51
|
Wong AK, Chandrakumar A, Whyte R, Reitsma S, Gillick H, Pokhoy A, Papaioannou A, Adachi JD. Bone Marrow and Muscle Fat Infiltration Are Correlated among Postmenopausal Women With Osteoporosis: The AMBERS Cohort Study. J Bone Miner Res 2020; 35:516-527. [PMID: 31675452 DOI: 10.1002/jbmr.3910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/03/2019] [Accepted: 10/13/2019] [Indexed: 01/07/2023]
Abstract
Bone and muscle have shown to interact, but little is known about fat within bone and muscle. Clinical studies have isolated fat within bone and muscle using MRI. In this cross-sectional study, we hypothesized that bone marrow adiposity and muscle adiposity are related and that this relationship is associated with osteoporosis. Postmenopausal women aged 60 to 85 years were recruited as part of the Appendicular Muscle and Bone Extension Research Study (AMBERS). Participants completed dual-energy X-ray absorptiometry (DXA) of the hip and spine to diagnose osteoporosis. Muscle adiposity was measured with MRI at the 66% site of the leg. Fat segmentation was achieved using a semi-automated iterative threshold-optimizing algorithm (error < 5%). Peripheral quantitative computed tomography measured marrow density of the 4% distal tibia (surrogate for marrow fat) by threshold-based, edge-detection segmentations and by examining residuals from trabecular bone density regressed on trabecular tissue mineral density. Muscle adiposity from MRI was regressed on marrow density using linear regression. Models were further examined with an interaction with osteoporosis status. Among 312 women (aged 75.4 ± 5.9 years, body mass index [BMI] 29.5 ± 5.7 kg/m2 ), a larger amount of muscle fat was associated with lower marrow density at the 66% mid-tibia (B = 84.08 [27.56], p = 0.002) and at the 4% distal tibia (B = 129.17 [55.96], p = 0.022) after accounting for age, height, weight, average daily energy expenditure, hypertension, and diabetes. Interactions of this relationship with osteoporosis status were also significant. Upon probing these interactions, the relationships were significant only in women with osteoporosis but not in those without osteoporosis. Fat from bone marrow and muscle may be related to one another through the same phenomenon, which is likely also responsible for osteoporosis, but independent of hypertension and diabetes. More research should focus on the potential abnormalities in muscle and bone fat metabolism and mesenchymal cell commitment to fat within patients with osteoporosis. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Andy K Wong
- CESHA, Joint Department of Medical Imaging, University Health Network, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Abinaa Chandrakumar
- CESHA, Joint Department of Medical Imaging, University Health Network, Toronto, Canada
| | - Rachel Whyte
- CESHA, Joint Department of Medical Imaging, University Health Network, Toronto, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Canada
| | - Shannon Reitsma
- Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Hana Gillick
- Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, Canada
| | - Anthony Pokhoy
- CESHA, Joint Department of Medical Imaging, University Health Network, Toronto, Canada
| | - Alexandra Papaioannou
- Geriatric Education and Research in Aging Sciences (GERAS) Centre, St. Peter's Hospital, Hamilton Health Sciences, Hamilton, Canada
| | - Jonathan D Adachi
- Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
52
|
Hao Y, Wu M, Wang J. Fibroblast growth factor-2 ameliorates tumor necrosis factor-alpha-induced osteogenic damage of human bone mesenchymal stem cells by improving oxidative phosphorylation. Mol Cell Probes 2020; 52:101538. [PMID: 32084581 DOI: 10.1016/j.mcp.2020.101538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α) has been shown to have an inhibitory effect on the osteogenic differentiation of mesenchymal stem cells. The metabolic switch from glycolysis to oxidative phosphorylation (OXPHOS) is vital for energy supply during osteogenic differentiation. However, the metabolic switch is inhibited under inflammatory stimulation. FGF2 has shown that it can improve osteogenic differentiation and promote autoimmune inflammation. In this study, we investigated whether FGF2 can ameliorate TNF-a-inhibited osteogenic damage by improving OXPHOS. Effects of TNF-α or FGF2 on the proliferation and osteogenic differentiation of hBMSCs were evaluated by MTT assay, qRT-PCR, and ALP activity tests. The function of FGF2 on the TNF-a-inhibited metabolic switch was determined by Mito Stress test. The results showed that TNF-α was able to inhibit the osteogenic differentiation and OXPHOS of hBMSCs. FGF2 has no obvious function in improving the osteogenic-related genes, but it can ameliorate the impaired osteogenesis and OCR value caused by TNF-α. These findings suggest that FGF2 can prevent the impaired osteogenic differentiation and metabolic switch of hBMSCs under inflammatory stimulation, which might enhance the regeneration capacity of hBMSCs.
Collapse
Affiliation(s)
- Yishan Hao
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Minting Wu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jinming Wang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
53
|
Li J, Chen X, Lu L, Yu X. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev 2020; 52:88-98. [PMID: 32081538 DOI: 10.1016/j.cytogfr.2020.02.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 02/06/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a prevalent skeletal disorder associated with menopause-related estrogen withdrawal. PMOP is characterized by low bone mass, deterioration of the skeletal microarchitecture, and subsequent increased susceptibility to fragility fractures, thus contributing to disability and mortality. Accumulating evidence indicates that abnormal expansion of marrow adipose tissue (MAT) plays a crucial role in the onset and progression of PMOP, in part because both bone marrow adipocytes and osteoblasts share a common ancestor lineage. The cohabitation of MAT adipocytes, mesenchymal stromal cells, hematopoietic cells, osteoblasts and osteoclasts in the bone marrow creates a microenvironment that permits adipocytes to act directly on other cell types in the marrow. Furthermore, MAT, which is recognized as an endocrine organ, regulates bone remodeling through the secretion of adipokines and cytokines. Although an enhanced MAT volume is linked to low bone mass and fractures in PMOP, the detailed interactions between MAT and bone metabolism remain largely unknown. In this review, we examine the possible mechanisms of MAT expansion under estrogen withdrawal and further summarize emerging findings regarding the pathological roles of MAT in bone remodeling. We also discuss the current therapies targeting MAT in osteoporosis. A comprehensive understanding of the relationship between MAT expansion and bone metabolism in estrogen deficiency conditions will provide new insights into potential therapeutic targets for PMOP.
