological roles in the female reproductive system are still unknown. In the present study, immunohistochemical analysis reveals a spatiotemporal expression of GPR64 in the uterus during early pregnancy. Observation of remarkable induction of GPR64 expression in uterine decidual cells points to its potential physiological significance on decidualization. The decidualization of uterine stromal cells is a key event in implantation. Progesterone (P4) signaling is crucial for the decidualization of the endometrial stromal cells for successful pregnancy. Therefore, we examined ovarian steroid hormone regulation of GPR64 expression in the murine uterus. P4 induced GPR64 expression in the epithelial and stromal cells of the uterus in ovariectomized wild-type mice, but not in PRKO mice. ChIP analysis confirmed that PGR proteins were recruited on progesterone response element of Gpr64 gene in the uteri of wild-type mice treated with P4. Furthermore, the expression of GPR64 was increased in human endometrial stromal cells (hESCs) during in vitro decidualization. Interestingly, small interfering RNA (siRNA)-mediated knockdown of GPR64 in hESCs remarkably reduced decidualization. These results suggest that Gpr64 has a crucial role in the decidualization of endometrial stromal cells.
Collapse
Affiliation(s)
- Jung-Yoon Yoo
- Deparment of Obstetrics and Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapid, MI, 49503, United States
| | - Jong Il Ahn
- Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Hoon Kim
- Deparment of Obstetrics and Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapid, MI, 49503, United States
| | - Sungryul Yu
- Department of Clinical Laboratory Science, Semyung University, Jecheon, 27136, Republic of Korea
| | - Ji Yeon Ahn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Mook Lim
- Research Institutes of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jae-Wook Jeong
- Deparment of Obstetrics and Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapid, MI, 49503, United States.
- Department of Women's Health, Spectrum Health System, Grand Rapids, MI, 49341, United States.
| |
Collapse
|
63
|
Abdel-Rasheed M, Nour Eldeen G, Mahmoud M, ElHefnawi M, Abu-Shahba N, Reda M, Elsetohy K, Nabil M, Elnoury A, Taha T, Azmy O. MicroRNA expression analysis in endometriotic serum treated mesenchymal stem cells. EXCLI JOURNAL 2017; 16:852-867. [PMID: 28828000 PMCID: PMC5547388 DOI: 10.17179/excli2017-101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/01/2017] [Indexed: 01/14/2023]
Abstract
Endometriosis is defined by presence of endometrial-like-tissue outside the uterus. Recently, ectopic endometriotic lesions have been suggested to originate by abnormal differentiation of endometrial mesenchymal stem cells (eMSCs). MicroRNAs (miRNAs) play an important role in the pathophysiology of endometriosis. Through a PCR array approach, we aimed to assess the differential expression of microRNAs in human eMSC treated in culture with sera derived from women with severe endometriosis. Sera were collected from five patients with severe endometriosis and three control women and added individually in the culture medium to conduct experimental and control eMSC sets, respectively. Regular microscopic follow-up for cell morphology was performed. SYBR Green based real-time PCR array was used to assess the expression of 84 miRNAs. Bioinformatics analysis was done to predict the target genes of the significantly dysregulated miRNAs and their enriched biological processes and pathways. Thirty-two miRNAs were found significantly dysregulated in experimental cultures. Functional enrichment analysis revealed several endometriosis associated biological processes and pathways were enriched by target genes of these miRNAs. In conclusion, treatment of human eMSCs with sera of severe endometriosis cases affects the expression of certain miRNAs and their target genes. This may result in altering cell functions and consequently, endometriosis development.
Collapse
Affiliation(s)
- Mazen Abdel-Rasheed
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Ghada Nour Eldeen
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
- Department of Molecular Genetics and Enzymology, National Research Centre, Cairo, Egypt
| | - Marwa Mahmoud
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
- Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemo-informatics group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Nourhan Abu-Shahba
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
- Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Mohamed Reda
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Khaled Elsetohy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Michael Nabil
- Department of Molecular Genetics, CliniLab, Cairo, Egypt
| | - Amr Elnoury
- Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Cairo, Egypt
| | - Tamer Taha
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Osama Azmy
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| |
Collapse
|
64
|
Sun X, Liu X. Cancer metastasis: enactment of the script for human reproductive drama. Cancer Cell Int 2017; 17:51. [PMID: 28469531 PMCID: PMC5414196 DOI: 10.1186/s12935-017-0421-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/24/2017] [Indexed: 12/14/2022] Open
Abstract
Based on compelling evidence from many biological disciplines, we put forth a hypothesis for cancer metastasis. In the hypothesis, the metastatic cascade is depicted as human reproduction in miniature. Illustrated in a reproductive light, the staggering resemblance of cancer metastasis to human reproduction becomes evident despite some ostensible dis-similarities. In parallel to the appearance of primordial germ cells during early embryogenesis, the cancer reproductive saga starts with the separation of metastasis initiating cells (MICs) from cancer initiating cells when the primary cancer is still in its infancy. Prime MICs embark on a journey to the host bone marrow where they undergo further development and regulation. Migrating MICs are guided by the same CXCR4/CYCL12 axis as used in the migration of primordial germ cells to the genital ridge. Like the ovary, the host bone marrow features immune privileges, coolness, hypoxia and acidity which are essential for stemness maintenance and regulation. Opportune activation of the MICs via fusion with bone marrow stem cells triggers a frenzy of cellular proliferation and sets them on the move again. This scenario is akin to oocyte fertilization in the Fallopian tube and its subsequent journey towards the decidum. Just as the human reproductive process is plagued with undesirable outcomes so is the cancer metastasis highly inefficient. The climax of the cancer metastatic drama (colonization) is reached when proliferating MIC clusters attempt to settle down on decidum-like premetastatic sites. Successfully colonized clusters blossom into overt macrometastases only after the execution of sophisticated immunomodulation, angiogenesis and vascular remodeling. Similarly, the implanted blastomere needs to orchestrate these feats before flourishing into a new life. What is more, the cancer reproductive drama seems to be directed by a primordial hypothalamus–pituitary–gonad axis. Pursuing this reproductive trail could lead to new frontiers and breakthroughs in cancer research and therapeutics.
Collapse
Affiliation(s)
- Xichun Sun
- Department of Pathology and Laboratory Medicine, McGuire Holmes Veteran Affairs Medical Center, School of Medicine, Virginia Commonwealth University, 1201 Broad Rock Boulevard, Richmond, VA 23249 USA.,Department of Hepatobiliary Surgery, People's Hospital of Hunan Province, Hunan, China
| | - Xiwu Liu
- Department of Pathology and Laboratory Medicine, McGuire Holmes Veteran Affairs Medical Center, School of Medicine, Virginia Commonwealth University, 1201 Broad Rock Boulevard, Richmond, VA 23249 USA.,Department of Hepatobiliary Surgery, People's Hospital of Hunan Province, Hunan, China
| |
Collapse
|
65
|
Dobrzyn K, Smolinska N, Szeszko K, Kiezun M, Maleszka A, Rytelewska E, Kaminski T. Effect of progesterone on adiponectin system in the porcine uterus during early pregnancy. J Anim Sci 2017; 95:338-352. [PMID: 28177362 DOI: 10.2527/jas.2016.0732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to investigate the influence of progesterone (P4) on adiponectin system genes and protein expression in the endometrium and myometrium during early gestation. Twenty-five gilts were assigned to 1 of 5 groups ( = 5): d 10 to 11 (embryo migration), 12 to 13 (maternal recognition of pregnancy), 15 to 16 (implantation), and 27 to 28 (end of implantation) of pregnancy and d 10 to 11 of the cycle (fully active corpora lutea, corresponding to the corpora lutea activity during gestation). The endometrial and myometrial tissues were cut into 100 mg slices, treated with P4 (10, 100, 1000 nM) and incubated for 24 h. Gene expression was analyzed by the real-time PCR method. Adiponectin secretion was determined by ELISA. Receptor protein content was defined using Western Blot analysis. In the endometrium, on d 10 to 11 of pregnancy, P4 stimulated adiponectin protein secretion. On those days, P4 enhanced adiponectin receptor type 1 () and type 2 () gene expression but inhibited both receptors' protein content. On d 12 to 13 of pregnancy, P4 inhibited adiponectin gene expression. During those period, P4 enhanced gene expression but suppressed both receptors' protein content. On d 15 to 16 of gestation, P4 increased adiponectin gene expression but inhibited the protein secretion. During those days, P4 suppressed gene expression and enhanced AdipoR2 protein content. On d 27 to 28 of gestation, P4 enhanced gene and AdipoR1 protein expression ( < 0.05). In the myometrium, on d 10 to 11 of gestation, P4 increased both receptors' gene expression but suppressed their protein content. On d 12 to 13 of pregnancy, P4 increased adiponectin and genes and AdipoR1 protein expression but decreased AdipoR2 protein content. On d 15 to 16 of gestation, P4 inhibited adiponectin gene expression. On those days, P4 enhanced gene and protein expression. On d 27 to 28 of gestation, P4 decreased adiponectin gene expression. On those days, P4 increased the myometrial AdipoR2 protein concentration and decreased gene protein expression ( < 0.05). Overall, the influence of P4 was found to be tissue specific and dose dependent. Results presented in this study indicate the modulatory effect of P4 on adiponectin system in the porcine uterus during early pregnancy, which may suggest the involvement of this adipokine in the early pregnancy establishment.