Collapse
Affiliation(s)
- Jiao Li
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
54
|
Wang S, Bi W, Liu Y, Cheng J, Sun W, Wu G, Xu X. The Antagonist of Retinoic Acid Receptor α, ER-50891 Antagonizes the Inhibitive Effect of All-Trans Retinoic Acid and Rescues Bone Morphogenetic Protein 2-Induced Osteoblastogenic Differentiation. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:297-308. [PMID: 32158187 PMCID: PMC6985983 DOI: 10.2147/dddt.s215786] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022]
Abstract
Background Hypervitaminosis A, alcoholism or medical treatment for acute promyelocytic leukaemia may cause unphysiologically high accumulation of all-trans retinoic acid (ATRA), which could inhibit osteoblastogenesis, thereby triggering osteoporosis. We have shown that bone morphogenetic protein-2 (BMP-2) can only partially antagonize the inhibitive effects of ATRA. In this study, we hypothesized that antagonists of retinoic acid receptors (RARs) could further antagonize the inhibitive effect of ATRA and rescue BMP2-induced osteoblastogenesis. Materials and Methods We first screened the dose-dependent effects of the specific antagonists of RAR α, β and γ and transforming growth factor-beta receptor (ER-50891, LE-135, MM11253, and SB-43142, respectively) on ATRA-induced inhibition of the total cell metabolic activity and proliferation of preosteoblasts. We selected ER-50891 and tested its effects on osteoblastogenesis with the presence or absence of 1 μM ATRA and/or 200 ng/mL BMP-2. We measured the following parameters: Alkaline phosphatase activity (ALP), osteocalcin (OCN) expression and extracellular matrix mineralization as well as the level of phosphorylated Smad1/5. Results ER-50891 but not LE-135, MM11253, or SB-431542 significantly antagonized the inhibition of ATRA and enhanced the total cell metabolic activity and proliferation of preosteoblasts. Dose-dependent assays show ER-50891 could also rescue ATRA inhibited OCN expression and mineralization with or without the induction of BMP. ER-50891 also suppressed the ALP activity that was synergistically enhanced by BMP and ATRA. Neither ATRA, nor ER-50891 or their combination significantly affected the level of BMP-induced phosphorylated Smad1/5. Conclusion The antagonist of RARα, ER-50891 could significantly attenuate ATRA’s inhibitive effects on BMP 2-induced osteoblastogenesis.
Collapse
Affiliation(s)
- Siqian Wang
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Wenjuan Bi
- College of Stomatology, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiayi Cheng
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Wei Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
55
|
Characterization and immunogenicity of bone marrow-derived mesenchymal stem cells under osteoporotic conditions. SCIENCE CHINA-LIFE SCIENCES 2019; 63:429-442. [PMID: 31879847 DOI: 10.1007/s11427-019-1555-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are characterized by their multilineage potential and low immunogenicity. However, the properties of MSCs under pathological conditions are unclear. The current study investigated the differentiation potential and immunological characteristics of bone marrow-derived MSCs from ovariectomized-osteoporotic rats (OP-BMSCs). Although the expression of cell morphology- and stemness-related surface markers was similar between OP-BMSCs and BMSCs from healthy rats (H-BMSCs), the proliferation rate was significantly decreased compared with that of H-BMSCs. Regarding multilineage potential, osteogenesis and chondrogenesis abilities of OP-BMSCs decreased, but the adipogenesis ability was significantly enhanced compared with that of H-BMSCs. As expected, decreased osteogenesis following osteogenic induction resulted in reduced expression of β-catenin, osteocalcin, and runt-related transcription factor 2 in OP-BMSCs. Remarkably, the expression of the co-stimulatory proteins CD40 and CD80 was significantly higher, whereas the expression of the negative co-stimulatory molecule programmed cell death ligand 1 was significantly lower in the OP-BMSCs than that in H-BMSCs. Consequently, H-BMSCs inhibited the proliferation and secretion of inflammatory cytokines from anti-CD3 antibody-activated T cells, whereas OP-BMSCs did not. These results indicate that decreased osteogenesis and increased immunogenicity of OP-BMSCs contribute to bone loss in osteoporosis.
Collapse
|
56
|
Palmitic Acid Methyl Ester Induces G 2/M Arrest in Human Bone Marrow-Derived Mesenchymal Stem Cells via the p53/p21 Pathway. Stem Cells Int 2019; 2019:7606238. [PMID: 31885624 PMCID: PMC6915012 DOI: 10.1155/2019/7606238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Bone marrow-derived mesenchymal cells (BM-MSCs) are able to differentiate into adipocytes, which can secrete adipokines to affect BM-MSC proliferation and differentiation. Recent evidences indicated that adipocytes can secrete fatty acid metabolites, such as palmitic acid methyl ester (PAME), which is able to cause vasorelaxation and exerts anti-inflammatory effects. However, effects of PAME on BM-MSC proliferation remain unclear. The aim of this study was to investigate the effect of PAME on human BM-MSC (hBM-MSC) proliferation and its underlying molecular mechanisms. hBM-MSCs were treated with PAME for 48 h and then subjected to various analyses. The results from the present study show that PAME significantly reduced the levels of G2/M phase regulatory proteins, cyclin-dependent kinase 1 (Cdk1), and cyclin B1 and inhibited proliferation in hBM-MSCs. Moreover, the level of Mdm2 protein decreased, while the levels of p21 and p53 protein increased in the PAME-treated hBM-MSCs. However, PAME treatment did not significantly affect apoptosis/necrosis, ROS generation, and the level of Cdc25C protein. PAME also induced intracellular acidosis and increased intracellular Ca2+ levels. Cotreatment with PAME and Na+/H+ exchanger inhibitors together further reduced the intracellular pH but did not affect the PAME-induced decreases of cell proliferation and increases of the cell population at the G2/M phase. Cotreatment with PAME and a calcium chelator together inhibited the PAME-increased intracellular Ca2+ levels but did not affect the PAME-induced cell proliferation inhibition and G2/M cell cycle arrest. Moreover, the half-life of p53 protein was prolonged in the PAME-treated hBM-MSCs. Taken together, these results suggest that PAME induced p53 stabilization, which in turn increased the levels of p53/p21 proteins and decreased the levels of Cdk1/cyclin B1 proteins, thereby preventing the activation of Cdk1, and eventually caused cell cycle arrest at the G2/M phase. The findings from the present study might help get insight into the physiological roles of PAME in regulating hBM-MSC proliferation.
Collapse
|
57
|
Xie Y, Zhang L, Xiong Q, Gao Y, Ge W, Tang P. Bench-to-bedside strategies for osteoporotic fracture: From osteoimmunology to mechanosensation. Bone Res 2019; 7:25. [PMID: 31646015 PMCID: PMC6804735 DOI: 10.1038/s41413-019-0066-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is characterized by a decrease in bone mass and strength, rendering people prone to osteoporotic fractures caused by low-energy forces. The primary treatment strategy for osteoporotic fractures is surgery; however, the compromised and comminuted bones in osteoporotic fracture sites are not conducive to optimum reduction and rigid fixation. In addition, these patients always exhibit accompanying aging-related disorders, including high inflammatory status, decreased mechanical loading and abnormal skeletal metabolism, which are disadvantages for fracture healing around sites that have undergone orthopedic procedures. Since the incidence of osteoporosis is expected to increase worldwide, orthopedic surgeons should pay more attention to comprehensive strategies for improving the poor prognosis of osteoporotic fractures. Herein, we highlight the molecular basis of osteoimmunology and bone mechanosensation in different healing phases of elderly osteoporotic fractures, guiding perioperative management to alleviate the unfavorable effects of insufficient mechanical loading, high inflammatory levels and pathogen infection. The well-informed pharmacologic and surgical intervention, including treatment with anti-inflammatory drugs and sufficient application of antibiotics, as well as bench-to-bedside strategies for bone augmentation and hardware selection, should be made according to a comprehensive understanding of bone biomechanical properties in addition to the remodeling status of osteoporotic bones, which is necessary for creating proper biological and mechanical environments for bone union and remodeling. Multidisciplinary collaboration will facilitate the improvement of overall osteoporotic care and reduction of secondary fracture incidence.