Collapse
|
66
|
Li X, Shen C, Liu X, He J, Ding Y, Gao R, Mu X, Geng Y, Wang Y, Chen X. Exposure to benzo[a]pyrene impairs decidualization and decidual angiogenesis in mice during early pregnancy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:523-531. [PMID: 28043741 DOI: 10.1016/j.envpol.2016.11.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/30/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Benzo[a]pyrene (BaP) is a ubiquitous environmental persistent organic pollutant and a well-known endocrine disruptor. BaP exposure could alter the steroid balance in females. Endometrium decidualization and decidual angiogenesis are critical events for embryo implantation and pregnancy maintenance during early pregnancy and are modulated by steroids. However, the effect of BaP on decidualization is not clear. This study aimed to explore the effects of BaP on decidualization and decidual angiogenesis in pregnant mice. The result showed that the uteri in the BaP-treated groups were smaller and exhibited an uneven size compared with those in the control group. Artificial decidualization was detected in the uteri of the controls, but weakened decidualization response was observed in the BaP-treated groups. BaP significantly reduced the levels of estradiol, progesterone, and their cognate receptors ER and PR, respectively. The expression of several decidualization-related factors, including FOXO1, HoxA10, and BMP2, were altered after BaP treatment. BaP reduced the expression of cluster designation 34 (CD34), which indicated that the decidual angiogenesis was inhibited by BaP treatment. In addition, BaP induced the downregulation of vascular endothelial growth factor A. These data suggest that oral BaP ingestion compromised decidualization and decidual angiogenesis. Our results provide experimental data for the maternal reproductive toxicity of BaP during early pregnancy, which is very important for a comprehensive risk assessment of BaP on human reproductive health.
Collapse
Affiliation(s)
- Xueyan Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Cha Shen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Box 197, No.1 Yixueyuan Road, Yuzhong District, 400016 Chongqing, PR China.
| |
Collapse
|
67
|
Steinhauser CB, Bazer FW, Burghardt RC, Johnson GA. Expression of progesterone receptor in the porcine uterus and placenta throughout gestation: correlation with expression of uteroferrin and osteopontin. Domest Anim Endocrinol 2017; 58:19-29. [PMID: 27639033 DOI: 10.1016/j.domaniend.2016.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022]
Abstract
Progesterone (P4) stimulates production and secretion of histotroph, a mixture of hormones, growth factors, nutrients, and other substances required for growth and development of the conceptus (embryo or fetus and placental membranes). Progesterone acts through the progesterone receptor (PGR); however, there is a gap in our understanding of P4 during pregnancy because PGR have not been localized in the uteri and placentae of pigs beyond day 18. Therefore, we determined endometrial expression of PGR messenger RNA (mRNA) and localized PGR protein in uterine and placental tissues throughout the estrous cycle and through day 85 of pregnancy in pigs. Further, 2 components of histotroph, tartrate-resistant acid phosphatase 5 (ACP5; uteroferrin) and secreted phosphoprotein 1 (SPP1; osteopontin) proteins, were localized in relation to PGR during pregnancy. Endometrial expression of PGR mRNA was highest at day 5 of the estrous cycle, decreased between days 5 and 11 of both the estrous cycle and pregnancy, and then increased between days 11 and 17 of the estrous cycle (P < 0.01), but decreased from days 13 to 40 of pregnancy (P < 0.01). Progesterone receptor protein localized to uterine stroma and myometrium throughout all days of the estrous cycle and pregnancy. PGR were expressed by uterine luminal epithelium (LE) between days 5 and 11 of the estrous cycle and pregnancy, then PGR became undetectable in LE through day 85 of pregnancy. During the estrous cycle, PGR were downregulated in LE between days 11 and 15, but expression returned to LE on day 17. All uterine glandular epithelial (GE) cells expressed PGR from days 5 to 11 of the estrous cycle and pregnancy, but expression decreased in the superficial GE by day 12. Expression of PGR in GE continued to decrease between days 25 and 85 of pregnancy; however, a few glands near the myometrium and in close proximity to areolae maintained expression of PGR protein. Acid phosphatase 5 protein was detected in the GE from days 12 to 85 of gestation and in areolae. Secreted phosphoprotein 1 protein was detected in uterine LE in apposition to interareolar, but not areolar areas of the chorioallantois on all days examined, and in uterine GE between days 35 and 85 of gestation. Interestingly, uterine GE cells adjacent to areolae expressed PGR, but not ACP5 or SPP1, suggesting these are excretory ducts involved in the passage, but not secretion, of histotroph into the areolar lumen and highlighting that P4 does not stimulate histotroph production in epithelial cells that express PGR.
Collapse
Affiliation(s)
- C B Steinhauser
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, Texas 77843-4458, USA
| | - F W Bazer
- Department of Animal Science, Texas A&M University, 4458 TAMU, College Station, Texas, 77843-4458, USA
| | - R C Burghardt
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, Texas 77843-4458, USA
| | - G A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, 4458 TAMU, College Station, Texas 77843-4458, USA.
| |
Collapse
|
68
|
Farah O, Biechele S, Rossant J, Dufort D. Porcupine-dependent Wnt signaling controls stromal proliferation and endometrial gland maintenance through the action of distinct WNTs. Dev Biol 2016; 422:58-69. [PMID: 27965056 DOI: 10.1016/j.ydbio.2016.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 01/03/2023]
Abstract
Wnt signaling has been shown to be important in orchestrating proper development of the female reproductive tract. In the uterus, six members of the Wnt family are expressed in the neonatal endometrium and deletion of individual Wnt genes often leads to similar phenotypes, suggesting an interaction of these genes in uterine development and function. Furthermore, Wnts may have complementary functions, which could mask the identification of their individual functional role in single gene deletions. To circumvent this issue, we have generated a deletion of the Porcupine homolog within the female reproductive tract using progesterone receptor-Cre mice (PgrCre/+); preventing Wnt secretion from the producing cells. We show that Porcupine-dependent Wnt signaling, unlike previously reported, is dispensable for postnatal gland formation but is required for post-pubertal gland maintenance as well as for stromal cell proliferation. Furthermore, our results demonstrate that WNT7a is sufficient to restore post-pubertal endometrial gland formation. Although WNT5a did not restore gland formation, it rescued stromal cell proliferation; up-regulating several secreted factors including Fgf10 and Ihh. Our results further elucidate the roles of Wnt signaling in uterine development and function as well as provide an ideal system to address individual Wnt functions in the uterus.