Collapse
Affiliation(s)
- Yong Xie
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| | - Qi Xiong
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Yanpan Gao
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Ge
- State Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
58
|
Qi S, He J, Han H, Zheng H, Jiang H, Hu CY, Zhang Z, Li X. Anthocyanin-rich extract from black rice (Oryza sativa L. Japonica) ameliorates diabetic osteoporosis in rats. Food Funct 2019; 10:5350-5360. [PMID: 31393485 DOI: 10.1039/c9fo00681h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetic osteoporosis (DOP) is a systemic endocrine-metabolic osteopathy which has the characteristics of bone mineral density (BMD) reduction and bone microstructural destruction. Although anthocyanin-rich extract from black rice (AEBR) was reported to have a beneficial effect on diabetic rats, no studies have been performed on whether black rice anthocyanins are beneficial for diabetic osteoporosis. Therefore, in this study, a streptozotocin-induced diabetic rat model was established to investigate the protective effect of AEBR on diabetes-induced osteoporosis and its possible mechanism. AEBR at three doses (0.5, 1.0, and 2.0 g kg-1 d-1) were administered by oral gavage to diabetic rats for 8 weeks. The blood glucose, BMD, bone histomorphometry parameters, serum bone turnover biomarkers, bone marrow adipocyte numbers, as well as osteoprotegerin (OPG), runt-related transcription factor 2 (RUNX 2), and receptor activator of nuclear factor-κ B ligand (RANKL) protein expression in bone and serum were detected. The results indicated that AEBR dose-dependently decreased the blood glucose, increased the BMD, and decreased the serum bone turnover markers. The bone microstructure and osteoclast numbers in bone tissues returned to normal in the high AEBR dosage group; at the same time, the AEBR dose-dependently suppressed bone marrow adipogenesis. The RUNX 2 as well as the OPG/RANKL ratio in diabetic rats' bone tissues increased significantly in the AEBR treatment group. Our results indicate that AEBR administration can ameliorate bone loss caused by diabetes; this is mainly attributed to its inhibition of bone turnover, suppression of bone marrow adipogenesis, and up-regulation of RUNX 2 and the OPG/RANKL expression ratio.
Collapse
Affiliation(s)
- Shanshan Qi
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China. and Shaanxi Black Organic Food Engineering Center, Hanzhong 723000, Shaanxi, China
| | - Jia He
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Hao Han
- Shaanxi Provincial Bio-resource key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Hongxing Zheng
- Shaanxi Provincial Bio-resource key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China. and Shaanxi Black Organic Food Engineering Center, Hanzhong 723000, Shaanxi, China
| | - Hai Jiang
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Ching Yuan Hu
- Shaanxi Provincial Bio-resource key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| | - Zhijian Zhang
- Vitamin D Research Institute, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China. and Shaanxi Black Organic Food Engineering Center, Hanzhong 723000, Shaanxi, China
| | - Xinsheng Li
- Shaanxi Provincial Bio-resource key Laboratory, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China.
| |
Collapse
|
59
|
Pierce JL, Ding KH, Xu J, Sharma AK, Yu K, Del Mazo Arbona N, Rodriguez-Santos Z, Bernard P, Bollag WB, Johnson MH, Hamrick MW, Begun DL, Shi XM, Isales CM, McGee-Lawrence ME. The glucocorticoid receptor in osteoprogenitors regulates bone mass and marrow fat. J Endocrinol 2019; 243:JOE-19-0230.R1. [PMID: 31370004 PMCID: PMC6938567 DOI: 10.1530/joe-19-0230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022]
Abstract
Excess fat within bone marrow is associated with lower bone density. Metabolic stressors such as chronic caloric restriction (CR) can exacerbate marrow adiposity, and increased glucocorticoid signaling and adrenergic signaling are implicated in this phenotype. The current study tested the role of glucocorticoid signaling in CR-induced stress by conditionally deleting the glucocorticoid receptor (GR) in bone marrow osteoprogenitors (Osx1-Cre) of mice subjected to CR and ad libitum diets. Conditional knockout of the GR (GR-CKO) reduced cortical and trabecular bone mass as compared to wildtype (WT) mice under both ad libitum and CR conditions. No interaction was detected between genotype and diet, suggesting that the GR is not required for CR-induced skeletal changes. The lower bone mass in GR-CKO mice, and the further suppression of bone by CR, resulted from suppressed bone formation. Interestingly, treatment with the -adrenergic receptor antagonist propranolol mildly but selectively improved metrics of cortical bone mass in GR-CKO mice during CR, suggesting interaction between adrenergic and glucocorticoid signaling pathways that affects cortical bone. GR-CKO mice dramatically increased marrow fat under both ad libitum and CR-fed conditions, and surprisingly propranolol treatment was unable to rescue CR-induced marrow fat in either WT or GR-CKO mice. Additionally, serum corticosterone levels were selectively elevated in GR-CKO mice with CR, suggesting the possibility of bone-hypothalamus-pituitary-adrenal crosstalk during metabolic stress. This work highlights the complexities of glucocorticoid and β-adrenergic signaling in stress-induced changes in bone mass, and the importance of GR function in suppressing marrow adipogenesis while maintaining healthy bone mass.
Collapse
Affiliation(s)
- Jessica L Pierce
- J Pierce, Cellular Biology and Anatomy, Augusta University, Augusta, United States
| | - Ke-Hong Ding
- K Ding, Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
| | - Jianrui Xu
- J Xu, Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
| | - Anuj K Sharma
- A Sharma, Cellular Biology and Anatomy, Augusta University, Augusta, United States
| | - Kanglun Yu
- K Yu, Cellular Biology and Anatomy, Augusta University, Augusta, United States
| | | | | | - Paul Bernard
- P Bernard, Pediatric Endocrine Specialists of Georgia, Pediatric Endocrine Specialists of Georgia, Duluth, United States
| | - Wendy B Bollag
- W Bollag, Department of Physiology, Medical College of Georgia, Augusta, GA 30912, United States
| | - Maribeth H Johnson
- M Johnson, Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
| | - Mark W Hamrick
- M Hamrick, Cellular Biology and Anatomy, Augusta University, Augusta, United States
| | - Dana L Begun
- D Begun, Department of Orthopedic Surgery, Mayo Clinic, Rochester, United States
| | - Xing M Shi
- X Ming Shi, Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
| | - Carlos M Isales
- C Isales, Neuroscience and Regenerative Medicine, Augusta University, Augusta, 30912, United States
| | | |
Collapse
|
60
|
Icariin Prevents Diabetes-Induced Bone Loss in Rats by Reducing Blood Glucose and Suppressing Bone Turnover. Molecules 2019; 24:molecules24101871. [PMID: 31096652 PMCID: PMC6571757 DOI: 10.3390/molecules24101871] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
Diabetic Osteoporosis (DOP) is a common metabolic bone disease, characterized by decreased bone mineral density (BMD) and destruction of bone microstructure. It has been reported that icariin is beneficial for estrogen deficiency-induced osteoporosis, and alcohol-induced osteoporosis; whether icariin has protective effects on diabetes-induced osteoporosis has not been reported. In this study, a rat model of diabetic osteoporosis was established by streptozotocin injection, the bone protective effects and potential mechanism of icariin on diabetes-induced bone loss was observed. Thirty 8-week-old female Sprague Dawley rats were divided into control group (vehicle treatment), T1DM (diabetic) group and T1DM-icariin (ICA) group (diabetic rats treated with icariin), 10 rats in each group. The bone histomorphometry parameters, bone mineral density (BMD), serum bone turnover markers, and bone marrow adipogenesis were analyzed after 8 weeks of icariin administration. The results showed consumption of icariin at a doses of 100 mg kg−1 decreased blood glucose, and increased the BMD of diabetic rats. Icariin effectively decreased serum bone turnover marker levels, including CTX-1, ALP, TRACP 5b, osteocalcin, and PINP. Meanwhile, the bone histomorphometry parameters, the number of osteoclasts per bone perimeter were turned to be normal level, and the icariin treatment suppressed bone marrow adipogenesis. The runt-related transcription factor 2 (RUNX 2), as well as the osteoprotegerin (OPG)/receptor activator of nuclear factor-κ B ligand (RANKL) ratio in serum and bone tissues were increased significantly after icariin treatment in diabetic rats. All of the above indicate that oral administration of icariin can prevent diabetic osteoporosis; the effect is mainly related to its ability to reduce blood glucose, inhibit bone turnover and bone marrow adipogenesis, as well as up-regulate bone RUNX 2, and OPG expression.