Collapse
Affiliation(s)
- Omar Farah
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Steffen Biechele
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Janet Rossant
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Daniel Dufort
- Department of Obstetrics and Gynecology, McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Department of Biology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
69
|
Kumar R, Yadav A, Pakrasi PL. Expression of ER-α and ER-β during peri-implantation period in uterus is essential for implantation and decidualization in golden hamster. Life Sci 2016; 170:115-122. [PMID: 27939940 DOI: 10.1016/j.lfs.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/23/2016] [Accepted: 12/03/2016] [Indexed: 12/19/2022]
Abstract
AIMS The role of estrogen in embryo implantation in golden hamster (Mesocricetus auratus) is still ambiguous. In order to clarify it, we investigated the spatial distribution and expression of estrogen receptors, ER-α and ER-β in the uterus of pregnant hamster during peri-implantation period and identified the effect of estrogen receptor antagonist ICI-182,780 on the embryo implantation. MAIN METHODS We performed in vivo experiments on early pregnant hamsters involving treatment with ICI-182,780, an estrogen receptor antagonist. Immunohistochemistry, western blot analysis and quantitative PCR were employed to evaluate the spatio-temporal distribution and expression of ER-α and ER-β in the uterus of normal early pregnant and treated hamsters. KEY FINDINGS Results showed that embryo implantation was completely absent in ICI-182,780 treated uterine horn while, normal implantation occurred in control and vehicle treated horns. Both the receptors were differentially expressed in the uterus of hamster from day 1 (D1) to day7 (D7). In contrast, treated horns without any implantation site showed no trace of any receptors. Protein and mRNA expression of both the receptors were high around the day of implantation while, ER-β expression was up-regulated on D7 of embryo implantation. P value˂0.05 is considered significant. SIGNIFICANCE Spatio-temporal expression of ERs in the uterus during peri-implantation period have crucial role for endometrium receptivity and implantation in hamster. Recurrent implantation failure is the devastating problem among the desirable couple and is mainly due to defect in endometrium receptivity. This study may provide a new insight to manage the problem of idiopathic infertility.
Collapse
Affiliation(s)
- Randhir Kumar
- Embryo Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Akhilesh Yadav
- Indian Institute of Vegetable Research (IIVR), Varanasi, India.
| | - P L Pakrasi
- Embryo Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
70
|
Bolnick AD, Bolnick JM, Kilburn BA, Stewart T, Oakes J, Rodriguez-Kovacs J, Kohan-Ghadr HR, Dai J, Diamond MP, Hirota Y, Drewlo S, Dey SK, Armant DR. Reduced homeobox protein MSX1 in human endometrial tissue is linked to infertility. Hum Reprod 2016; 31:2042-50. [PMID: 27312535 PMCID: PMC4991657 DOI: 10.1093/humrep/dew143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Is protein expression of the muscle segment homeobox gene family member MSX1 altered in the human secretory endometrium by cell type, developmental stage or fertility? SUMMARY ANSWER MSX1 protein levels, normally elevated in the secretory phase endometrium, were significantly reduced in endometrial biopsies obtained from women of infertile couples. WHAT IS KNOWN ALREADY Molecular changes in the endometrium are important for fertility in both animals and humans. Msx1 is expressed in the preimplantation mouse uterus and regulates uterine receptivity for implantation. The MSX protein persists a short time, after its message has been down-regulated. Microarray analysis of the human endometrium reveals a similar pattern of MSX1 mRNA expression that peaks before the receptive period, with depressed expression at implantation. Targeted deletion of uterine Msx1 and Msx2 in mice prevents the loss of epithelial cell polarity during implantation and causes infertility. STUDY DESIGN, SIZE DURATION MSX1 mRNA and cell type-specific levels of MSX1 protein were quantified from two retrospective cohorts during the human endometrial cycle. MSX1 protein expression patterns were compared between fertile and infertile couples. Selected samples were dual-labeled by immunofluorescence microscopy to localize E-cadherin and β-catenin in epithelial cells. PARTICIPANTS/MATERIALS, SETTING METHODS MSX1 mRNA was quantified by PCR in endometrium from hysterectomies (n = 14) determined by endometrial dating to be in the late-proliferative (cycle days 10-13), early-secretory (cycle days 14-19) or mid-secretory (cycle days 20-24) phase. MSX1 protein was localized using high-throughput, semi-quantitative immunohistochemistry with sectioned endometrial biopsy tissues from fertile (n = 89) and infertile (n = 89) couples. Image analysis measured stain intensity specifically within the luminal epithelium, glands and stroma during the early-, mid- and late- (cycle days 25-28) secretory phases. MAIN RESULTS AND THE ROLE OF CHANCE MSX1 transcript increased 5-fold (P < 0.05) between the late-proliferative and early secretory phase and was then down-regulated (P < 0.05) prior to receptivity for implantation. In fertile patients, MSX1 protein displayed strong nuclear localization in the luminal epithelium and glands, while it was weakly expressed in nuclei of the stroma. MSX1 protein levels accumulated throughout the secretory phase in all endometrial cellular compartments. MSX1 protein decreased (P < 0.05) in the glands between mid- and late-secretory phases. However, infertile patients demonstrated a broad reduction (P < 0.001) of MSX1 accumulation in all cell types throughout the secretory phase that was most pronounced (∼3-fold) in stroma and glands. Infertility was associated with persistent co-localization of E-cadherin and β-catenin in epithelial cell junctions in the mid- and late-secretory phases. LIMITATIONS, REASONS FOR CAUTION Details of the infertility diagnoses and other patient demographic data were not available. Therefore, patients with uterine abnormalities (Mullerian) could not be distinguished from other sources of infertility. Antibody against human MSX2 is not available, limiting the study to MSX1. However, both RNAs in the human endometrium are similarly regulated. In mice, Msx1 and Msx2 are imperative for murine embryo implantation, with Msx2 compensating for genetic ablation of Msx1 through its up-regulation in a knockout model. WIDER IMPLICATIONS OF THE FINDINGS This investigation establishes that the MSX1 homeobox protein accumulation is associated with the secretory phase in endometrium of fertile couples, and is widely disrupted in infertile patients. It is the first study to examine MSX1 protein localization in the human endometrium, and supported by genetic findings in mice, suggests that genes regulated by MSX1 are linked to the loss of epithelial cell polarity required for uterine receptivity during implantation. STUDY FUNDING/COMPETING INTERESTS This research was supported by the NICHD National Cooperative Reproductive Medicine Network grant HD039005 (M.P.D.), NIH grants HD068524 (S.K.D.), HD071408 (D.R.A., M.P.D.), and HL128628 (S.D.), the Intramural Research Program of the NICHD, March of Dimes (S.K.D., S.D.) and JSPS KAKENHI grant 26112506 (Y.H.). There were no conflicts or competing interests.
Collapse
Affiliation(s)
- Alan D. Bolnick
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Jay M. Bolnick
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Brian A. Kilburn
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Tamika Stewart
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Jonathan Oakes
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | | | | | - Jing Dai
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | | | - Yasushi Hirota
- Obstetrics and Gynecology, University of Tokyo, Tokyo, Japan
| | - Sascha Drewlo
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
| | - Sudhansu K. Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - D. Randall Armant
- Obstetrics and Gynecology,Wayne State University, Detroit, MI, USA
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
71
|
Wolfson ML, Schander JA, Bariani MV, Correa F, Franchi AM. Progesterone modulates the LPS-induced nitric oxide production by a progesterone-receptor independent mechanism. Eur J Pharmacol 2015; 769:110-6. [DOI: 10.1016/j.ejphar.2015.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/15/2022]
|
72
|
Diao H, Li R, El Zowalaty AE, Xiao S, Zhao F, Dudley EA, Ye X. Deletion of Lysophosphatidic Acid Receptor 3 (Lpar3) Disrupts Fine Local Balance of Progesterone and Estrogen Signaling in Mouse Uterus During Implantation. Biol Reprod 2015; 93:123. [PMID: 26447143 DOI: 10.1095/biolreprod.115.131110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Lpar3 encodes LPA3, the third G protein-coupled receptor for lysophosphatidic acid (LPA). Lpar3(-/-) female mice had delayed embryo implantation. Their serum progesterone and estrogen levels were comparable with control on Gestation Day 3.5 (D3.5) at 1100 h. There was reduced cell proliferation in D3.5 and D4.5 Lpar3(-/-) stroma. Progesterone receptor (PGR) disappeared from D4.5 Lpar3(+/+) uterine luminal epithelium (LE) but remained highly expressed in D4.5 Lpar3(-/-) LE. Pgr and PGR- target genes but not estrogen receptor alpha (ERalpha [Esr1]) or ESR target genes, were upregulated in D4.5 Lpar3(-/-) LE. It was hypothesized that suppression of PGR activity in LE could restore on-time uterine receptivity in Lpar3(-/-) mice. A low dose of RU486 (5 μg/mouse) given on D3.5 at 900 h rescued delayed implantation in all pregnant Lpar3(-/-) females and significantly increased number of implantation sites compared to vehicle-treated pregnant Lpar3(-/-) females detected on D4.5. E2 (25 ng/mouse) had a similar effect as 5 μg RU486 on embryo implantation in Lpar3(-/-) females. However, when the ovaries were removed on late D2.5 to create an experimentally induced delayed implantation model, 25 ng E2 activated implantation in Lpar3(+/+) but not Lpar3(-/-) females detected on D4.5. These results demonstrate that deletion of Lpar3 leads to an increased ratio of progesterone signaling/estrogen signaling that can be optimized by low doses of RU486 or E2 to restore on-time implantation in Lpar3(-/-) females.