Collapse
|
61
|
Zhou Q, Xie F, Zhou B, Wang J, Wu B, Li L, Kang Y, Dai R, Jiang Y. Differentially expressed proteins identified by TMT proteomics analysis in bone marrow microenvironment of osteoporotic patients. Osteoporos Int 2019; 30:1089-1098. [PMID: 30739146 DOI: 10.1007/s00198-019-04884-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/28/2019] [Indexed: 01/06/2023]
Abstract
UNLABELLED We applied tandem mass tag (TMT)-based proteomics to investigate protein changes in bone marrow microenvironment of osteoporotic patients undergoing spine fusion. Multiple bioinformatics tools were used to identify and analyze 219 differentially expressed proteins. These proteins may be associated with the pathogenesis of osteoporosis. INTRODUCTION Bone marrow microenvironment is indispensable for the maintenance of bone homeostasis. We speculated that alterations of some factors in the microenvironment of osteoporotic subjects might influence the homeostasis. This study aimed to investigate the changes in the expression of protein factors in the bone marrow environment of osteoporosis. METHODS We performed a proteomics analysis in the vertebral body-derived bone marrow supernatant fluid from 8 Chinese patients undergoing posterior lumbar interbody fusion (4 osteoporotic vs. 4 non-osteoporotic) and used micro-CT to analyze the microstructural features of spinous processes from these patients. We further performed western blotting to validate the differential expressions of some proteins. RESULTS There was deteriorated bone microstructure in osteoporotic patients. Based on proteomics analysis, 172 upregulated and 47 downregulated proteins were identified. These proteins had multiple biological functions associated with osteoblast differentiation, lipid metabolism, and cell migration, and formed a complex protein-protein interaction network. We identified five major regulatory mechanisms, splicing, translation, protein degradation, cytoskeletal organization, and lipid metabolism, involved in the pathogenesis of osteoporosis. CONCLUSIONS There are various protein factors, such as DDX5, PSMC2, CSNK1A1, PLIN1, ILK, and TPM4, differentially expressed in the bone marrow microenvironment of osteoporotic patients, providing new ideas for finding therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Q Zhou
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - F Xie
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - B Zhou
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - J Wang
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - B Wu
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - L Li
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Y Kang
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - R Dai
- Department of Metabolism and Endocrinology, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, National Clinical Research Center for Metabolic Diseases, the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Y Jiang
- Osteoporosis and Arthritis Lab, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
62
|
Pierce JL, Begun DL, Westendorf JJ, McGee-Lawrence ME. Defining osteoblast and adipocyte lineages in the bone marrow. Bone 2019; 118:2-7. [PMID: 29782940 PMCID: PMC6240509 DOI: 10.1016/j.bone.2018.05.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022]
Abstract
Bone is a complex endocrine organ that facilitates structural support, protection to vital organs, sites for hematopoiesis, and calcium homeostasis. The bone marrow microenvironment is a heterogeneous niche consisting of multipotent musculoskeletal and hematopoietic progenitors and their derivative terminal cell types. Amongst these progenitors, bone marrow mesenchymal stem/stromal cells (BMSCs) may differentiate into osteogenic, adipogenic, myogenic, and chondrogenic lineages to support musculoskeletal development as well as tissue homeostasis, regeneration and repair during adulthood. With age, the commitment of BMSCs to osteogenesis slows, bone formation decreases, fracture risk rises, and marrow adiposity increases. An unresolved question is whether osteogenesis and adipogenesis are co-regulated in the bone marrow. Osteogenesis and adipogenesis are controlled by specific signaling mechanisms, circulating cytokines, and transcription factors such as Runx2 and Pparγ, respectively. One hypothesis is that adipogenesis is the default pathway if osteogenic stimuli are absent. However, recent work revealed that Runx2 and Osx1-expressing preosteoblasts form lipid droplets under pathological and aging conditions. Histone deacetylase 3 (Hdac3) and other epigenetic regulators suppress lipid storage in preosteoblasts and/or control marrow adiposity. Establishing a better understanding of fat storage in bone marrow cells, as well as the osteoblast-adipocyte relationship within the bone marrow niche is necessary to understand the mechanisms underlying disease- and aging-related marrow fat storage and may lead to the development of new therapeutic targets for "fatty bone" and osteoporosis.
Collapse
Affiliation(s)
- J L Pierce
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - D L Begun
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - J J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - M E McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA; Department of Orthopaedic Surgery, Augusta University, Augusta, GA, USA.
| |
Collapse
|
63
|
Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater 2018; 80:1-30. [PMID: 30248515 DOI: 10.1016/j.actbio.2018.09.031] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
A range of traditional and free-form fabrication technologies have been investigated and, in numerous occasions, commercialized for use in the field of regenerative tissue engineering (TE). The demand for technologies capable of treating bone defects inherently difficult to repair has been on the rise. This quest, accompanied by the advent of functionally tailored, biocompatible, and biodegradable materials, has garnered an enormous research interest in bone TE. As a result, different materials and fabrication methods have been investigated towards this end, leading to a deeper understanding of the geometrical, mechanical and biological requirements associated with bone scaffolds. As our understanding of the scaffold requirements expands, so do the capability requirements of the fabrication processes. The goal of this review is to provide a broad examination of existing scaffold fabrication processes and highlight future trends in their development. To appreciate the clinical requirements of bone scaffolds, a brief review of the biological process by which bone regenerates itself is presented first. This is followed by a summary and comparisons of commonly used implant techniques to highlight the advantages of TE-based approaches over traditional grafting methods. A detailed discussion on the clinical and mechanical requirements of bone scaffolds then follows. The remainder of the manuscript is dedicated to current scaffold fabrication methods, their unique capabilities and perceived shortcomings. The range of biomaterials employed in each fabrication method is summarized. Selected traditional and non-traditional fabrication methods are discussed with a highlight on their future potential from the authors' perspective. This study is motivated by the rapidly growing demand for effective scaffold fabrication processes capable of economically producing constructs with intricate and precisely controlled internal and external architectures. STATEMENT OF SIGNIFICANCE: The manuscript summarizes the current state of fabrication technologies and materials used for creating scaffolds in bone tissue engineering applications. A comprehensive analysis of different fabrication methods (traditional and free-form) were summarized in this review paper, with emphasis on recent developments in the field. The fabrication techniques suitable for creating scaffolds for tissue engineering was particularly targeted and their use in bone tissue engineering were articulated. Along with the fabrication techniques, we emphasized the choice of materials in these processes. Considering the limitations of each process, we highlighted the materials and the material properties critical in that particular process and provided a brief rational for the choice of the materials. The functional performance for bone tissue engineering are summarized for different fabrication processes and the choice of biomaterials. Finally, we provide a perspective on the future of the field, highlighting the knowledge gaps and promising avenues in pursuit of effective scaffolds for bone tissue engineering. This extensive review of the field will provide research community with a reference source for current approaches to scaffold preparation. We hope to encourage the researchers to generate next generation biomaterials to be used in these fabrication processes. By providing both advantages and disadvantage of each fabrication method in detail, new fabrication techniques might be devised that will overcome the limitations of the current approaches. These studies should facilitate the efforts of researchers interested in generating ideal scaffolds, and should have applications beyond the repair of bone tissue.
Collapse
|
64
|
Chen CH, Wang L, Serdar Tulu U, Arioka M, Moghim MM, Salmon B, Chen CT, Hoffmann W, Gilgenbach J, Brunski JB, Helms JA. An osteopenic/osteoporotic phenotype delays alveolar bone repair. Bone 2018; 112:212-219. [PMID: 29704698 DOI: 10.1016/j.bone.2018.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/10/2018] [Accepted: 04/21/2018] [Indexed: 12/27/2022]
Abstract
Aging is associated with a function decline in tissue homeostasis and tissue repair. Aging is also associated with an increased incidence in osteopenia and osteoporosis, but whether these low bone mass diseases are a risk factor for delayed bone healing still remains controversial. Addressing this question is of direct clinical relevance for dental patients, since most implants are performed in older patients who are at risk of developing low bone mass conditions. The objective of this study was to assess how an osteopenic/osteoporotic phenotype affected the rate of new alveolar bone formation. Using an ovariectomized (OVX) rat model, the rates of tooth extraction socket and osteotomy healing were compared with age-matched controls. Imaging, along with molecular, cellular, and histologic analyses, demonstrated that OVX produced an overt osteoporotic phenotype in long bones, but only a subtle phenotype in alveolar bone. Nonetheless, the OVX group demonstrated significantly slower alveolar bone healing in both the extraction socket, and in the osteotomy produced in a healed extraction site. Most notably, osteotomy site preparation created a dramatically wider zone of dying and dead osteocytes in the OVX group, which was coupled with more extensive bone remodeling and a delay in the differentiation of osteoblasts. Collectively, these analyses demonstrate that the emergence of an osteoporotic phenotype delays new alveolar bone formation.
Collapse
Affiliation(s)
- Chih-Hao Chen
- Craniofacial Research Center, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan 33305, Taiwan; Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liao Wang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - U Serdar Tulu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Masaki Arioka
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Melika Maghazeh Moghim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; University College London Medical School, University College London, London WC1E 6BT, UK
| | - Benjamin Salmon
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Paris Descartes University - Sorbonne Paris Cité, EA 2496 - Orofacial Pathologies, Imaging and Biotherapies Lab and Dental Medicine Department, Bretonneau Hospital, HUPNVS, AP-HP, Paris, France
| | - Chien-Tzung Chen
- Craniofacial Research Center, Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan 33305, Taiwan; Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan
| | - Waldemar Hoffmann
- Nobel Biocare Services AG P.O. Box, CH-8058 Zürich-Flughafen, Switzerland
| | - Jessica Gilgenbach
- Nobel Biocare Services AG P.O. Box, CH-8058 Zürich-Flughafen, Switzerland
| | - John B Brunski
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jill A Helms
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
65
|
Baar MP, Perdiguero E, Muñoz-Cánoves P, de Keizer PLJ. Musculoskeletal senescence: a moving target ready to be eliminated. Curr Opin Pharmacol 2018; 40:147-155. [DOI: 10.1016/j.coph.2018.05.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 05/16/2018] [Indexed: 11/17/2022]
|
66
|
Luciani P, Fibbi B, Mazzanti B, Deledda C, Ballerini L, Aldinucci A, Benvenuti S, Saccardi R, Peri A. The effects of Exendin-4 on bone marrow-derived mesenchymal cells. Endocrine 2018; 60:423-434. [PMID: 29094257 DOI: 10.1007/s12020-017-1430-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/16/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE GLP-1 receptor agonists are antidiabetic drugs currently used in the therapy of type 2 diabetes. Despite several in vitro and in vivo animal studies suggesting a beneficial effect of GLP-1 analogues on bone, in humans their skeletal effects are not clear and clinical studies report conflicting results. METHODS We differentiated human mesenchymal stromal cells (hMSC) toward the adipogenic and the osteoblastic lineages, analysing the effect of Exendin-4 (EXE) before, during and after specific differentiations. RESULTS We showed EXE ability to act selectively on a sub-population of hMSC characterised by a more stem potential, shifting them from G1 to S/M phase of cell cycle. We observed that EXE pre-treatment promotes both adipogenic and osteoblastic differentiations, possibly determined by an increased number of uncommitted progenitors. In fully differentiated cells, EXE affects mature adipocytes by increasing lipolysis, otherwise not altering osteoblasts metabolic activity. Moreover, the increased expression of osteoprotegerin, a modulator of the RANK/RANKL system, observed during osteogenic induction in presence of EXE, could negatively modulate osteoclastogenesis. CONCLUSIONS Our data suggest a complex action of EXE on bone, targeting the proliferation of mesenchymal progenitors, the metabolism of mature adipocytes and the modulation of osteoclastogenesis. Thus, an overall positive effect of this molecule on bone quality might be hypothesised.