Collapse
Affiliation(s)
- Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Reproductive Medical Center, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| | - Ahmed E El Zowalaty
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| | - Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| | - Fei Zhao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| | - Elizabeth A Dudley
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, Georgia Interdisciplinary Toxicology Program, University of Georgia, Athens, Georgia
| |
Collapse
|
73
|
Dhakal P, Rumi MAK, Kubota K, Chakraborty D, Chien J, Roby KF, Soares MJ. Neonatal Progesterone Programs Adult Uterine Responses to Progesterone and Susceptibility to Uterine Dysfunction. Endocrinology 2015. [PMID: 26204463 PMCID: PMC4588825 DOI: 10.1210/en.2015-1397] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this report, we investigated the consequences of neonatal progesterone exposure on adult rat uterine function. Female pups were subcutaneously injected with vehicle or progesterone from postnatal days 3 to 9. Early progesterone exposure affected endometrial gland biogenesis, puberty, decidualization, and fertility. Because decidualization and pregnancy success are directly linked to progesterone action on the uterus, we investigated the responsiveness of the adult uterus to progesterone. We first identified progesterone-dependent uterine gene expression using RNA sequencing and quantitative RT-PCR in Holtzman Sprague-Dawley rats and progesterone-resistant Brown Norway rats. The impact of neonatal progesterone treatment on adult uterine progesterone responsiveness was next investigated using quantitative RT-PCR. Progesterone resistance affected the spectrum and total number of progesterone-responsive genes and the magnitude of uterine responses for a subset of progesterone targets. Several progesterone-responsive genes in adult uterus exhibited significantly dampened responses in neonatally progesterone-treated females compared with those of vehicle-treated controls, whereas other progesterone-responsive transcripts did not differ between female rats exposed to vehicle or progesterone as neonates. The organizational actions of progesterone on the uterus were dependent on signaling through the progesterone receptor but not estrogen receptor 1. To summarize, neonatal progesterone exposure leads to disturbances in endometrial gland biogenesis, progesterone resistance, and uterine dysfunction. Neonatal progesterone effectively programs adult uterine responsiveness to progesterone.
Collapse
Affiliation(s)
- Pramod Dhakal
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - M A Karim Rumi
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Kaiyu Kubota
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Damayanti Chakraborty
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Jeremy Chien
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Katherine F Roby
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Michael J Soares
- Institute for Reproductive Health and Regenerative Medicine, Departments of Pathology and Laboratory Medicine (P.D., M.A.K.R., K.K., D.C., M.J.S.), Cancer Biology (J.C.), and Anatomy and Cell Biology (K.F.R.), University of Kansas Medical Center, Kansas City, Kansas 66160
| |
Collapse
|
74
|
Kim TH, Yoo JY, Wang Z, Lydon JP, Khatri S, Hawkins SM, Leach RE, Fazleabas AT, Young SL, Lessey BA, Ku BJ, Jeong JW. ARID1A Is Essential for Endometrial Function during Early Pregnancy. PLoS Genet 2015; 11:e1005537. [PMID: 26378916 PMCID: PMC4574948 DOI: 10.1371/journal.pgen.1005537] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/27/2015] [Indexed: 02/03/2023] Open
Abstract
AT-rich interactive domain 1A gene (ARID1A) loss is a frequent event in endometriosis-associated ovarian carcinomas. Endometriosis is a disease in which tissue that normally grows inside the uterus grows outside the uterus, and 50% of women with endometriosis are infertile. ARID1A protein levels were significantly lower in the eutopic endometrium of women with endometriosis compared to women without endometriosis. However, an understanding of the physiological effects of ARID1A loss remains quite poor, and the function of Arid1a in the female reproductive tract has remained elusive. In order to understand the role of Arid1a in the uterus, we have generated mice with conditional ablation of Arid1a in the PGR positive cells (Pgrcre/+Arid1af/f; Arid1ad/d). Ovarian function and uterine development of Arid1ad/d mice were normal. However, Arid1ad/d mice were sterile due to defective embryo implantation and decidualization. The epithelial proliferation was significantly increased in Arid1ad/d mice compared to control mice. Enhanced