Collapse
Affiliation(s)
- Paola Luciani
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Benedetta Fibbi
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Benedetta Mazzanti
- Haematology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cristiana Deledda
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Lara Ballerini
- Haematology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Susanna Benvenuti
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Riccardo Saccardi
- Haematology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Peri
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
67
|
Mattiucci D, Maurizi G, Leoni P, Poloni A. Aging- and Senescence-associated Changes of Mesenchymal Stromal Cells in Myelodysplastic Syndromes. Cell Transplant 2018; 27:754-764. [PMID: 29682980 PMCID: PMC6047275 DOI: 10.1177/0963689717745890] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hematopoietic stem and progenitor cells reside within the bone marrow (BM) microenvironment. By a well-balanced interplay between self-renewal and differentiation, they ensure a lifelong supply of mature blood cells. Physiologically, multiple different cell types contribute to the regulation of stem and progenitor cells in the BM microenvironment by cell-extrinsic and cell-intrinsic mechanisms. During the last decades, mesenchymal stromal cells (MSCs) have been identified as one of the main cellular components of the BM microenvironment holding an indispensable role for normal hematopoiesis. During aging, MSCs diminish their functional and regenerative capacities and in some cases encounter replicative senescence, promoting inflammation and cancer progression. It is now evident that alterations in specific stromal cells that comprise the BM microenvironment can contribute to hematologic malignancies, and there is growing interest regarding the contribution of MSCs to the pathogenesis of myelodysplastic syndromes (MDSs), a clonal hematological disorder, occurring mostly in the elderly, characterized by ineffective hematopoiesis and increased tendency to acute myeloid leukemia evolution. The pathogenesis of MDS has been associated with specific genetic and epigenetic events occurring both in hematopoietic stem cells (HSCs) and in the whole BM microenvironment with an aberrant cross talk between hematopoietic elements and stromal compartment. This review highlights the role of MSCs in MDS showing functional and molecular alterations such as altered cell-cycle regulation with impaired proliferative potential, dysregulated cytokine secretion, and an abnormal gene expression profile. Here, the current knowledge of impaired functional properties of both aged MSCs and MSCs in MDS have been described with a special focus on inflammation and senescence induced changes in the BM microenvironment. Furthermore, a better understanding of aberrant BM microenvironment could improve future potential therapies.
Collapse
Affiliation(s)
- Domenico Mattiucci
- 1 Dipartimento di Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Giulia Maurizi
- 1 Dipartimento di Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Pietro Leoni
- 1 Dipartimento di Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| | - Antonella Poloni
- 1 Dipartimento di Scienze Cliniche e Molecolari, Clinica di Ematologia, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
68
|
Abstract
PURPOSE OF REVIEW Bone marrow fat expresses mixed characteristics, which could correspond to white, brown, and beige types of fat. Marrow fat could act as either energy storing and adipokine secreting white fat or as a source of energy for hematopoiesis and bone metabolism, thus acting as brown fat. However, there is also a negative interaction between marrow fat and other elements of the bone marrow milieu, which is known as lipotoxicity. In this review, we will describe the good and bad roles of marrow fat in the bone, while focusing on the specific components of the negative effect of marrow fat on bone metabolism. RECENT FINDINGS Lipotoxicity in the bone is exerted by bone marrow fat through the secretion of adipokines and free fatty acids (FFA) (predominantly palmitate). High levels of FFA found in the bone marrow of aged and osteoporotic bone are associated with decreased osteoblastogenesis and bone formation, decreased hematopoiesis, and increased osteoclastogenesis. In addition, FFA such as palmitate and stearate induce apoptosis and dysfunctional autophagy in the osteoblasts, thus affecting their differentiation and function. Regulation of marrow fat could become a therapeutic target for osteoporosis. Inhibition of the synthesis of FFA by marrow fat could facilitate osteoblastogenesis and bone formation while affecting osteoclastogenesis. However, further studies testing this hypothesis are still required.
Collapse
Affiliation(s)
- Lakshman Singh
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Level 3 WCHRE, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Sonia Tyagi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Level 3 WCHRE, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Damian Myers
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Level 3 WCHRE, 176 Furlong Road, St. Albans, VIC, 3021, Australia
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia
| | - Gustavo Duque
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, Level 3 WCHRE, 176 Furlong Road, St. Albans, VIC, 3021, Australia.
- Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia.
| |
Collapse
|
69
|
Xie F, Zhou B, Wang J, Liu T, Wu X, Fang R, Kang Y, Dai R. Microstructural properties of trabecular bone autografts: comparison of men and women with and without osteoporosis. Arch Osteoporos 2018; 13:18. [PMID: 29508160 DOI: 10.1007/s11657-018-0422-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/21/2018] [Indexed: 02/03/2023]
Abstract
UNLABELLED The microstructure of autologous bone grafts from men over 50 years old and postmenopausal women undergoing spinal fusion were evaluated using micro-CT. We demonstrated postmenopausal women, especially those with osteoporosis (OP) presented more serious microarchitectural deterioration of bone grafts. PURPOSE This study was undertaken to determine microstructural properties of cancellous bone used as autologous bone grafts from osteoporosis patients undergoing lumbar fusion by comparing microstructural indices to controls. METHODS Cancellous bone specimens from spinous processes were obtained from 41 postmenopausal women (osteoporosis women, n = 19; controls, n = 22) and 26 men over 50 years old (osteoporosis men, n = 8; controls, n = 18) during lumbar fusion surgery. The microstructural parameters were measured using micro-CT. RESULTS Significant difference in bone volume fraction (BV/TV), specific bone surface (BS/BV), trabecular thickness (Tb.Th), and structure model index (SMI) value existed between postmenopausal women with OP and controls. Significant difference in trabecular number (Tb.N) existed between men over 50 years old with OP and controls. Postmenopausal women exhibited lower BV/TV, Tb.Th, and higher SMI value than men over 50 years old. Postmenopausal women with OP exhibited lower BV/TV, Tb.Th, and higher BS/BV than men over 50 years old with OP. CONCLUSIONS Post-menopausal women and older men with OP have worse bone quality in autografts than non-osteoporotic men and women. Postmenopausal women with OP presented serious microarchitectural deterioration in older population.
Collapse
Affiliation(s)
- Fen Xie
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second XiangYa Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, China
| | - Bin Zhou
- Department of Spine Surgery, The Second XiangYa Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, China
| | - Jian Wang
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second XiangYa Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, China
| | - Tang Liu
- Department of Orthopaedics, The Second XiangYa Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, China
| | - Xiyu Wu
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second XiangYa Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, China
| | - Rui Fang
- Department of Orthopaedics, The Second XiangYa Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, China
| | - Yijun Kang
- Department of Spine Surgery, The Second XiangYa Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, China.
| | - Ruchun Dai
- Department of Endocrinology and Metabolism, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, National Clinical Research Center for Metabolic Disease, The Second XiangYa Hospital, Central South University, 139 Renmin Middle Road, Changsha, 410011, China.
| |
Collapse
|
70
|
Baxter-Holland M, Dass CR. Doxorubicin, mesenchymal stem cell toxicity and antitumour activity: implications for clinical use. ACTA ACUST UNITED AC 2018; 70:320-327. [PMID: 29355940 DOI: 10.1111/jphp.12869] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/25/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The use of doxorubicin, an antineoplastic medication used for the treatment of cancers via mechanisms that prevent replication of cells or lead to their death, can result in damage to healthy cells as well as malignant. Among the affected cells are mesenchymal stem cells (MSCs), which are involved in the maintenance and repair of tissues in the body. This review explores the mechanisms of biological effects and damage attributed to doxorubicin on MSCs. The PubMed database was used as a source of literature for this review. KEY FINDINGS Doxorubicin has the potential to lead to significant and irreversible damage to the human bone marrow environment, including MSCs. The primary known mechanism of these changes is through free radical damage and activation of apoptotic pathways. The presence of MSCs in culture or in vivo appears to either suppress or promote tumour growth. Interactions between doxorubicin and MSCs have the potential to increase chemotherapy resistance. SUMMARY Doxorubicin-induced damage to MSCs is of concern clinically. However, MSCs also have been associated with resistance of tumour cells to drugs including doxorubicin. Further studies, particularly in vivo, are needed to provide consistent results of how the doxorubicin-induced changes to MSCs affect treatment and patient health.