epithelial estrogen activity and reduced epithelial PGR expression, which impedes maturation of the receptive uterus, was observed in Arid1ad/d mice at the peri-implantation period. The microarray analysis revealed that ARID1A represses the genes related to cell cycle and DNA replication. We showed that ARID1A positively regulates Klf15 expression with PGR to inhibit epithelial proliferation at peri-implantation. Our results suggest that Arid1a has a critical role in modulating epithelial proliferation which is a critical requisite for fertility. This finding provides a new signaling pathway for steroid hormone regulation in female reproductive biology and furthers our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in human reproductive disorders such as endometriosis.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Jung-Yoon Yoo
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Zhong Wang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shikha Khatri
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shannon M. Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard E. Leach
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, University Medical Group, Greenville Health System, Greenville, South Carolina, United States of America
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
- * E-mail: (BJK); (JWJ)
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
- * E-mail: (BJK); (JWJ)
| |
Collapse
|
75
|
Langmia IM, Apalasamy YD, Omar SZ, Mohamed Z. Progesterone Receptor (PGR) gene polymorphism is associated with susceptibility to preterm birth. BMC MEDICAL GENETICS 2015; 16:63. [PMID: 26286601 PMCID: PMC4593226 DOI: 10.1186/s12881-015-0202-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/14/2015] [Indexed: 01/27/2023]
Abstract
BACKGROUND Preterm birth (PTB) is the major cause of death in newborn and the second major cause of death in children less than 5 years old worldwide. Genetic polymorphism has been implicated as a factor for the occurrence of preterm birth. The aim of this study is to evaluate whether polymorphism in the progesterone receptor (PGR) is associated with susceptibility to preterm birth. METHODS A total of 135 women with preterm and 532 women with term deliveries were genotyped for PGR gene polymorphisms (rs660149, rs471767, rs10895068) using Sequenom MassARRAY platform. RESULTS The G allele of PGR rs660149 polymorphism was significantly associated with susceptibility to PTB in the Malay women. The odds of G allele occurring among Malay women with preterm delivery was twice that of Malay women with term delivery (OR 2.3, 95 % CI (1.2-4.5, P = 0.011). Alternatively, no significant association was observed between PGR rs660149 polymorphisms and susceptibility to PTB in Chinese and Indian women. CONCLUSIONS This study shows that variability in the occurrence of PTB across ethnicities in Malaysia is partly due to differences in genetic background. We therefore suggest that in addition to life style and environmental factors, genetic factor should be greatly considered in this population. Prior information on the genetic composition of women may help in the identification and management of women at risk of preterm birth complication.
Collapse
Affiliation(s)
- Immaculate Mbongo Langmia
- Department of Pharmacology, Pharmacogenomics Laboratory, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Yamunah Devi Apalasamy
- Department of Pharmacology, Pharmacogenomics Laboratory, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Siti Zawaih Omar
- Department of Obstetrics and Gynecology, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Zahurin Mohamed
- Department of Pharmacology, Pharmacogenomics Laboratory, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
76
|
Miao Z, Sun M, Jiang F, Yao Y, Li Y. Negative Effects of SRD5A1 on Nuclear Activity of Progesterone Receptor Isoform B in JEG3 Cells. Reprod Sci 2015; 23:192-9. [DOI: 10.1177/1933719115597764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Zhuo Miao
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shanxi, China
| | - Min Sun
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shanxi, China
| | - Feng Jiang
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shanxi, China
| | - Yuanqing Yao
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shanxi, China
| | - Yi Li
- Department of Obstetrics and Gynecology, Tangdu Hospital, The Fourth Military Medical University, Xi’an, Shanxi, China
| |
Collapse
|
77
|
The Role of Steroid Hormone Receptors in the Establishment of Pregnancy in Rodents. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2015; 216:27-49. [DOI: 10.1007/978-3-319-15856-3_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|