Collapse
Affiliation(s)
- Mia Baxter-Holland
- School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia
| | - Crispin R Dass
- School of Pharmacy and Biomedical Science, Curtin University, Perth, WA, Australia.,Curtin Health Innovation Research Institute, Perth, WA, Australia
| |
Collapse
|
71
|
Herroon MK, Rajagurubandara E, Diedrich JD, Heath EI, Podgorski I. Adipocyte-activated oxidative and ER stress pathways promote tumor survival in bone via upregulation of Heme Oxygenase 1 and Survivin. Sci Rep 2018; 8:40. [PMID: 29311669 PMCID: PMC5758829 DOI: 10.1038/s41598-017-17800-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/30/2017] [Indexed: 01/26/2023] Open
Abstract
Metastatic tumor cells engage the local tumor microenvironment and activate specific pro-survival mechanisms to thrive and progress in the harsh bone marrow niche. Here we show that the major contributors to the survival of carcinoma cells that have colonized the bone marrow are the adipocyte-induced oxidative stress and ER stress pathways. We demonstrate that upon exposure to adipocyte-rich environments in vitro or in vivo, bone-trophic prostate and breast tumor cells upregulate the oxidative stress enzyme, HO-1. We also show that HO-1 levels are significantly increased in human metastatic prostate cancer tissues and that stable HO-1 overexpression in tumor cells promotes growth and invasiveness. Co-incident with the adipocyte-induced expression of HO-1, there is an upregulation of ER chaperone BIP and splicing of XBP1, indicating adipocyte-driven unfolded protein response, a process that we show to be sensitive to antioxidant treatment. Importantly, we also demonstrate that triggering of the oxidative stress and ER stress responses, or HO-1 induction by adipocyte exposure result in the activation of pro-survival pathways, involving survivin. Collectively, our findings reveal a new link between HO-1 and survivin expression in tumor cells, and provide a new insight into potentially targetable survival pathways in bone-metastatic disease.
Collapse
Affiliation(s)
- Mackenzie K Herroon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Jonathan D Diedrich
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Elisabeth I Heath
- Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
72
|
Tan B, Shen L, Yang K, Huang D, Li X, Li Y, Zhao L, Chen J, Yi Q, Xu H, Tian J, Zhu J. C6 glioma-conditioned medium induces malignant transformation of mesenchymal stem cells: Possible role of S100B/RAGE pathway. Biochem Biophys Res Commun 2017; 495:78-85. [PMID: 29050939 DOI: 10.1016/j.bbrc.2017.10.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have been widely studied as an attractive therapeutic agent for the treatment of tumors. However, the adverse effects of the tumor paracrine factors who affect MSCs are still unclear. In this study, we report for the first time that C6 glioma-conditioned medium (GCM) induces malignant transformation of MSCs. In contrast to MSCs, the transformed mesenchymal stem cells (TMCs) exhibited tumor cell characterizations in vitro and highly tumorigenic in vivo. Furthermore, GCM and recombinant S100B increased receptor for advanced glycation end products (RAGE) and its downstream Akt1, STAT3 genes expression as well as phosphorylation and transcriptional activation. Finally, blockage of S100B-RAGE interaction by RAGE inhibitor FPS-ZM1 attenuated GCM and S100B-induced Akt1, STAT3 activation, abolished its cell proliferation, migration and invasion actions. Together, these results suggest that the RAGE pathway may play a possible role in malignant transformation procedure of MSCs, and that this process may be mediated through S100B.
Collapse
Affiliation(s)
- Bin Tan
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Lianju Shen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, 400014, China
| | - Ke Yang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, 400014, China
| | - Daochao Huang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Xin Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Yasha Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Li Zhao
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Jie Chen
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Qing Yi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Hao Xu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Jie Tian
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China
| | - Jing Zhu
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, 400014, China.
| |
Collapse
|
73
|
Petecchia L, Viti F, Sbrana F, Vassalli M, Gavazzo P. A biophysical approach to quantify skeletal stem cells trans-differentiation as a model for the study of osteoporosis. Biophys Chem 2017; 229:84-92. [DOI: 10.1016/j.bpc.2017.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/09/2017] [Accepted: 05/22/2017] [Indexed: 01/21/2023]
|
74
|
Sobacchi C, Palagano E, Villa A, Menale C. Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate. Front Bioeng Biotechnol 2017; 5:32. [PMID: 28567372 PMCID: PMC5434159 DOI: 10.3389/fbioe.2017.00032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that are identified by in vitro plastic adherence, colony-forming capacity, expression of a panel of surface molecules, and ability to differentiate at least toward osteogenic, adipogenic, and chondrogenic lineages. They also produce trophic factors with immunomodulatory, proangiogenic, and antiapoptotic functions influencing the behavior of neighboring cells. On the other hand, a reciprocal regulation takes place; in fact, MSCs can be isolated from several tissues, and depending on the original microenvironment and the range of stimuli received from there, they can display differences in their essential characteristics. Here, we focus mainly on the bone tissue and how soluble factors, such as growth factors, cytokines, and hormones, present in this microenvironment can orchestrate bone marrow-derived MSCs fate. We also briefly describe the alteration of MSCs behavior in pathological settings such as hematological cancer, bone metastasis, and bone marrow failure syndromes. Overall, the possibility to modulate MSCs plasticity makes them an attractive tool for diverse applications of tissue regeneration in cell therapy. Therefore, the comprehensive understanding of the microenvironment characteristics and components better suited to obtain a specific MSCs response can be extremely useful for clinical use.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Eleonora Palagano
- Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Ciro Menale
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| |
Collapse
|
75
|
Long Q, Luo Q, Wang K, Bates A, Shetty AK. Mash1-dependent Notch Signaling Pathway Regulates GABAergic Neuron-Like Differentiation from Bone Marrow-Derived Mesenchymal Stem Cells. Aging Dis 2017; 8:301-313. [PMID: 28580186 PMCID: PMC5440110 DOI: 10.14336/ad.2016.1018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022] Open
Abstract
GABAergic neuronal cell grafting has promise for treating a multitude of neurological disorders including epilepsy, age-related memory dysfunction, Alzheimer's disease and schizophrenia. However, identification of an unlimited source of GABAergic cells is critical for advancing such therapies. Our previous study implied that reprogramming of bone marrow-derived mesenchymal stem cells (BMSCs) through overexpression of the Achaete-scute homolog 1 (Ascl1, also called Mash1) could generate GABAergic neuron-like cells. Here, we investigated mechanisms underlying the conversion of BMSCs into GABAergic cells. We inhibited γ-secretase (an enzyme that activates Notch signaling) with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) or manipulated the expression of Notch signaling components such as the recombination signal binding protein for immunoglobulin kappa J region (RBPJ), hairy and enhancer of split-1 (Hes1) or Mash1. We demonstrate that inhibition of γ-secretase through DAPT down-regulates RBPJ and Hes1, up-regulates Mash1 and results in an enhanced differentiation of BMSCs into GABAergic cells. On the other hand, RBPJ knockdown in BMSCs has no effect on Mash1 gene expression whereas Hes1 knockdown increases the expression of Mash1. Transduction of Mash1 in BMSCs also increases the expression of Hes1 but not RBPJ. Moreover, increased GABAergic differentiation in BMSCs occurs with concurrent Mash1 overexpression and Hes1-silencing. Thus, the Mash1-dependent Notch signaling pathway regulates GABAergic neuron-like differentiation of BMSCs. These results also suggest that genetic engineering of BMSCs is a useful avenue for obtaining GABAergic neuron-like donor cells for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Qianfa Long
- 1Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiao Tong University School of Medicine, Xi'an 710003, China.,2Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple and College Station, Texas, 76502, USA
| | - Qiang Luo
- 1Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiao Tong University School of Medicine, Xi'an 710003, China
| | - Kai Wang
- 3Department of Neurosurgery, Qingdao 401 Hospital of PLA, Qingdao 266071, China
| | - Adrian Bates
- 2Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple and College Station, Texas, 76502, USA.,4Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, Texas, USA
| | - Ashok K Shetty
- 2Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple and College Station, Texas, 76502, USA.,4Research Service, Olin E. Teague Veterans' Medical Center, CTVHCS, Temple, Texas, USA
| |
Collapse
|
76
|
van de Peppel J, Strini T, Tilburg J, Westerhoff H, van Wijnen AJ, van Leeuwen JP. Identification of Three Early Phases of Cell-Fate Determination during Osteogenic and Adipogenic Differentiation by Transcription Factor Dynamics. Stem Cell Reports 2017; 8:947-960. [PMID: 28344004 PMCID: PMC5390132 DOI: 10.1016/j.stemcr.2017.02.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 01/08/2023] Open
Abstract
Age-related skeletal degeneration in patients with osteoporosis is characterized by decreased bone mass and occurs concomitant with an increase in bone marrow adipocytes. Using microarray expression profiling with high temporal resolution, we identified gene regulatory events in early stages of osteogenic and adipogenic lineage commitment of human mesenchymal stromal cells (hMSCs). Data analysis revealed three distinct phases when cells adopt a committed expression phenotype: initiation of differentiation (0-3 hr, phase I), lineage acquisition (6-24 hr, phase II), and early lineage progression (48-96 hr, phase III). Upstream regulator analysis identified 34 transcription factors (TFs) in phase I with a role in hMSC differentiation. Interestingly, expression levels of identified TFs did not always change and indicate additional post-transcriptional regulatory mechanisms. Functional analysis revealed that forced expression of IRF2 enhances osteogenic differentiation. Thus, IRF2 and other early-responder TFs may control osteogenic cell fate of MSCs and should be considered in mechanistic models that clarify bone-anabolic changes during clinical progression of osteoporosis.
Collapse
Affiliation(s)
- Jeroen van de Peppel
- Bone and Calcium Metabolism, Department Internal Medicine, Erasmus MC, Wytemaweg 80, Postbus 2040, 3000 CA Rotterdam, the Netherlands
| | - Tanja Strini
- Bone and Calcium Metabolism, Department Internal Medicine, Erasmus MC, Wytemaweg 80, Postbus 2040, 3000 CA Rotterdam, the Netherlands
| | - Julia Tilburg
- Bone and Calcium Metabolism, Department Internal Medicine, Erasmus MC, Wytemaweg 80, Postbus 2040, 3000 CA Rotterdam, the Netherlands
| | - Hans Westerhoff
- Synthetic Systems Biology, University of Amsterdam, 1081 HZ Amsterdam, the Netherlands; Molecular Cell Physiology, VU University Amsterdam, 1081 HZ Amsterdam, the Netherlands; Systems Biology, MCISB, University of Manchester, Manchester M1 7DN, UK
| | - Andre J van Wijnen
- Bone and Calcium Metabolism, Department Internal Medicine, Erasmus MC, Wytemaweg 80, Postbus 2040, 3000 CA Rotterdam, the Netherlands; Department of Orthopedic Surgery, Biochemistry & Molecular Biology, and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Johannes P van Leeuwen
- Bone and Calcium Metabolism, Department Internal Medicine, Erasmus MC, Wytemaweg 80, Postbus 2040, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
77
|
Abdallah BM. Marrow adipocytes inhibit the differentiation of mesenchymal stem cells into osteoblasts via suppressing BMP-signaling. J Biomed Sci 2017; 24:11. [PMID: 28173811 PMCID: PMC5296965 DOI: 10.1186/s12929-017-0321-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/31/2017] [Indexed: 01/24/2023] Open
Abstract
Background Reduced bone formation is associated with increased bone marrow fat in many bone-loss related diseases including aging, post-menopause, and anorexia nervosa. Several lines of evidence suggested the regulation of osteogenesis and adipogenesis of the bone marrow-derived mesenchymal (skeletal) stem cells (BMSCs) by paracrine mediators. This study aimed to investigate the impact of adipocytes-secreted factors on the cell proliferation and osteoblast differentiation of BMSCs. Methods Serum free conditioned medium (CM-Adipo) was collected from stromal ST2 cells-derived adipocytes. Cell viability, quantitative alkaline phosphatase (ALP) activity assay, Alizarin red staining for matrix mineralization and osteogenic gene array expression were performed to determine the effect of CM-Adipo on cell proliferation and osteoblast differentiation of primary murine BMSCs (mBMSCs). Regulation of BMPs and NF-κB signaling pathways by CM-Adipo were detected by Western blot analysis and gene reporter assay. Results CM-Adipo showed no effect on cell viability/proliferation of primary mBMSCs as compared to CM-control. On the other hand, CM-Adipo significantly inhibited the commitment of mBMSCs into osteoblastic cell lineage in dose-dependent manner. CM-Adipo was found to dramatically inhibit the BMP2-induced osteoblast differentiation and to activate the inflammatory NF-κB signaling in mBMSCs. Interestingly, treatment of mBMSCs with the selective inhibitor of NF-κB pathway, BAY11-770682, showed to retrieve the inhibitory effect of CM-Adipo on BMP2-induced osteoblast differentiation in mBMSCs. Conclusions Our data demonstrated that the marrow adipocytes exert paracrine inhibitory effect on the osteoblast differentiation of mBMSCs by blocking BMPs signaling in a mechanism mediated by adipokines-induced NF-κB pathway activation. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0321-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Basem M Abdallah
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark. .,Department of Biological Sciences, College of Science, King Faisal University, Hofuf, Saudi Arabia. .,Faculty of Science, Helwan University, Cairo, Egypt.
| |
Collapse
|